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ANALYTIC FUNCTIONS CHARACTERIZED BY THEIR MEANS

ON AN ARC

BY

CHIN-HUNG CHING AND CHARLES K. CHUI

ABSTRACT. It is known that a function /, holomorphic in the open unit disc

U with   C boundary data for some í >0, is uniquely determined by its arith-

metic means over equally spaced points on dU. By using different techniques, we

weaken the hypothesis C *£(dU) to functions with  Lp derivatives, 1 <p <oo. We

also prove that a function is determined by its averages over an arc K if / is holo-

morphic in a neighborhood of  U, and that this result is false for some functions /

in  A n C°°( U). On the other hand, we can capture a A n C ( U) function from its

means and shifted means on  X

1. Introduction and results. Let U denote the open unit disc in the complex

plane with closure U and boundary T. As usual, let Hp be the Hardy spaces and

A  be the space of functions holomorphic in U and continuous in U. For a con-

tinuous function / on an arc {e       : t. <t <<2i °f ^» we consider its arithmetic

means

1    "
sn(f; tv t2) = -  £  fiexpii2nkit2 - tx)/n + %2ntx))

and

4     fiexpii2nt.)) + fiexpii27rtA)     i""1   ,       ,        , w        n     ..
snif; tv t2) = ----^2~-—+ j  Z fiexpii2nkit2 - tx)/n + i2ntx)),

«=1,2,.... Then sjif; 0, 1) = "sjf; 0, l) for all tí. The following result is

proved in [l].

Theorem A. Let f(z) = 2 a z", uzAere a   = 0(l/n1+f ) for some ( > 0, be

such that s if; 0, l) = 0 ¡or every n m 1, 2, • • •. TAct2 / is the zero function.

In particular, if f £ Cl+eiU), then / is uniquely determined by the s if; 0, l).

It is pointed out in [l] that there exist polynomials p    with s (p   ; 0, l) = 5* *y *77I 77^777 77,771

for all 772 and n. In this paper, by using techniques different from those used in

[l], we obtain
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Theorem 1. Let f be a function holomorphic in U with f'e Hp, 1 <p < oo,

and s (f; 0, l) = 0 for each n = 1, 2, • • •. Then f is the zero function.

Hence, if / £ C (U), f is uniquely determined by the means s (/; 0, l).

Since each f e A is determined by its values on an arc of T, it is natural to

ask (cf. [3]) for a given 5, 0 < 8 < 1, whether sjif; 0, 8) = 0 or ?(/; 0, <5) = 0,

n = 1, 2, • • •, would imply that / is the zero function or not. We answer this ques-

tion in the following theorems.

Theorem 2. For each 8 with 0 < 8 < 1, there exists a nonzero function f e A,

infinitely differentiable relative to U, such that s (f; 0, 8) = s   (f; 0, 8) - 0 for

all n » 1, 2,-

On the other hand, we have

Theorem 3. Let 0 < 8 < 1 and / be holomorphic in a neighborhood of the

closed disc U. Then f is the zero function if either

(i) Zn(f; 0, 8) = 0, n= 1,2,.-., or

(ii) snif; 0, 8) = 0, « « 1, 2, • • •, is satisfied.

Since / £ C°°(t/) is not, in general, determined by its means s    or s     on a

proper subarc {e'2nt: 0 < t < 8\, 0 < 8 < 1, of T, we also consider the shifted

means

tnif,o,8)JKe        +i   Z /U««»*-»»«-»).
t«l

and have

Theorem 4. Ler /£ A u/z/£ f'iei2nt) £ L"(0, z5) /or some p, 1 < p < 00, u/£t?re

0 < 8 < 1, sacè í/W ez'rier

(i) s"n(/; 0, 5) = tn(f; 0, 8) = 0, n= 1,2, ..., or

(ii) s (/; 0, 8) = / (/; 0, S) = 0, n = 1, 2,-, is satisfied. Then f is the zero

function.

Combining Theorems 3 and 4 and results from [2] and [6], we can give a rep-

resentation formula of a function in terms of its means and shifted means on an

arc.

2. Proof and consequences of Theorem 1. We now prove Theorem 1. It is clear

that f'e Hp implies / £ A. Without loss of generality, we assume 1 < p < 2. For

/ = 1, 2, • • •, we define the functions

/ x     f-7* + W + H    for t 4 k/j,  k = 0, + 1, . • •,
cp.it) = < ,

' 10 otherwise,
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where [x], as usual, denotes the largest integer no greater than x. Since

s.if; 0, l) = 0, we have

(1) pofiei2nt)dt = 0.

Hence, for all /*,

(2) jl cp.it)dfiei2nt) = - j{7.if; 0,D-fi fiei2m)dt\ « 0.

Let pin) be the Mobius function, that is,

p(n) = 1 if n = 1,

= (_l)* if n = p. "• Pk with distinct primes p.»

= 0 if p2 | n for some p > 1.

Since

^¡,   sin 2nkjt
<p .(/) = ¿j   -,

7 k=l        krr

it is easy to verify that, for all 72 and N,

N 6    (t) °°      iisN        \    .   „  ,
(3) t> £  u(k) V±L- = sin 2rrnt +     Z     \ Z  pij)\ sin2nknt,

k=l k 7e=iv + l   ^j\k J k

where the series converges for all t. By (2) and (3), we have

ÍN <p   it))
sin277«i-7r  Z  p(k)-±L-\df(ei2nt)

oo     (j<N )

SI £{?4-yin2nkntfl,{ennt)eantdt

where /     is the a.e. radial limit of / ' and we have used the standard technique

of passing to the radial limit. By applying the Holder inequality and the Hardy-

Littlewood inequality for Lq, l/p + \/q = 1 (cf. [7, p. 110]), we obtain

Sin 277&72Í

k «
|/J sin 2nntdf(e^)  < 27r||/'|| JJE   if p(f)\

Íoo fsN       \q)vq ( \aik)]q)1/q
L  h*-*!  s ,(,i  [q<cf\ z  ^f\

fe=N+l kq   j\k \   ) ' |zfe=zV+l      k2     j

where d{k) is the number of divisors of k. Since dik) = Oik ) for any 8 > 0 (cf.

[4, p. 260]), we can conclude, by letting N tend to infinity, that



178 C.-H. CHING AND C. K. CHUI

(4) $losin2nntdfiei2rrt) = 0

for n = 1, 2,-Thus, by combining (l) and (4), we have

f  zn(iz)dz = J"  iz" + F")fiz)az = 0

for » = 0, 1, • • •, and hence / is the zero function.

In the above proof, the number theory technique we used is elementary. We

remark, however, that if we use a much deeper result of H. Davenport, we can

push Theorem 1 to hold for p = 1. Also, we have actually proved the following

Corollary 1. Let Fit) be an even ¡unction continuous on [- 8, 8] such that

F'it) e Lpi- 8, 8) for some p,  1 < p < oo, and such that

ïiF) = l t   F(iM_¿A=0

for n =1,2,-Then F = 0.

It is natural to ask whether we can move the roots of unity, so that the means

of / on T can still uniquely determine /. Theorem 1 implies that we can use the

conformai images of the roots of unity under a linear fractional transformation. We

also have

Corollary 2. Let p be a C    diffeomorphism of T with p(F) = p(z) for z eT.

Let znk = piei2lrk/n), k = 1,... ,b. // / is holomorphic in U with f'e Hp,  1 <

p < oo, aB^ satisfies (l/n) 2?    /(z    ,) = 0 for n = 1, 2, • • •. Then f is the zero

function.

To prove this, we let g = f ° p on T. Then by Corollary 1, we can conclude

that g(e") = - g(e~u) for all /; and hence, for z = pie'1) on T, we have /(z) =

-/(z). That is, the function /(z) +/(z"), harmonic in U and continuous on U, is

zero on T, and must be zero on U. By the Cauchy-Riemann equations, / = 0.

3. Proof of Theorem 2. Let 0 < 5 < 1. To construct /, we let

oo

hit) =   V    a     COS  277B/
*-*      n
71=0

be a real-valued infinitely differentiable even function, not identically zero, with

period one, such that hit) = 0 for \t\ < zS/2 and i(l) = 0. Let b = S°*_ a^ sin ttbS.

If b = 0, we define git) = hit). If b 4 0, we define git) = h2it) + chit) with

OO

= -r  51   sin 77B/5  I    h it) cos 2nntdt.
*„=0
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Then

(5) git) - Z   b   cos ^rrnt
71=0       "

is a real-valued infinitely differentiable nonzero even function with period one and

00

(6) Z   ^   sin nn^ " O-
71 = 1

Now let

oo

(7) /(z)= Z   be-intnzn.

71=0

Since A   = 0(1/t2 ) for any integer k, f is holomorphic in U and infinitely dif-

ferentiable relative to U. Furthermore, since g(8/2) = 0, we have, by (6),

oo oo oo

/(l) = Z *   cos ffB^ -i  J]   i   sin 77728 = g(S/2) - i   ¿L   bn sin rrnS = 0
71=0 71=0 71=0

and

00

f(ei2nS) = g(8/2) + i £   An sin 77728 = 0.
n=0

We can write

,v^-f ..«.£(,-•)♦£<, *Ç(,-J)
71 = 0 \ / 71=0 , '

for 0 < r < S. Since g(t) = 0 for |f | < S/2, we can conclude from (5) and (7) that

f(ei2nt) = Y2\f(ei2trt) + f(ei2^S~1))\ + £ dn sin ¿22 (, - |)

/ S\        ̂        ,        .      27772   / S\ ^      ,        .      27772    / 8\
= Ä  fi-^l+Z^   «   sin- [ j _ - I =   >    d   sin-   11 - ^ )

for 0 < t < 8. Thus, for all 77z = 1, 2, • • •, we have

771

,(/;0,S) = n/;0,S).    I  f(ei2«ks/m)s    .
m k = \

-    Z    dn   Z    sin 27772 [- -rr] = 0.
m   ,7=0      "   fcl \m      2J

We remark that our function / can be made to be holomorphic in a neighborhood of

the arc {e       : 0 < t < S\ by using Schwarz's reflection principle.
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4. Proof of Theorem 3. Let / be holomorphic in the neighborhood \z\ < 1/r,

0 < r < 1, of V, 0 < 5 < 1 and ^n(/, 0, 8) = 0, n = 1, 2, • • •. Define g(ei2"1) =

f{ei2nU + S/2)) + f{ei2*(S/2-t))t ^ -^. _ 8/2> g/2) = ^ 0> g) = 0 fof all n>

Hence, by Corollary 1, we have /(e''2rr(z + 8/2)) = _/(e<2*(s/2-<>) fot \t | < 8/2. Let

F(z)=f(eMz) = 2~=0anz". Then F(e¿2,r') =-F(e-i2"') or

oo

(8) £   a   cos 2?tbí = 0
7J=0

for \t\ <8/2. Since F is holomorphic in \z | < \/r where 0 < r < 1, we have

\a   | < Crn for all n and some C. From the estimate |cos b(x + z'y)| < e"lyl, we

see that the series 2 a   cos nz converges uniformly on the strip |Im z\ <( tot

0 < f < - log r. In virtue of (8) and the identity theorem, we conclude that the

function X a   cos nz vanishes on the whole strip |Im z\ <— log r, and hence, / is

the zero function. This proves the first part of the theorem.

Now suppose that sfl; 0, 8) = 0, n = 1, 2, • • •. We let c = (J(l) - f (ei2tth))/1.

Then s n(/; 0, 8) = sn(/; 0, 8) + c/n = c/n for n = 1, 2, • • •. By the first part of the

theorem, it is sufficient to prove that c = 0. To do this, we note that, since

s „if, 0, 8) - 0,

s (/;0,5)-I P fiei2nlt)dcp it)
n "    ' n JO "

(9)

=^f1<p it)f'iei2nSt)ei27rStdt.
n    JO^n    '

Or, c = /q <f> g where git) is continuous on [0, l]. Since |<pnW| < M for all t and

all n, and since |/* <p (i)a"i| < Y/An for all « and a, ¿> with 0 < a < è < 1, we can

approximate g in L [0, l] by step functions and conclude, as in proving the

Riemann-Lebesgue lemma, that J¿ cpng —» 0. Hence, c = 0. This completes the

proof of the theorem.

5. Proof of Theorem 4 and a representation formula. Suppose that / £ A,

/ 'iei2") £ L^O, 8), 0 < 8 < 1 and 1 < p < oo. Let

gU1'2^) = /(e''27r0, 0 < í < S,

= fie-i27Tt),      -8<t<0.

It can be shown that, for each m = 1, 2, • • •,

(10) 72m_ j(g; -8, S) = (2m/(2m - l))tjf; 0, S)

and

(11) s2nig; -8, 8) = 7mif; 0, 5).

Hence, if tjf; 0, 8) = sjf; 0, 5) = 0 for m = 1, 2, • ■ •, then sn(g; - 8, 8) = 0
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for 72 = 1, 2, • • •, so that g = 0 by Corollary 1. Or, / vanishes on the arc \el nt:

0 < / < 8| and must be the zero function. Suppose t  (f; 0, 8) = s   if; 0, 8) = 0 in-—       — 1* 771 771

stead. We then have, by (10) and (11), that s 2m_xig; - 8, 8) = 0 and

72mig; -8, 8) = if il) - fiei2"S))/4m = c/2772 for m . 1, 2,-Following the proof

of Theorem 1, we have

ils - (cr)«*""*" l^-f-s ^(|>(e,277í)+o(1)

where o(l) tends to zero as N ¡approaches infinity uniformly in n. Thus, for

odd 72, we have

f    sin (2JZi) dgie^) =, „c   £ ^ + oil) = *S p(2)   £ M + oil).
J~b        \   8 / i=i    2k 2 .   j    kk=l    2k 2 fc=l    k

he easy estimate (cf. [5, {

«=1,2,

We use the easy estimate (cf. [5, p. 335])  \2k_xpik)/k | < 1 to conclude that, for

Jl,.^)*."«)..
for some constant a independent of 72. Thus, a = 0 by taking tí to infinity. That

is, we have

(12) Slsgiei2»<)cos(^dt = 0

fot all odd 72. A similar argument shows that (12) holds for all even »2. Thus, g =

0; or / is the zero function. This completes the proof of the theorem.

As mentioned in § 1, we can reconstruct certain functions from their means on

an arc. For example, we consider the trigonometric polynomials

pniei2nt)= Z p(j) cos 2nkt
k\ n

which have the property

(13) s   (* ; 0, 1) = 7 ip ;0, 1) = S
771    71 m rn      ' m,n

(cf. [2, Lemma l]). Let 0 < S < 1. For À > 0, we consider the functions

».<•>->• {^t^r £-;*}■
If kit) is a continuous function on the arc X = ¡e    lri: 0 < / < Si, we denote

Zjk;0,8)= lim^^O.S).

Now, let / € A OC2(T). We first prove that
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(14) Zm(f; 0, 8) - Zjf; 0, 8) = 0(l/m2)

and

(15) (2m/(2m - l))tjf, 0, 8) - Zjf; 0, 8) = 0(l/m2).

To prove (14) we let é it) be as defined in §2 and let é (x) = fié  it)dt. Then

it can be shown that é (l) = xb  (0) = 0 and 0 < é (x) < x/2m for all x and all
' m m — r m       —

w. Hence,

î,-(AOt»-^oi»-IjJ/(.o»»0#.(i)

_¿2,rS fV^/V"2*8')«''2*8'.*
J 0    m     '772

z2ttS fl51 ̂ mWiei2nh)ei2nlt]'dt = o(lY

To prove (15), we define our functions 77 it) on [0, l] as follows: For each n,

77 it) is piecewise linear with each slope equal to —Í2n - l)/2; the only discon-

tinuities of T)n(t) ate at 1/(2« - l), }/(2n - l),..., 1, having a unit jump at

1/(2« - l), •.., (2n - 3)/Í2n - l) and a jump of value /i at 1; and finally,

»7„(0) = r?n(l/(2« - 1)) = .. • = Vni(2n - 3)/(2n - l)) = r,n(l) = 0.

Hence, 177 it) \ <Vi and 77 it) looks like a "sawtooth" function. Let <f (x) =

Jo V»irtd" Then ^n(0) = 0. fn(l) =-1/(8» - 4) and |^(x) | < 1/(8b - 4) for all x

on [0, l]. It also follows that

lm        ,. „   <ss     ~ ,, „   « 2

2m ! '¿fl 0, » - sjf; 0, 8) = -J-j /J &***>*,■*)

= ̂̂    (V(t)/V2*8V2lr,<.*
2/72 - 1    JO     m

¿4?7g     í/'í.i2»7St_¿2i¡r8

^l/^V^^.^,,«.,^^.,,!.^,2/zz

proving (15). Hence, by using (14) and (15) and a result in [2, Theorem 2], we

see that the series

£   {7mif;0,8)-7jf;0,8)\p2mie^S-^)
777=1

(16)

+ £ {¿1 ^ °'s) - *~(* °'4 '2- A*7"8-l)> + '¿h 0. »
777=1 \ /
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converges uniformly on [-8, 8] to a function Git) = 2™_Q an cos nrtt/8. Then by

(14) and (15), it can be proved that an = 0(1/t22). Hence G'£ L2[-S, 8]. By (10),

(ll) and (13), it can also be proved that s ^(G) = s   (F; -8, S), m = 1, 2, • • •,

whete s   (G) is as defined in Corollary 1 of § 2, and

F(ei2m) = f(ei2nt), 0<t<8,

= f(e-i2nt),       -8<t<0.

By Corollary 1 of §2, we can conclude that fie'2"') = G(t) tot 0 <t <8. There-

fore, we can apply a result of Patil [6] to obtain

r8   bAei2m)G(t)
f(z) =  lim AAx(z) --dt

for z in U, where G(t) is the limit of the uniformly convergent series (16).
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