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REPRESENTATIONS OF JORDAN TRIPLES

BY

OTTMAR LOOS

ABSTRACT. Some standard results on representations of quadratic Jordan algebras are

extended to Jordan triples. It is shown that the universal envelope of a finite-dimensional

Jordan triple is finite-dimensional, and that it is nilpotent if the Jordan triple is radical. A

permanence principle and a duality principle are proved which are useful in deriving
identities.

Introduction. A Jordan triple is a module V over a commutative ring k together

with a composition (x,y) h» P(x)y which is quadratic in x and linear in y and

satisfies certain identities (see (l)-(3) below). A typical example is the space of

p X ̂ -matrices over k with P(x)y = x('y)x. If J is a quadratic Jordan algebra

with quadratic operators Ux then J is also a Jordan triple with P(x)y = Uxy.

Thus Jordan triples are a natural generalization of quadratic Jordan algebras.

For a systematic theory of Jordan triples see [2] and [5].

In this note, we extend to Jordan triples certain standard results from the

representation theory of quadratic Jordan algebras (see [4]). Our main results

concern the case where V is finite-dimensional over a field k. Then the universal

envelope of V is also finite-dimensional (Theorem 2.4), and it is nilpotent in case

V is radical (Theorem 3.3). The latter result is due to C.T. Anderson in case

char k ¥= 2. We also prove a permanence principle and a duality principle which

are useful in deriving identities.

In [6], K. Yamaguti also defines representations of Jordan triple systems.

However, his concept of Jordan triple system is different from ours (the Jordan

triple systems of type II considered in [6] are a generalization of our Jordan

triples).

1. Representations.

1.1. Jordan triples. Let A: be a commutative ring with unit and let Kand Wbe

unital ^-modules. A map P: V -* Wis called quadratic if P(ax) — a2P(x) for all

a E k, x E V, and if P(x,y) = P(x + v) - P(x) - P(y) is bilinear in x and v.

If R is any commutative associative fc-algebra then there is a unique quadratic

map PR : V ®t R -» W ®k R of Ä-modules making the diagram
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V ®kR-!f_ WfyR

I 'I
V --► w

P

commutative (see [1]). In case W = End* V, we denote the composition V ®kR

-» (End* V) ®k R -> EndÄ(F ®* R) also by PR.

Let now P: V ~* End* V be a quadratic map. We set

{xyz) = L(jc,v)2 = P(x,z).y.

Then (x,y,z) i-» {.xyz} is a A:-trilinear map from Kx Vx V into K such that

{xyz} = {zyx} and {xyx} = 2P(jc) v. The pair (V, P) is called a Jordan triple if the

identities

(D L(x,^)P(x) = P(*)IO,*) = P(P(x)y,x),

(2) L(P(x)y,y) = L(x,P(y)x),

(3) P(P(x)y) - PWP( v)P(x)

hold in V and in all scalar extensions (Vr,Pr) of (K,P) (equivalently, if all

linearizations of (l)-(3) hold in V).

A fc-linear map /: V -* W of Jordan triples is called a homomorphism if

f(P(x)y) = P(f(x))f(y) for all x, .y G K. An I'oea/ of K is a Jfc-submodule /

satisfying P(/)K+ P(V)I + {VVI} C /. For the general theory of Jordan

triples see [2], [5].

1.2. Identities. By linearizing (1) we obtain

L(x,y)P(x,z) + L(z,y)P(x) = P(x,z)L(y,x) + P(x)L(y,z)

(4)
= P({xyz),x) + P(P(x)y,z).

We apply this to an element u G V, regard it as a function of z and change u to

z. Then we have

(5) L(x,y)L(x,z) + L(P(x)z,y) = L(x,{yxz}) + P(x)P(y,z).

We linearize (2) with respect to x and y and obtain

(6) L({xyz),y) = L(z, P(y)x) + L(x, P(y)z),

(7) L(x, {yxz}) = L(P(x)y, z) + L(P(x)z,y).

Again we apply this to an element of V and regard it as a function of z and

obtain, after a change of notation,

(8) L(z,y)L(x,y) = P(x, z)P(y) + L(z, P(y)x),

(9) P(x,z)L(y,x) = P(P(x)y,z) + L(z,y)P(x).
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Subtract (9) from (4) to obtain

(10) P(x)L( y,z) + L(z,y)P(x) = P(x,{xyz)).

Addition of (5) and (7) gives

(11) L(x, y)L(x,z) = L(P(x)y,z) + P(x)P(y,z).

1.3. Definition. Let V be a Jordan triple over Ar, and let A be a unital associative

fc-algebra. A representation of Vin A is a pair (/,p) of maps where /: VxV-*A

is bilinear and p: V -* A is quadratic, such that the following identities hold in

all scalar extensions.

(12) l(x,y)p(x) = p(x)l(y, x) = p(x, P(x)y),

(13) p(x)l( y,z) + l(z,y)p(x) = p(x, {xyz}),

( 14) ¡(x,y)l(x, z) = l(P (x) y, z) + p(x)p(y, z),

(15) l(z,x)l( y,x) = l(z,P(x)y) + p(y,z)p(x),

(16) p(P(x) y) = p(x)p( y)p(x).

If A has an involution ai-* a* such that l(x, y)* = l(y, x) and p(x)* = p(x) for

all x,yEV then (/, p) is called a *-representation. In this case, (15) is a

consequence of (14).

Example, (a) The regular representation (L, P) of V in End* V.

(b) The regular *-representation di V in E = End* V X (End* lv')op given by

l(x,y) = (L(x,y),L(y,x))   and   /<*) = (P(x),P(x)).

The interchange (/,g) h-» (g,f) is an involution of E making (/, p) a *-

representation.

1.4. Lemma. //(/, p) is a representation of V in A then the following formulas hold.

(17) l(P(x)y,y) = l(x,P(y)x),

(18) p(x,z)l( y,x) = l(z,y)p(x) + p(P(x)y,z),

(19) Kx,y)p(x,z) = /**)/( v,r) + p(P(x)y,z).

Proof. (17) follows by setting y — z in (14) and (15) and subtracting. We

linearize (12):

l(z,y)p(x) + i(x,y)p(x,z) = p(x)l(y,z) + p(x,z)l(y,x)

= />(*. {xyz}) + p(z, P(x)y),

subtract (13) and obtain (18) and (19).
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1.5. Split null extensions. If M is a A:-module and (/, p) is a representation of V

in End* M then we say M is a K-module. As in the case of quadratic Jordan

algebras (see [4]) we have

Proposition. V © M becomes a Jordan triple with

P(x © m)(y © n) = P(x)y © [p(x)n + l(x,y)m]

(x,y G V, m, n G M), the split null extension of V by M.

Proof. If we use the fact that any product in F © M containing more than one

element from M is zero, as well as the identities (12)—(19), the verification of (1)

in V © M amounts to

p(x)p(y,z) + l(x,{yxz}) = l(x,y)l(x,z) + l(P(x)z,y)

= l(P(x)y,z) + l(x,z)l(x,y).

But this is an easy consequence of (14) and (17). Similarly, (2) follows without

difficulty from (15), (17), and (18), and (3) comes down to showing

(20) l(P(x)y, z)p(x) = p(x)I(y, P(x)z)

and

(21) p(x)p(y)l(x,z) + l(x, P(y)P(x)z) = l(P(x)y,z)l(x,y).

By (13), (12), and (17) we have

p(x)l(y,P(x)z) + l(P(x)z,y)p(x) = p(x,{x,y,P(x)z})

= p(x,P(x){yxz}) = l(x,{yxz))p(x)

= l(P(x)y,z)p(x) + l(P(x)z,y)p(x)

which proves (20). For (21), we use (19) and (15) and get

p(x)p(y)l(x,z) + l(x,P(y)P(x)z)

= p(x)l(y,x)p(y,z)

- p(x)p(P(y)x,z) + l(x,y)l(P(x)z,y)-p(x)l(z,x)p(y)

= i(x,y)l(x,z)l(x,y) - p(x)p(P(y)x,z) - p(x)l(z,x)p(y)

(by (12) and (14))

= l(P(x)y,z)l(x,y) + p(x)[p(y,z)l(x,y) - p(P(y)x,z) - l(z,x)p(y)]

(by (14))

= l(P(x)y,z)l(x,y)    (by (18)).
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We remark that the discussion in [4] concerning the cohomology of quadratic

Jordan algebras can be carried over word for word to the Jordan triple case, so

we omit the details.

1.6. Let (JTk) denote the class of all Jordan triples over k. As in [4], we obtain

from 1.5 the following

Permanence principle. If F is any identity in the L(x,y)'s and P(z)'s which is

valid for the regular representation of all V E (JTk) then the identity obtained from

F by replacing L, P by l,p is valid for all representations of all V G (JTk).

Indeed, to prove F for a representation (/, p) of V in A, consider A as a V-

module by composing (/, p) with the left regular representation of A. Then F is

valid for the regular representation of the split null extension V © A, and by

restricting to A and applying F to the unit element of A the assertion follows.

Another useful device in deriving identities is the

Duality principle. If F is any identity in l(x,y)'s andp(z)'s which is valid for every

representation of all V E (JTk) then its dual F*, obtained by replacing l(x,y) by

l(y,x) and reversing the order of the l(x,y)'s and p(z)'s, is also valid for every

representation.

Indeed, F holds in particular for the regular ""-representation of V in

E = End* V X (End* V)op. Applying the involution of E and projecting onto the

first factor End* V of E, we see that F* holds for all regular representations. By

the permanence principle, F* holds for all representations.

1.7. Homotopes. Let a G V. With the operations

Uxy = P(x)P(a)y,       x2 = P(x)a,

the ¿-module V becomes a quadratic Jordan algebra Va, the homotope of V with

respect to a (cf. [5]). Let Va = k.\ © Va be the unital quadratic Jordan algebra

obtained from Va by adjoining a unit element. Recall that a unital quadratic

representation of a unital quadratic Jordan algebra J in a unital associative

algebra A is a quadratic map /t: / -* A satisfying the following identities in all

scalar extensions (cf. [4]):

(22) MD = i,

(23) v.(Uxy) = Kx)ÁyW),

(24) >{x,y)fi(x) = i4.x)p(y,x) = n(Uxy,x),

where p(x,y) = ¡i(x, \)n(y, 1) - (i(x,y).

Proposition. Let (I, p) be a representation of the Jordan triple V in A. Then for

every a G V,

H(a.\ + x) = a2.\ + al(x,a) + p(x)p(a)

defines a unital quadratic representation of Va in A.
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Proof. Let p(a.\ + x) = U(a.\ + x)\Va = a2 IdK +aL(x,a) + P(x)P(a). Since

V, is an ideal of %, this is a unital quadratic representation of 9a, and the validity

of (23) and (24) for p is equivalent to certain identities in L's and Fs. By the

permanence principle, the same identities hold with L, P replaced by /, p, i.e., for

p. Hence « satisfies (23) and (24). Since it is obviously quadratic and /i(l) = 1,

the proposition follows.

Recall that a pair (x,a) G V x Kis called quasi-invertible if 1 - x is invertible

in % (cf. [5]).

Corollary. // (x,a) is quasi-invertible then

b(x,a) = 1 - l(x,a) + p(x)p(a)

is invertible in A.

Indeed, b(x,a) = u(l - x), and p maps invertible elements of Va into invertible

elements of A.

1.8. Definition. A X-representation of V in a unital associative algebra A is a

bilinear map /: VxV-*A such that the identities

(17) l(P(x)y,y) = l(x,P(y)x),

(25) l(x,y)l(u,v) - l(u,v)l(x,y) = l({xyu},v) - l(u,{yxv}),

l(x,yY = l(x,y)2l(P(x)y,y) + l(P(x)y,y)l(x,y)2
(26)

+ l(P(x)y,y)2 - l(P(P(x)y)y,y) - l(x,P(P(y)x)x)

hold in all scalar extensions.

A m-representation of V in A is a quadratic map p: V -* A such that the

identities

(27) Áx + y) = Áx) + Áy\

(16) p(P(x)y) = p(x)p(y)p(x)

hold in all scalar extensions.

Lemma, (a) If (I, p) is a representation of V then I is a X-representation.

(b) Ifp is a m-representation then 2p(x) = Ofor all x G V and

(28) p({xyz)) = p(x)p(y)p(z) + p(z)p(y)p(x).

Proof, (a) (25) follows from the corresponding identity for the regular

representation (see [5]) by the permanence principle. If we set y = z in (14) we

get l(x,y)2 - l(P(x)y,y) = 2p(x)p(y). By squaring this and using (16) and (17)

we get (26).

(b) By (27), 2/»(x) = p(2x) = 4p(x), and (28) follows from
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p({xyz}) = p(P(x + z)y - P(x)y - P(z)y)

= p(P(x + z)y) + p(P(x)y) + p(P(z)y)

= p(x + z)p(y)p(x + z)+ p(x)p(y)p(x) + p(z)p( y)p(z)

= Áx)p(y)p(z) + p(z)p(y)p(x) + 2p(x)p(y)p(x) + 2p(z)p(y)p(z).

2. Universal envelopes.

2.1. We first construct a universal object for quadratic maps. Let V be a k-

module, let q: V -* X be a bijection of V onto a set X, and let F be the free k-

module generated by X. We set q(x,y) = q(x + y) - q(x) - q(y), and let R be

the submodule of F generated by

q(ax) - a2q(x),       q(ax,y) - aq(x,y),

q(x + y,z) - q(x,z) - q(y,z),

where a G k, x, y, z G V. We set Vn = F/R and denote the image of q(x) under

the canonical map by jc" . We also set {x,y} = (x + y)n - xu - v". Then

x h» xxx is a quadratic map, Va is generated by [xil:x G V), and for any

quadratic map Q: V -» W there is a unique linear map /: F11 -» W such that

(2(x) = f(xlx). Also it is easily seen that Vn is functorial in V and compatible

with extensions of the ring of scalars.

2.2. The universal envelope. Let V be a Jordan triple over k, let W = Va

® (V ®kV), and let T(W) be the tensor algebra over W. The product of two

elements u,v E T(W) is denoted by u • v.

Let J be the ideal of T(W) generated by the elements

(x ® y) ■ Xa - x11 ■ (y ® x),       (x ® y) ■ x11 - <x, P(x)y},

x11 ■ (y ® z) + (z ® v) • jc" - (x,{xyz)),

(x ® v) • (x ® z) - ,P(;c).y ® 2 - jc" • < v,z>,

(2 ® x) • ( v ® x) - z ® P(x)v - (y,z} • x11,

(P(x)y)u-xll-ytt-xn,

corresponding to ( 12)—( 16). The universal envelope of V is \J(V) — T(W)/J. We

define 7: V X V -► U(K) by 7(x,^) = x ® v + J and p: V -» U(F) by p(x)
- x» + J.

Proposition, (a) There is an involution * of V(V) such that (I,p) is a *-

representation of V. For any representation (I, p) of V in A there is a unique

homomorphism /: V(V) -* A of unital associative algebras such that p = f° p and

I = / » 7. //(/, p) is a *-representation then f commutes with the involutions of\J(V)

and A.



206 OTTMAR LOOS

(b) There is an augmentation t: V(V) -* k so that \J(V) — k.l © V°(V) where

Vo(V) = Ker £ is the augmentation ideal. Also, V(V) is functorial in V and is

compatible with scalar extensions.

(c) /// is an ideal of V and Ï is the ideal of \J(V) generated by 1(1, V), ~l(V,I),

p\I, V), andp(I) then U(V/I) s U(K)/Ï.

The proof of this proposition follows established lines and is therefore omitted.

Let us just indicate how the involution * of V(V) is defined. The fc-module

W = Vli © (V ® V) possesses an endomorphism of period 2 given by x11 h* x"

and x ® y i-» y ® x. By the universal property of the tensor algebra, this

endomorphism extends to an involution of T(W) leaving J invariant, and thus

induces an involution * of \J(V) with the desired properties.

2.3. Similarly as in 2.2, we define the universal X-envelope UX(V) —

T(V ® V)/Jx where Jx is the ideal of T(V ® V) generated by the elements

P(x)y ® y - x ® P(y)x,

(x ® y) • (u ® v) — (u® v) ■ (x ® y) - {xyu} ® v + u ® {yxv},

(x ® y)* - (x ® y)2 ■ (P(x)y ® y) - (P(x)y ® y) • (x ® y)2

-(P(x)y ® y)2 + P(P(x)y)y ®y + x® P(P(y)x)x,

corresponding to (17), (25), and (26), and the universal ir-envelope U„(K)

= T(K")/J„ where J, is the ideal of T(K") generated by the elements <x,y>

= (x + yf - x" -y" and (p(x)y)n - x" • y" • x". Define Ï: VxV^> VX(V)

by /(x,y) = x ® y + Jx and/»: V -» U,(V) by p\x) = x« + J,.

Proposition, (a) / (resp. p) is a X-representation (resp. a ^-representation) of V in

VX(V) (resp. in U„(K)), and any X- (resp. tr-) representation may be factored via

VX(V) (resp. IL(F)).

(b) VX(V) and VV(V) are functorial in V and compatible with scalar extensions.

There are augmentations VX(V) -* k and VV(V) -* k so that VX(V) = k.l

© U°X(V) and V„(V) = A:.l © \5%(V).

(c) // / is an ideal of V and if lx (resp. Lj is the ideal of VX(V) (resp. V„(V))

generated by ~l(I,V) and l(V,I) (resp. p\I)) then VX(V/I) a Vx(V)/lx (resp.

U.WI) s Ll(F)/U
(d) VX(V) and U„(K) possess involutions * such that l(x,y)* = l(y,x) and

pXx)* =p\x). Also, UV(V) = U¿(V)G>U;(V) is Z2-graded, the gradation is

invariant under *, andp(x) G M~(V) for x G V.

The proof of (a), (b), and (c) is again straightforward. To prove (d), let * denote

the involutions of T(V ® V) (resp. T(V11)) induced byx®yt-+y®x (resp. the

identity on Vu). Then Jx and J, are invariant under *, and the statement about

the involutions follows. Finally, J, is generated by elements of odd degree (with



REPRESENTATIONS OF JORDAN TRIPLES 207

respect to the natural gradation of T(V11)), and the gradation of T(Vn) is

invariant under *.

2.4. Theorem. If k is afield and V is finite-dimensional over k then so are \J(V),

Vx(V),andU„(V).

Proof. Let xx,...,xn be a basis of V. First we show that U\(V) is finite-

dimensional. As an algebra, Ux(F) is generated by 1 and {l(x„Xj): i,j = 1,...,

n). We number the 1(x„Xj) consecutively: yx = l(xx,xx),y2 — l(xx,x2),...,y¿¡

= ï(xn,x„).

Lemma 1. V\(V) is spanned by the monomialsyif •••yir where 0 < r < 3/i2 and

h < h < • • • < h-

Proof. Let Xr be the subspace of \J\(V) spanned by the monomials yk •••ylt

where s < r. Clearly, Xq = k.\, X, C Xr+X, and Xr • X, C X,+i. We claim that

Xr = Xr_, if r > 3n2. Indeed, because of (25) we have

(29) y,yj = yjy¡      mod X,.

In a monomial vf| • • • v¡, where r > 3n2, at least one of the v,, say yx, occurs at

least 4 times. By (29), we get v(| • • • ylr = vfyh • • -yjr^ mod Xf_|, and (26) shows

vf G X3. This proves our assertion. Since L\(K) is the union of the X„ we have

V\(V) = X3„2. Finally, the ordered monomials suffice because of (29).

Lemma 2. The subalgebra U' of U(V) generated by l(V,V) and p(V, V) is a

finite-dimensional ideal of U(V).

Proof. Let L be the subalgebra of U(V) generated by l(V, V). Since 7: Vx V

-> V(V) is a X-representation, L is a homomorphic image of l)\(V) and

therefore finite-dimensional by Lemma 1. Let P be the subalgebra of U(V)

generated by p(V, V), and let P+ be the subalgebra of P generated by

[p(u,v)p(x,y):u,v,x,y G V). From (14) we obtain by linearizing

p(u,v)p(x,y) = "l(v,y)l(u,x) + ~l(u,y)I(v,x) - l({uyv},x)

which implies P+ C L. Also P = P+ + p(V, V) + P+p(V, V) shows that P is

finite-dimensional. From (13) we get by linearizing

~l(z,y)p(x,w) = p(x,{wyz}) + p(w,{xyz)) -p(x,w)l(y,z)

which implies by induction

(30) LP C PL + P.

This shows that U' = L + PL + P is finite-dimensional. Finally, it follows from

(14), (15), (18) and (19) that U' is an ideal of \J(V). Note that U' = U"(V) if
char k ¥= 2.

Now let z, = pXx¡) E M,(V).
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Lemma 3. IL(K) is spanned by the monomials zlf • • • zir where 0 < r < 2n.

Proof. Similarly to the proof of Lemma 1, let Xr be the subspace of LL(K)

spanned by the monomials zi{ ■ • • zit where 0 < s < r. If zi{ • • • zlr is a monomial

with r > 2n then at least one of the zh say zx, occurs at least 3 times. Because of

(28) we have z¡z¡zk = zkZjZ¡ mod X,. Using this repeatedly, we see that z4 • • • zu

is congruent, modulo X,_2, to a monomial of the form •••jf..« or

• • • zxz,zx •■•. Butz\ G \x andzxz¡zx G X, by (16). HenceX, = Xp_2 if r > 2/i

which shows U„(V) = X2n.

Now we finish the proof of the theorem. From the definition of U' it is clear

that the map /»: x h» p(x) + U' is a ^-representation of V in \i(V)/U, and that

U(K)/U' is generated by 1 zxidp(V). Hence M(V)/\}' is a homomorphic image

of U,(F) and therefore finite-dimensional by Lemma 3. Now \J(V) is finite-

dimensional by Lemma 2.

3. Nilpotence.

3.1. The radical. Let V be a Jordan triple over the ring k. The radical of K is

Rad V = {x G l^:(x,y) is quasi-invertible, for ally G K}.

For the basic properties of the radical we refer to [5]. In particular, Rad V is an

ideal of V, and iff: V -* IF is a surjective homomorphism of Jordan triples then

Rad W D /(Rad V). A Jordan triple with Rad V = 0 is called semisimple.

Recall also that an inner ideal of V is a A:-submodule / such that P(I)V C /, and

an absolute zero divisor is an element x G V such that P(x) = 0. It is easily seen

that an absolute zero divisor belongs to the radical.

The proof of the following proposition can be found in [5].

Proposition. If Vsatisfies the descending chain condition on inner ideals then Vis

semisimple if and only if it contains no absolute zero divisors # 0.

3.2. Proposition. Let V be a Jordan triple over the ring k satisfying the descending

chain condition on inner ideals. Let R be a commutative associative k-algebra, let

VR = V®kRbe the scalar extension of V, and define <p: V -* VR by tp(x) = x ® 1.

Then (p(Rad V) C Rad VR.

Proof. Let / = <p"'(Rad l^). Since <p is a homomorphism of Jordan triples over

k, this is an ideal of V. Let IR be the Ä-submodule of VR generated by <p(/). Then

IR is an ideal of VR, contained in Rad VR. Since tensoring with R is a right exact

functor, we have a commutative diagram with exact rows

0-► / -►  V-► V/I -► 0

0 0

I f

/ ®kR——   VR-r(F/0   ®^ — 0
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Clearly, IR = i(I®kR) so that VR/IR may be identified with (V/I) ®kR. We

denote the canonical maps V -» V/I and VR ~* VR/IR by x\~* x. Assume now that

* is an absolute zero divisor of V/I. Then ç(x) = <p(x) is an absolute zero divisor

of VR/IR and thus contained in the radical of VR/IR which is (Rad VR)/IR. This

means <p(x) G Rad VR, i.e., x E I and therefore x = 0. Since the descending

chain condition is inherited by V/I we have V/I semisimple by 3.1, i.e.,

/ O Rad V.

3.3. Theorem. Let V be a finite-dimensional Jordan triple over the field k and

assume that V = Rad V. Then W(V), V\(V) and \J%(V) are nilpotent.

Proof. By 3.2 and the fact that the universal envelopes are compatible with

scalar extensions we may assume k algebraically closed. The crucial fact is

Lemma 1. A finite-dimensional Jordan triple V over an algebraically closed field

with Rad V ¥^ 0 contains an ideal / ¥= 0 such that P(I) = L(I,I) = 0.

This is proved in [3]. In case char k ¥= 2, see also [2].

From now on, we assume V = Rad V and k algebraically closed.

Lemma 2. U\(V) is nilpotent.

The proof is by induction on dim V. Let 7: V X V -» UX(V) be the universal

A-representation of V in UX(V) (cf. 2.3). If dim V = 1, i.e., V = k.x, then

P(x)x = 0, and \i\(V) is generated by l(x,x). By (26), l(x,x)* = 0 and hence

U\(V) is nilpotent. Now let dim V > 1. Then by Lemma 1, V contains a proper

ideal / such that P(I)V = {IIV} = 0. By induction, \i\(I) is nilpotent. Let I be

the subalgebra of U\(V) generated by 1(1,1). Then I is a homomorphic image of

\J\(I) and hence is nilpotent. Also, I is contained in the center of U\(V) because

of (25) and {IIV} — 0. Therefore I generates a nilpotent ideal J = I • UA(K) of

VÁV)-
Let T be the subalgebra of UX(V) generated by 1(1, V) and 1(V,I). Then it

follows from (25) and {IVI} = {IIV} = 0 that I'/J n I' is commutative. Also by

(17), (26), and P(I) = 0, we have l(x, v)4 = 0 mod J if x E V, y E I, or x G /,

.y G K. By finite-dimensionality, I'/J n I' is nilpotent, and hence I' is nilpotent.

Now let Ij - r • l)x(V). Then (25) implies

(31) Ux(K).I'Clx.

Hence Ix is an ideal of U\(V), in fact, the ideal generated by ¡(I, V) and l(V,I).

Since I' is nilpotent so is IA by (31). By induction, V\(V/I) = U°(K)/IX (cf. 2.3)

is nilpotent. Hence U°\(V) is nilpotent.

We denote by U' the ideal of V(V) generated by 1(V, V) and p\V, V) (see
Lemma 2 in 2.4).
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Lemma 3. U' is nilpotent.

Proof. Let L, P, and P+ be as in the proof of Lemma 2 in 2.4. Then L is a

homomorphic image of VX(V) and therefore nilpotent by Lemma 2. Also P+ is

nilpotent since it is contained in L. Let P_ be the subspace of P spanned by the

products of an odd number of elements of p(V, V). Then we have P = P+ + P_,

Pi C P+, P+P_ = P_P+ C P_, and induction shows P2" C P+" + P+"P_. Hence P

is nilpotent.

From (30) we see that J = PL + P is an ideal of U', and by induction we have

J" C P"L + P". Thus J is nilpotent. Since U = L + J and U'/J s L/L n J is

nilpotent, U' is nilpotent.

Note. Lemma 2 and Lemma 3 (with a different proof) as well as the concept of

X-representation are due to C.T. Anderson (cf. [2], §8).

Lemma 4. There exists an ideal N ^ 0 of V such that P(N) = L(V,N)
= L(N, V) = 0.

Proof. Let / be the ideal of Lemma 1, and consider the regular representation

(L¡,P¡) of V in End*/, i.e., L,(x,y) = L(x,y) \ I, and P,(x) = P(x) \ I. Let

/: V(V) -» End*/ be the induced homomorphism of associative algebras. Then

by Lemma 3, f\U) is nilpotent. Thus if f(U)n # 0 but /(U')n+I = 0 then

N = {x G /:/(U').x = 0} 3 f(U)".I * 0 and N is invariant under f(U(V))

since U' is an ideal of U(K). Hence N is an ideal of V with the desired properties.

Lemma 5. U°(K) ii nilpotent.

Proof. We may assume char k = 2 since otherwise U%(V) = 0. The proof is

by induction on dim V. If V = 0 there is nothing to prove. Let V # 0, and let

N be as in Lemma 4. From P(N)V = {VVN} = 0, (16) and (28) we obtain

(32) zxz = 0,

(33) xyz = zyx,

for z Gp(N) and x,y G p\V). We will show that the ideal N, of U.(K)

generated by p\N) is nilpotent. Since \1„(V) is finite-dimensional, it suffices to

show that N„ is spanned by nilpotent elements. Now N, is spanned by the

monomials m = xx • • • xr where x, G p(V) and at least one of the x¡ belongs to

p(N). Using (33), we see that m3 equals a monomial of the form • • • z3 • • • or

•••zxz--- where z G p(N) and x G p(V). Thus m3 = 0 by (32), and N, is

nilpotent. By induction, \}%(V/N) = U°(K)/N„ is nilpotent, and the lemma is

proved.

Now we finish the proof of the theorem. U°(K)/U' is a homomorphic image

of X}°i(V) and therefore nilpotent by Lemma 5. Thus U°(V) is nilpotent by

Lemma 3.
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