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ABSTRACT. Let (A,*) be a commutative semisimple convolution measure algebra with

structure semigroup I", and let S denote a commutative locally compact topological

semigroup. Under the assumption that A possesses a weak bounded approximate identity,

it is shown that there is a topological embedding of the multiplier algebra ^A[{A) of A in

A/(r). This representation leads to a proof of the commutative case of Wendel's theorem

for A = L\(G), where G is a commutative locally compact topological group. It is also

proved that if I, (S) has a weak bounded approximate identity of norm one, then ¿H(l,(S))

is isometrically isomorphic to /,(ÏÏ(S)), where 0(5) is the multiplier semigroup of S.

Likewise, if S is cancellative, then <M,h(S)) is isometrically isomorphic to l¡(ü(S)).

An example is provided of a semigroup 5 for which /,(ß(S)) is isomorphic to a proper

subset of <Jt(lt(S)).

1. Introduction. Let 04,*) be a commutative semisimple convolution measure

algebra with structure semigroup T, and let S denote a commutative locally

compact topological semigroup with multiplier semigroup Q(S) (details concern-

ing notation, definitions, and background results are given in §2). In §3 we study

the multiplier algebra JV[(A) of (A,*) when A possesses a weak bounded

approximate identity. Theorem 3.1 asserts that JV[(A) is topologically embedda-

ble in M(T). We apply Theorem 3.1 to the particular convolution measure

algebra A = M(S ) and proceed in Corollary 3.8 to characterize those measures

in M(T) that give rise to multipliers of M(S). Finally, §4 is devoted to a

characterization of the multiplier algebra of lx(S) for certain semigroups S. An

example is furnished of a semigroup S for which lx(ti(S)) is isomorphic to a

proper subset of ^H(lx(S)).

2. Preliminaries. Let (B,*) be a commutative Banach algebra under ||-||. Let

A(5) denote the maximal ideal space of B, that is, the space of all continuous

homomorphisms of B into the complex field C together with the weak-*

(Gelfand) topology [17]. As usual for any a E B, define â(x) = x(«) f°r each

X G A(B), and let B «■ {à: a E B}. A weak bounded approximate identity of

norm R for B is a net {E9)pS0 of elements of B such that (a) ||£p|| < R for some

natural number R and for all p£9, and (b) (a * Ep)" (x) -» ¿(x) for all

X G &(B) and for every a G B. A bounded approximate identity of norm R for

B is a net {£D} of elements of B such that (a) ||£p|| < R for some natural number

R and for all p, and (b) \\a * Ep - a\\ -» 0 for all a G B; we sometimes use the
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terminology "bounded (norm) approximate identity of norm /?" for the same

concept.

If X is any normed linear vector space, the continuous linear dual of X is

denoted by X*; (a,f) represents the action of / G X* on a G X; and if Y Q X,

Z C X*, then let w(Y,Z) be the weak topology on Y Q X induced by Z £ X*.

The natural mapping of X into A'** is denoted by/ X -* X**. Often, we simply

denote (f,j(a)) by (a, f), a G X, f G X*, in those circumstances where the

meaning is clear.

A bounded linear operator T from B to B is called a multiplier of B if

T(a * ß) = a * T(ß) for all a, ß G B. The set of multipliers of B, in turn, forms

a Banach algebra of operators under operator norm |||-|||; denote this algebra by

JW,(B). JWÍB) contains an identity, and if B is semisimple, it contains an

isomorphic copy of B as an ideal. If B has an identity £, then each T G J\\(B)

is given by multiplication by the fixed element T(E) of B and so *M(B) reduces

to B. If B is semisimple, then J\l{(B) is semisimple, and A(/?) is homeomorphic to

an open subset of A(^H(B)), both in their Gelfand topologies. For a detailed

review of results on multipliers, see [13]; also consult [21] and [2].

Now let 5 be a commutative locally compact Hausdorff semigroup with jointly

continuous multiplication (sometimes herein referred to as a commutative locally

compact topological semigroup), and let M(S) denote the complex Banach

algebra of all bounded regular Borel measures on S where the product * is

defined by convolution. For p, v G M (S), F a Borel subset of S, (¡i*v)(F)

— Ss Ss <t>F(xy) dp(x) dv(y), where <¡>F denotes the characteristic function of F. The

norm on M(S) is the total variation norm, denoted ||-||. See Taylor [20]. A

semicharacter x on S is a nonzero continuous complex valued function on S of

modulus less than or equal to one which satisfies x(xy) = x(x)x(y) for all x,

y G S. The collection of semicharacters of S is denoted by S. It is well known

that C0(S)* — M(S), where /i G M(S) induces a linear functional on C0(S) by

(g./*) = fs g(x)dl>(x)   for all g e C0(S).

The set of discrete measures in M(S) forms a subalgebra of M(S), denoted by

lx(S). Of course, if S is discrete, then lx(S) = M(S). Hewitt and Zuckerman

present a detailed study of lx(S) in [10]. They show that the existence of an

identity in /, (S ) is equivalent to the existence of a finite set of relative units in S,

where U is defined to be a set of relative units for S, if for every x G S, there

exists m G U such that xu = x. Lardy [12] proves that the same conditions on S

are necessary and sufficient for the existence of an identity in M(S), and in fact

an identity for M(S) must lie in /, (S).

A portion of this paper is devoted to characterizing the multiplier algebras of

certain semisimple convolution measure algebras. For a definition of convolution

measure algebra see [20]; M(S) is an example of a convolution measure algebra.

Also, if G is a locally compact abelian topological group, and if L\(G) is the
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algebra of Haar integrable functions on G under convolution multiplication, then

Lx (G ) is a convolution measure algebra.

Taylor proves in [20] that if (A, *) is a commutative convolution measure

algebra, we may identify the maximal ideal space of (A,*) with f, the set of all

semicharacters on a compact topological semigroup I\ which he labels the

structure semigroup of (A,*) (T will denote the structure semigroup of whatever

convolution measure algebra is under discussion). There is a homomorphism

p: (i -» np of A into M(T) with the following pertinent properties: p(A) is weak-*

dense in M(T), that is, dense in the w(M(r),C(r)) topology (where we have

identified C(r) with its natural image in M(T)*); p is an isometry if and only if

(A,*) is semisimple. T also has the property that the uniformly closed linear span

of f is C(r). We make use of this fact in observing that t Q A(M(r)) is enough

to decide the semisimplicity of M(T): that is, suppose p, v E M(T) and /t(x)

= p(x) for all x G f ; then because the linear span of f is uniformly dense in

C(r), the formula (x,m) = (x.") for all x G f can be extended to all/ G C(r);

therefore, ¡i and v agree as linear functionals on C(T) and so as elements of M(T).

Suppose (A,*) is semisimple. Then it is proved in [11] that A has a weak

bounded approximate identity if and only if T has a finite set of relative units. In

fact, the existence of an identity in T is equivalent to the existence of a weak

bounded approximate identity of norm one in A.

3. Multipliers of convolution measure algebras. Throughout this section (A,*) is

a semisimple convolution measure algebra, S is a locally compact abelian

Hausdorff semigroup with jointly continuous multiplication, and M(S) is as-

sumed to be semisimple. The following is a representation theorem for <M(A).

Theorem 3.1. Let {Ep} be a weak bounded approximate identity for (A,*),

\\EP || < R for all p. Then ifTE <=/H(A) there is a unique measure fir G M(T) such

that T(et) = a * ¡iT for all a E A and J\A(A) is isomorphic to {¡i E M(T): ¡i* a

G A for all a G A). Furthermore, the correspondence T*~* ¡xT is an isometry if and

only if A has a weak bounded approximate identity of norm one; in any case

mnii < »Mrii < *nmii.
Proof. Assume A is embedded in M(T). Suppose T E *M(A). Then {T(EP)} is

a subset of the closed ball of M(T) of radius Ä|||r|||. In the weak-* topology this

ball is compact. Thus, there is a subnet [T(EP')} and nT E M(T) such that ¡iT is

a weak-* limit of {T(E„.)}; hence, for all/ G C(r), (f,T(E„.)) -► (/,/ir) and in

particular (x,r(£p-)) -» (x./Ar) for all x e f. If a G A, (x,T(Ep.))(x,a) -►
(x. Mr)(x> «) and so (x, a * T(EP)) -* (x, a * jur) for all x G f. On the other hand,

since [Ep) is a weak bounded approximate identity, (x,a*T(Ep)) = (x>T(a)

*Ep) -» (x>T(a)) for all x G f and for all a G A. Thus, (x>T(a)) = (x,a*jir)
for all x G f. Because the linear span of f is uniformly dense in C(r), this

formula can be extended to all/ G C(r). Therefore, T(a) and nT*a agree as

linear functionals on C(r) and so as elements of M(T).
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To see that ßT is unique, suppose p., X G M (Y) and jti * a = X * a for all a G A.

If X £ f, there is an o G A such that (x,a) # 0. Thus, (x,u - X)(x,a) = 0

implies that (x, u - X) = 0. Since this is true for all x G f and the linear span

of f is dense in C(T), (/, u - X) = 0 for all/ G C(r). Thus, u-A = 0oru = A.
These arguments show that ¿M(A) is isomorphic to {u G M(T): ¡i*a G /4 for all

a G A).

Now, since pT is a weak-* limit point of a net in the closed ball of radius

£|||7lH, Hfirll < R\\\T\\\, so the mapping T\-*p.T is continuous. Also, T(a)
= a*¡iT for all a G A implies that ||r(a)|| < \\¡iT\\ \\a\\ and hence |||7l{| < ||^r||.

Thus, UHU on JH(A) is equivalent to ||-|| on {u G M(T):¡i*a G A for all

o G A). From the relationship |||r||| < ||u.r|| < R\\\T\\\ we see that if R = 1,

T i-» ur is actually an isometry.

On the other hand, if the mapping T h* ur is an isometry, let / denote the

identity multiplier and ju, the corresponding measure in M(r) such that a = 1(a)

= a*n, for all a G /I. Then, because /I is weak-* dense in M(T), p., is the

identity for M(T): let u G M(r); then there exists a net {/i¿} C A such that

ft,, -» u weak-*; of course, nd*n, = ¡id for all a", and hence

(x./O = (X.fe*ft/) " (X.M</)(X.M/) "* (x>M)(x>ft) = (X»M*M/)

for all x G f ; thus, (x,f*) = O&M*/*/) for all x G f and so u = u*/*/. There-
fore, ni G /, (r ) [ 12], and in fact ¡i, is the Hewitt and Zuckerman identity for lx (r )

constructed from the finite set of relative units of T [12], [10]. If H/iJ = |||/|||

= 1, it must be that jti, is a unit point mass concentrated at, say, e G T. Thus, e

is the identity for T and so A must have a weak bounded approximate identity

of norm one by Corollary 3.2 of [11]. This completes the proof.

In Theorem 3.1 of [11] it is proved that A has a weak bounded approximate

identity if and only if M(T) has an identity. This means that ¿M(A) will not have

a representation as a subalgebra of M(Y) unless A has a weak bounded

approximate identity as in Theorem 3.1.

If G is a locally compact abelian topological group, the structure semigroup

corresponding to Z^ (G ) under convolution product * is G, the Bohr compactifi-

cation of G [20]. Since L, (G ) is a semisimple convolution measure algebra having

a bounded approximate identity of norm one, it follows from Theorem 3.1 that

if T G ^[(L^G)), there exists a measure ur G M(G) such that |||r||| = HjHrll

and T(a) = ¡iT*a for all a G Lx (G ). In the next theorem we demonstrate that

¡iT is supported on G; that is, ¡iT G M (G). In this way Theorem 3.1 can be

viewed as a generalization of Wendel's result [22] which identifies <=M(LX(G)),

isomorphically and isometrically, as M(G).

Theorem 3.2 (Wendel). If G is a locally compact abelian topological group,

¿Jl/l(Lx(G)) is isometrically isomorphic to M(G).

Proof. Let T G JI/[(LX(G)). By Theorem 3.1 there is a unique measure

jtir G M(G) such that |||7l|| = ||ur|| and T(a) = ¡iT* a for all a G ^(G), where
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G is the Bohr compactification of G. To see that ¡iT is concentrated on G, observe

first that \iT is a continuous function on G, i.e., it is w(G,Lx(G)) continuous. Next

note that since G is dense in G each x G G extends to a character on G; in like

manner, if f(x) = 2"=i c¡X¡(x\ X G G, c¡ G C for i = 1, 2,..., n, is a trigono-

metric polynomial on G, f can be extended to a trigonometric polynomial on G

without increase in norm and

2 c¡iiT(x¡) 2 c¡(p.T,Xi)

2 c,\  x¡(x)dnr(x)
l.-l

= |/B/(X)<W*) <IKIIII/L.

Now, following Rudin's proof of Eberlein's theorem [18, p. 32], there is a measure

H E M(G) such that

Ar(x) = fs )dx)dfi(x),      x <= G>

and in fact p. is actually concentrated on G. £r(x) = ji(x) for all x G G implies

HT = /i, and hence fiT is concentrated on G.

Conversely, it is well known that all elements of Ai(C) are multipliers of L, (G ).

This completes the proof.

Theorem 3.1 gives a characterization of <=H\(M(S)) when M(S) has a weak

bounded approximate identity. Using the approach of Rennison [16] in applying

Arens product [1] techniques to the task of describing the structure semigroup T

corresponding to (M(S), *), it is possible to better identify those measures in

M(T) that give rise to multipliers of M(S). Whenever no ambiguity arises, we

denote the uniformly closed subspace of M(S)* generated by A(M(S)) by A,

regardless of the particular semigroup S.

Definition 33. Let T be the structure semigroup of (M(S), *). For each

fi G Af(r), define mp; A -» A by defining mp on the linear span of A(A/(S)) as

mJ2 c¡x¡) = 2 c,(x,,/x)x,

X, G A(M(S)), c, E C for i = 1, 2,..., n.

That is, mp(f) is the Arens product of y, G M(T) = A* and / G A, and

Kll < IImII.
We use the standard notation that if T: B -* B is a function defined on a linear

vector space B, then the adjoint T*: B* -* B* is defined by T*(/) =f°T.

Lemma 3.4. Let (i, p E M(T). Then(mp(f),p) = (f,p.»p)forallf G A. Hence,

"»*.(") = n*pforallp G Af(r).



170 C. D. LAHR

Proof. For each x G A(M(S)),

(x»»**») = KGi),*) = ((x./0x>") = (x»/0(x>»») - (x.ß*f).

Hence, (f,m*(v)) = (f,¡i * v) for ail/ G A since the linear span of A(M(S)) is

dense in A. Thus, m*(v) = p.*v for all v G A/(r). This completes the proof.

If M(S) has a weak bounded approximate identity and T G ¿M(M(S)), the

following calculations show that T*\A= mMr: if x G A(A/(S)),

(T*(x),a) = (x,T(a))=T(a)'(x)

= (Mr*«)"(x) = Ar(x)â(x)

= (Ar(x)x.a) = Kr(x),a)   for all a G M(S);

thus, r*(x) = m„r(x) for all x G A(il/(5)). Also, 7* (and hence m^) is a

continuous function on A in the w(A, M(S )) topology [19, Lemma 5.10]. We wish

to investigate the converse question: that is, if fi G M(T) is such that m^ is

continuous on A in the w(A,M(S)) topology, does p. determine a multiplier of

M(S)1 Indeed, we show that if /i G M(T) = A* is in addition continuous on A

in the w(A,M(S)) topology, ft determines a multiplier of M(S). In what

immediately follows, we remove the restriction that M(S) has a weak bounded

approximate identity and assume only that M(S) is semisimple. First, we proceed

to establish some preliminary lemmas.

Recall that if B is a linear vector space, £ is a total subspace of B* if g(x) = 0

for all g G £ implies that x = 0, x G B.

Lemma 3.5. If E is a weak-* dense subspace of B*, then E is a total subspace of

B*.

Proof. Suppose x G B and (x,g) = 0 for all g G £. If n G /?*, there exists a

net {hp) C £ such that hp-+ h weak-*, that is (y,hp) -» (y,h) for all y G B.

Thus, 0 = (x,hp) -* (x,h) implies that (x,h) = 0 for all h G B*. Therefore,

x = 0. This completes the proof.

Lemma 3.5 thus implies thatp(M(S)) is a total subspace of A*.

Lemma 3.6. If n G M(T) is w(A,M(S)) continuous on A, then mp is also

w(A,M(S)) continuous on A.

Proof. Suppose / G A, {/} C A and f„ -►/ in the w(A, M(S)) topology. If

v G M (S) is fixed, for all ß G M (S) we have

(m,(fp),ß) - (fp,»*ß) -» (f,v*ß) = (m,(f),ß),

and hence m,(f9) -* m,(f) in the w(A,M(S)) topology for each p G M(S). The

w(A, M(S)) continuity of u on A implies that (mp(ffi), v) = (w,(/p), n) -» (m,(f),

V) = K(/),p) for ail v G M(S). Thus, mp(fp) -» wM(/) in the w(A,M(S))
topology on A.
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Theorem 3.7. If fi E M(T) is such that mp is w(A, M(S)) continuous on A, then

H determines a multiplier of M(S).

Proof. For each ß E M(S), the function/ i-* (mp(f),ß),f E A, is continuous

in the w(A,M(S)) topology on A:fp-*f implies mp(fp) -> mp(f) implies

K(/P),/3) -> (m,(f),ß) for all ß G M(S), {/p} C A, / G A. By Lemma 3.5,
p(M(S)) is a total subspace of A*, so there exists an element Kß G M(S) such

that (mp(f ), ß) = (f,p(Kß)) = f(Kß) for all/ G A [7, V, 3.9]. p(Kß) is linear on

A and

\\Kß\\ = \\p(Kß)\\ -     sup     \(f,p(Kß))\
/eA;||/L<l

=     sup    \(mp(f),ß)\ < U\\ ||i8||.
/SA;||/L<1

Now, AT is a linear transformation on M(S) and |[|^T||| < ||ft||. Thus, K is a

bounded linear transformation on M(S) with mp = K* |A since (mp(f),ß)

= f(Kß) for all ß G A/(S) and for all/ G A. Moreover, if ß E M(S),

(X,p(Kß)) = (xAKß)) = (x^**/(/3))

= (xj(ß) ° **) - K(x)J(iß))

= (mp(X),Aß)) = ((X.MÍX./K^))

= (x^)(x,Aß)) = (x,H*P(ß))   for all x G A(M(S)).

Hence, for each ß G M(S),p(Kß) and n*p(ß) are the same measure in M(r),

and so /i*/</?) G p(M(S)) for all /8 G M(S). Thus, if we now identify M(S)

with ^(A/(S)), Tp(ß) = n*ß, ß E M(S), defines a multiplier of M(S). This

completes the proof.

We are now in a position to characterize those measures in M(T) that give rise

to multipliers of M(S) when M(S) has a weak bounded approximate identity.

Corollary 3.8. (a) If ¡i E M(T) is such that jti is w(A,M(S)) continuous on A,

then /i determines a multiplier of M(S).

(b) Suppose M(S) has a weak bounded approximate identity. Then T is a

multiplier ofM(S) if and only if there exists a unique measure fiT E M(T) such that

mnT ** w(A,M(S)) continuous on A. Moreover, Tand¡iT satisfy T(ß) = ¡iT*ßfor

allß G M(S).

Proof, (a) Lemma 3.6 and Theorem 3.7.

(b) The remarks prior to Lemma 3.5 show that if T E JV[(M(S)), then mPT is

w(A,M(S)) continuous on A, where ¡iT is the unique measure in M(T) that

corresponds to T [Theorem 3.1]. On the other hand, if n E M(T) is such that mp

is w(A,M(S)) continuous on A, Theorem 3.7 establishes that n determines a

multiplier of M(S).
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Corollary 3.9. Assume that M(S) has an identity. Suppose g is a complex valued

w(A(M(S)),M(S)) continuous function on A(A/(S)) that has a linear w(A,M(S))

continuous extension to A. Then g = /i for some ¡i G M (S) if and only if there

exists a constant R such that |2,"_i c,g(x¡)\ < £||/L for all /= 2,"-i c¡x¡,

X, G A(M(S)), c¡ G C,i = 1, 2,..., n.

Proof. If ji G M (S)', the inequality holds, where R = ||u||; clearly, ¡i has a

linear w(A, M(S)) continuous extension to A. On the other hand, if g has a linear

extension g to A and satisfies the stated inequality, g G A*. The fact that g is

w(A,M(S)) continuous on A implies that g G <=W(M(S)) by Corollary 3.8(a),

and since M(S) has an identity, g = (l for some /* G M(S ). This completes the

proof.

If Te ¿JH(M(S)), then t (and hence nT, if M(S) has a weak bounded

approximate identity) is w(A(M(S)),M(S)) continuous on A(M(S)) since

A(M(S)) is homeomorphic to an open subset of A(<=M(M(S))) [2] or [21].

Corollary 3.8(a) gives a partial converse to this result; however, we require that

p. G M(T) be w(A,M(S)) continuous on A and not simply on A(M(S)) C A in

order that ft determine a multiplier of M(S). From this viewpoint there is some

similarity to Eberlein's characterization of bounded continuous functions on the

dual of a locally compact abelian group G that are transforms of measures in

Af(G) [8]. If G is a locally compact abelian topological group, the Bohr compac-

tification G of G is the structure semigroup for Li(G), and «^(^(G)) is

isometrically isomorphic to M(G) by Theorem 3.2. Now if p G M(G), p

G M(G) and /x(or ¡i) is w(G,Lx(G)) continuous on G; likewise, any measure

p G M (G) that is w(G,L|(G)) continuous on G is actually concentrated on G

and hence belongs to M(G) [18]. In keeping with this train of thought, Corollary

3.9 characterizes those w(&(M(S)),M(S)) continuous functions on the maximal

ideal space of M(S) that have w(A,M(S)) continuous linear extensions to A, in

the event that M(S) has an identity.

It should be pointed out that Rennison's approach [16] in arriving at the

structure semigroup T of M(S) makes it clear that M(T) is the Birtel extension [3]

of M(S). Birtel discusses in [3] the multiplier algebra of a Banach algebra B and

states several results in which he assumes the topological embedding of either B

or ¿M(B) into what we are now referring to as the Birtel extension of B. Relating

the work of Taylor [20] to that of Rennison [16], it turns out that the embedding

of M(S) into its Birtel extension A/(I") is an isometry if and only if M(S) is

semisimple [20]. Our main contribution with regard to BirteFs work is that

Theorem 3.1 with A = M(S) establishes the topological embedding Tt-* pT of

*M(M(S)) into M(T) with |||7l|| < \\pT\\ < Ä|||7l||; moreover, T^nT is an

isometry if and only if the weak bounded approximate identity is of norm one.

For sake of completeness we note that Corollary 3.8(b) is analogous to

Theorem 2 of [14], but the conditions are different.
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4. Multipliers of /] (S ). Assume that 5 is a commutative discrete semigroup. The

semisimplicity of ¡X(S) is equivalent to the algebraic condition on S that

x2 = y1 = xy implies x = y, x, y G S. If S satisfies this condition, we follow

Petrich [15] in saying that 5 is separative. A function a: S -* S having the

property that a(xy) — xo(y) for all x, y E S is called a multiplier of S. The set

of all multipliers of S is denoted ß(S); under the operation ° of composition of

functions, Q(S) is a semigroup with identity ë (though not necessarily commuta-

tive). Further, define S to be reductive if yx = zx for all x E S implies y = z.

There is a natural mapping x i-» ax of 5 into Q(S), where ax(y) = xy for all

y E S. The natural mapping is one-to-one if and only if S is reductive and onto

if and only if S has an identity. The set {ax:x E S) Q Q(S) forms an ideal in

fi(5) and ax ° a = a ° ax = a^x) for all a E fl(S ), x E S. For more details on

these and other results on semigroups, consult the survey article [15].

The next proposition summarizes some of the relationships between S and B(S)

when given various conditions on S. Some of the statements in the proposition

can be found in [15]; in any case, in the presence of commutativity, all are readily

proved.

Proposition 4.1. (a) // S has a set of relative units, then S is reductive.

(b) If S is reductive, then Q(S) is commutative.

(c) // S is separative, then S is reductive and Sl(S) is separative.

(d) If S is cancellative, then Q(S) is cancellative, and in addition, S and ß(5) have

isomorphic quotient groups.

(e) // 5 is idempotent, then Sl(S) is idempotent.

(f) If S is a union of groups, then Q(S) is a union of groups.

Thus, we have conditions on S that imply the commutativity of Sl(S), and we

are able to relate the semisimplicity of lx(S) to that of lx(Q(S)). Throughout the

remainder of this section, let us assume that fi(S) is a commutative semigroup. If

we are interested in describing <JW(lx(S)), then elements of lx(Q(S)) determine a

class of multipliers of /, (S ).

Proposition 4.2. There is a norm-decreasing homomorphism t i-» T, of lx(Sl(S))

into <M!X(S)).

Proof. Let t = 2<,eß(s) TWô<i G lx(ß(S)) and let P be the linear subspace of

lx(S) spanned by the point masses {8t}tes. Define Tr: P -* lx(S) by Tr(d2)

- 2o6fi(s) Apfi*), 2 G 5, and extend linearly. \\Tf(S,)\\ < 2,ec(s) K<0I = IMI
for all z E S; if a = 2i<¡<» «fo)^, G P, then

I|t;(«)||<  2  |«(2,.)|||7;(ôi()ll<IHIIWI.
I<i<«

Thus, for each t E lx (Q(S )), Tr is a bounded operator from P into lx (S ). The fact

that P is dense in lx (S ) allows us to extend TT to be a bounded linear operator on

lx(S), and indeed |||7¡!||| < ||t|| (no confusion arises if we not rename TT). It is a



174 C. D. LAHR

routine verification to show that TT G <M,lx(S)) for each t G lx(Q(S)). Now if S

is reductive, S is identified with a subsemigroup of Ü(S), and TT is simply

convolution multiplication by t G lx($l(S)).

Proposition 43. The natural homomorphism g f-» og of S into Q(S) induces a

homomorphism of lx(S) into lx(Sl(S)) which is (a) one-to-one if and only ifxi->ox

is one-to-one and (b) onto if and only if 'x*~* ox is onto.

Proof, (a) If a = 2*es <*(X)8X G lx(S), the induced homomorphism of lx(S)

into lx(Sl(S)) maps 2*es <*(x)8x -* 2*es a(x)$a,. This map is one-to-one if and

only if the set {Saj} is linearly independent, which is true if and only if x (-» ax is

one-to-one.

(b) If x h* ox is onto and o G ñ(5), then there exists x G S such that o = ax,

or in other words S„ = ô0j. Conversely, if the homomorphism of lx(S) into

lx(Q(S)) is onto, then given o G Ü(S), there exists a G lx(S) such that Sa

= 2xes «MS,,- If a ¥= ox for all x G S, then 0 = 50(ax) = a(x) for all jc G S

implies that S„ = 0. Thus, there exists x G S such that a = ax and cho, is

onto. This completes the proof.

Since the homomorphic image i7of lx(S) in A.(ß(S)) is an ideal in lx(Q(S)), it

is true that A(lx(Si(S)))\h(û) is homeomorphic to A(i7) by Theorem 3.1.18 of [17],

where h(ú) is the hull of Û. For instance, if 5 is separative, then we can consider

5 to be a subset of 0(5); Q(S) is commutative and separative. Moreover, fi(S)"

is homeomorphic to ^ in union with the hull of lx (S ).

Proposition 4.4. Suppose S is a semigroup having the following property: Given

a G Sl(S) there exists x„ G S such that o(xa) = o'(xa) implies o = o', where

6 G ñ(S). 77ien r h> Tr mapping /,(£2(S)) into &Ht(lx(S)) is one-to-one.

Proof. Suppose t = 2«ea(s) T(a)à„ and TÁSx) = 0 for all x G S, r ¥= 0.

Choose o G Ü(S) such that r(a) ¥= 0. Then there exists x„ G S such that

o(x„) = o'(xa) implies o = o'. Therefore,

0 - Tr(SXm) = TÍa^., +       2       <o'%(Xc)
n-EQ{S)rf+o

implies that t(o) = 0. Thus, r i-> £ is a one-to-one map.

Corollary 4.5. // S is a cancellative semigroup, then r t-* T, is one-to-one.

Proof. We verify the conditions of Proposition 4.4. For a given a G Q(S) take

xa to be any element in S. Since fi(S) is cancellative, if a ° ax = o* ° ox, then it

follows that o = o'. This completes the proof.

If S is a semigroup with cancellation, then Proposition 4.1(d) establishes the

existence of an isomorphic embedding of 5 and U(S) in a group G which has the

property that Ü(S) = {o G G:aS C S). We use this embedding and modify the

arguments of Davis [6] in proving the next result.
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Theorem 4.6. If S is a semigroup with cancellation, then aM(l\(S)) is isometrically

isomorphic to lx($l(S)).

Proof. lx(S) and /](Q(5)) are the subalgebras of lx(G) whose elements are

supported on S and Q(S) respectively. Since 5 is cancellative, the homomorphism

t h» Tr of /,(fi(S)) into <sW(lx(S)) is one-to-one by Corollary 4.5. We propose to

show that it is onto. Let T E <MJX(S)) and let a G lx(S). If x G S, then

T(a)*8x = a*T(8x); thus, 7» = a*T(8x)*8x-> for all a G lx(S). The inter-

esting fact is that T(8X)* 8x-i G ¡x(iï(S)). For suppose there exists y E G,z E S

such that ;zii and [T(8X)*8x-,](y) # 0. Then [ó> 7/(5,)*«,-■ 10*) =

[T(8x)*8x-,](y) # 0 and hence 82 * T(8X)*8x-i G /|(5). This contradicts the

fact that a* T(8x)*8x-> E lx(S) for all o G lx(S). Thus, given T E ¿H(lx(S))

there exists t G /i(ß(S)) such that T(a) *= a*r = Tr(a) for all a E lx(S) and

hence t h> 7¡! is an onto map. From Proposition 4.2 we know that |||7¡!||| < ||t||

for all t G /,(fi(S)). But

11| % y | =    sup   i|t»«h > iiT*¿y = iHi,
ae/,(S);W-l

and hence |||2;||| = ||t||. Therefore, we have proved that <M(lx(S)) is isometrical-

ly isomorphic to lx(Q(S)). This completes the proof.

For the remainder of this section we assume that lx(S) is semisimple, and that

lx(S) has a weak bounded approximate identity of norm one. This is equivalent

to the existence of an identity in the structure semigroup T of (lx(S), *) by

Corollary 3.2 of [11]. In Proposition 4.1 of [11] S is realized as a dense

subsemigroup of T by the isomorphism i,: S -*T. Let us consider the question

of embedding Q(S) in T. If T does not have an identity, then clearly there can be

no isomorphic embedding of Q(S) in T which extends the natural map i, of S into

T, since an identity for is(S) is an identity for T. As the next theorem shows, the

presence of an identity in T is sufficient to guarantee the embedding of Q(S) in T.

Theorem 4.7. If S is separative, the natural isomorphism i, of S into T has an

extension to an isomorphism ¿a(s) of$l(S) into T if and only ifT has an identity.

Proof. If /a{S) is an isomorphism of Q(S) into T and extends the natural

isomorphism i„ T has an identity since is(S) is w(I\ C(r))-dense in T [11,

Proposition 4.1] and ti(S) has identity S.

On the other hand, assume T has an identity e, and let is(x) = X for each

x E S. By Proposition 4.1 of [11], there is a net {üd} C is(S) such that üd -» e.

Fix a G ß(5) and consider {a(ud)~) C T. Since T is compact, there exists a

subnet {a(Mrf)~} and à E T such that a(ud>)~ -» a; thus, ä • x = Um xo(ud.)~~

= lim a(x)~üd. = a(x)~ for all x G S. Now, let {xp} C is(S) be any net such

that xp -> e and suppose that in accordance with the compactness of T there is a

subnet aixp)~ -* r E T; then 5 ■ x = a(x)~ = f • x for all x G S implies that

for each x G f, x(a) = xOO- Indeed, given x G f, choose z G S such that

x(z) ¥= 0, in which case we have that
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x(°)x(z) = x(5 •z) = x(? • f) = x(î)x(^);

since f separates points of T [20], it must be that d = f. Thus, multiplication by

ô G T determines an element of ß(S). We may now define i¡^s): ß(S) -» T by

i'q(S)(ct) = 5 for each <r G ß(S). Iq(S) is one-to-one because i¡nS)(°) — à

— 'ß(S)(T)> <r, t G ß(S) implies that a(x)~ = ö • x = t(x)~ for all ac G S and so

a = t. This completes the proof.

Now that we have an embedding of ß(S) in T, lx(U(S)) can be identified with

a subalgebra of /,(r) ç M(T). Note that this means that t(x) = 0 for all x G 5

implies t = 0, t G lx(Çl(S)). Also, Theorem 3.1 implies that the embedding

T h> pT of <=^(/i(S)) in M(T) is an isometry, in which case we have |||£||| = ||t||

for all t G /,(ß(5)). Thus, {3J:t G ^(0(5))} is an operator-norm closed subal-

gebra of ^H(lx(S)). This leads to the conjecture that ^H(lx(S)) is isometrically

isomorphic to /t(ß(5)). We propose to use the representation theory for

multipliers of semisimple convolution measure algebras with weak bounded

approximate identities developed in §3 in order to show that this is true. The

measure p G M(T) is a multiplier of lx(S) if and only if m^ is w(A,lx(S))

continuous on A by Corollary 3.8(b). Our aim is to show that if p G M(T) is

such that m^ is w(A,lx(S)) continuous on A, then indeed p G lx(ü(S)).

The fact that fi(S) can be considered a subset of T affords us a new way of

relating the semicharacters of S to their extensions in ß(S)\ Each x G S has a

unique extension x G ß(S)\ Now A is isometrically isomorphic to C(r) with the

mapping denoted gt-+ g'; therefore, it must be that for each x G S, x' I o<s)= X-

Also, there is a one-to-one correspondence between the linear span of S in

/,($)♦ = 4,(5) and the linear span L of {X G ß(S)*: x G S} C /,(ß(5))*

= /„(ßiS)) by mapping

H H

2 c,x,r ■-» 2 c¡x'¡ lots) •
i—i i—i

The next proposition relates A to the closure L of L in /„(ßiS)).

Proposition 4.8. There is a one-to-one correspondence between A and the uniform

closure of Lin /,(ß(S))*.

Proof. We have the following situation: S C ß(S) C T. Now if a sequence

{/„} C L converges to / G L uniformly on ß(5), then certainly the sequence

{/„ \s) converges to/ |s G A uniformly on S. The interesting point to recognize

is that since uniform convergence on S and on T are equivalent, then uniform

convergence of a sequence {/,} of elements derived from the linear span of S

implies uniform convergence in /„(ßiS)) of the sequence whose elements are

extensions of f„ to /„ G L for all n.

Theorem 4.9. Suppose lx(S) has a weak bounded approximate identity of norm

one. If p G M(T) = A* is such that mp is w(A,lx(S)) continuous on A, then
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convolution multiplication by (i determines a multiplier of lx (Q(S)). Hence, <Mfx (S))

is isometrically isomorphic to lx(Ü(S)).

Proof. We may extend the isometry p: lx(S) -* M(T) in a natural way to

p: /,(S2(S)) -* M(T). The mapping p is induced by the embedding of Q(S) in T,

and indeed, p is an isometry. In what follows we may identify A with a closed

subset of lx(ti(S))* by Proposition 4.8; we also recognize that A = C(r).

Viewing A as a subset of /, (fi(5))*, note that (f,p\r)) = /(t) for all t G /,(ß(5)),

/ G A. Let n G M(T) be such that mp is w(A,lx(S)) continuous on A. Corollary

3.8(b) implies that ft determines a multiplier of lx(S). Now, mp is w(A,/,(ñ(5)))

continuous on A. Thus, for each t G /^(S)), the function /h» (mp(f ),t),

/ G A , is continuous on A in the w(A,/i(S2(S))) topology, and is also linear.

Since p(lx(S)) C p(lx(Q(S))), by Lemma 3.5, p(lx(Q(S))) is a total subspace of

A*; so there exists Kr G /,(fi(S)) such that (mp(f),r) = (fiptKr)) = f(Kr) for

all/ G A [7, V, 3.9]. Now/j(Kt) is linear on A and

HJErH - WM -     «UP    Uí*Kt))\
/eA;||/||<l

=     sup    IK(/).r)|<MIIH|.
/e A; 11/11 < I

Also, A" is a linear transformation on lx(Q(S)) and |||Af||| < ||/t||. Since (mp(f),r)

= f(Kr) for all t G /,(«(£)) and for all / G A, mp = K* |A. Moreover, if

t G /,(Í2(5)),

(x,J>(#r)) = íxJ(^t)) = (x,a:**/(t))

= (x,/(t) o K*) = K(x),/(t))

= K(x),?W) = ((x,ft)x.?(T))

= (x.m)(x^W) = (x.M*?(t))

for all x G í. Hence, for each t G /((fl(5)), p(Kr) and ft*^(T) are the same

measure in M(T). Therefore, Tp(r) = p*T, for all t G /,(fi(S)), defines a

multiplier of /t(ß(S)), where we have identified /,(ß(S)) with p(lx(Q(S))).

Because /,(fi(S)) has an identity, then ¡i E lx(Q(S)). Finally, we have proved

that every multiplier /i of lx(S) is actually an element of lx(iï(S)). Thus, <=^(/,(S))

is isometrically isomorphic to /^(S)). This completes the proof.

We conclude this paper with an example. At this point one might conjecture

that every multiplier of lx(S) is of the form T, for some t G lx(ü(S)). However,

this is not always true, as Example 4.10 shows.

Example 4.10. Let S = (0,1,2,..., n,...} under the operation n2 = n for all

n and nm = 0 for n # m. It can be shown that ñ(S) = {F: F is a subset of S}

under the semigroup operation of union of sets, where each F C S gives rise to

a multiplier of S by mapping
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n h» 0,       if n G F or n = 0,

«b«,       if n G F.

It is also a routine matter (as indicated in [10]) to verify that there is a one-to-

one correspondence between the filters of {F}FcS and the semicharacters of ß(S),

each filter being a set where a semicharacter assumes the value 1. The semichar-

acters Xn °f S correspond to all the filters composed of singletons {n}, n # 0

(together with the function 1). We propose to determine A, and exhibit the

structure semigroup T corresponding to lx(S). We also show that the operator

norm of a multiplier T on lx(S) is equivalent to the supremum norm of the

corresponding continuous function gT on S.

If we observe that 2"-o C;X/ corresponds to the sequence c0, e0 + cx, c0 + c2,

..., c0 + cH, c0,..., c0,..., where c, G C, / = 0, 1, 2,..., n, then it is fairly

clear that the closed linear span of § in /X(S) is the space of all convergent

sequences in lx (S ).

Let T denote the semigroup S topologized in the following manner: S\{0}

retains the discrete topology of S; neighborhoods of 0 consist of 0 in union with

all but a finite number of points of S. Then T is compact, and an application of

the Stone-Weierstrass theorem shows that A = C(r). Note that no new points

have been added to S in order to obtain I\ Clearly, S = f. Finally, T is Taylor's

structure semigroup associated with lx(S) since topologically the maximal ideal

space of A = C(r) is T, and there is only one semigroup product on T that

makes the Gelfand transforms of elements of § into semicharacters on T [16].

Let us turn now to a discussion of ^H(lx(S)). If T G <=M(lx(S)) and/ G S,

for some íqo

that

T(S0) = T(80)*8j = ôQ*T(8j) = íoo«o

C. Likewise, T(b)) = 8j* T(8j) implies there exists tM G C such

T(8j) = (too - tjj)80 + tjjSj   for all/ G S.

Since lx(S) is semisimple, Tis a bounded linear transformation on lx(S). Hence,

l|7Xô/)|| = koo - tjj\ + \tjj\ implies that there exists a natural number R such that

\tM\ < R for all j = 0, 1, 2,.... Thus, T G <=W(lx(S)) implies that T has the
matrix representation

r«-»

too

0

0

0

'oo — fll

'11

0

0

'oo - t22

0

hi
0 — [tyhj-0

where \ty\ < R for all/
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It is also fairly easy to see that every bounded linear transformation T: lx(S)

-* lx(S) which has such a matrix representation, with |f„| < R for all i and some

natural number R, must be a multiplier of /i(S). In this way a one-to-one

correspondence is established between <^H(lx(S)) and /M(S). We now want to

show that this correspondence is also a topological one.

If T G *M(lx(S)), then let gT be the continuous function on S corresponding

to F[21]. It is proved in [21] that ||grL < ll|7l||. Let a = 2£o «(')«,, ll«ll < L
Then,

\\T(a)\\<^\a(i)\\\T(8i)\\<snp\\T(8i)\\
í-0 i

= sup{|í00-í//| + |/,,|).
i

Also, gr(xo) = T(80Y(xo) - (tooSoYiXo) = <oo, while for ally # 0,

gT(xj) = mYixjVhjixj) = WjY(xj)

= [('oo-(ff)oo + í¿,o,r(X;) = (í,.

Thus, |ioo - tu\ + \t„\ < kool + 2\tu\ < 3||grL for all /. Therefore,

||7>)ll <sup{|/00-íl7| + |í,.|}<3||g3-L

for all a, ||a|| < 1. Combining inequalities we find that

llgrIL < lililí < 3||grL-

This shows that |||-||| on ¿M,lx(S)) is equivalent to 1Mb on {gT G C(S):T

G <M(lx(S))}. Thus, we have now proved that <zM(lx(S)) is topologically isomor-

phic to 4o (5 ) by noting that there is a one-to-one correspondence between S and

Ê.
Our next step is to exhibit an element of <=i\A(lx(S)) that is not in lx(ü(S)). Let

2"-i a„ be a nonabsolutely convergent series of real numbers with \a„\ < 1 for

all n; let T be given by the matrix representation

2n-i an   ¿in*! an   Z,n*2 a„

0 a, 0

0 0 a2

0

Then T G JV((lx(S)). We wish to show that gT ¥- t for any t G /,(ß(S)). If gT

is the transform of an element of /i(ß(S)), then Corollary 3.9 implies that there

exists a constant R such that
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N V

2 cigT(Xi)   < R\\fL    for ail/ = 2 clXi, Xi e S, c¡ G C
1-0 i-0

Let R' > /?; there exists a rearrangement 2 <*m. with partial sums 5^ such that

lim„S; = R'. Hence, there exists N such that \S'N - R'\ < \R - R'\; set /

= 2B"-iXm,. with gr(Xm.) = am.. Hence, ||/L = 1 and 12,?-. gr0u)l
= I2„"-i a«. I > R\\fh, a contradiction. Thus, gT G 4(Q(S))".

However, although lx(Q(S))~ # «*f(/,(S)), it is of interest that lx(Q(S))" is

dense in lx(S ). First we recall [9] that if B is a Banach algebra with identity with

the property that Re(Ä) is sup norm dense in CR(A(B)), then B contains the

characteristic function of every open-closed subset of A(£). Thus, if 5 is a union

of groups, then lx(U(S))" contains the characteristic function of every open-

closed subset of fi(5 )" [5].

Proposition 4.11. Suppose S is a union of groups. If § has the discrete topology,

then lx(Q(S))~ \¡ is uniformly dense in l„(S ).

Proof. Since S is homeomorphic to a subset of Si(S)' and S is discrete, the

remarks in the above paragraph imply that ¡x(Çl(S))" contains the characteristic

function of every subset of Ê. This fact is enough to conclude that lx(Sl(S))" \g is

uniformly dense in lx(S ). This completes the proof.

Now, in Example 4.10 a routine verification proves that S has the discrete

topology, and |||-||| on <sW(lx(S)) is equivalent to H-lt». Thus, as an operator

subalgebra of ¿MJX(S)), /,(fl(S)) is operator-norm dense in cM(lx(S)).

The author wishes to thank Professor Lawrence J. Lardy for his guidance

during the preparation of this paper. These results comprise a portion of the

author's doctoral dissertation written while attending Syracuse University, Syra-

cuse, New York.
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