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WEAKLY ALMOST PERIODIC FUNCTIONALS ON THE FOURIER
ALGEBRA

BY

CHARLES F. DUNKL AND DONALD E. RAMIREZ

ABSTRACT. The theory of weakly almost periodic functionals on the Fourier algebra

is herein developed. It is the extension of the theory of weakly almost periodic functions

on locally compact abelian groups to the duals of compact groups. The complete direct

product of a countable collection of nontrivial compact groups furnishes an important

example for some of the constructions.

I. INTRODUCTION AND BACKGROUND

Introduction. Eberlein used ergodic methods to create weakly almost periodic

functions on groups [5]. In this paper we present a nonabelian extension of the

theory. Our extension is not in the already explored direction of functions on

groups, but rather we use the idea that the space of bounded measurable

functions on a locally compact abelian (l.ca.) group G is the dual of the Fourier

algebra of G (the dual (l.ca.) group of G), where the Fourier algebra of G is the

set of Fourier transforms of the integrable functions on G. The Fourier algebra

is defined on each locally compact group, and has been investigated by Eymard

[6]. It is a commutative Banach algebra of continuous functions on G vanishing

at infinity. Its dual turns out to be the von Neumann algebra generated by the

left translations on the Hubert space of square-integrable (left Haar measure)

functions on the group. This algebra of operators is a module over the Fourier

algebra, and we use module-type definitions of weakly almost periodic (w.a.p.)

elements of it.

For locally compact group G with Fourier algebra A(G), let W(G) be the set of

«p G .4(G)* (the dual of A(G)) such that the map/(-►/• ¿> of A(G) -* A(G)* is

a weakly compact operator (f • <j> is the module action). Many of the classical

theorems on w.a.p. functions also hold in this setting of w.a.p. functionals on the

Fourier algebra. For example, W(G) is a Banach space with a unique invariant

(in a sense to be defined) mean, and there is a monomorphism (the Fourier-

Stieltjes transform 9) of M(G), the measure algebra of G, into W(G).

If G is compact then the easily accessible structure of the dual of G allows a

more detailed study. The dual of A(G) is an algebra of bounded matrix-valued

functions on a discrete space, and we are able to use the idea of quasi-uniform
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convergence (invented for use on scalar valued functions) to characterize weak

compactness. This technique allows us to show that if G is the complete direct

product of a countable collection of nontrivial compact groups, then DM(G) is

not dense in W(G), and W(G) is a proper closed subspace of A(G)*.

Here are some details on the organization of this paper. It is split into sections

and chapters.

§1 contains the present material and Chapter 1 dealing with the classical

abelian theory from the /l(G)-module point of view.

§11 is the main part of the paper, and deals with compact groups. Chapter 2

gives the basic definitions and properties of the w.a.p. functionals and the mean,

and uses the ergodic semigroup theory of Eberlein [5]. Chapter 3 deals with quasi-

uniform convergence, and heavily uses the theory of weak topologies on Banach

spaces. In Chapter 4, the T-sets are constructed. These are "thin" subsets of the

dual of G, which have the property that any </> G A(G)* which is carried by one,

is w.a.p. Chapters 5 and 6 show, for the complete direct product G of a countable

collection of nontrivial compact groups, that DM(G) is not dense in W(G) and

that W(G) * A(G)*.

§111 contains Chapter 7 dealing with almost periodic functionals, and Chapter

8, which is a swift extension of the material of Chapter 2 and 7 to all locally

compact groups.

Notation is cumulative throughout the paper. In §11, G denotes a compact

group, except when, for purposes of illustration, we consider l.ca. groups.

During the preparation of this paper the authors were partly supported by NSF

grant GP-8981.

Chapter 1. Abelian background. In this section, we will let G denote a locally

compact abelian (l.ca.) group with G its dual group. An essentially bounded

Borel function </> on G is said to be weakly almost periodic (w.a.p.) if and only if

the set of translates of <j>, denoted by 0(<f>), is relatively weakly compact in L°(G),

the space of all essentially bounded Borel functions on G (see [5]). We will first

give an equivalent definition (for w.a.p. functions) which will allow us to develop

the theory of w.a.p. functions on duals of nonabelian groups.

We let LX(G) be the Banach algebra of integrable functions on G with

convolution * as the multiplication. The Fourier transform S takes LX(G) into

CB(G), the space of continuous bounded functions on G. The Fourier algebra of

G, A(G), consists of those continuous functions/on G for which 'Df E LX(G).

The space A(G) is a Banach algebra under the pointwise operations and the norm

ll/IL = II9/1- Now since A(G )^LX(G ), the dual of A(G) can be identified with
L°(G), and the pairing is given by </,<>> = fó (Vf)(y)<b(y)dmG(y),f E A(G),
<p E LX(G ), and where m¿¡ is the Haar measure on G.

We will now need the fact that LX(G) is a Banach module (see [6], [7]) over

,4(G): given/ G ,4(G), <b E L*>(G), define/- <i» e L">(G) by <g,/- <p> = </g,

<p>, g E A(G).
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Fix d» G L°°(G). Let F be the bounded operator from A(G) to 7J*(6) given by

/ h» f-faf G A(G). Note \\f ■ <f>L < \\fhU\L Now for g G .4(G),

<*,/• <f>> = </*></>> = /tf V(fg)(y>Ky)dm6(y) = <g,(9/)" ♦ <f>>

where h(y) = h(-y), « G LT(G). Thus F/ = /• ¿> = (9/)" * ¿> which is in

C *((/). We now use the theory of the representation of operators with values in

a commutative C*-algebra (see [4, p. 490]). The operator F induces an adjoint

map t from ßG, the Stone-Cech compactification of G, into U°(G) by the rule

</,T(y)> = Tf(y), fGA(G),yG ßG. Thus for f G A(G), y G G C ßG, we

have </,r(y)> = (/»<f>)(y) = </,7?(y)<f.> where (R(yH)(z) = ^y + z), *
G 7J*(G), z G G. Hence r(y) = 7?(y)<¡> for y G G.

Now t: /ßG -» LX(G) is always continuous in the weak-* topology

o(L°°(G),Ll(G)). Further, F is a weakly compact operator if and only if t is

continuous in the weak topology 0(1?(G),Ln(G)*) (for X a normed space, X*

denotes the dual of X). Now if F is a weakly compact operator, then it follows

that 0(<b) is relatively weakly compact. Conversely, if 0(fa) is relatively weakly

compact, it follows by standard point-set topology methods that t is continuous

into U°(G) with the weak topology. Thus we have shown the following theorem.

Theorem 1.1. Let G be a locally compact abelian group. For <p G L°°(G) to be

weakly almost periodic it is necessary and sufficient that the mapf 1-» / • <bfrom A(G)

to CB(G) (/• <J> = f * <f>) is a weakly compact operator.

Remark 1.2. Choose an approximate identity {ux} in Ü (G ) (G is an l.ca. group)

such that tii = «x and mili = 1 for each X. Then for any ¿> G L°°(G) we have

that ma • <j> = tiA * d> converges weak-* to fa Each «x • <#> G Cf(G), the space of

uniformly continuous bounded functions on G. Now suppose further that <p is

w.a.p.; then 0(<b) is relatively weakly compact. Thus {ux ■ <b} has a weak cluster

point in 0(<t>) C Cu(G) (recall for convex sets, the norm closure is the weak

closure), which must be fa This proves the following:

Theorem 13. If d> G Lf(G) and is w.a.p., and G is Lea., then <b is uniformly

continuous.

II. COMPACT GROUPS

Chapter 2. Basic definitions and the mean. Let G be a compact nonabelian

group. Using our previous notation [2, Chapter 7], we let G denote the set of

equivalence classes of continuous unitary irreducible representations of G. For

a G G, let Ta be an element of a. Then Ta is a homomorphism of G into U(na),

the group of na X na unitary matrices where na is the dimension of a. We use

Ta(x)¡j to denote the matrix entries of Ta(x), 1 < i, j < na, and T^¡ to denote the

function* ^ Ta(x\j. Now T^xy)» = ¿¿, Ta(x)ikTa(y)kJand T^y-^j = £0%

Furthermore, TaiJ G C(G), the space of continuous functions on G. For a G G,
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letXoM = trace(7¡(jc)) = 2Üi Ta(x)¡¡. The function is called the character of a

and it is independent of the choice of Ta in a.

Let X be an «-dimensional complex inner product space. Let 2S(X) be the space

of linear maps from A" -* X. We define the operator norm of A E !B(X) by

ML = sup{M£|: | G A", HI < 1}. The trace of A, Tr A, is 2Z-, (A&,1) where
{£,}"_i is any orthonormal basis for X and (•,•) denotes the inner product in A".

Let \A\ denote (A*A)X/2. The value \\A\ln is the spectral radius of \A\; i.e.

max{\: !</<») where X¡ are the eigenvalues of \A\.

Let <p be a set {<¡>a: a E G where <i>a G S(C")} such that sup{||<fc,L: a G G}

< oo. The set of all such <b is denoted by J^(G). It is a Banach algebra under

the norm ||^|Lj = supfltalb: a G G) and coordinatewise operations. Let M(G)

denote the measure algebra of G, that is, the space of finite regular Borel

measures on G with convolution as the multiplication. For ja G AZ(G), the

Fourier-Stieltjes transform of p, p, is a matrix-valued function defined for a G G

by a »-> pa = fc Ta(x~x)dp(x). Note that p. E J?°(G). We sometimes write Dp

for jit.

Let A G !B(X) where A" is a finite-dimensional complex inner product space.

We define the dual norm to ||-|L, by \\A\ = sup{\Tr(AB)\: ||fiL < 1}. This
norm can be also characterized by ||j4||, = Tr(|^|). For </> G _£°°(G), we put

ll<f>lli = 2„e<s«wll*.lli- Let -¿'(G) = fo G J?»(G): \\<p\\x < oo}. The space
-CX(G) is a Banach space under the norm ||-||,. For «j> G XX(G), let Tr(<f>)

= Saec "« Tr(<f>„).
We will now define /1(G), the Fourier algbra of G. Let A(G) be the set of

/G C(G) for which / G J*(6). We norm A(G) by  ||/|L, = ||9/||, = ||/lt
= 2ae(î «all/.Ill < oo• Note that /1(G) is isomorphic to XX(G) by /t-»9/

because for any <i> G -CX(G) the function f(x) = 2aec wa Tr(<J>a 7^(jc)) is in

/1(G); further,

ll/L = sup{| 2 ««Tr(<i>ar0W) : x e g) < 2 n.II*.Ik = M-

We now recall the following facts (see [2, Chapter 8]): A(G) =* £X(G) by

ft-* 9/,/ G /4(G); /1(G) is an algebra under pointwise multiplication; the dual

of J!X(G) is J?°(G) and the correspondence is given by (xp,<py = Tr(<f>^),

xp G -£"(G), </> G J?°(G). Thus the dual of A(G) can be identified with Jf°(G)

and the pairing is given by </,<i>> = Tr(</>/), / e /1(G), <J> E J^(G). The
module action of J?°(G) over /i(G) is defined by the following: /G A(G),

<f> G J!"{Ô),f-* G .£•«?) by <g,/- <*>> = </g,<í>>, g G /1(G). Note ||/- </>L

<II/LIWL.
Definition 2.1. For G a compact group and <f> G -¿*°(G), we say that <p is

weakly almost periodic (w.a.p.) if and only if the map/i-»/- <i> from A(G) to

-£"°(G) is a weakly compact operator. The space of all such <p is denoted by

W(G).
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We denote the unit ball in A(G) by B. We denote by P the set of continuous

positive definite functions on G which at e, the identity of G, have the value 1.

Note that P C A(G) and/ G F if and only if / G B and/a is a positive matrix

for each a G G.

Proposition 2.2. For <f> G J?°(G), «p G W(G) if and only if B • <p = {/' ■ fa f
G B) is relatively weakly compact in ./""(G) if and only if P • <p = {f • fa f G P)

is relatively weakly compact in -¿""(G).

Proof. We need only observe that any hermitian operator is a difference of two

positive definite operators. Thus B is contained in the balanced convex hull of

2F.   D

Definition 23. For <p G J^(G), we define 0(<p) to be the set P • fa (Observe

that 0(<f>) is convex.)

Remark 2.4. For <p G JH" (G ), to show that 0(<j>) is relatively weakly compact

it is necessary and sufficient to show that 0(¿>) is relatively weakly sequentially

compact; equivalently, 0(fa) is relatively weakly countably compact (see [4, p.

430]).

Theorem 2.5. W(G) is a closed *-subspace of J?°(G).

Proof. For <b G JT(G), let T: A(G) -* J?°(G) be defined as before by

Tf = /• faf g A(G). Note that the operator norm of T, ||F||, is the same as the

sup norm of d> in J^(G), ||<i>|Lo- Thus to show that W(G) is a closed space we

need only invoke [4, p. 438]: a uniform limit of weakly compact operators is

weakly compact. The '-invariance follows since 0(fa*) = 0(d>)* and <p h» d>* is

a weakly continuous map.   D

Theorem 2.6. W(G) is a module over A(G).

Proof. Let <p G W(G) and/ G A(G). We need to show that/- <p G W(G).

We observe that B(f-fa) C (\\f\\A B) • fa   D
Definition 2.7. Let ^(G) be the closure of <3M(G) in Jf(G).

Theorem 2.8. The algebra ^[(G) is contained in W(G).

Proof. It will suffice to consider a positive measure p G M (G) with ||p|| = 1.

Let cH be the Hubert space L2(G,p). Consider the map S: <=#-► J?°(G) by

(g,Sf) = SUgïdp, g G A(G), fGcH. Now \(g,Sf)\ < ||g|UI/IL < llslli
H/IU, and thus S is strongly continuous and hence weakly continuous [4, p. 422].

Let {fn} C /1(G), \\fn\\A < 1. Then {f„} is contained in the unit ball of <=¥ which

is weakly sequentially compact. Thus there is a subsequence^ -»* h weakly in

<=¥. Thus Sf„k^>k S h weakly. It remains to observe that Sf = / • p, / G A(G).

This follows from:

(g,Sf) -fifsYdp -TrtXfe)*)

= </g.A> = <c?./-A>.       f,gGA(G).    a
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Note that this implies that C0(G) C W(G), where <20(G) = {<f>

G J?°(G): ||<i>a|Lo > e for only finitely many a e C for each e > 0}, since

<20(G) is the closure of DÜ(G) (see [2, Chapter 8]).

Recall that P = {/ G /1(G): /is positive definite with/(e) = 1). Observe that

P is a commutative semigroup of operators on J?°(G).

Definition 2.9. The semigroup P is called ergodic (see [5, p. 220]) if it possesses

at least one system of almost invariant integrals. By such a system one means a

family of transformations {p^} such that:

(1) px is a linear transformation of _£°°(G) into itself,

(2) for each <p G JT°(G) and each X, px<f> G 0(<f>),

(3) supjpj < oo,

(4) for each / G P, limA(fpx - px)</> = 0 and limx(px/ - pxte = 0, <p
G ^"(G).

Theorem 2.10. The semigroup P is ergodic.

Proof. Let {X} be a neighborhood basis for e G G. Let ux E P with support

t/A C A. We order the net {mx} by ux > m, if and only if X C k. Now since W(G)

is an A(G)-n\od\i\e (Theorem 2.5), we define the linear transformation px from

W(G) to W(G) bypx<p = ux-<p,4>E W(G). Properties 2.9(1), 2.9(2), and 2.9(3)
are immediate.

To show property 2.9(4) it will suffice to show lor f E P that \\fux - ux\\A

->x 0. It is therefore enough to show that \\uxg\\A -*A 0, g G A(G) withg(e) = 0.

Now recall that each closed primary ideal in A(G) is maximal (see [6, p. 229]).

Thus given g G A(G) with g(e) = 0 and e > 0, there is « E A(G) with « = 0

on a neighborhood V of e such that ||g — h\\A < e. Now for X C F, we have that

lk*L < lk(* - h)\\A + IMIL, < e.   D

Theorem 2.11 7b every <p E W(G ) there corresponds a constant denoted by <J(<p)

such that for <b,xpE W(G) one has

(1) a(a<p + xp) = aü(4>) + ú(xp) and \ß{+)\ < ||*L (a E C),

(2) Û(I) = 1 (I denotes the identity operator in J?*(G)),

(3) '/<*>« > Ofor all a, then ufo) > 0,
(4) ux-<p-*x ufo)I in the norm ofJ^(G), {ux} as in 2.10,

(5) ufo*) = Ufo),
(6)û(f-<p) = ûfo)f(e),fEA(G),
(7) properties (1), (2), and (6) uniquely determine Û.

Proof. Since P is an ergodic semigroup (Theorem 2.10), the ergodic theory (see

[5, p. 220]) yields that each <j> E W(G ) has a unique fixed point Ffo) in the weak

closure of Ofo); i.e.,/ • F(<f>) = Ffo), for each/ G P. We now argue that Ffo) is
a constant multiple of the identity operator I in J?°(G).

For xp G -Z"0 (G ) we define spt xp to be the intersection of all the compact sets

K in G for which /• xp = 0, / G A(G), whenever spt / (the usual support) is
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contained in the complement of K. Further spt(/-<f>) C spt/n spt if/, /

G A(G), if/ G ^"(G). So if /• if/ = fa all / G P, then spt if/ C {e}. Thus for
d> G W(G), F\fa) is a constant multiple of 7 and we write F(<f>) = í7(¿>)7 (see [6,

Chapter 4]). Part (4) is from [5, p. 220]. The other claims follow from a standard

argument.   D

Theorem 2.12. For p G M(G), U(p.) = p({e}).

Proof. Let / G P, then / • £ = 9(/cfp). Thus as spt / -» {<?}, / - p -» p({e})7 .□

Chapter 3. Quasi-uniform convergence. For S a compact (HausdorfT) space, a

sequence in C(S) is weakly convergent if and only if it is bounded and quasi-

uniformly convergent on S (see [4, p. 269]). Also for S a locally compact space,

a bounded sequence {f„} from CB(S) converges weakly to some/ G CB(S) if

and onlyX -*" f pointwise on S and every subsequence of {f„} converges quasi-

uniformly on S to/(see [4, p. 281]). That quasi-uniform convergence is useful in

studying w.a.p. functions on l.ca. groups has been observed in [9]. We will

develop similar results for J?°(G) (a compact group G). We will use the concept

of quasi-uniform convergence which was introduced by Arzelà in 1884 for the

unit interval.

In this chapter, G denotes a compact group.

Definition 3.1. Let {fa} be a net in J?°(G). One says that fa -*x fa ¿>

G J?°(G), quasi-uniformly on G if (<fa)a -»x <pa for each a G G and for e > 0

and Ao there exists a finite number of indices Xx, ..., X„ > Xq such that, for each

a G G, miníllO^L. - fa,L: 1 < i < n} < e.
Definition 3.2. The unit ball in A(G) is B. For a G G, let Va denote the (closed)

span in A(G) of Taij, 1 < i,f < na. We let Ba = B n Va and E = U{Ba: a

G G}. The y4(G)-closed convex hull of E is denoted by co(E).

Proposition 33. B = cü(F).

Proof. Let/ G A(G) with \\f\\A < 1. Thus/has the Fourier series 2ae6 n<Ja

where /a = / . x« e Va and 2a6<; «« II/« IU = ll/IL [2, Chapter 7].   D
Notation 3.4. Let./ denote the canonical map of A(G) into Jf°(G)* s /1(G)**.

The unit ball in -¿"°(G)* will be denoted by £**. Let t denote the weak-*

topology on -£°°(G)*. Nowy'TJ is contained in and T-dense in B** (see [4, p. 424]).

Proposition 3.5. c5T(JÊr) = B**.

Proof. It is immediate that cor(jE"r) contains jB.   D

Theorem 3.6. Let {fa} be a sequence in Jf(G). If supH^Jb < oo and

(QnJ) ~~*" 0> / g/Ft where (•, •) denotes the natural pairing of ^°°(G) and

J°°(G)*, then fa ->" 0 weakly in J^(G).
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Proof. Let fo„) be norm bounded and fon,f) -»" 0 for/ G JE'. Now/ZT is a
T-compact subset of B**. It will suffice to show that fon,f) -*" 0 for/ G B**.

Now let/ G B**. Since/is in the T-closed convex hull of jET (see Proposition

3.5), there exists a probability measure p on jET which represents/(see [8, p. 5]).

The result now follows from the Lebesgue dominated convergence theorem.   □

Theroem3.7. Let fo„} C jO°°(G). Z/supHcpJb < oo and every subsequence fo„}

converges quasi-uniformly on G to 0, then <p„ -V 0 weakly in J?°(G).

Proof. We may assume that H^JL < 1 and suppose <p„ ■**" 0 weakly in

JT(G). Then there is/ G.JW C JT(G)* and e > 0 such that \fo„,f)\ > e for
infinitely many «. By «indexing, we may assume that |(<i>n,/)| > e for all n (by

passing to a subsequence).

Let nx, ...,nk be such that mindK^.),,!^: 1 < i < k} < e. Now letting

U¡ = {gE J™(G)*: \fon¡,g)\ > e}, 1 < i < k, we have that/ 6l/=nffi:l
< i < k}. Thus U is a (nonempty) r-open neighborhood of /, and there is a

g E A(G) such that g E E and jg G U. But E = U{Ba: a E G} and so g is in

some Z?^. Now \fo„.,jg)\ > e, 1 < /' < k, contrary to the choice of fo„.: 1 < i

< k}.   D
We now prove the converse.

Theorem 3.8. Let fo„) C J^(G). If fon} -»" 0 wea/W)» in JT(Ô), then
supdl^nlLo) < oo and every subsequence offo„} converges quasi-uniformly on G to

0.

Proof. Let e > 0 and N E Z* (positive integers) be given. For/ G B**, there

is «(/) > N such that Ifo^f)] < e. Let U(f) = {g G B**: |(<pK/),g)| < e}, a
T-open set. Now the collection of all U(f),f E B**, covers B**; hence there is

a finite subcover, U(fx), ..., U(fk). Thus for g G B**, min{\fo^f¡),g)\: 1 < i
< k} < e; and a fortiori, for a G G, mindKfp^)),, Ib : 1 < i < A:} < e (pairing

against ßj.   D

Remark 3.9. The above theorem is also valid for nets.

Chapter 4. T-sets. The concept of a T-set for an l.ca. group has been useful in

studying w.a.p. function on l.ca. groups (for example see [9]). We will make the

analogous definition of a 7-set for the dual of a compact group.

Definition 4.1. For a, ß G G, one can consider the tensor product Ttt ® Tß of

the two representations. This tensor product decomposes into irreducible compo-

nents: Ta ® Tß = 2 ®ymaß(y)Tr where maß(y) = Ja XnXßXydmc a nonnegative

integer. For E, F C G, we define E <S F = {y E G: maß(y) ¥= 0,a G E,ß

G F}. This operation makes G into a hypergroup. If E ® £ C E, then Zi is called

a subhypergroup of G. For a G G, there is a conjugate et E G such that

XâW ™ Xc(x), for each x G G. If £ c G, then £ = {â: a G £}. We use {1} to

denote the trivial representation G -» {1}.
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Proposition 4.2. For a, ß, y G G, maß(y) = ffi^(y) = m^(ß) = mw(a)

= mßy(a). Also XaXß = 2ye¿ rnaß(y)xy, thus "Zyeä maß(y)ny = nanß.

Definition 43. Let F C G. The set F is said to be a F-set if and only if

(F®a) n (F ® ß) is finite for all a, ß G G, with a # /?.

Theorem 44. Lei G = Yi„ G„, /«t? complete direct product of a countable

collection of nontrivial compact groups (G„). Let F„ be a finite subset of Gn such that

F,\{1) ¥= 0. Under the natural identification of G„ with a subset of 6, the set

F = U„F„ is an infinite T-set.

Proof. Now G is the hypergroup generated by U„G„; that is, if a G G, there

exist aj G Gj, 1 <j < m < oo (m depending on a), such that Xa(x)

= X<,,(*i) • • -Xam(x„), where x = (xx,x2,...) G G (equivalently, a = a, ® • • •

Let a, ß G G, a ¥= ß.We write a = a, ® • • • ® am and ß = /?, ® • • • ® /?m,

some «j G Z+. We may assume that {1} G F. Let F' = UJLiF, and F"

= (U„°Lm+1F„). If y, y' G (IL°°=*+. G¡,)"\{1}, then a ® y, ß ® y' are irreducible

representations of G not in (IL7=i G„)\ and a® y ¥= ß ® y'. Thus F" ® a and

F" ® ß are disjoint sets and do not meet (TT¡T=i G„)A. Further F' ®a,F' ® ß are

finite subsets of (rjJT=i G,)". Thus (F ® a) n (F ® /3) = (F' ® a) n (F' ® ß), a

finite set.   D

Remark 4.5. The above results holds for the complete direct product of any

infinite collection of compact groups. The proof is the same.

Definition 4.6. Let <f> G ^(G), define the carrier of fa cr fa to be the set

{a G G: <¡>a ¥= 0}. For/ G /1(G), we write cr/for cr/. (Observe for </> G J^(G)

that cr <f> C G whereas spt <f> C G.) Note that cr(/g) C cr/® erg, for /,g

G A(G).

Proposition 4.7. Let f G A(G) and <J> G ^°°(G). Then cr(/- </>) C (cr/)

® (cr <p).

Proof. Let a G G. Then a G cr(/ • d.) if and only if (g,f ■ fa) = 0 for all

g G Va if and only if </g,cf>> = 0 for all g G Va if cr(fg) n cr(d>) = 0 if

(cr(/) ® a) n cr(d>) = 0 if and only if ma/3(y) = 0 for all y G cr(<f>), ß

G cr(/) if and only if mßy(a) = 0 for all y G cr(</>), ß G cr(/), if and only if

a $ (cr/) ® (cr <¡>).   D

Theorem 4.8. Let </> G ^°°(G) èe 5uc« that cr «p k a T-set in G. Then

<f> G H/(G).

Proof. We first claim that it suffices to show that \J{Ba- fa a G G} is

relatively weakly (sequentially) compact; for then its norm closed convex hull,

which is B ■ ¿> D 0(<b) (Proposition 3.3) is also weakly compact by the Krein-

Smulian theorem (see [4, p. 434]).
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Choose a sequence {/} C UZ?a. Now if there is some a0 G G for which

f„ E B,^ infinitely often, then by the compactness of B„0, f„ • <j> has a weak cluster

point. Thus we may suppose that no Ba contains more than one/. We will write

&=/•<*> where/ G BBn.

Suppose ßx, ß2 E G such that (xpn)ßl ¥* 0 and (&)& ¥= 0 for infinitely many n.

Now ß E cr xpn C a„ ® cr <p only if an E ß ® cr <f>. Thus (¡8, ® cr<p) n

(ß2 ® cr<p) is an infinite set and so ßx = ß2.

Now let e > 0 and N E Z+. By the above remark lim„(xp„)a = 0 for all a E G

except at most one which we denote by 8. By extracting a subsequence, we

assume that lim„(xpn)a = 0 for a ¥= 8 and \in\„(xpn)s = a E B(C'). Let cruV

D cruV+i = (A, • • • ,ßk} C G. Now choose n}, ..., nk > N such that if /},

^ 5. 11(4,)/?, L < e, 3 < i < k, and choose n0> N such that 11(4^ - aL < e.
Let «! = N and n2 = # + 1. Letting Ï denote the operator in J?° (G ) defined by

Ttt = 0, a # 5, Ts = a, we have that for any a G G, min{||(i/-n( - T)„L: 0 < i

< k} < e. Thus {t|/„} converges quasi-uniformly on G to T. Clearly any subse-

quence of {xp„} does the same and so by Theorem 3.7, xp„ -»" ï weakly.

Consequently, we have that Ofo) is relatively weakly compact.   D

Chapter 5. A proper containment of JI/[(G) in W(G). Recall from Definition 2.7

that <=M{G) is the closure of <DM(G) in ^°°(G). In Theorem 2.8 we showed that

<=H[(G) is contained in W(G). We will, in this chapter, give examples of compact

groups for which the containment is proper.

Now for G l.ca., M(G)"~ has the following characterization [2]; for <p

G CB(G), <p E M(GY~ if and only if {/„} C A(G), \\fJA < 1, /„ ->" 0 point-
wise on G implies fcf„<i>dm6 -»" 0. The nonabelian analogue also holds and has

an identical proof. We state the result below.

Theorem 5.1. Let G be a compact group and <¡> G J?°(G). The following are

equivalent:

(A)<p G^tf(G),

(B) If a sequence {/„} C /1(G), \\fn\\A < 1, and f„ -»" 0 pointwise on G, then

</„,<*,> = Tr(/n<i,)^"0.

Definition 5.2. For G a compact group and F C G, one says that F is a central

Sidon set if and only if for any <p G 2X(F) (the center of J?°(G) \ F) there is a

u G 2M(G) (the center of M(G)) such that p \ F = </>.

In [3], we studied central Sidon sets and showed for G an infinite compact

group that G is not a central Sidon set. It follows that 2A(G) (the center of A(G)

relative to convolution) is proper in 2C(G) (the center of C(G) relative to

convolution). Thus for e > 0, there is / G 2A(G) such that ||/||^ = 1 and

ll/L < e- in fact> one may take / to be a central trig series; i.e. f(x)

= 2aeF caXa(x), where Fis a finite subset of G and ca G C.

Theorem 53. Let G = \~[„ Gn be the complete direct product of a countable

collection of nontrivial compact groups {G„}. Then ¿M(G) is a proper closed subspace

of W(G).
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Proof. Since G is an infinite group, G is not a central Sidon set. Thus there is

a central trig polynomial/! such that ||/i \\A = 1 and II/! L < »• Let Fx — crfx.

Since cr fx is finite there is an mx G Z+ such that cr/ C Ñx where 77¡
= IELi G„.

Now suppose that we have constructed central trig polynomials/,... ,fk and

integers 1 < mx < m2 < • • • < mk such that ||/L < 1/f, \\fj\\A = 1, and crj£
C fij, where H¡ = Tjr=my+i G„, for / = 1, ..., k. Then there is a central trig

polynomial fk+x on K = IL°°=mt+i G„ such that ||/A+, \\A = 1 and ||/*+, L <
1/(A: + 1) (observe that^+1 is also a trig polynomial on G with the same sup and

A norms). Pick mk+x > mk such that ex fk+x C (rET=mt+i G„)\ Thus by induction

there exists a sequence of central trig polynomials {fk} on G and a sequence of

finite subgroups {77*} such that G = II?=i #*> and cr/* C 77t, H^l^ = 1,
HAL < 1A for each k G Z+.

Now let F= U?-icr/t; then by Theorem 4.8, F is a F-set and so any

<f> G jf°°(G) with crd. C F is in W(G). Since each /* has \\fk\\A = 1, there is

fa, G 2Jf(G) such that crd* = crfk, Uk\l = 1 and (fk,fa} = 1. Let if/
G 2Jf(G) be defined by fa = (fa)a if a G cvfk for some fc, and if/a = 0

otherwise. Thus if- G W(G). Furthermore, since <^,if/> = (,fk,fa} +>k0, we

have if/ G ^H(G) (by Theorem 5.1).   D

Remark 5.4. Observe that the above result also holds for the complete direct

product of an infinite collection of nontrivial compact groups. The proof is

identical with the one above. Also our proof shows that 2¿M(G) is proper in

W(G) n ZJT(G).

Remark 5.5. If G is a nondiscrete l.ca. group then the space of uniform limits

on G of Fourier-Stieltjes transforms, M(G )' ~, is a proper subspace of the continuous

weakly almost periodic functions on G. The general result is due to Ramirez [9].

Remark 5.6. Let Md(G) denote the space of discrete measures on G and

<=tyj(G) its closure in Jf°(G). Just as ¿M(G) has a characterization as a class of

linear functionals on A(G) (Theorem 5.1), JH[¿(G) may be characterized similarly.

The proof is similar to the abelian case (see [2, Chapter 3]). We present the

following as a contrast to Theorem 5.1.

Theorem 5.7. Let G be a compact group and ¿> G J1X(G). The following are

equivalent:

(A)(f> G J^(G).
(B) If a net {/A} C A(G), ||/A|L, < 1, and /A ->* 0 pointwise on G, then

</„<*,> = Tr(<f>A)^*0.

Chapter 6. A proper containment of W(G) in J™(G). Let Z be the integers and

Z+ the positive integers. Denote by ¿>+ the characteristic function of Z+. Now

d>+ G /°°(Z) but is not w.a.p. One way to see this is to note that {7?(-A:)<p+}"=,

converges pointwise to 0 but not quasi-uniformly. This idea will show for G a

complete direct product of a countably infinite collection of nontrivial compact

groups that W(G) is a proper closed subspace of J1°°(G).
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Definition 6.1. Let F C G. We say that F is a g-set if and only if there is a

sequence {ak} C G such that:

(1) for a E G, (ak ® a) n F = 0 eventually,

(2) given / G Z+, there is a G G such that U{a ® a,: 1 < i < 1} C F

The sequence {a*} is called the associated sequence.

Remark 6.2. (a) Let G = T, the circle group. Then F = Z+ is a g-set in t — Z

with associated sequence {-fc}£L,.

(b) Let G = W.„Z(pn), the complete direct product of a countable number of

cyclic groups Z(p„) of order pn > 1. Then F = (x G G = 2 ©BZ(p„): x

= (x,,..., x„, 0,0,... ), xn ¥= 0,n even} is a g-set in G with associated sequence

{*<*>}, xW = (0,... ,0,1,0,... ), where 1 appears in the (2k + l)th coordinate.

(c) Let G = H. C„, the complete direct product of a countable set of nontrivial

compact groups. Then F = {x E G: x = a, ® • • • ® a„,a,¡ G G, (l < i < «),

añ ¥= {1}, « even)  is  a  g-set  in  G with  associated  sequence {x<*>}, x(*' G

<7»+i\{l>-
(d) Let G = \ thep-adic integers. Then G = Z(p°°), the group of unimodular

complex numbers of the form x = exp(2iril/pr+x), 0 < I < //+l, /, r E Z+. Then

F = {x E Z(px): ord x = p2",« G Z+} is a Q-set in Z(px) with associated

sequence xt = exp(2tri/p2k+x).

Theorem 63. Let F be a Q-set in G with assoicated sequence {ak}. Then

<p G J^(G) defined by <pa = 7„. (identity operator in ß(C"*)) for a E F and

<pa = 0 otherwise, is not in W(G).

Proof. Let /t = XaJnak- Then j£ G P. It follows from Propositions 4.2 and 4.7

that a G spt(^ • <b) implies (ak ® a) n F # 0. Thus ^ • <p ̂* 0 pointwise on

G.
It remains to show that {fk • <b} has no subsequence which converges to 0 quasi-

uniformly. Now for xp E 2J?°(G), we write u¿ = cjfo)^ (a E G). Then for

ß E G,x#-xp E 2£*'(G) and a simple computation shows

ca(Xß ■ «f) = — 2 "ymaß(y)cy(xp).
"y yeô

Now suppose there is / G Z+ such that for each a E G, min{||(^ • <p)„ L : 1 < k

< 1} < J. By property 6.1(2), there is oq G G such that {oq ® «,: 1 <»'</}

C F. But then we will have

»a • *)jl = K(á • *)i
i

2^ nyma<iak(y)cyfo)
'V"k TSC

¡¡-j- 2 »t'W.o^Íy) = l.
"«o '«k yeô
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for m^a^y) ¥= 0 only for y G oq ® ak C F, cY(d>) =1 for y G F and the

identity 2Te<; nymap(i) = "oMß> any a, ß, y G G (see Proposition 4.2).   D

Corollary 6.4. Let G = IL G„ fte /««? complete direct product of a countable

collection of nontrivial groups. Then W(G) is a proper closed subspace o/-£°°(G).

Corollary 6.5. Let G be a nondiscrete locally compact abelian group. Then there

is a continuous, bounded function on G which is not weakly almost periodic.

Proof. If G is compact, then G is a discrete (infinite) abelian group and thus

has a subgroup of the form: (a) Z, (b) Z(p°°), (c) a countable infinite sum of

cyclic groups (see [2, Chapter 2]). By Theorem 6.3 and Remark 6.2, our

conclusion is valid provided G is: (a) F, (b) Ap, (c) a countably infinite product

of cyclic groups. Observe that if the result is valid for A, a closed discrete

subgroup of G, then it is certainly valid for G since the restriction of a continuous

w.a.p. function to A is a w.a.p. function and every bounded function on A

extends to a continuous bounded function on G. Thus the result holds for those

G for which G is discrete or has an infinite discrete closed subgroup. By the

principal structure theorem [10, p. 40] for l.ca. groups we may assume G has a

nonempty compact open subgroup A (otherwise G contains a euclidean space,

thus Z). Since G/A is an infinite discrete group, we let / be a bounded function

on G/A which is not w.a.p. Extend / to all of G by f(y + A) = f(y), y G G.

Clearly / is not w.a.p. on G (by quasi-uniform convergence).   □

Remark 6.6. Another proof of Corollary 6.4 may be found in [1, p. 68].

III. EXTENSIONS OF THE THEORY

Chapter 7. Almost periodic functionals. One may drop the word "weakly" from

Definition 2.1 and thus create a nonabelian analogue of almost periodic

functions. We usé the notation of Chapter 2.

Definition 7.1. For G a compact group and ¿> G .i™0 (G), we say that <f> is

almost periodic if and only if the map ft-*f- ¿> from A(G) -» J*°(G) is a

compact operator. The space of all such <f> is denoted by A P(G ).

The following is clear (see Theorem 2.5 and [4, p. 486]).

Theorem 7.2. AP(G) is a closed *-submodule of W(G), and a priori ofJ^(G).

Theorem 73. If p is a discrete measure in M(G) then p. G A P(G ).

Proof. If p is finitely supported then / h> / • £ is of finite rank.   □

Chapter 8. Locally compact groups. All the numbered definitions, propositions,

and theorems of Chapters 2 and 7 also hold for noncompact locally compact

groups, if the following replacements are made:

(i) The Fourier algebra A(G) is also defined for locally compact groups, and is

a regular commutative Banach algebra of continuous functions on G vanishing

at infinity (see [6]).
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(ii) Replace -£* (G ) by VN(G), the weak-operator closed algebra of operators

on L2(G) (left Haar measure) generated by the left translations. Each p E M(G)

is represented in VN(G) as a left convolution operator /(-» p*f,fE L2(G).

Again VN(G) is the dual of A(G) [6] and is an /l(G)-module.
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