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THE VALUES OF EXPONENTIAL POLYNOMIALS

AT ALGEBRAIC POINTS. I

BY

CARLOS JULIO MORENO

ABSTRACT. A strengthening of Siegel's proof of the Hermite-Lindemann

Theorem is given.   The results are used to obtain lower bounds for the values

of exponential polynomials at algebraic points.   ITie question of how well the

root of an exponential polynomial can be approximated by algebraic numbers is

considered, and a lower bound is obtained for the absolute value of the differ-

ence between a root of the exponential polynomial and an algebraic number.

1. Introduction.   In this article we investigate the values at algebraic points

of exponential polynomials of the type

m

tßiz) = J! ^,(2)expía z],
k=l    * *

where the frequencies a,   (1 < k < m) are algebraic numbers, and the AAz)

(1 < k < m) are polynomials in z whose coefficients are also algebraic numbers.

The results which we prove are generalizations of the Hermite-Lindemann

Theorem to the effect that the values taken by the exponential function at distinct

algebraic points are linearly independent over the field of algebraic numbers.   The

central result of this article (see §2, Theorem l) says that given an algebraic

number ß of height Hiß), an explicit lower bound for |r/>(/3)| can be obtained as

a function of Hiß).   The method of proof which we use to establish this result is

a generalization of a technique that Siegel had invented to deal with exponential

polynomials of the type

m

<f>*iz)= £ ^¿Wexpia },
k=l

where the afe and Afe(z) are defined as above.   The method of Siegel was sub-

sequently improved by Mahler who was in fact able to show that given an algebraic

number ß of height H(ß), a constant A can be found which depends only on the

exponential polynomial <f>*iz) and the degree of ß such that
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18 C. J. MORENO

|<¿*(/3)| > {Hiß) + 1)-A.

A simple application of Taylor's Theorem leads to estimates of how well a root of

the exponential polynomial r/>*(z) can be approximated by algebraic numbers.

The methods developed in this paper can also be used to investigate the

values taken by polynomials of the form

772

<£E(z)= £ A Az)E (z),
¿=1

where the A Az) are defined as above and the EAz) are the E-functions of Siegel.

In a subsequent paper we plan to investigate this and related problems by using

results of Sidlovskiî   [9] and Lang [4] concerning the measure of transcendency

of E-functions.   Again these results lead to estimates of how well a root of an

E-polynomial <pE(z) can be approximated by algebraic numbers.

2. Statement of results.   The following is the main result of this paper.

Theorem 1.   Let (ß(z) be the exponential polynomial

771

(1) <f>{z) = 23 AAz)exp\akz],
k=\

where  o.., AAz) (1 < k < m) are respectively algebraic numbers and polynomials

in z with algebraic coefficients.   If ß is an algebraic number of height H = H(ß),

then

|<¿(j8)|>expí-A/í7},

where A ¿s a constant depending only on the polynomial <f>(z) and the degree

of ß.

The following result is an easy consequence of Theorem 1.

Theorem 2.   If ß is an algebraic number of height H = H(ß) and z is a root

of <f>(z) = 0, then

|z-j8|>expi-A0f/7i,

where AQ is a constant depending only on the polynomial <p{z) and the degree

of ß.

Theorem 2 improves on the results of Fel'dman [l] and Mardohai-Boltouski [7].

3. Preliminary results.   The main idea of the proof of Theorem 1 is a com-

bination of ideas in Siegel ([10], [ll]) and Mahler [6].   Several presentations of
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Siegel's method have been given in the literature, including a simplified version

due to Mahler.   Our treatment is modeled on that of Gel'fond [2, Chapter II, §2].

Without loss of generality we may assume that the coefficients of the polyno-

mials AAz) are algebraic integers of a number field K of degree v, which we

will hold fixed throughout our discussion.   We suppose further that cl,  € K

(1 < k < m).   Let w j, • • •, wv be a basis for the field K consisting entirely of

algebraic integers, i.e., an integral basis, and write the polynomial <f>(z) as

(2) obiz)=   Z   ••   £   Ak   ... k iz)exp\ik1w1 + ... + kvwv)z/8\,

where the polynomials A, ,   (z) are those appearing in (1) suitably indexed,

S is a rational integer and a is a positive integer which depends only on a,, • • •,

a^ and the choice of basis elements w.,.-., wy.   We assume that for each poly-

k{z)=1Uak,,-nomial coefficient in (1), AAz) = £._« a,  .z', we have

\a.   J < max \a..\=A,
"''        lS;S¿;lSfeSm      *''

where the symbol  \a\ means the largest of the absolute values of the conjugates

of a and

d = Max (degree A xiz), ■ •■ , degree A   (z); degree ß).

In the proof of Theorem 1 we may assume that the a.,(l<k<m) are algebraic

integers in K, that is to say, we may assume that in (2) 8=1.   In fact, if S ^ 1,

we may prove Theorem 1 for the polynomial r£g(z) = (piSz) and then consider the

value of <f>$iz) at the algebraic point ß/S.

We will need the following result.

Lemma.   Let the coefficients a,      of the linear forms

L. - a,  ,x, + .. • + a,    x (l < k < p)
fe ft, 11 k, q   q _-_r

be in the algebraic number field K of degree v.   Suppose that p < q and \A,

< A (1 < k < p, 1 < s < q).   Then there is a nonzero solution (*.,••'•,* ) of the

system of equations L,=0 (1 < k < p) in integers of the field K satisfying

(3) \rk\<cl(c2qA)f^-^ + cv

where c,  and c~ are constants depending only on K.

The proof of this Lemma is a straightforward application of the pigeon-hole

principle and can be found for example in Lang [4, p. 4].

4. Proof of Theorem 1.   The proof will be by contradiction.   We assume that

for some constant c, whose value will be determined at the end of the argument,
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and no matter how large we take A, we can always find an algebraic number ß

of large height such that

(4) 0(/3)«expi-A/ici.

In the spirit of Gel'fond [2, Chapter II, §2] we shall subdivide the proof of

the impossibility of (4) into six steps.

Step One.   We enumerate the q = (p + 1)    numbers

klwl + ... + kvwv,       0<k.<p,     1 < ¿ < i^,

where p is a sufficiently large positive integer, in any order to form a sequence

A, = 0, A2, • • •, A   with the first f = {a + 1)   of them coinciding with the set of

numbers k¡w^ + • • • + kvwv, 0 < ki < a, 1 < i < v.

Thus we may write the polynomial

o- a

<£(z)=   £    •*•    H   At   ... k ^ ex?ttkiwi + "• + kvwv^
fe1=0 fev=0       I'    ' v

4>Az) = ¿ A, As) exp!Afez},    A j k(z) = 0 for k > £
fe=l

If we multiply the relation (4) by the numbers

expK&jWj + • •• + kvwv)ß\,       0 <k.<p-o, I <i<v,

we shall obtain a new set of inequalities of the type

(5) <f> ,{ß) = £ A .   (/S) exp iA^jS! < expj - Aff],
1 fe=l    ''

with 1 < ;'< (p + 1 - o)v = r. Clearly, the constant A in (5) now depends on p.

This will do no harm to the argument, since p will be a parameter to be chosen

later as a function of H which will not grow faster than some power of log H.

We now claim that the matrix (A . Aß)) (1 < ; < r, 1 < k < q), formed with

the coefficients of the linear forms <f>iß) in (5) has rank r.   This follows easily

from the fact that the w. (1 < i < v) ate linearly independent which implies that

the matrix (A . ■ (j8)) is semidiagonal after a suitable interchange of rows.   The

next step consists in producing a new set of q independent linear forms in the

exponentials expiAjSi (1 < k < q), from which a set oi q — t forms can be

selected so as to complete the system in (5).

Step Two.   The following is Siegel's method for constructing q independent

linear forms in the exponentials expjA, ß\ (1 < k < q) as outlined in Gel fond
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[2, Chapter II, §2].   The idea is to construct a function f(z) which is a linear

combination of the exponentials expjA.z} (1 < k < q) and polynomials Pj-z), each

of degree at most N and such that

/(*) = Z P (z)exp|A zj
«=1

has a zero at the origin of high multiplicity.

Remark.   Hopefully a refinement of this construction may lead to an improve-

ment of the final estimate.   In fact, one can construct lots of linear forms by

requiring that the function / (z) vanish not only at the origin but at other points

located symmetrically about the origin.   For example, we could take the Gaussian
7 9

integers p = m + ni, m   + n   <Q, and require that the function

/(z)= ¿  Pjz) explAmz|
m = l

vanish to a high order at all points p.   Actually one only needs that the numbers

fip,), /(p2)> • • •, and some higher order derivatives be small.   In carrying out this

plan there is one difficulty which we have not been able to overcome and that is

that the point z = 0 is the only algebraic point of the function (z, ez).   We hope to

investigate this problem in a subsequent paper.

Let N be a positive integer which will be chosen later to be large compared

to q.   Form the function

(6) /(z)=  £  p>)exp{A  z},
m = l

where

fe=o *■■

If /(z) is to have a zero of high order at the origin, we must be able to select the

coefficients cm k suitably so that the power series expansion of /(z) about the

origin begins with a high power of z.   By expanding the exponentials expfA z\ in

powers of z we can write fiz) as

1       I        N k    eo    Kvzv\

m = l    \      «=0 *■    „=0     V-      I

=  Z    Z   ( I cm kK,
m = l u/=0  \OzksN;0&v<w;k+v=w

Nlwl

m.k  m k\v\ }w\ '

if we now interchange the order of summation we get
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y (ï y a-   "hl\*w

(8)

U/=0   \772 = 1    i/=0 \t'//    *"•

where c = 0 for w - v > A/ and the symbol C) is the binomial coefficient.
771,It/ — V J V

To construct the polynomials  P   (z)   (1 < m < q), each of degree N, we think of

the coefficients c    ,   as unknowns and observe that if / (z) is to have a zero at

z = 0 of multiplicity M, then the following system of linear equations in the c    ,

must hold:
q      w .   .

(9) Z    Z   ̂ CK,"-» = °'        0<«r<M-l.
772 = 1     7^=0 \t'/

To apply Lemma 1, we must first find bounds for the coefficients in (9).   Clearly

we have {") < 2W < 2M  (0 < w < M - 1) and |F | < c^p (l<m< q).   Therefore

we have

A =  Max    (") ¡F| < c4(c5p)M.
w,m,v \V '

Now, the total number of equations in (9) is M and the number of unknowns is

(N + l)q, hence the Lemma guarantees the existence of a nonzero solution to the

system in (9) in integers c     ,   of the field  K and satisfying the inequalities

(10) \Tj < c6{c7Nq(c^p)M)M^N^"-M\

provided that M < (N + l)q.

We have thus constructed a function f(z) of the form

(11) f(z) = zMif,(z),

where \fj(z) is an entire function.

To complete the second step we now obtain bounds for the value of the func-

tion ifi{z) at points near the origin. From    (8) we see that /(z) can be written as

±  MjLh /«i , i.\\       zb

f(z).z"z (¿ x? Nic^.^ (*;*))
*=0      \T7! = 1     t7=0 V ' / (M +  h)\

and thus

Taking absolute values and putting B = Max.      \c    J, we obtain

DO I     | fy . - ■

(12) |^(2)| < Hü Z   ?(M + h)2M+Hc,p)M+hBP-^.
M! fc=0 vM + h)\
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We now use the trivial estimates (Ai + h)2M+h < 3M+h and A1!¿!/(A1 + h)\ < 1 in

(12) to get

Wz)\<--Bqicsp)M    Z   -1—-
,.,« Ai! b        A=0        ¿!

<~Bííc8f)Mexplc8p|zlí.

The size of the constant cg is of some importance if one wants to obtain an

estimate like that in Theorem 1 with an explicit dependence on the degree of ß.

A more careful analysis of the above estimates gives that cg = 3vû), where v is

the degree of K over the rationals and &> is an upper bound for the absolute

values of all the conjugates of the basis w¡, • • •, wv in K.

Later on it will be advantageous if the exponent in (10) is of the order of

magnitude of q, i.e., Ai/((/V + l)q - Ai) = c^q, that is to say Ai should be of the

order of magnitude of Nq.   This we accomplish by taking Ai = N(q - 1) + 2q.   The

above choice of Al gives the following bound for B in (13), or equivalently for

\c—r| in (10), B < c6exp¡4/Ví72log p\, provided that p > c? where c? is an effec-

tively computable constant.   Finally we get

(14) |^(z)| < exp\-qiN/2)log N + cgp\z\ + 4Nq2 log pi,

provided p > c j 0.

Step Three.   We now differentiate the function fiz) to obtain other linear

forms in the exponentials expíXmz¡   (1 < m < q).   Put

<¡

Ls(z) = /(s>(z) = Z   us,m{z) exPiAfflz!'      s = 0, 1, -. -, N - 1,
m = l

where
N

<15> Us J*> =   £     Cm  s  kzk-s.ffi ~-~       m,s,ft
ft=0

To find upper bounds for the coefficients c       , we put D = d/dz and use

Leibniz' rule to obtain

<?

L(z) = Dsfiz)= Z    D*(p  WexplA  z!)
m = l

<*>        =z (¿Ow^rj-pM
m=l   \r=0 J

- z (z (;) a:-v z nic..» ¿ W..I.
m = l \r=0 *=0 fe- /
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The coefficients in each of the polynomials

N k

are certainly bounded by Ai! 2^=0 |c^|;   if we estimate the other terms in (16)

trivially we obtain that the coefficients in the polynomials in (15) are bounded by

(17) \cm s J < exp{2iV log N + ANq2 log pi,

provided p > c}j.

We would now like to prove that given an arbitrary point z ^ 0, among the

N forms L0(z), Lj(z),..., LN_ j(z), q of these are linearly independent, that is

to say, the matrix of coefficients (U      (z)) is nonsingular.

We first establish that none of the polynomials P   (z) in

f^= Z   PJ*) e*pfrmz\
772 = 1

can vanish identically.   Recall that /(z) has a zero at z = 0 of multiplicity M,

and suppose that on the contrary

PAz) = P2{z) m .., m Pv (z) m 0

are the only polynomials that vanish identically.   To both sides of the equality

(18) .A(z)zM = P77+1(z)explA7)+1z!+     £     Pm(z)exP¡Amzj
772=77+2

apply the differential operator D*i which consists in first multiplying both

sides by expj- A_+jZ¡ and then differentiating (A/ + 1) times, in other words

DN+1(exp|-A7?+1zi^(z)z'n)

-D**»P,+|W+    Z    DN+HPjz)exP\(\m-Xv+l)z).
772=7)+2

The application of this operator has two consequences: first on the left-hand side

of (18) it lowers the multiplicity of the zero at z = 0 by A/ + 1 and, secondly, on

the right-hand side it destroys the presence of one polynomial coefficient.   Thus

we are left with an identity of the type

^*(z)zM-(N+l)=     f    P*U)exp{A*zl,
' *-^ 772 A 772

772=77+2

where the A*  are all distinct, the P* (z) are all nonzero by assumption and

where i/f*(z)zM_<N  !) is an analytic function which by construction has a power

series expansion which begins with a power of z greater than or equal to

M - (N + 1).   If we iterate the differential operator D* +1, (q - r?) times, we

obtain on the right-hand side a function identically zero and on the left-hand side
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we get an analytic function whose power series begins with a power of z which

is greater than or equal to Al - (q - rj)(N + 1).   If we now recall that Ai = N(q - 1)

+ 2q we get

Al - iq - n)iN + l) = Niq - l) + 2q - (q - r¡)iN + l) = q + irf - l)/V + 7],

which is a contradiction if rj > 1.   Therefore none of the polynomials P  (z)

vanishes identically.   The validity of the above argument clearly depends on the

fact that fiz) itself is not identically zero.   But this is clear because by the

Lemma at least one polynomial P   (z) is not identically zero.  Now we claim

that none of the polynomials U      is) in

L (z)= Z   U„    (z)expÍA  z\      iO<s<N-l)
s t-^       s,m m —     —

m = l

can vanish identically.   This follows readily from the nonvanishing of the poly-

nomials P   (z) and the fact that if Piz) is a polynomial of degree N, then the

polynomial P*iz) in

4-(P(z)exp!Az|) = P*(z)exp,Azî,      A ¿ 0,
dz

is also of degree N.

Step Four.   We now ascertain that the q forms L0iz),.. •, L     A,z) are

linearly independent except for a finite number of values of z.   In other words,

the q by q matrix of coefficients iUs    (z)) is not identically zero.   But this is

clear if we observe that the polynomials U      (z) can be defined by

Usiz) = i\m + D)sP  iz),      D = í-,
s.m m m ¿jz

which is an easy consequence of the formal identity

DsiP  (z)explA  zi) = exp,A zi(A   + D)SP  iz).

Now, the determinant A(z) of the matrix

/    pi(z)

/    (Aj + D)Pliz)

(19) {Us Jz)) =s ,m

(A.+ D)Piz)     \

UAI+D^-'PjU) (A^+D)*-1?^) J
is not identically zero because the leading coefficient in the expansion of A(z) in

powers of z is the product of the leading coefficients of the polynomials

Pj(z), • ■ •, P iz) and the Vandermonde determinant
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f 1

A,

XT' A*
9

i

which is certainly not zero.   Further details can be found in Lang [4, p. 79].

From (19), or otherwise, it readily follows that the degree of A(z) as a poly-

nomial in z is bounded by Nq.   We now want to find a lower bound for the order of

the zero of A(z) at z = 0.   Let us therefore multiply the ;'th column of the matrix

(19) by exp{A.z| and add the new column to the first column for / = 1, 2, ■ •., q.

The resulting matrix is

(20)

U2 Az) Ui,iz)

"-i>V

whose determinant is still A(z).   We now use the fact that

Lq_Az) = zM-^-1)if,*(z) = zN(q-l)+q*1if,*(z),

to obtain A(z) = zN(9-1>+9+1g (2).   That is to say, A(z) has a zero at z = 0 of

multiplicity at least N(q - 1) + q + 1.   Now, since A(z) is itself a polynomial of

degree at most Nq, it follows that A(z) cannot have a zero of order greater than

N - q - 1 at any other point z ^ 0.

Step Five.   We now claim that from among the forms Lg(z) (0 < s < Ai - 1), a

set of q forms L    (z),.. •, L    (z) can be selected such that the corresponding

matrix of coefficients

/V    Az)    ...    U      iz)\
/     V1 sVq      \

\u u>... vu>y
is nonsingular at z = /S.   In fact we have already seen that if ß ¡¿ 0 and A(z) is
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the determinant of the matrix in (20) we have the factorization   A(z) =

(z - ß)e*i//Q(z), where e ß < N - q - 1 and iffQ(ß)/ 0.   Thus solving for explA z\

in the system

Liz)=   Z  U*    (z)exp!A   z]       i0<s<q-l),
s --~      s.m *•      m —      —• 4s ,m

m = l

We get the identity

9-1

(21) A(z)explA z¡= y   A      iz)L(z)      il <m<q).
* 771 ¿—a' 772,5 o — ~*   *

s=0

If we differentiate both sides of (21) e ß times and then substitute the value

z = ß we get the linear system

A   ^)exPÍAm0!=    Z     A*,L,Q8)
5=0

q      l1\eß-\

= Z   z Ou^Hm   (i <«<«>.
rc = l    \    s=0 /

from which we get the identity

(22) ¿'f*\ß)lqxq = H*.U,

where   / is  the identity matrix of order qt A* is the matrix of coefficients

A*=(A*    )       (1 <m<q; 0<s<q + efí- l),
m, s —       —  * —      — J p

and U is the matrix

U = (Us   iß))       i0<s<q + eß-l;  1 < n < q).

Now, since A   ^ (/3) ^ 0, we know from (22) that the rank of the matrix Ai/

is q and hence the rank of each factor must also be q.   Using the inequality

e a< N - q - 1 we see that the above statement is equivalent to the assertion

that from among the N - 1 forms LQiß), • • •, LN_2(/3) we can select q forms

which are linearly independent.   That is to say, there are q forms whose

corresponding matrix of coefficients is nonsingular at z = ß.   Without loss of

generality we may assume that

(23) LAß), LAß), ...,Lq(ß)

are q chosen linearly independent forms.

To get an estimate of the size of the forms Ls(ß) we simply observe that by

the Cauchy integral formula for the derivative of a function we have

fiz)dzLsiß) = f^iß) =1L f Jl£^5_
s 2ni J\z~ß\=l iz _ g)s+l
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Taking absolute values we obtain

\L(ß)\<N\     Max     |/(z)|      (0<s<N-l).
|«-/3|-1

A bound for Maxi  _ oiJ/WI follows readily from (11) and (14)

Max     |/(z)| < (1 + |j8|)M    Max     \ip(z)\
\z-ß\=l \z-ß\=l

< HqN exp\-(qN/2) log N+ cl2pH + ANq2 log p\,

where we have used the fundamental inequality

(24) |j8| < (height of ß) x (degree of ß) < Hd.

Hence we get

\L(ß)\ < HqN exp\-(qN/3) log N 4 cnpH + ANq2 log p\

(0 < s < N - 1).

In particular the bound in (25) applies to all the forms in (23).   The inequality in

(25) holds on the assumption that p>cl..   The constant cJ2 = 2dc„.

We now consider the system in (5) of r linearly independent forms

0//3)=  ¿A.^explAjSj,      (l</<r)
772cl

and complete the system by choosing q — t forms from among those in (23), say

L j(/3), • • ■, L     T(ß) such that the resulting system

<f>Aß), - - -, <f>T{ß), LAß), ..., Lq_T(ß)

has a nonsingular matrix of coefficients

(AuAß)       ...   A.Jß)   \

(25)

(26a)
ArAß)

Dw<0 dhg(ß)

\U9-r,l(ß)   ...    Uq_Tg(ß)J

Step Six   (Final balancing act).   To complete the proof of Theorem 1 we now
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find upper and lower bounds for the determinant of the matrix Q in (26a).  To

obtain an upper bound we use the estimates (25) and the inequalities for (p^ß), •••,

<p"Tiß) in C5).   To obtain a lower bound we use the simple fact that the determinant

of Q is a nonzero algebraic number and hence, if multiplied by a suitable denom-

inator, the resulting number will be an algebraic integer whose norm has absolute

value greater than one.

For each m,  1 < m < q, we now multiply the 7?zth column in (26a) by expJA ß\

and add the resulting column to the first column to obtain the matrix

A1>2(ß)        •••    Alt(ß)   \

Afi2(ß)        •••    ATJß)

ult2iß)     .-   ütJß

• •

Vr.2<#    -    K-rJßy

To estimate the determinant of the matrix in (26b) we use the fundamental

inequality (24) to obtain

(27) |A;.m(/3)| < dA(dH)d.

From (15), (17) and (24) we obtain

(28) |l/sm(/3)| < HN exp Í3AÍ log N + ANq2 log p],

provided p > c,..

The estimates (27) and (28) imply that the determinant of the matrix in (26b)

is bounded by

(29) |det e| < (|<jS*Q3)| + L^ß)\)Hdr+N(e>-T) exp¡(? - r)(4JV log N + ANq2 log p)\,

provided that p>ciy   In (29) we have put \<p*(ß)\=Max1       \<f>.{ß)\ and  \Ljiß)\

-M«W/S4-rl^)l-
To obtain a lower bound for detQ, we observe that detQ is an algebraic

number in the field K(ß) which is of degree at most vd over the rationals.   There-

fore, if the leading coefficient of the irreducible equation defining ß is T = T{ß)

< H, we have that

(26b) Q* =

faß)
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(30) go = Td(dr+N(q-r)) det q

is a nonzero algebraic integer in the field Kiß), and its norm has absolute value

greater than one. Now, using (26a), (27) and (28) we get the following bound for

each of the conjugates of the number Q0

ÍQJ < |fM*»X*4l»<t-r» expl(9 - r)i4N log N + 4Nq2 log p)\,

provided  p>cly

Finally we get

i< n«"(e0) <\Q0\Hidv-i)id+i)i*+m*-r»
i

• expfUf - l)iq - r)(4/V log N + 4Nq2 log p)},

where the symbol 'i( )' means the z'th conjugate of a number in the field K(ß);

the last inequality we can also write as

(31) |det Q| > H-2vd2(dr+N(q-r)) exp,_(<0/ _ l){q _ r){4N log N + 4Nq2 log p)l

The inequalities (29) and (31) now give

1 < (|0*(/8)| + |L^)|)H3vi2(*,+w(«-r»

(32) ,    . ,
. expi<A^(^ - r)(4/V log N + 4/Vç   log p)\,

provided p > c j,.

If we now put ¿V = //    and observe that 9 - r < voa(v~  "v and p < 9

we get

|L*(/3)| < expi-(9A//6) log JV + 4Nq2 log p¡.

We can also write (32) in the form

1 < (expi-Ar77i + exp\-iqN/6) log N +4Nq2 log p\)

• (explc16?(l,~ly"(4N log N + 4Nq2 log q)}).

We now choose q as a function N so that cl6q 4Nq2logq <iqNlogN)/24,

i.e., we take q = clg((log/V)/loglogN)    (2v~1), with a suitable constant c,8.

Clearly, 4Nq2logp< (l/24)qN log N and 4ei6?(I,-1)/2/Vlog/V < (1/24) ?/Vlog/V

if tj > Cjq.  Hence we can write the inequality (33) as

1 < (expl-AH7i + expl-(3/24)9/V log tVi)(expfl/12)9W log N})

which is a contradiction if H > c20, or equivalently if A > c21.   This then

implies that \<f>iß)\ > expl- \H7\.   This completes the proof of Theorem 1.
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