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UNIONS OF GROUPS^)
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R. J. WARNE

ABSTRACT. We characterize semigroups S which are unions of groups as

generalized Schreier products of groups, semilattices of right zero semigroups,

and semilattices of left zero semigroups. We then give several specializations

of this result utilizing Schreier products, semidirect products, and direct products.

In a well-known theorem ([2], [3, Theorem 4.6]), Clifford characterizes semi-

groups S which are unions of groups (more precisely, unions of their subgroups)

as associative(2) semilattices Y of completely simple semigroups (5 : y e Y),

i.e. S = U(S : y £ Y, a semilattice), the S    ate pairwise disjoint completely

simple semigroups, and S S Ç S . .  Hence, for each y eY, S   = I   x J    (Car-

tesian product) where 7    is a left group and /    is a right zero semigroup.  We

define a product on 7 = U(7 : y eY) so that 7 becomes a lower associative

semilattice Y of left groups (7 : y e Y) (a e 7 , b £.1^ c e ¡w, and y > z > w

imply aibc) = iab)c) and we define a product on / = (J(/ '• y £ Y) so that J be-

comes a semilattice V of right zero semigroups (/ : y eY).  In §1, we charac-

terize S = U(/   x / : s eY) as a generalized Schreier product of 7 by /—more

precisely, the subsemigroup U(7   x }  : y eY) oí this product ("generalized" as

the second coordinates multiply as a semidirect product instead of a direct pro-

duct).  We then give a similar characterization of 7 by means of groups and semi-

lattices of left zero semigroups.  In § 2, we characterize a band (noncommutative

semilattice) of maximal left groups, S, as a Schreier product of / by associative

/.  In §3, we characterize orthodox S (E(S), the set of idempotents of S, is a

semigroup) as a generalized semidirect product of orthodox 7 by upper associa-

tive /.  Specialization of this characterization to idempotent semigroups yields

a variant of [10, Theorem 2].  In §4, we characterize generalized ÍK-unipotent

S (e, / e EiS) and ef = / imply fegfg = fg fot all g e E(5)) as a semidirect
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product of upper associative / by associative /.  In §5, we characterize an

orthodox band of maximal left groups, S, as a semidirect product of / by associa-

tive /.  Specialization of this characterization to bands of maximal left zero semi-

groups yields a variant of [10, Theorem 3].   In §6, we characterize a generalized

iR-unipotent band of maximal left groups, S, as a direct product of associative

/ and associative /.   Upon specializing this characterization to idempotent semi-

groups, we obtain a variant of a result of Kimura [5, Theorem 2],  (In this case,

Kimura terms S a spined product of / and /.)  In §7, we characterize £-unipo-

tent S (each principal left ideal of 5 contains a unique idempotent generator or

equivalently S is an associative semilattice Y of right groups (S : y e Y)) as a

semidirect product of associative / by associative I such that /    is a group for

each y € Y (Theorem 7.2).   Upon specializing Theorem 7.2 to bands of groups,

we obtain a result of Bailes [l, Theorem 30].  The dual of Theorem 7.2 together

with Clifford's characterization of associative semilattice of groups ([2], [3, Theo-

rem 4.11]) may be applied to further refine the structure theorems in §§4 and 6.

An excellent account of the previous structure theory for orthodox S, especi-

ally of the Fantham, Preston, and Yamada theorems, is given in [4].  We also

refer the reader to [4] for a bibliography of this theory.

1.   Semigroups which are unions of groups.   Let S be a semigroup which is

a union of groups.  We show S = UUV x /  : y e Y) under the multiplication

(A, a)(ß, b) = (Aoßa ob(a  \ aB * b) where   *'o" denotes the multiplication on

/ = U(/ : y e Y); "*" denotes the multiplication on / = U(/ : y eY); for a, b

e J, ba e H , some fixed maximal subgroup of / ; and, for B el and a e /, B"

e I and a    e ].   The Ba and b" obey conditions similar to those given in a

Schreier product while if we set a    = aÖß, then B —* 6B is a (partial) homo-

morphism of (/, °) into T., the full transformation semigroup on / and 0ß is

something similar to an endomorphism of (/, *).   We say "similar" as some

mixing occurs as indicated in the product given above.   Another condition involves

associativity in /.

Let T be an upper associative semilattice Y of right groups (T : y e Y).

We obtain the structure of T by letting H   = I    in the structure theorem for S.

Some modifications arise due to the absence of full associativity in T.   The

dual of this result will further refine the structure of S,  We conclude this section

by considering the case where E(T) is partial subgroupoid of T.

Before beginning our program, we will need several definitions and some

preliminary discussion. Unless we specify to the contrary, we will adopt the

terminology of Clifford and Preston [3].

First, we note that the concepts of "semilattice" and "commutative idempo-

tent semigroup" are equivalent.   We just set e A / = ef and vice versa [3,
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Theorem 1.12].   A groupoid S which is a union of a collection of pairwise disjoint

subgroupoids (5  : y eY) where Y is a semilattice and S S  ÇS     for all y, t €

Y is termed a semilattice Y oí groupoids (S : y eY).  If a e Su and b e S , we

say a < b if and only if u < v.   If iab)c = aibc) foi a>b>c (a <b <c), S is

termed a lower (upper) associative semilattice  Y of groupoids (S : y € V).  If S

is a semigroup, S is termed an associative semilattice Y of semigroups (S : y

eY).

Let ÍR, •£, K, and 3) denote Green's relations [3] on a semigroup 5, i.e. % -

((a, f>) e S2: a U aS = b u W), H = ÍR n £, and 5) = K o£ = ((ûf è) e S2: (a, x) e

ÍR and (x, b) e S. for some x e S).

Let S be a semigroup which is a union of groups. By Clifford's theorem ([2],

[3, Theorem 4.6]), S is an associative semilattice Y of completely simple semi-

groups iS : y e Y). By the Rees theorem ([7], [3, Theorem 3.5]), S = G x M x

TV (set direct product) where G is a group and M and N ate sets with M O

N = (1 ), a one element set. Furthermore, if ig, i, j),ih, p, q) e S , ig, i, j) .

ih, p. q) = igfyij, p)h, i, q) where (/, p) —* fyij, p) is a mapping of 7Vy x My into Gy.

By a remark of Clifford [3, p. 95], we may take / (l , i) = / (/', 1 ) = e    fot all

j e N ,  i e M    where e    is the identity of G .  We will let e   = (c , 1 , 1 ).   If•        y y y ' y y y'   y'   y

S is orthodox, ifyij, i), ly, ly) = iey, ly, j)(ey, i, ly) e E(5y).   Hence fyij, i) =

e    for ail i e M    and j e N .   The facts and notation of this paragraph will be

used without explicit mention.  The given multiplication in S will be denoted by

juxtaposition.

Our first structure .theorem will be the consequence of eleven lemmas.

Let 7   = Gy x My x (ly), J* = Gy x (ly) x Ny, and /   = (ey) x (ly) x Ny.

Let 7 = U(7 : y eY) and / = \Ji]  : y e Y).   In the remainder of this paper, the

elements of 7 (/) will be denoted by capital (lower case) italic letters.

Lemma 1.1. For each y eY, I is a left group. If A el , Bel, and z <

y, AB e I .

Proof.   By [3, Theorem 1.27], 7    is a left group.  Let A = (g, i, 1 ) e I ,

B = (*, /, lz) e lz and y > z.  Hence, AB = iv, k, s) e Sz,  say.  Thus, iv, k, s) -

(<?z> 1m» 1z) = A^h> U ljiez> lz, lz) - AB = (f» *. s)-  Hence, AB e lg.

Lemma 1.2.   For each y eY, J    is a right zero semigroup.   If a e J , be

J t, and y <t, ab e J*.

Proof. By a simple calculation / is a right zero semigroup. Suppose that

a = ^eu> lu> s) e K' b = (ev> 1v> Ü e Jv> and u < v. Hence, ab = (z, p, q) e Su,

say.   Thus, (e , 1  , s)iz, p, q) = aiab) = ab = (z, p, q) and, hence, ab e ]*.
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Lemma 1.3.   Every element of S may be uniquely expressed in the form x =

Aa where A el    and a e ]    for some y e Y.
y Jy ' '

Proof.  If x = ig, i, j) eSy, x = (g, z, ly)(ey, ly, ;').

Lemma 1.4   For each a e J    and Bel    (zz, v e Y), there exist a unique

element Ba e I      and a unique element a    e J      such that aB = BaaB.   Further-
uv ' Juv

more aB j\ Ba and aB £ aB.

Proof.   Let a e J    and B e I(.  Thus, aß e S   .  Hence, by Lemma 1.3, there

exists a unique u el     and v e J t such that aB = zw.  Let u = Ba and w = a ,

The last statement is valid by a simple calculation.

If A el    and  B e/„ define A oß = A(BCs).

Lemma 1.5. (/, °) is a lower associative semilattice Y of left groups (/ :

y e Y).  If A>B el, A°B = AB.

Proof.   By Lemmas 1.4 and 1.1, /   °/   £/   •  Next, let A els, B£/( and

s > t.   Thus, e B e/, by Lemma l'.l and, hence, e B = (c B)e .   However, e B

= B ses   by Lemma 1.4.  Hence, B s = esB by Lemma 1.4 and Lemma 1.3.   Thus,

A o B = AiB*s) = AiesB) = iAe^B = AB.   Hence, if C < B in /, A o (ß o C) = A

o iBC) = AiBC) = AiBC) = A o (ß o C).    Q.E.D.

If a = iz, lu, r) e ]*, define a' = (c^, 1^, r) e /u.   In other words, a' is the

identity of the maximal subgroup of S containing a.  If x e /    and y e J , de-

fine x *y = (x vy)' (here, e    is considered to be an element of ¡v).

Lemma 1.6.   (/, *) is a semilattice  Y of right zero semigroups (/  : y e Y).

If a <b in J, a *b = iab)'.

Proof.   By Lemmas 1.2 and 1.4, I   * /. C] ..  Next, let a e I , be] , and
/ *  * s t St U V

u <v.  Since iaBv, ae ) e £ by Lemma 1.4, iaevb, aejb) e S. and hence iaevb,

ab) e£.  However, aevb, ab e J* by Lemma 1.2.  Hence, iab)' = iaBvb)' = a *b.

Q.E.D.
If r e / , se] , and u < v, define sT = rse . Hence, if rs = (z, 1 , ;) e

/* (Lemma 1.2), sr = iz, 1 ,1 ). We note that sT is contained in the maximal

subgroup with identity e .

Lemma 1.7.  // s <t e ], st = tsis * t).

Proof.  Let se], te] , and u < v.   By Lemma 1.2, st = (z, 1 , k) e ]*,

say.  Hence, si = tsist)'.  Hence, by Lemma 1.6, sr = tsis * t).

Lemma 1.8.  If A>B el, ce],

(a) cA°B = icA)B,

(b) iA o B)c = Ac ° B<-cA).
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Proof.  Utilizing Lemmas 1.1 and 1.4, c(AB) = iAB)ccAB while icA)B =

(AccA)B = AcicAB) = AcB(cA)icA)B.   Thus, we apply Lemmas 1.4, 1.5, and 1.1.

(Cb)
Lemma 1.9.  If a <b e J, C el, and h =

(a) (a * b)c = h * bc,

(b) b" oCa*b = iCb)aoibc)U>\

Proof.   We now proceed as in the proof of Lemma 1.8.  Utilizing Lemmas 1.7

and 1.6, iab)C = ib"ia * b))C = baiia * b)C) = baiC a*\a * b)c) = ibaCa*b)ia * b)c

while a(7rC) = aiCbbc) = iaCb)bc= iCb)"ihbc) = iCb)aibc)(h\h * bC).  Thus, we

apply Lemmas 1.4, 1.5, 1.6, and 1.1.

Lemma 1.10.  If a <b <c e ] and k = a(c \

(a) ba°c**b = icb)aoib*cYk\

(b) (a * b) * c = k * ib * c).

Proof.  Utilizing Lemma 1.7, aibc) = ai,cbib * c)) = iacb)ih *c)=icbYkib *c) =

icb)aib * c)(kh *ib*c) while (ab)c = (èa(a * b))c= b"iia *b)c)= baca*bia *b)*c.

Lemma 1.11.   S = [J(7   x /  : y eY) under the multiplication

Q
(A, a)(B, b) = (A o B" o //"   ), aB * ¿).

Proof.   Using Lemmas 1.5 and 1.7, (Aa)(B6) = AiaB)b = (ABa)(aBè) =

iA° B" ° è(aB%aB * b). Thus, using Lemmas 1.3, 1.5 and 1.6, iAa)ft = (A, a)

is the required isomorphism.

We are now in a position to give our structure theorem for semigroups which

are unions of groups.

Let (7, °) be a lower associative semilattice Y of left groups, (7 : y e Y);

for each y eY, let 77   be a fixed subgroup of 7 ; let (/, *) be a semilattice Y

of right zero semigroups (/ : y eY).   For each a e /    and Bel    iu, v e Y),

let Ba e ¡uv and aB e Juv.  For each a e }    and 7. e /    with a < v    in Y, let

b" e H .  Assume the conditions:

1. If A > B e I, ce],

(a) cA0B = (cA)B,

(b) (Aoß)c = Acoß(^).

2. If a <b e J, C el, and h = a(c6),

(a) (a * fc)c = è * bc,

(b) fca « Ca*b - (C*)a o (¿,C)U>>.

3. If a < fc < c e /, and k = a(c6),

(a) è* o">** = (cè)a o(è * c)(*>,

(b) (a * 7-) * c = /« * (b * c).
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We term U(/   x J : y e Y) under the multiplication

4.  U, a)(B, b) = (A ofl« ob{aB), aB * b), a generalized Schreier product of

/by/.

Theorem 1.12.  A semigroup S is a union of groups if and only if S is a gen-

eralized Schreier product of I by ] for some I and ].

Proof.   Let S be a'semigroup which is a union of groups.  Hence, S is a gen-

eralized Schreier product of / by / by Lemmas 1.5, 1.6, the definition of ba

(a, b e]), and Lemmas 1.4, 1.8, 1.9, 1.10, and 1.11.

Conversely, let 5 be a generalized Schreier product of / by /.   Let us estab-

lish associativity.  If (A, a) e S, let (A, a)j = A and (A, a)2 = a.  Hence, if

(A, a), (B. b), and (C, c) e 5, and è = (aB)(c6) and ¿ = c«-c>,

(((A, fl)(B, fc))(C, c)), = (A o ß" o (è«B o C8**) o c«aß**>C>

= A o B" o (C6)flß o (èc)<*> o c(**éC)    by 2(b) and 2(a)

= AoB«o(C*)<a^oU)<*>o(èC*c)«*)(*)>   by 3(a)

= Ao(BoC6°4)«oÜ,c*c)<a<ß       *>   by Kb) and 1(a)

= ÜA,a)iiB,b)iC,c)))l

while

(((A, fl)(B, ¿))(C, c))2 = (aB *è)C *c

= (¿> * bC) * c    by 2(a)

= ih)(k)*ibC *c)   by 3(b)

= ((A,a)((B,è)(C, c)))2    by Ka).

Hence, ((A, aXfl. ¿>))(C c) = (A, fl)((B, fc)(C, c)).

Let Ts = 7i x /* for s C y'   For each ' e Js* let r(s./) = Isx $•  Usin«

(4) and the fact ils, °) is a left simple (right cancellative semigroup) a simple

calculation shows that T.    .. under (4) is a left simple (right cancellative) semi-

group.   Hence, T.    .. is a left group for each / e Js.   Furthermore, T.    -)7\s ¡,\

Ç T.   ...   Let a, b e T , i.e. a £ T.    .. and b e T.   ,., say.   Thus, since  ab

e T.   ,., there exists y € T,   fe. such that yaf> = b.  Thus, Ts is a simple semi-

group.  Next, suppose that e, f e EiT) and ef = fe = /.  Hence, e, / e T,    ..,

for some ; € /  , and, thus, e = f, since B(T.    ..) is a left zero semigroup.
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Hence, T    is a completely simple semigroup.   Thus, S is a union of completely

simple semigroups, and, hence S is a union of groups by a theorem of Clifford

[3, Theorem 4.6].

Notation.   Henceforth, if A, B e I    and c, d e J , we will write A ~ B ~ c

~ d while if r e ]    with v < u, we will write r < A.

In the statement of Theorem 1.12, the only products in (7, °) used are A o B

(A > B).   We will describe these products as a generalized Schreier product of a

group by a semilattice of left zero semigroups (to save space, we will state the

dual result).

Make the following modifications in the statement of Theorem 1.12.  Let /

= 7/    and 77 = U(77 : y eY) (no further restriction on 77).  If B ~ a ~ b (B € 7;

a, bVe ]), B" = B and b" e E(77).   In (1), A^>B>c while in (2), C> b. Assuming

these modified conditions, we term a groupoid U(^   x / : y e Y) under the mul-

tiplication,

(A,a)(B,6) = j

p
(AoBao7,(a   \aB *b)    it a<b,

ksome element e Hgt x /       if a £ è    (a e /s, i» e / ),

an upper generalized Schreier product of 77 by /.  (We note A, Ba, t7(a   ' e 77^.)

Let U and V be upper associative semilattices of semigroups.  We say U

is upper isomorphic to V if there exists a bijection 0 of 77 onto V such that

r, s e U and r < s (in Í7) imply irs)d = r0s0.   The dual of the following theorem

further refines the structure of (7, °) in Theorem 1.12.

Theorem 1.13. S is an upper associative semilattice of right groups if and

only if S is upper isomorphic to an upper generalized Schreier product of 77 by

] for some 77 and J.

Proof.   This proof parallels that of Theorem 1.12 with slight modifications

which we now indicate.  Utilizing [3, Theorem 1.27], let I   - G   x (1 ) and /

= (e ) x TV    and e   = (e , 1 ).   Omit Lemmas 1.1, 1.2, and 1.5.   If a = (g, /') e

5 , define a  = (e , 7).   Lemma 1.6 is now proved by a simple calculation.  The

modifications in Lemmas 1.8, 1.9, and 1.11 are clear from the statement of The-

orem 1.13.   These modifications arise since we do not have full associativity.

If a, b ej , ba = abe   =e   e E(7 ).   If a e /    and B e I , aB = B and, hence,
1 u u        u u 'u u ' '

B" = B.

Conversely, assume that S is an upper generalized Schreier-product of H

by /.  (Upper) associativity is established as in the proof of Theorem 1.12.  Sup-

pose B ~ a ~ b.  Hence, B" = B and ba e E(77) by hypothesis.  Thus, (A, a) •

(B, b) = (A o B, b).  Hence, if A e 77 , 77   x /    is a right group by [3, Theorem
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1.27].  Hence, 5 is an upper associative semilattice Y of right groups (/   x / :

y e Y).   Q.E.D.

If 5 is an upper (lower) associative semilattice Y of semigroups iS : y e Y),

a subset T of S is termed a partial subgroupoid of 5 if a £ T O S , b eT D S ,

and y <z (y > z) imply ai» e T.

We next give a specialization of Theorem 1.13 which will have applications

in §3.

In the statement of Theorem 1.13, let / be an upper associative semilattice

Y of right zero semigroups, omit (3), delete all factor terms b", and impose

"additional condition" if a £ /, B e EH), and a<B, then Ba e EU).  We term

the resulting structure an upper generalized semidirect product of H by /.

Theorem 1.14.   S is an upper associative semilattice  Y of right groups

such that EiS) is a partial subgroupoid if and only if S is upper isomorphic to

an upper generalized semidirect product of H by ] for some H and ].

Proof.   Let S be an upper associative semilattice Y of right groups such

that EiS) is a partial subgroupoid.   Let / be as in the proof of Theorem 1.13. If

a, b e ] and a <b, a * b = ab by virtue of Lemma 1.6.   Hence, (/, *) is upper

associative.  If C > b > a, iab)C = Ca*bia * b)c while aibC) = aiCbbC) =

iaCb)bC = (Cfc)VCfc) * bC).   Hence, Ca*b = iCb)a and (a * b)C = a(Cb) * bC.

Thus, we obtain the modified form of (2) of Theorem 1.12.   If a £ / and B e Eil),

and a <B, aB e EiS) since EiS) is a partial subgroupoid.   Hence, since aB =

Baa    by Lemma 1.4, Ba e Eil) by a simple calculation.  If a < b and a e]  ,

b" -~äbe   =e  .   Hence, rra   ' may be omitted in (4) of Theorem 1.12.   Conver-

sely, let S be an upper generalized semidirect product of H by / for some H

and /.   Using the modified forms of (1), (2), and (4) of Theorem 1.12, upper as-

sociativity is established by a simple calculation.   As in the proof of Theorem

1.13, the condition B" = B if a ~ B is used to prove H   x J    is a right group

for each y eY.  Clearly, E(/i   x ] ) = £(/i ) x J .  Hence, using the "additional

condition", EiS) is a partial subgroupoid of S.

2.   Bands of maximal left groups.   In this section, we characterize a band

of maximal left groups as a Schreier product of a lower associative semilattice

Y of left groups by an associative semilattice Y of right zero semigroups.

We will need several lemmas.

A semigroup X is termed a band B of left groups if X is the union  of a

collection of pairwise disjoint sub-left groups   (X,: b e B) where B is a band

(an idempotent semigroup) and XX   Ç X      for all », v £ ß.   If, in addition,

each X,   (¿> £ B) is maximal in the collection of sub-left groups of X, X is

called a band B of maximal left groups (X, : b £ B).
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The following lemma is an immediate consequence of [ll, Lemma].

Lemma 2.1.  A semigroup S is a band of maximal left groups if and only if S

is a union of groups and £ is a congruence on S.

In Lemmas 2.2—2.8, S will be a band of maximal left groups.

Lemma 2.2.  Let A e¡s.   Then, bA = b*s for all be].

Proof.  Since (A, ej e£, (¿A, bej) e £ by Lemma 2.1.  Thus, ibA, b*s) e

£ by Lemma 1.4, and hence b    = b s.

Lemma 2.3.   (/, *) is an associative semilattice  Y of right zero semigroups

ily- y e Y).

Proof.   By virtue of Lemma 1.6, we must just establish associativity.  In

this proof c    is considered to be an element of 7    for all v e Y.  Let x e J , y

e Jv, and z"e Jw.   Hence, (x * y) * z = (x^y)' * z = (((x^y)')*«"*)' while x *

iy * z) = x * iyewz)' = ixevwiyewz)')'.   Utilizing Lerrma 1.6, Lemma 1.9(a), Lemma

1.4, Lemma 2.2, and Lemma 1.8(a), ((x^y)')*«" = ix*v * y)ew = (xc")<fe> * y"w =

tfvyvw „ yew = x*vw „ y*w = (xevwyewyt where  k = ey.   Hence>  ({{xevyyfwf

xevwy'w) e£.  Since iy°wz, i/wz)') e £, ixe™iye«>z)', xe™ye«>z) e£ by

Lemma 2.1.  Hence, (((xe*y)')ewz, xevwiye">z)') e £ and, thus, (x * y) * z = x *

iy * z).

Lemma 2.4.   If je], j l = / * e   (on the left consider e   e 7   and on the

right consider e   e ] ).

Proof. Since je( = ije^ie^ elf* (e( e 1() = ie'tjet)e( = e'if'e) by Lemma

1.4. Hence, using Lemmas 1.4 and 1.2 and a simple calculation, /*' = (/ le ) .

Thus, ; ' = ;' * e(.

Lemma 2.5.   If a e J , b e ] , u <v, and C e I , b" °Ca*b = iCb)a °

ib*ewY*evvw.

Proof.   Combine Lemmas 1.9(b), 2.2, and 2.4.

Lemma 2.6.   If A elu, Be ¡v> u>v, and c e J, then (A o B)c = Ac oß""»,

Proof.   We apply Lemmas 1.8(b), 2.2, and 2.4.

Lemma 2.7.  If a eJu, be Jv, and c e ]w, and u <v <w, b" ° ca*b= icb)a

oib*c)a*ev.

Proof.   Combine Lemmas 1.10(a), 2.2, and 2.4.

Lemma 2.8.   S = U(7   x / : y e Y) under the multiplication
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(A, a)(ß, b) = (A o B" o j/0**^, a * è)

where Bel.

Proof.  We apply Lemmas 1.11, 2.2, 2.4, and 2.3.    Q.E.D.

We are now in a position to state our structure theorem.

Let (/, °) be a lower associative semilattice Y of left groups (/   : y £ V)

and let (/, *) be an associative semilattice Y of right zero semigroups (/ : y

e Y) such that /   O /   = (e ), a single element, and let H    be the maximal sub-

group of /    with identity e .   For each a e ]    and B e I , let B" e I     and for

each a £ /    and be]    with » < v in   Y, let ba e H .  Assume the conditions:

1. If A > ß £ / with A £ /u and c e /,   (A o B)c = Ac o ßc*e".

2. If a<è £/ with è £/    and C £/  , eaoCa*i, = (Cé)ao(¿,*c   )a*evw

3. Ifa<f»<c£/ with b e ] v, b" o ca*b = (cfc)a o (fe * ¿)a*ev.

We term U(f   x / : y eY) under the multiplication

(<z*e )
(A, a)(ß, ¿) = (Aoß«o&       ', a*b)

where B £ /   a Schreier product of / by /.

Theorem 2.9.   5 is a band of maximal left groups if and only if S is a

Schreier product of I by ] for some I and ].

Proof.   Let S be a band of maximal left groups.  Hence, S is a Schreier

product oí I by J by Lemmas 1.4, 1.5, 2.3, the definition of ba, and Lemmas

2.6,.2.5, 2.7, and 2.8.   To establish the converse, let S be a Schreier product of

I by }.  Let a    = a * e    if Bel    and, then, apply Theorem 1.12 to show S is

a semigroup.   For ; e/s» let T. = I   x ij).   By the proof of Theorem 1.12, T. is

a left group for each /' £ Js.   Hence, using the multiplication given in the state-

ment of Theorem 2.9, S is a band / of maximal left groups (T.: /' £ /).

Remark.   In [ll], we gave a structure theorem for bands of maximal left

groups using another method of proof.  The advantage of the present theorem is

that it draws the factor terms b" from [JiH : y e Y).  The former theorem just

limited the b" to /.

3. Orthogroups (orthodox unions of groups). If S is an orthogroup in Theo-

rem 1.12, / is an upper associative semilattice of right zero semigroups and the

factor terms ba may be deleted. We call the resulting structure a generalized

semidirect product of / by /. In this section, we characterize an orthogroup as

a generalized semidirect product of / by /. As a corollary to our structure the-

orem we give a variant of a previous structure theorem [10, Theorem 2] for bands

(idempotent semigroups).
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As usual, we Droceed by a sequence of lemmas.   In Lemmas 3.1—3.6, 5 is an

orthogroup.

Lemma 3.1.   (/, *) is an upper associative semilattice  Y of right zero semi-

groups (/ : y e Y).  If a, b e ] and a <b, a * b = ab.

Proof.   If a, b e } and a < b, a * b = ab by Lemmas 1.2 and 1.6.

Lemma 3.2.  If a, b e J with a <b and a e J , b" = e .
' * — 'u u

Proof.   Using Lemma 3.1, b" = abe   -e  .    Q.E.D.

Lemma 3.3.   If a <b e J and C e I, Ca*b = (C*)a.

Proof.   Let a, b e J with a < b and let C el.  By Lemmas 3.2 and 3.1,

baia *b) = a*b, and, hence, baiia * b)C) = (a * b)C.   Thus, b"iCa*bia * b)C) m

C*bia * b)C by Lemma 1.4.   Thus, using Lemmas 1.3 and 1.5, C*b = b"oCa*b .

We then apply Lemmas 1.9(b) and 3.2.

Lemma 3.4.  If A el, a e], and A ~ a, A" e E(5) if and only if A e E(5).

Proof.   The proof is by a simple calculation.

Lemma 3.5.   5 = U(7   x /  : y e Y) under the multiplication (A, a)iB, b) =

(A oBa, aB *b).

Proof.   We apply Lemmas 3.2 and 1.11.    Q.E.D.

We are now in a position to state our structure theorem for orthogroups.

Let (7, °) be a lower associative semilattice Y of left groups (7 : y e Y)

and let (/, *) be an upper associative semilattice Y of right zero semigroups

(7 :y eY).  For each a ej    and B e /    iu, v e Y), let Ba e 7      and aB e J    .
wy  ' ' u v uv ' uv

Assume the conditions:

1. If A >B el and c e],

(a) cA0B = (cA)B,

(b) (A o B)c = Ac ° B<cA\

2. If a <b e], C el,
(a) Ca*b = iCb)a,

(b) (a * b)C = a(c¿) * bc.

3. If A ~ a, A" e Eil) if and only if A e Eil).

We term ÜÜ   x / : y € Y) under the multiplication (A, a)iB, b) - (A oßa,
R       \ y        y

a   * b) a generalized semidirect product of 7 by /.

Theorem 3.6.   S is an orthogroup if and only if S is a generalized semidirect

product of I by J for some I and J.
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Proof.   Let S be an orthogroup.  Hence, S is a generalized semidirect prod-

uct of / by / by Lemmas 1.5, 3.1, 1.4, 3.3, 1.8, 1.9(a), 3.4,and 3.5.  Conversely,

let 5 be a generalized semidirect product of / by /.  Using (1) and (2), it is

easily established that S is a semigroup.   Just as in the proof of Theorem 1.12,

it is shown that T    (notation of Theorem 1.12) is a completely simple semigroup.

Using (3), EiTs) = ((A, a): A e EUJ). Using (3) and the fact that E(Is) is a

semigroup, EiT ) is a semigroup.  Hence, T    is a rectangular group (the alge-

braic direct product of a group and a rectangular band).   Thus, S is the semilat-

tice Y of rectangular groups (T : y e Y).   Hence, by a result of Preston, Yamada,

and Clifford [4, Proposition l], S is an orthogroup.

Remark 3.7. We will show that Eil) in Theorem 3.6 is a partial subgroupoid

of /. Hence, the dual of Theorem 1.14 may be used to further refine the structure

of /. Using (3), (A. a) e EiS) if and only if A £ EU). Let b £ J (, A e EÜJ,

B eEÍ¡t), and t <s. Hence, A* £ ¡t. Since I{ is a left group, there exists C £

EUt) such that C o Ab = Ab. Thus, if a £ ]s, (C, b\A, a) = (Afe, bA * a) e EiS),

and, hence Ab £ Etf^. Thus, using (1) and (3), (A °B)b = Ab o B(b^ = Ab, and

A oß eEUt) by (3).

Remark.   For other characterizations of orthogroups see the papers of Clif-

ford [4] and M. Yamada [12].

Let (/, °) be a lower associative semilattice Y of left zero semigroups (/ :

y e Y) and omit (3) in the statement of Theorem 3-6.  We term the resulting struc-

ture a generalized semidirect product of E(I) by /.

Corollary 3.8 (cf. Warne [lO]).   S is an idempotent semigroup if and only if

S is a generalized semidirect product of E(7) by ] for some Eil) and ].

Remark.   The referee points out that a structure theorem for idempotent semi-

groups has been also given by M. Petrich in [6].

4.  Generalized in-unipotent unions of groups.   A generalized 3\-unipotent

semigroup is a regular semigroup whose set of idempotents E obey the condition:

e, f e E and ef = f imply that fegfg = fg for g eE. We studied the structure of

such semigroups in [9].  By [9, Lemma l], a regular semigroup is a generalized

Ji-unipotent semigroup if and only if E   is a semigroup and -R is a congruence on

E.  In this section, we characterize a generalized 3\-unipotent union of groups as

a semidirect product of / by 1.  Here, / is an associative semilattice  Y of left

groups and / is an upper associative semilattice  Y of right zero semigroups.

We will need the following definitions.   Let S be a lower associative semi-

lattice Y of groupoids iS : y e Y) and let X be a semigroup.   A mapping y of

S into X is termed a lower homomorphism of S into X U r, s e S and r>s imply

irs)y = rysy.
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For A e / and be], set Aab = Ab and bdA = bA.

In Lemmas 4.1—4.6, S is a generalized 3\-unipotent union of groups.

Lemma 4.1.  (e, /) e ÍR e E(S) x EiS) and p eS imply (ep, fp) e£R.

Proof.   Suppose ie, /) e Ä D E(S) x EiS).  Hence, for p eS, iepp~x, fpp~x) e

3v (p       is the group inverse of p in the group containing p).   Thus, epp~ fpp~

= fpp~l and fpp~lepp~l = epp~l.  Hence, epip~lfp) = /p and fpip~lep) = ep

and, thus, (ep, /p) e in.

Lemma 42.  If j e J . a.= a    .
*        7 es

Proof.  Let / = (e , 1^, ;') where / e TV^ and A = ig, i, 1() where geC( and

í eM(.  Hence, using Lemma 3.1, e j = iest, lst, j ) fot some /   e 7Vst and,

similarly, esf«s = (est, ls/, k) fot some & e TVs/.  However, Aesi = (g', a, ls<)

for some g' eC     and a e M     by Lemma 1.1.  Hence, e ,/Ae    = (g , lst, ls,) =

e   e Ae   .  Next, suppose that jA = (u/, m, 72) eS     and e A  = (a, c, d) e S   .
St   S        St St S St

Hence, eJAe^ = iw, 1   , ls/) and «„«/«„ = (", lsi, lj and, thus, w = u.

By Lemma 4.1, (/, e ) e ÍR implies (/A, egA) e ÍR.  Thus, /A = iw, m, n) =

iw, m, 1 ,Xer,, 1   , 72) while e A = (u/, m, d) = iw, m, 1 #Xe ,, 1 „ d).   Hence,  Aa. =
¿t St SI S SI        St        St J

Aa    .

♦Lemma 4.3.  (7, o) is an associative semilattice Y of left groups (7 : y e Y).

Proof.   By Lemma 1.5, we must just establish associativity.   Let A e¡s, B

el , and C e I(. Utilizing Lemma 1.5, (A o ß) o C = iAiBag )) o C = AiBag )Caes

while A o (ß o C) = A o(ß(Ca    )) = A((B(Ca    ))a   ).  We apply Lemmas L8(b),
Cy ey      es

4.2, and 3.3.

Lemma 4.4.   If A el, Aa     =e   °A.'
' ev       v

Proof.  Since e (e A) = e A, (e iAa    ))e 0. = Aa   e 6. by Lemma 1.4.
v    v v v       ev     v « ev v n     *

Hence, utilizing Lemma 1.3 and the definition of "<-", Aag   = ejjiag ) = ev ° A.

Lemma 4.5.  If a e J , be] , u <v, and C el, (a * b)0c = aOg ̂  * bdc>

Proof.   By Lemmas 4.2 and 4.4, Ca, = Ca     =e   °C.   Apply Lemma 1.9(a).

Lemma 46.   S = U(7   x J : y e Y) under the multiplication (A, a)iB, b) =

(A o B, a0B * è).

Proof.   Combine Lemmas 3-5, 4.2, 4.4, and 43.    Q.E.D.

If X is a set, Tx will denote the full transformation semigroup on X.
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We are now in a position to state our structure theorem.

Let (J, °) be an associative semilattice Y of left groups (/ : y £ Y) and

let (/, *) be an upper associative semilattice Y of right zero semigroups (/ :

y £ Y) such that /   H /   = (e ), a single element.   Let B —* 0„ be a lower horro-
- y        y        y ° o

morphism of (/, °) into T. subject to the condition:

1. If C£/ , / 6r C]    .u    ' y  C — ' uy

2. M C el, be ]v, and a < b (in /), (a * b)dc = aQg ^ * bOc.

We term U(/   x / : y € Y) under the multiplication (A, a)(B, &) = (A o ß,

a(?B * b), a semidirect product of / by /.

Theorem 47.   S is a generalized j\-unipotent union of groups if and only if

S is a semidirect product of ] by I for some ] and I.

Proof.   Let S be a generalized ÍR-unipotent union of groups.   Hence, S is a

semidirect product of / by / by Lemmas 4.3, 3.1, 1.8(a), 1.4, 4.5, and 4.6.  To

establish the converse, let S be a semidirect product of / by /.   If A el, let

Aa, = e   oAifbe], and then apply Theorem 3.6 to show that S is an ortho-

group.   By the proof of Theorem 3.6, EiS) - ((A, a): A £ E(/)).   By a simple cal-

culation, (A, a) j\ (B, b) ie EiS)) if and only if A = B.  Hence, ÍR is a congruence

on EiS), and, thus, S is generalized ÍR-unipotent.

5.  Orthodox bands of maximal left groups. We combine results of §§2 and 3 to show

that S is a band of maximal left groups such that E(S) is a semigroup (S is an orthodox

band of maximal left groups) if and only if S is a semidirect product of / by /.  Here, /

is a lower associative semilattice Y of left groups and / is an associative semilattice

Y of right zero semigroups.  As a corollary, we give a variant of a previous structure the-

orem [10, Theorem 3] for bands of maximal left zero semigroups.

We will need the following definition.   Let S be an upper associative semi-

lattice Y of groupoids (S : y e Y).   A mapping y of S into X is termed an upper

anti-homomorphism of S into X if r, s e S and r < s imply irs)y = syry.

We now state our structure theorem.

Let (/, °) be a lower associative semilattice Y of left groups (/ : y £ Y),

let (/, *) be an associative semilattice Y of right zero semigroups (] : y e Y)

such that /   D]   = (e ), a single element, and let a —»a    be an upper anti-

homomorphism of (/, *) into Tf subject to the conditions:

1. If r e] , 1 a  C /    .
' v     y   r — yv

2. If ß < A, A £ / , and c £ /, (A o B)a = Aa °Ba
— u' ' c c c*eu

3. If A^a, Aaa e E(/) if and only if A £ EU).

We term U(/   x / : y e Y) under the multiplication (A, a)iB, b) - (A o Baa,

a * b), a semidirect product of / by /.

Theorem 5.1.   S is an orthodox band of maximal left groups if and only if S

is a semidirect product of I by ] for some I and J.
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Proof.   Let S be an orthodox band of maximal left groups.  Hence, S is a semi-

direct product of 7 by / by Lemmas 1.5, 2.3, 3.3, 1.4, 1.8(b), 2.2, 2.4, 3.4, and

3.5.  Conversely, let S be a semidirect product of 7 by /.  Define a0„ =a * e

if B e I .   Then, by an application of Theorem 3.6, S is an orthogroup.   Thus, if

T. = 7   x (/') for / e /  , S is the band / of maximal left groups (T.: ;' e /).
J S S J

Let (7, °) be a lower associative semilattice Y oí left zero semigroups (/ :

y e Y) and omit (3) in the statement of Theorem 5.1. We term the resulting struc-

ture a semidirect product of Eil) by /.

Corollary 5.2 (cf. Warne [lO]).   S is a band of maximal left zero semigroups if

and only if S is a semidirect product of Eil) by ] for some Eil) and ].

6. Generalized fR-unipotent bands of maximal left groups.   Let (7, °) be an

associative semilattice Y of left groups (7 : y e Y) and let (/, *) be an associa-

tive semilattice Y of right zero semigroups (/  : y e Y).   Denote U(7   x / : y e

Y) under the multiplication (A, a\B, b) = (A oß, a * b) by 7 xv /.

Theorem 6.1.   S is a generalized %-unipotent band of maximal left groups if

and only if S =  I xY J for some I and ].

Proof.   Let 5 be a generalized in-unipotent band of maximal left groups.

Hence, S = I xY ] by Theorem 5.1 and Lemmas 4.2, 4.3, and 4.4.   The converse

is valid by a direct calculation.    Q.E.D.

Remark 6.2.   In the terminology of Kimura ['5], ¡ xY / would be termed the

spined product of 7 and / with respect to Y.   The notation 7 xy /  is due to Clif-

ford [4].

We now specialize Theorem 6.1 to idempotent semigroups to obtain a slight

variant of a theorem of Kimura [5, Theorem 2].

Corollary 6.2.   S is a band on which ÍR and £ are congruences if and only if

S is the spined product of an associative semilattice of left zero semigroups and

an associative semilattice of right zero semigroups.

7. 1-unipotent unions of groups.   A semigroup S is termed £-unipotent if

each i--class of 5 contains precisely one idempotent.  We studied the structure

of such semigroups in [8].  Using the discussion at the beginning of § 1, S is an

¿--unipotent union of groups if and only if S is an associative semilattice Y of

right groups (S : y € Y).  We show that S is an £-unipotent union of groups if

and only if S is a semidirect product of /, an associative semilattice Y of right

zero semigroups (/ : y e Y), by 7, an associative semilattice Y of groups (7 :

y e Y).   (Thus, the structure of / is known mod groups and homomorphisms by a

well-known result of Clifford ([2], [3, Theorem 4.1l])(Theorem 7.2).)

As a corollary to Theorem 7.2, we obtain Bailes' theorem that 5 is an £-

unipotent band of groups if and only if S = I xY ]•
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In this section, S will denote an ic-unipotent union of groups.  Clearly, /

is a group for each y £ Y.

Lemma 7.1.   (/, *) z's an associative semilattice Y of right zero semigroups

<Jy- y e r).

Proof.  Let x e Ju, ye] , and z e ]w.  Utilizing Lemmas 4.5, 3.1, 4.3,

and 1.8(a), (x * y) * z = (x0   y) * z = (x|9    y)(9    z = (x<?   <9   .    y0    )z =

(xd„ -, y<?    )z = (x(9„    yfl    )z = x<9      (y0„  z) = x * (y<9    z) = x * (y * z).
ev    w       w evw       w vw      ew ew

In the next theorem, we use the definition of semidirect product given in the

statement of Theorem 4.7.

Theorem 7.2.   S is an S.-unipotent union of groups if and only if S is a semi-

direct product of (J, *), an associative semilattice Y of right zero semigroups

i] : y e Y), by (/, °), an associative semilattice Y of groups (/ : y £ Y).

Proof.   Let S be an ¿--unipotent union of groups.  Hence, S is a semidirect

product of J by ¡ (the / and / given in the statement of the theorem) by Lemmas

4.3, 7.1, 1.8(a), 1.4, 4.5, and 4.6.  Conversely, let S be a semidirect product of

/ by /.   Hence, S is a generalized ÍR-unipotent union of groups by Theorem 4.7.

By a simple calculation, E(S) is the semilattice Y of right zero semigroups

(((e^) x Js): s e Y).  Hence, S is £-unipotent by [8, Proposition 5].

Corollary 7.3 (Bailes).   S is an ¿.-unipotent band of groups if and only if S

is the spined product of an associative semilattice of groups and an associative

semilattice of right zero semigroups.

Proof.   Let S be an .¿.-unipotent band of groups.  Hence, S is a generalized

ÍR-unipotent band of maximal left groups.   Thus, by Theorem 6.1, S = / xY / where

/ is an associative semilattice  Y of left groups (/ : y e Y) and / is an associa-

tive semilattice Y of right zero semigroups (/ : y £ Y).  Since 5 is »--unipotent,

/    is a group for each y eY.  Conversely, let S = I xY J where /  and / are as

in the statement of Corollary 7.3.  Let H . = I   x (/') for /' £ / .  Hence, S is the

band / of groups (//.: ;' £ /).  S is x-unipotent as in the proof of Theorem 7.2.

Remark.   The referee points out that Bailes theorem is also a special case

of a result of M. Yamada [12].
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