THE p-ADIC HULL OF ABELIAN GROUPS

BY

A. MADER

ABSTRACT. In this paper we define "p-adic hull" for p-reduced groups K. The p-adic hull K^P of K is a module over the ring P of p-adic integers containing K and satisfying certain additional properties. The notion is investigated and then used to prove some known and some new theorems on $\operatorname{Ext}(K,T)$ and $\operatorname{Hom}(K,T)$ for K torsion-free and T a reduced p-group.

1. Introduction. The well-known method of "change of rings" put forth in Cartan-Eilenberg [2] permits the embedding of an abelian group K in a module over the ring P of p-adic integers provided only that the torsion subgroup of K is p-primary. The disadvantage of this p-adic embedding is that the module need not be p-reduced although K is p-reduced. Also, a group which is a p-adic module to start with may be properly enlarged. In $\S 2$ a "p-adic hull" K^P is introduced axiomatically. This hull is investigated and it is shown, among other things, that it has the properties mentioned above.

The concept of "p-adic hull" was suggested by investigations of the author [8] of the following two problems.

- I. For which torsion-free groups K is $Ext(K, T)[p] \neq 0$ for some p-group T?
- II. Which torsion-free groups K possess unbounded reduced p-primary epimorphic images?

It is shown that the answer to both questions remains the same when K is replaced by its p-adic hull K^P . Now, the theory of torsion-free P-modules is much simpler than that of torsion-free groups. See Kaplansky [6, \S 15 and 16]. In particular, a reduced countably generated torsion-free P-module is free, and a pure rank one submodule of any P-module is a direct summand. These facts are used in \S 3 to give new, simple proofs of results of Baer [1] and Mader [8]. In \S 4 the second fact is used to prove a theorem concerning Question II. In a final \S 5, we compare the two possible p-adic embeddings mentioned above.

We use the notation of Fuchs' book [3] which also contains most facts and concepts needed in this paper. We write maps on the right. If K is a P-module and S a subset, then PS denotes the submodule generated by S. P-modules K

Received by the editors November 7, 1972.

AMS (MOS) subject classifications (1970). Primary 20K40, 20K35, 20K30; Secondary 18G15.

Copyright © 1974, American Mathematical Society

will have to be considered as modules and abelian groups simultaneously. Certain notions coincide whether K is considered a P-module or a \mathbb{Z} -module, among these are the following: divisible, reduced, p-height, p^nK , $K[p^n]$, direct sum, complete direct sum, maximal divisible subgroup (-module). Otherwise it will be made clear what is meant. If no mention of the ring of operators is made, we mean the \mathbb{Z} -module notions. For instance, "homomorphism" means group homomorphism.

- 2. The p-adic hull. The fact which makes things work in this paper is the standard embedding of the ring of rational integers Z in the ring P of p-adic integers. We have
- (2.1) $\mathbb{Z} \rightarrow P \rightarrow P/\mathbb{Z}$ (ex) with P/\mathbb{Z} divisible and $(P/\mathbb{Z})[p] = 0$.

We derive some simple but useful consequences.

- 2.2 Lemma. Let A, K be P-modules, and K reduced. Then
- (a) $\operatorname{Hom}(A, K) = \operatorname{Hom}_{P}(A, K)$. In particular, $\operatorname{Hom}(P, K) \cong K$.
- (b) K is in a unique way a (unitary) P-module.
- (c) If L is a subgroup of K which is a P-module, then L is a submodule of K.
- **Proof.** (a) From (2.1) it follows that $\operatorname{Hom}(P, K) \to \operatorname{Hom}(\mathbb{Z}, K)$ is exact, i.e. every homomorphism $P \to K$ is uniquely determined by its image at 1. Let $f \in \operatorname{Hom}(A, K)$, and $a \in A$. The map $P \to K$: $\lambda \to (\lambda a)f \lambda(af)$ is homomorphic and has value 0 at 1. Hence $(\lambda a)f = \lambda(af)$ for all $\lambda \in P$. Since a was arbitrary, this proves that every homomorphism is P-linear. Since every P-homomorphism is additive, (a) is proven.
- (b) If λx and $\lambda \cdot x$ are two scalar products, then $\lambda \to \lambda x$ and $\lambda \to \lambda \cdot x$ are two homomorphisms $P \to K$ which coincide on 1. By (a) $\lambda x = \lambda \cdot x$ for all $\lambda \in P$.
 - (c) Follows immediately from (b).

The next lemma justifies the definition of "p-adic hull" which will be given below.

- 2.3 Lemma. Let K be a p-reduced group. Suppose K' is a group such that
- (a) K' > K,
- (b) K' is a reduced P-module,
- (c) (K'/K)[p] = 0,
- (d) K' = PK. (Hence K'/K is p-divisible.) Then
- (A) For every reduced P-module L, any homomorphism $K \to L$ has a unique extension $K' \to L$. The extension is a P-homomorphism.
- (B) If K' and K'' satisfy (a)-(d), then there is a unique P-isomorphism $K' \to K''$ which is the identity on K.
 - (C) For each p-reduced group K there is a group K' satisfying (a)-(d).

Proof. (A) Let $L^* = \operatorname{Ext}(Z(p^\infty), L)$. With standard homological tools (see Harrison [4]) we find $L < L^*$, $(L^*/L)[p] = 0$, L^*/L is divisible, L^* is reduced, $\operatorname{Ext}(A, L^*) = 0$ for every group A with A[p] = 0, L^* is a P-module. By 2.2 the P-module structure of L^* is unique and L is a submodule. The exact sequence $K \longrightarrow K' \longrightarrow K'/K$ implies

$$\operatorname{Hom}(K'/K, L^*) = 0 \longrightarrow \operatorname{Hom}(K', L^*) \longrightarrow \operatorname{Hom}(K, L^*) \longrightarrow \operatorname{Ext}(K'/K, L^*) = 0 \quad (ex).$$

Hence every $\phi: K \to L \in \text{Hom}(K, L^*)$ has a unique extension $\phi': K' \to L^*$. By 2.2(a) ϕ' is a P-homomorphism, and $K'\phi' = (PK)\phi' = P(K\phi') \subset PL = L$, thus $\phi' \in \text{Hom}(K', L)$.

- (B) Immediate consequence of (A).
- (C) $K < K^* = \text{Ext}(Z(p^{\infty}), K)$. Let $K' = PK \subset K^*$. Then K' > K, K' is reduced since K^* is reduced, K' is by construction a P-module and K' = PK, finally (K'/K)[p] = 0 since $K'/K < K^*/K$ and $(K^*/K)[p] = 0$.
- 2.4 Definition. Let K be a p-reduced group. Any group K' satisfying (a)—(d) of 2.3 will be called a p-adic hull or P-hull of K. We write $K' = K^P$.

The p-adic hull has the same degree of uniqueness as does the well-known divisible hull. The statement $K' = K^P$ reads "K' is a p-adic hull of K". As soon as a specific hull is chosen, it is meant by K^P and the ambiguity disappears. We next determine K^P in some cases, and note some of its properties.

- 2.5 Proposition. (a) If K is a reduced P-module, then $K^P = K$.
- (b) If K is a reduced p-group, then $K^P = K$.
- (c) If K is p-reduced and K[p] = 0, then K^{P} is torsion-free.
- (d) $(K^P)^P = K^P$ for every p-reduced group K.
- (e) If $\{K_i\}$ is a family of p-reduced groups, then $(\bigoplus K_i)^P = \bigoplus K_i^P$.
- (f) If K is a p-pure subgroup of P, then $K^P = P_{\bullet}$
- (g) If K is a p-reduced torsion-free group and either K/pK is finite or K countable, then K^P is a free P-module of rank dim (K/pK).
 - (h) If K is free, then KP is a free P-module. The converse does not hold.
- (i) If L is a p-reduced group, K < L and either (L/K)[p] = 0 or L/K is p-reduced, then the submodule PK of L^P generated by K is a p-adic bull of K.
- (j) If $\{a_i \mid i \in I\}$ is a maximal p-independent subset of the torsion-free p-reduced group K, then $\{a_i \mid i \in I\}$ is a maximal p-independent subset of the module K^P .

Proof. (a) K satisfies (a)-(d) of 2.3.

- (b) Every p-group is a P-module hence (a) applies.
- (c) Suppose px = 0 for $x \in K^P$. Since $(K^P/K)[p] = 0$, $x \in K[p] = 0$.
- (d) Consequence of (a).
- (e) and (f) Conditions (a)-(d) of 2.3 are easily checked.

- (g) K^P is reduced. If K is countable, then K^P is countably generated and by Kaplansky [6, p. 46, Theorem 20], K^P is free. Note that always $K^P/pK^P = K + pK^P/pK^P \cong K/K \cap pK^P = K/pK$. If K/pK is finite, any basic submodule B of K^P is complete and by Kaplansky [6, p. 52, Theorem 23], B is a direct summand of K^P . Since K^P/B is divisible and K^P is reduced, we have $K^P = B$ and is free. In both cases the rank of K^P is $\dim(K^P/pK^P) = \dim(K/pK)$.
- (h) Combine (e) and (f). That the converse does not hold is clear from (f) or (g).
- (i) The submodule PK of L^P satisfies (a), (b), (d) of 2.3. Suppose (L/K)[p] = 0. If $x \in PK$ and $px \in K$, then $px \in L$ and hence $x \in L$. But $x \in L$ and $px \in K$ implies $x \in K$ since (L/K)[p] = 0. Now suppose that L/K is p-reduced. $PK \cap L/K < L/K$ so $PK \cap L/K$ is p-reduced. Further PK = (Z + pP)K = K + p(PK), and so $PK \cap L = (K + p(PK)) \cap L = K + [p(PK) \cap L] = K + p(PK \cap L)$ using the Dedekind identity and $(L^P/L)[p] = 0$. So $PK \cap L/K = (p(PK \cap L) + K)/K = p(PK \cap L/K)$. We now have that $PK \cap L/K$ is both p-reduced and p-divisible, so $PK \cap L = K$. Suppose $x \in PK[\subset L^P]$ and $px \in K[\subset L]$. Then $x \in L \cap PK = K$. This proves (c) of 2.3 also in the second case.
- (j) Let $B = \bigoplus_{i \in I} \mathbb{Z}a_i$ be the p-basic subgroup of K generated by $\{a_i\}$. By (i) we may assume that $B^P \subset K^P$. Let $\hat{B} = \prod_i P$. We shall utilize a representation of the whole set-up in \hat{B} . First of all $\phi: B \to \hat{B}: (\sum n_i a_i) \phi = (\cdots n_i \cdots)$ is clearly an embedding. Since $(\hat{B}/B\phi)[p] = 0$, $P(B\phi) = (B\phi)^{P}$, and clearly $(B\phi)^{P} = 0$ $\bigoplus_{I} P$. Since $(K^{P}/B)[p] = 0$ and K^{P}/B is divisible, we conclude from $B \longrightarrow K^{P}$ \rightarrow K^P/B (ex) that $0 \rightarrow \text{Hom}(K^P, \hat{B}) \rightarrow \text{Hom}(B, \hat{B}) \rightarrow \text{Ext}(K^P/B, \hat{B}) = 0$ is exact. In particular the embedding $\phi: B \to \hat{B}$ has a unique extension $\phi: K^P \to \hat{B}$. We claim that ϕ is injective. In fact, suppose $x \in K^P$ and $x\phi = 0$. Since K^P/B is p-divisible, given n, we can write $x = b_n + p^n x_n$ for some $b_n \in B$ and some $x_n \in B$ K^P . Now $0 = x\phi = b_n\phi + p^n(x_n\phi)$ implies $b_n\phi \in B\phi \cap p^n\hat{B} = p^n(B\phi) = (p^nB)\phi$. Since ϕ is monomorphic on B, $b_n \in p^n B$ and $x \in p^n K^p$. So $x \in \bigcap_n p^n K^p = 0$. Thus $\phi: K^P \to \hat{B}$ is an embedding as claimed, and ϕ is also a P-homomorphism by 2.2. Clearly $(K^{P})\phi = (PK)\phi = P(K\phi) = (K\phi)^{P}$, and $(B^{P})\phi = (B\phi)^{P}$. The latter proves $B^P = \bigoplus_{i \in I} Pa_i$. Since obviously $(\hat{B}/(B\phi)^P)[p] = 0$ we have $((K\phi)^P/(B\phi)^P)[p] = 0$, and since $K^P/B^P \cong (K\phi)^P/(B\phi)^P$ we have $(K^P/B^P)[p] = 0$. Further $K^P = K + pK^P = B + pK + pK^P = B^P + pK^P$, so K^P/B^P is p-divisible. So B^P is a free, p-pure, dense submodule of K^P , with free generators a_i , which shows that $\{a_i \mid i \in I\}$ is a maximal p-independent subset of K^P .

We remark that K^P need not contain a p-adic hull for each of the subgroups of K. For example, let $\{a_i\}$ be a maximal independent subset of P and $A = \bigoplus_i \mathbb{Z} a_i$. Then $A^P \cong \bigoplus_2 \aleph_0 P$ which cannot be a submodule of $P^P = P$.

The next proposition shows that the process of forming p-adic hulls has great similarity with a functor.

- 2.6 Proposition. (a) If K, L are p-reduced groups, K^P , L^P p-adic bulls of K, L and ϕ : $K \to L$ is a homomorphism, then there is a unique P-homomorphism ϕ^P : $K^P \to L^P$ extending ϕ .
- (b) If K_i , i = 1, 2, 3, are p-reduced groups with p-adic bulls K_i^P , and if ϕ_1 : $K_1 \rightarrow K_2$ and ϕ_2 : $K_2 \rightarrow K_3$ are homomorphisms, then $(\phi_1 \phi_2)^P = \phi_1^P \phi_2^P$.
- (c) In the situation of (a) if ϕ is surjective so is $\phi^{\hat{P}}$. If $(L/K\phi)[p] = 0$ or $L/K\phi$ is p-reduced and ϕ is injective, so is $\phi^{\hat{P}}$.
- **Proof.** (a) The homomorphism $\phi: K \to L^P$ has a unique extension $\phi^P: K^P \to L^P$ by 2.3(A).
 - (b) Immediate consequence of (a).
- (c) From $K\phi = L$ it follows that $K^P\phi^P = (PK)\phi^P = P(K\phi^P) = P(K\phi) = PL$ = L^P . For the second part we first note that $(K\phi)^P = P(K\phi) \subset L^P$ by 2.5(i). Since $\phi \colon K \to K\phi$ is an isomorphism so is $\phi^P \colon K^P \to (K\phi)^P$. So $\phi^P \colon K^P \to L^P$ is injective.

Since $K \le L$ does not imply $K^P \le L^P$ as remarked above it is also not true that ϕ injective implies ϕ^P injective in all cases.

- 2.7 Remark. The process described above is actually a functor on the category of p-reduced groups to a skeletal subcategory \mathcal{C} of the category of reduced P-modules. Such a skeletal subcategory contains exactly one object from each isomorphism class of reduced P-modules. For each K, K^P is the unique object of \mathcal{C} for which there is a monomorphism $\phi\colon K\to K^P$ such that $K^P=(K\phi)^P$ in the sense of Definition 2.4. If $K\rightarrowtail M\to L$ is an exact sequence of p-reduced groups, then $0\to K^P\to M^P\to L^P\to 0$ need not be exact. In order to see what happens we discuss the case where L[p]=0 in some detail.
- 2.8 Example. Let K, L be p-reduced groups, L[p] = 0, $K^* = \text{Ext}(Z(p^{\infty}), K)$ and $E = K^* \oplus L$. From $K \rightarrowtail K^* \twoheadrightarrow K^*/K$ (ex) it follows, using L[p] = 0, that $\text{Hom}(L, K^*/K) \to \text{Ext}(L, K) \to 0$ is exact. Thus every extension of K by L arises from a map of $\text{Hom}(L, K^*/K)$. If $\xi \in \text{Hom}(L, K^*/K)$ then $K \rightarrowtail M \xrightarrow{\Pi} L$ represents the image of ξ when M < E, $M = \{x + y \mid x \in K^*, y \in L \text{ and } y \xi = x + K\}$, and Π is the projection of E onto L. As in Mader [7] we easily calculate that $M \cap K^* = K$ and $M + K^* = E$. Since $E/M = (M + K^*)/M \cong K^*/K^* \cap M = K^*/K$ and $(K^*/K)[p] = 0$ we have (E/M)[p] = 0. So by 2.5(i) $M^P < E^P = K^* \oplus L^P$; also $K^P < K^*$.
 - (a) $\Pi^P: M^P \to L^P$ is surjective and $\operatorname{Ker} \Pi^P = M^P \cap K^*$.

Proof. Since Π is surjective, so is Π^P by 2.6(c). Further it is clear that Π^P is the projection of E^P onto L^P since this projection obviously extends Π . Therefore, $\operatorname{Ker} \Pi^P = M^P \cap K^*$.

- (b) $K^P \rightarrow M^P \rightarrow L^P$ (ex) if and only if $K^P = M^P \cap K^*$. This is immediate from (a).
- (c) $M^P \cap K^*/K^P = p^{\omega}(M^P/K^P) = \text{maximal divisible submodule of } M^P/K^P$.

- **Proof.** Since $M^P/M^P \cap K^* \cong L^P$ is reduced and torsion-free we have $p^\omega(M^P/K^P) \subset M^P \cap K^*/K^P$. We are finished if we show that $M^P \cap K^*/K^P$ is divisible. Since $(E^P/E)[p] = 0$ and (E/M)[p] = 0 we have $(E^P/M)[p] = 0$. Since $(E^P/M)[p] = 0$ and M^P/M is p-divisible it follows easily that $(E^P/M^P)[p] = 0$. Now $E^P/M^P = PE/M^P = P(K^* + M)/M^P = (K^* + PM)/M^P = (K^* + M^P)/M^P \cong K^*/M^P \cap K^* \cong (K^*/K^P)/(M^P \cap K^*/K^P)$, so $M^P \cap K^*/K^P$ is pure in the divisible module K^*/K^P and so is itself divisible.
- (d) Suppose $K^*/K^P \neq 0$. Then $M^P \cap K^* = K^P$ for every M only if every subset of L which is Z-independent is P-independent in L^P .
- **Proof.** (1) Let us first note that $(K^*/K)[p] = 0$ and K^P/K p-divisible together imply that $(K^*/K^P)[p] = 0$. Since K^*/K^P is a P-module this means that K^*/K^P is torsion-free (i.e. $\lambda x = 0$ implies x = 0).
- (2) Given $\xi \in \operatorname{Hom}(L, K^*/K)$ and a corresponding extension M of K by L contained in E (i.e. $x+y \in M$ ($x \in K^*$, $y \in L$) if and only if $y\xi = x+K$). We have $u+v \in M^P$ ($u \in K^*$, $v \in L^P$) if and only if $u+v = \sum \lambda_i (x_i+y_i)$ where $x_i+y_i \in M$ ($x_i \in K^*$, $y_i \in L$, $y_i\xi = x_i+K$). Further $u+v \in M^P \cap K^*$ if and only if $\sum \lambda_i y_i = 0$. Hence $M^P \cap K^* = K^P$ if and only if $\sum \lambda_i x_i \in K^P$ whenever $\sum \lambda_i y_i = 0$ for $x_i+y_i \in M$.
- (3) Suppose $\{y_i\}$ is a (finite) Z-independent subset of L but $\sum \lambda_i y_i = 0$ in L^P for $\lambda_i \in P$, not all 0. Let $x \in K^*$, $x \notin K^P$. If $\sum \lambda_i \neq 0$, choose $\xi \in Hom(L, K^*/K)$ such that $y_i \xi = x$. Such a ξ exists since $\{y_i\}$ is Z-independent and K^*/K is divisible. Then $\sum \lambda_i (x + y_i) = (\sum \lambda_i) x \in M^P \cap K^*$ but $(\sum \lambda_i) x \notin K^P$ by (1). Should it happen that $\sum \lambda_i = 0$ then $p \lambda_j + \sum_{i \neq j} \lambda_j \neq 0$ for some j. Now choose ξ such that $y_i \xi = x$ $(i \neq j)$ and $y_j \xi = px$. Then it follows exactly as before that $M^P \cap K^* \neq K^P$.

As a rule some Z-independent subsets of L will become P-independent in L^P , and clearly $K^*/K^P \neq 0$ can be achieved. Thus $K^P \neq M^P \cap K^*$ can occur and $K^P \rightarrowtail M^P \twoheadrightarrow L^P$ need not be exact.

The last lemma of this section settles a technical matter which is needed in $\S 4$.

- 2.9 Lemma. (a) Let M be an unbounded group with $p^{\omega}M = 0$. Then $M^{P}/p^{\omega}M^{P}$ is unbounded.
- (b) Let L be a p-reduced group, K < L such that L/K is unbounded and $p^{\omega}(L/K) = 0$. Then $K^P < L^P$ by 2.5(i). Let $K^0 < L^P$ be such that $K^0/K^P = p^{\omega}(L^P/K^P)$. Then K^0 is a submodule, $p^{\omega}(L^P/K^0) = 0$ and L^P/K^0 is unbounded.
- **Proof.** (a) Suppose first that M/T(M) is not p-divisible. Then we have $K \rightarrow M \rightarrow L(ex)$ where $K/T(M) = p^{\omega}(M/T(M))$ and $L \cong M/K \cong (M/T(M))/(K/T(M)) = (M/T(M))/p^{\omega}(M/T(M))$. Hence L is $\neq 0$, torsion-free and p-reduced, and therefore $p^{\omega}L^{P} = 0$. Since $M^{P} \rightarrow L^{P}$ it follows that $M^{P}/p^{\omega}M^{P} \rightarrow L^{P}$ showing that

 $M^P/p^\omega M^P$ is unbounded. Secondly suppose that M/T is p-divisible where T=T(M). Let $T^*=\operatorname{Ext}(Z(p^\infty),T)$. Then T^*/T is torsion-free divisible. Since M is p-reduced and M/T is torsion-free and p-divisible we may assume that $T < M < T^*$. It is easily checked that $(T^*/M)[p] = 0$, and therefore $M^P = PM < T^*$. Now $p^\omega M^P \cap T \subset p^\omega T^* \cap T = p^\omega T \subset p^\omega M = 0$. Therefore $T \cong T + p^\omega M^P/p^\omega M^P < M^P/p^\omega M^P$. We are finished if T is unbounded. But if T is bounded, then $M \cong T \oplus M/T$ and since $p^\omega M = 0$. This means M is bounded which is not so.

- (b) Put L/K = M. Since $L \to M$ we have $L^P \to M^P$. The composite map $L^P \to M^P/p^\omega M^P$ maps K^P and hence K^0 onto 0. So we have an induced map $L^P/K^0 \to M^P/p^\omega M^P$. By (a) $M^P/p^\omega M^P$ is unbounded hence so is L^P/K^0 . By definition K^0 is a submodule and $p^\omega (L^P/K^0) = 0$.
- 3. Applications to Hom and Ext. We are concerned with the groups Hom(K, T), Ext(K, T) for T a reduced p-group and K a p-reduced group. For the results of this section we only need 2.3 and parts of 2.5 of our previous results.
- 3.1 Theorem. Let T be a reduced p-group and K a p-reduced group. Then the following hold.
 - (a) The restriction map $Hom(K^P, T) \to Hom(K, T)$ is an isomorphism.
 - (b) $\operatorname{Ext}(K^P/K, T) \longrightarrow \operatorname{Ext}(K^P, T) \to \operatorname{Ext}(K, T)$ is exact.
- (c) $\operatorname{Ext}(K^P, T) \cong \operatorname{Ext}(K^P/K, T) \oplus \operatorname{Ext}(K, T)$. Let $T^* = \operatorname{Ext}(Z(p^\infty), T)$. Then $\operatorname{Ext}(K^P/K, T) \cong \operatorname{Hom}(K^P/K, T^*/T)$ and both groups are torsion-free divisible.
 - (d) $\operatorname{Ext}(K^p, T)[p] \cong \operatorname{Ext}(K, T)[p]$.

Proof. The exact sequence $K \hookrightarrow K^P \to K^P/K$ implies the exact sequence $0 \to \operatorname{Hom}(K^P, T) \to \operatorname{Hom}(K, T) \to \operatorname{Ext}(K^P/K, T) \to \operatorname{Ext}(K^P, T) \to \operatorname{Ext}(K, T) \to 0$. By 2.3(A) $\operatorname{Hom}(K^P, T) \to \operatorname{Hom}(K, T)$ is surjective. This proves both (a) and (b). To prove (c) consider $T \rightarrowtail T^* \to T^*/T$ (ex). We obtain $0 \to \operatorname{Hom}(K^P/K, T^*/T) \to \operatorname{Ext}(K^P/K, T) \to \operatorname{Ext}(K^P/K, T^*) = 0$. Thus $\operatorname{Hom}(K^P/K, T^*/T) \cong \operatorname{Ext}(K^P/K, T)$. Since T^*/T is torsion-free divisible so is $\operatorname{Hom}(K^P/K, T^*/T)$. It follows that (b) splits and all of (c) is proved.

- (d) Immediate consequence of (c). There are immediate consequences when K^P is a free module.
- 3.2 Corollary. If K is a torsion-free p-reduced group such that either K/pK is finite or K countable, and if T is a reduced p-group, then
 - (a) $\operatorname{Hom}(K, T) \simeq \prod_{\dim(K/nK)} T$.
 - (b) Ext(K, T)[p] = 0.

Proof. By 2.5(g) $K^P = \bigoplus_d P$ where $d = \dim(K/pK)$. Hence $\operatorname{Hom}(K, T) \cong \operatorname{Hom}(K^P, T) = \operatorname{Hom}_p(K^P, T) = \prod_d T$. Further $\operatorname{Ext}(K^P, T) \cong \prod_d \operatorname{Ext}(P, T)$, and by

3.1(c) and 2.5(f) $\operatorname{Ext}(P, T) = \operatorname{Ext}(\mathbb{Z}^P, T) \cong \operatorname{Ext}(P/\mathbb{Z}, T) \oplus \operatorname{Ext}(\mathbb{Z}, T) = \operatorname{Ext}(P/\mathbb{Z}, T)$ which is torsion-free. Hence $\operatorname{Ext}(K^P, T)$ is torsion-free. By 3.1(d) the proposition follows.

These results were first proved by Baer [1, p. 229], and later differently by Mader [8].

- 4. Reduced p-primary quotient groups. Groups may have large ranks and no elements of infinite p-height but no reduced unbounded p-primary epimorphic images. See Baer [1, p. 231, 4.1], and Howard [5, p. 324, 2.2, and p. 325, 2.9]. We shall give a necessary and sufficient condition for the existence of reduced unbounded p-primary epimorphic images. The theorem is motivated by the results of Howard [5] and the one very obvious part of the theorem which we will do first.
- 4.1 Proposition. If the group K has a reduced unbounded p-primary epimorphic image, then K is the union of an ascending sequence of subgroups $K_1 < \cdots < K_i < K_{i+1} < \cdots$ such that $p^{\omega}(K/K_i) = 0$ and K/K_i is unbounded for all i.
- **Proof.** Since every p-group can be mapped epimorphically onto any of its basic subgroups by Szele's theorem (Fuchs [3, p. 152, 36.1]) we may assume that K has the epimorphic image $B = \bigoplus_{j=1}^{\infty} B_j$ where each B_j is a direct sum of cyclic groups of order p^j and infinitely many B_j are not zero. Let K_i be the preimage of $\bigoplus_{1 \le j \le i} B_j$. Then $\{K_i\}$ obviously is as claimed.

Our main result is the converse of this proposition, i.e. we prove

4.2 Theorem. A group K has a reduced unbounded p-primary epimorphic image if and only if K is the union of an ascending sequence of subgroups $K_1 < K_2 < \cdots < K_i < K_{i+1} < \cdots$ such that $p^{\omega}(K/K_i) = 0$ and K/K_i is unbounded.

The theorem is proved by reducing it to the easier case of P-modules by means of the p-adic hull.

- 4.3 Reduction. If $K = \bigcup K_i$ as in 4.2, then K^P is the union of an ascending sequence of submodules $L_1 < \cdots < L_i < L_{i+1} < \cdots$ such that K^P/L_i is unbounded and $p^{\omega}(K^P/L_i) = 0$.
- Proof. Since $p^{\omega}(K/K_i) = 0$ we have $K_i^P < K^P$ by 2.5(i). As we have seen in 2.8 K^P/K_i^P need not be reduced. Therefore let L_i be the submodule of K^P with $L_i/K_i^P = p^{\omega}(K^P/K_i^P)$. By 2.9 K^P/L_i is unbounded and $p^{\omega}(K^P/L_i) = 0$. It is obvious that $L_i < L_{i+1}$ for all i, and $K^P = PK = P(\bigcup K_i) \subset P(\bigcup L_i) = \bigcup L_i$.

Since $\operatorname{Hom}(K^P, T) \cong \operatorname{Hom}(K, T)$ for any reduced *p*-group T (3.1(a)) it remains to prove 4.2 for P-modules.

4.4 Theorem. Let K be a P-module and $K_1 < K_2 < \cdots < K_i < K_{i+1} < \cdots$ an ascending sequence of submodules such that $p^{\omega}(K/K_i) = 0$, K/K_i , is not

bounded and $\bigcup K_i = K$. Then there exists a submodule M such that K/M is a reduced unbounded p-primary module. The converse also holds.

Proof. Let $K_0 = p^{\omega} K$. Since $p^{\omega}(K/K_1) = 0$ we have $K_0 < K_1$. M will be obtained inductively as the union of a chain of submodules

$$M_0 < M_1 < \cdots < M_i < M_{i+1} < \cdots$$

satisfying

- (1) $p^{\omega}(K/M_i) = 0;$
- (2) there are integers j(i) such that $0 < j(0) < j(1) < \cdots < j(i) < j(i+1) < \cdots$ and $K_{j(i)} > M_i$ for all i;
 - (3) there are submodules A_i of K such that $K/M_i = K_{j(i)}/M_i \oplus A_i/M_i$;
- (4) for $i \ge 1$, $K_{j(i)}/M_i = (K_{j(i-1)} + M_i)/M_i \oplus C_i$ where $C_i = P(a_{i-1} + M_i)$ for some $a_{i-1} \in K$ and $\infty > \exp C_i \ge i$;
 - (5) for $i \ge 1$, $K_{j(i-1)} \cap M_i = M_{i-1}$, hence $(K_{j(i-1)} + M_i)/M_i \cong K_{j(i-1)}/M_{i-1}$;
 - (6) $K_{i(i)}/M_i$ is finitely generated and p-primary.

 M_i , j(i), A_i , a_{i-1} , C_i will be constructed inductively. We begin with $M_0 = K_0$, j(0) = 0, $A_0 = K$. Suppose M_i , j(i), A_i , a_{i-1} , C_i have already been obtained satisfying (1)-(6). Note that A_i/M_i is not bounded since otherwise $K/K_{j(i)}$ would be bounded. Let $n = \exp(K_{j(i)}/M_i)$, so $p^n K_{j(i)} \subset M_i$. Since $p^\omega(A_i/M_i) = 0$ and A_i/M_i is not bounded, there is $a_i \in A_i$ such that

(a) $A_i/M_i = P(a_i + M_i) \oplus B/M_i$ and $\exp(a_i + M_i) \ge k := n + i + 1$. (For the existence of a_i note that every cyclic summand of a *p*-basic sub-

module of A_i/M_i is a direct summand of A_i/M_i by Kaplansky [6, Theorem 23].) Since $\bigcup K_r = K$ there is j(i+1) > j(i) such that $K_{j(i+1)} \supset Pa_i + M_i$. Then it follows from (3) (Fuchs [3, p. 38, (b)]) that

- (b) $K_{j(i+1)}/M_i = K_{j(i)}/M_i \oplus (A_i \cap K_{j(i+1)})/M_i$ and from (a) we obtain
- (c) $(A_i \cap K_{j(i+1)})/M_i = P(a_i + M_i) \oplus (B \cap K_{j(i+1)})/M_{i^*}$

Define $A_{i+1} = B + p^k K$ and $M_{i+1} = K_{j(i+1)} \cap A_{i+1}$. Then $M_i \subset K_{j(i)} \cap B \subset A_{j(i+1)} \cap A_{j(i+1)}$ $K_{i(i+1)} \cap A_{i+1} = M_{i+1}$. We have to verify in addition statements (1')-(6') which are obtained from (1)-(6) by replacing i by i+1. By construction (2') is satisfied. Since $p^{\omega}(K/K_{j(i+1)}) = 0$ and $p^{\omega}(K/A_{i+1}) = 0$, we have $p^{\omega}(K/M_{i+1}) = 0$. So (1') holds. Since $K_{j(i+1)} + A_{i+1} \supset K_{j(i)} + Pa_i + B \supset K_{j(i)} + A_i = K$ and $K_{j(i+1)} \cap$ $A_{i+1} = M_{i+1}$ we have $K/M_{i+1} = K_{j(i+1)}/M_{i+1} \oplus A_{i+1}/M_{i+1}$, and (3') holds. Note that $p^n K_{j(i)} \subset M_i$ and $K = K_{j(i)} + A_i$ imply $p^k K \subset p^n K = p^n K_{j(i)} + p^n A_i \subset M_i + M_i$ $A_i = A_i$, and so $A_{i+1} = B + p^k K \subset A_i$. Since $M_i \subset K_{j(i)} \cap M_{i+1} \subset K_{j(i)} \cap A_{i+1} \subset A_i$ $K_{j(i)} \cap A_i = M_i$, we have $M_i = K_{j(i)} \cap M_{i+1}$ and so (5') holds. If we show (4') then (6') is clear from (5') and (6). To show (4'), firstly note that $K_{j(i+1)} \supset$ $K_{j(i)} + Pa_i + M_{i+1} = K_{j(i)} + Pa_i + A_{i+1} \cap K_{j(i+1)} = K_{j(i)} + Pa_i + (B + p^k K) \cap K_{j(i+1)} \supset K_{j(i+1)} \cap K_{j(i$ $K_{j(i)} + Pa_i + B \cap K_{j(i+1)} \supset K_{j(i)} + (A_i \cap K_{j(i+1)})$ (by (c)) $\supset K_{j(i+1)}$ (by (b)). So $K_{j(i+1)} = K_{j(i)} + M_{i+1} + Pa_i$. Secondly, $M_{i+1} \subset (K_{j(i)} + M_{i+1}) \cap (Pa_i + M_{i+1}) \subset (Pa_i + M_{i+1})$ $(K_{j(i)} \cap (Pa_i + M_{i+1})) + M_{i+1} \subset (K_{j(i)} \cap A_i) + M_{i+1} = M_i + M_{i+1} = M_{i+1}$. Thus $K_{j(i+1)}/M_{i+1}$ $= (K_{i(i)} + M_{i+1})/M_{i+1} \oplus C_{i+1}$ where $C_{i+1} := P(a_i + M_{i+1})$ is cyclic and $\exp C_{i+1} \le k \text{ since } p^k a_i \in K_{j(i+1)} \cap p^k K \subset M_{i+1}. \text{ To show } \exp C_{i+1} \ge i+1 \text{ sup-}$ pose $p^m a_i \in M_{i+1} \subset B + p^k K$. Then $p^m a_i = b + p^k x$ with $b \in B$, $x \in K$. Write x = y + z with $y \in K_{j(i)}$, $z \in A_i$. Then $p^k x = p^k y + p^k z \equiv p^k z \mod M_i$. Thus $p^m a_i \equiv b + p^k z \mod M_i$, or $p^k z \equiv p^m a_i - b \mod M_i$. From (a) it follows that $m \ge k$. Hence $\exp C_{i+1} = k = n + i + 1 \ge i + 1$. This proves (4') and the construction of the M_i is finished.

Now let $M = \bigcup M_i$. We have to show that K/M is reduced, unbounded and p-primary. We shall show that in fact $K/M \cong \bigoplus C_i$. By (4), we have $K_{j(i)} \subseteq K_{j(i-1)} + Pa_{i-1} + M_i \subseteq K_{j(i-2)} + Pa_{i-2} + Pa_{i-1} + M_i \subseteq \cdots \subseteq Pa_0 + Pa_1 + \cdots + Pa_{i-1} + M_i$. Since $K = \bigcup K_r$ we have $K = \sum Pa_r + M$ or $K/M = \sum P(a_r + M)$. Suppose $\sum \lambda_r a_r \equiv 0 \mod M$. Since this sum is finite and $M = \bigcup M_r$ there is i such that $a_r \in K_{j(i)}$ for all r and $\sum \lambda_r a_r \equiv 0 \mod M_i$. We rewrite this as $\sum_{r \leq i-1} \lambda_r a_r + \lambda_i a_i \equiv 0 \mod M_i$. Now it follows from (4) that $k_i a_i \equiv 0 \mod M_i$, so $k_i a_i \equiv 0 \mod M$. Now we have $\sum_{r \leq i-1} \lambda_r a_r \in K_{j(i-1)} \cap M_i = M_{i-1}$. Arguing as before we get $k_{i-1} a_{i-1} \equiv 0 \mod M$ and $k_i \in K_{j(i-2)} \cap M_i = M_{i-1}$. By induction $k_i \in K_r \subseteq 0 \mod M$ for all $k_i \in K_r \subseteq 0 \mod M$ as claimed.

4.5 Remark. In 4.4, P may be any complete discrete valuation ring with

prime ideal (p). The proof uses no other property of P.

4.6 Remark. Considering K as a topological group with the p-adic topology, Theorem 4.3 can be expressed as follows: K has a reduced unbounded p-primary epimorphic image if and only if K is the union of an ascending sequence of nowhere dense subgroups. Hence if K is of second category in the p-adic topology then every reduced p-primary epimorphic image of K is bounded.

The converse to the last statement is not true since torsion-free groups of finite rank which are p-reduced are of first category (being countable) but have no unbounded reduced p-primary homomorphic image.

- 5. An alternative P-hull. A different embedding of a group in a P-module is the one described in Cartan-Eilenberg [2].
- 5.1 Definition. For any abelian group K let $K_P = P \otimes K$. The group K_P is a P-module with scalar multiplication given by $\lambda(\mu \otimes x) = \lambda \mu \otimes x$. For each homomorphism $f: K \to K'$ let $f_P = 1 \otimes f$.

The P-hull K_P has the following basic properties.

- 5.2 Proposition. (a) -p is an exact functor on the category of abelian groups to the category of P-modules.
- (b) K is embedded in K_P if and only if K[q] = 0 for all primes $q \neq p$. If $K \subset K_P$, then $(K_P/K)[p] = 0$, $K_P = PK$ and K_P/K is p-divisible.
- **Proof.** (a) It is well known that -p is a functor. Since Tor(P, X) = 0 for any X, the functor -p is exact.
- (b) Suppose $K[q] \neq 0$ for some prime $q \neq p$. Since every torsion element in a P-module has p-power order, K cannot be embedded in K_p . Now suppose K[q] = 0 for all primes $q \neq p$. Then it is a direct consequence of the definition of Tor [3, p. 264] that Tor $(P/\mathbb{Z}, K) = 0$ since $(P/\mathbb{Z})[p] = 0$. Thus it follows from (2.1) that $0 \to \mathbb{Z} \otimes K \cong K \to K_p \to P/\mathbb{Z} \otimes K \to 0$ is exact, and K is embedded in K_p . Since P/\mathbb{Z} is divisible and $(P/\mathbb{Z})[p] = 0$, P/\mathbb{Z} is a direct sum of groups Q and $Z(q^\infty)$, $q \neq p$. Hence $P/\mathbb{Z} \otimes K$ is a direct sum of torsion-free groups $Q \otimes K \cong Q \otimes K/T(K)$ [3, 61.5] and q-groups $Z(q^\infty) \otimes K$, and therefore $(P/\mathbb{Z} \otimes K)[p] = 0$. Since $K_p/K \cong P/\mathbb{Z} \otimes K$, we have $(K_p/K)[p] = 0$, and also K_p/K divisible. Since $\{\lambda \otimes x \mid \lambda \in P, x \in K\}$ generates K_p as a group, and $\lambda \otimes x = \lambda(1 \otimes x)$, it is clear that $\{1 \otimes x \mid x \in K\} = K$ generates K_p .

Next we determine K_P in one case, and clarify the connection between K^P and K_P .

5.3 Proposition. (a) If K is a P-module, then $K_P = K \oplus \bigoplus_{Q \in Q} (Q \otimes K/T(K))$. Thus $K = K_P$ if and only if K is torsion.

- (b) If K is p-reduced, then $K^P = K_P/D$ where D is the maximal divisible submodule of K_P .
- **Proof.** (a) We have two homomorphisms $f: K \to P \otimes K : xf = 1 \otimes x$ and $g: P \otimes K \to K: (\lambda \otimes x)g = \lambda x$. Clearly fg = 1, hence $K_P = \operatorname{Im} f \oplus \operatorname{Ker} g$. Now $\operatorname{Im} f \cong K$ since f is injective, while $\operatorname{Ker} g \cong (P \otimes K)/\operatorname{Im} f = (P \otimes K)/\{1 \otimes x \mid x \in K\} \cong P/\mathbb{Z} \otimes K \cong P/\mathbb{Z} \otimes (K/T(K)) \cong \bigoplus_{x \in K} (Q \otimes K/T(K))$.
- (b) We shall show that $K' = K_p / D$ satisfies (a)-(d) of 2.3. Since K is preduced and p-pure in K_p , $K \cap D = 0$, so K is embedded in K'. By definition K' is a reduced P-module. Since D, being divisible, is an absolute direct summand we have $K_p = L \oplus D$ with $L \supset K$. Hence $K'/K = K'/[(K \oplus D)/D] \cong K_p/(K \oplus D)$ $\cong L/K \leq K_p/K$. Since $(K_p/K)[p] = 0$, we have (K'/K)[p] = 0. Since K generates K_p as a P-module it also generates K'.
- From 5.3(c) it is clear Lemma 2.9 holds with lower Ps instead of upper Ps. Hence the application in $\S 4$ goes through with either hull. The same is true for the applications in $\S 3$, since we have the following crucial fact.
- 5.4 Lemma. If T is a reduced p-group, then the groups $\operatorname{Hom}(K_p, T)$ and $\operatorname{Hom}(K, T)$ are naturally isomorphic.
- **Proof.** We use [3, p. 256 (J)]. $\operatorname{Hom}(K_P, T) = \operatorname{Hom}(K \otimes P, T) \cong \operatorname{Hom}(K, \operatorname{Hom}(P, T)) \cong \operatorname{Hom}(K, T)$ since $\operatorname{Hom}(P, T) \cong T$ by 2.2(a).

It is hard to say which hull is preferable. The hull K_P applies to a larger class of groups and is actually a functor. The disadvantage is that one has to consider nonreduced modules, and that the scalar multiplication functions in homological obscurity. We preferred the hull K^P because of its connection with the topological completion process for torsion-free K which motivated the whole construction and made it transparent.

BIBLIOGRAPHY

- 1. R. Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219-234. MR 20 #6460.
- 2. H. Cartan and E. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- 3. L. Fuchs, Infinite Abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 #333.
- 4. D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391. MR 21 #3481.
- 5. E. J. Howard, First and second category abelian groups with the n-adic topology, Pacific J. Math. 16 (1966), 323-329. MR 34 #7640.
- 6. I. Kaplansky, Infinite Abelian groups, rev. ed., University of Michigan Press, Ann Arbor, Mich., 1969. MR 38 #2208.

- 7. A. Mader, Extensions of Abelian groups, Studies on Abelian Groups (Sympos., Montpellier, 1967), Springer, Berlin, 1968, pp. 259-266. MR 43 #2079.
- 8. ———, The group of extensions of a torsion group by a torsion free group, Arch. Math. (Basel) 20 (1969), 126-131. MR 40 #232.
- 9. R. Nunke, On extensions of a torsion module, Pacific J. Math. 10 (1960), 597-606. MR 22 #5656.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822