THE p-ADIC HULL OF ABELIAN GROUPS

BY
A. MADER

ABSTRACT. In this paper we define "p-adic hull" for p-reduced groups K. The p-adic hull K^{P} of K is a module over the ring P of p-adic integers containing K and satisfying certain additional properties. The notion is investigated and then used to prove some known and some new theorems on $\operatorname{Ext}(K, T)$ and $\operatorname{Hom}(K, T)$ for K torsion-free and T a reduced p-group.

1. Introduction. The well-known method of "change of rings" put forth in Cartan-Eilenberg [2] permits the embedding of an abelian group K in a module over the ring P of p-adic integers provided only that the torsion subgroup of K is p-primary. The disadvantage of this p-adic embedding is that the module need not be p-reduced although K is p-reduced. Also, a group which is a p-adic module to start with may be properly enlarged. In $\S 2$ a " p-adic hull" K^{P} is introduced axiomatically. This hull is investigated and it is shown, among other things, that it has the properties mentioned above.

The concept of " p-adic hull" was suggested by investigations of the author [8] of the following two problems.
I. For which torsion-free groups K is $\operatorname{Ext}(K, T)[p] \neq 0$ for some p-group T ?
II. Which torsion-free groups K possess unbounded reduced p-primary epimorphic images?

It is shown that the answer to both questions remains the same when K is replaced by its p-adic hull K^{P}. Now, the theory of torsion-free P-modules is much simpler than that of torsion-free groups. See Kaplansky [$6, \S \S 15$ and 16]. In particular, a reduced countably generated torsion-free P-module is free, and a pure rank one submodule of any P-module is a direct summand. These facts are used in §3 to give new, simple proofs of results of Baer [1] and Mader [8]. In §4 the second fact is used to prove a theorem concerning Question II. In a final §5, we compare the two possible p-adic embeddings mentioned above.

We use the notation of Fuchs' book [3] which also contains most facts and concepts needed in this paper. We write maps on the right. If K is a P-module and S a subset, then PS denotes the submodule generated by S. P-modules K

Received by the editors November 7, 1972.
AMS (MOS) subject classifications (1970). Primary 20K40, 20K35, 20K30; Secondary 18G15.
will have to be considered as modules and abelian groups simultaneously. Certain notions coincide whether K is considered a P-module or a Z -module, among these are the following: divisible, reduced, p-height, $p^{n} K, K\left[p^{n}\right]$, direct sum, complete direct sum, maximal divisible subgroup (-module). Otherwise it will be made clear what is meant. If no mention of the ring of operators is made, we mean the Z module notions. For instance, "homomorphism" means group homomorphism.
2. The p-adic hull. The fact which makes things work in this paper is the standard embedding of the ring of rational integers \mathbf{Z} in the ring P of p-adic integers. We have

$$
\begin{equation*}
\mathbf{Z} \longrightarrow P \rightarrow P / \mathbf{Z} \quad \text { (ex) } \quad \text { with } P / \mathbf{Z} \text { divisible and }(P / \mathbf{Z})[p]=0 . \tag{2.1}
\end{equation*}
$$

We derive some simple but useful consequences.
2.2 Lemma. Let A, K be P-modules, and K reduced. Then
(a) $\operatorname{Hom}(A, K)=\operatorname{Hom}_{P}(A, K)$. In particulat, $\operatorname{Hom}(P, K) \cong K$.
(b) K is in a unique way a (unitary) P-module.
(c) If L is a subgroup of K which is a P-module, then L is a submodule of K.

Proof. (a) From (2.1) it follows that $\operatorname{Hom}(P, K) \longrightarrow \operatorname{Hom}(\mathbf{Z}, K)$ is exact, i.e. every homomorphism $P \longrightarrow K$ is uniquely determined by its image at 1 . Let $f \epsilon$ $\operatorname{Hom}(A, K)$, and $a \in A$. The map $P \rightarrow K: \lambda \rightarrow(\lambda a) f-\lambda(a f)$ is homomorphic and has value 0 at 1 . Hence $(\lambda a) f=\lambda(a f)$ for all $\lambda \in P$. Since a was arbitrary, this proves that every homomorphism is P-linear. Since every P-homomorphism is additive, (a) is proven.
(b) If λx and $\lambda \cdot x$ are two scalar products, then $\lambda \rightarrow \lambda x$ and $\lambda \rightarrow \lambda \cdot x$ are two homomorphisms $P \rightarrow K$ which coincide on 1 . By (a) $\lambda x=\lambda \cdot x$ for all $\lambda \in P$.
(c) Follows immediately from (b).

The next lemma justifies the definition of " p-adic hull" which will be given below.
2.3 Lemma. Let K be a p-reduced group. Suppose K^{\prime} is a group such that
(a) $K^{\prime}>K$,
(b) K^{\prime} is a reduced P-module,
(c) $\left(K^{\prime} / K\right)[p]=0$,
(d) $K^{\prime}=P K$. (Hence K^{\prime} / K is p-divisible.)

Then

(A) For every reduced P-module L, any homomorphism $K \rightarrow L$ has a unique extension $K^{\prime} \rightarrow L$. The extension is a P-bomomorphism.
(B) If K^{\prime} and $K^{\prime \prime}$ satisfy (a)-(d), then there is a unique P-isomorphism $K^{\prime} \rightarrow K^{\prime \prime}$ which is the identity on K.
(C) For each p-reduced group K there is a group K^{\prime} satisfying (a)-(d).

Proof. (A) Let $L^{*}=\operatorname{Ext}\left(Z\left(p^{\infty}\right), L\right)$. With standard homological tools (see Harrison [4]) we find $L<L^{*},\left(L^{*} / L\right)[p]=0, L^{*} / L$ is divisible, L^{*} is reduced, $\operatorname{Ext}\left(A, L^{*}\right)=0$ for every group A with $A[p]=0, L^{*}$ is a P-module. By 2.2 the P-module structure of L^{*} is unique and L is a submodule. The exact sequence $K \longrightarrow K^{\prime} \rightarrow K^{\prime} / K$ implies
$\operatorname{Hom}\left(K^{\prime} / K, L^{*}\right)=0 \rightarrow \operatorname{Hom}\left(K^{\prime}, L^{*}\right) \rightarrow \operatorname{Hom}\left(K, L^{*}\right) \rightarrow \operatorname{Ext}\left(K^{\prime} / K, L^{*}\right)=0 \quad(e x)$.
Hence every $\phi: K \rightarrow L \in \operatorname{Hom}\left(K, L^{*}\right)$ has a unique extension $\phi^{\prime}: K^{\prime} \rightarrow L^{*}$. By 2.2(a) ϕ^{\prime} is a P-homomorphism, and $K^{\prime} \phi^{\prime}=(P K) \phi^{\prime}=P\left(K \phi^{\prime}\right) \subset P L=L$, thus $\phi^{\prime} \in \operatorname{Hom}\left(K^{\prime}, L\right)$.
(B) Immediate consequence of (A).
(C) $K<K^{*}=\operatorname{Ext}\left(Z\left(p^{\infty}\right), K\right)$. Let $K^{\prime}=P K \subset K^{*}$. Then $K^{\prime}>K, K^{\prime}$ is reduced since K^{*} is reduced, K^{\prime} is by construction a P-module and $K^{\prime}=P K$, finally $\left(K^{\prime} / K\right)[p]=0$ since $K^{\prime} / K<K^{*} / K$ and $\left(K^{*} / K\right)[p]=0$.
2.4 Definition. Let K be a p-reduced group. Any group K^{\prime} satisfying (a)(d) of 2.3 will be called a p-adic hull or P-hull of K. We write $K^{\prime}=K^{P}$.

The p-adic hull has the same degree of uniqueness as does the well-known divisible hull. The statement $K^{\prime}=K^{P}$ reads " K ' is a p-adic hull of K ". As soon as a specific hull is chosen, it is meant by K^{P} and the ambiguity disappears. We next determine K^{P} in some cases, and note some of its properties.
2.5 Proposition. (a) If K is a reduced P-module, then $K^{P}=K$.
(b) If K is a reduced p-group, then $K^{P}=K$.
(c) If K is p-reduced and $K[p]=0$, then K^{P} is torsion-free.
(d) $\left(K^{P}\right)^{P}=K^{P}$ for every p-reduced group K.
(e) If $\left\{K_{i}\right\}$ is a family of p-reduced groups, then $\left(\bigoplus K_{i}\right)^{P}=\bigoplus K_{i}^{P}$.
(f) If K is a p-pure subgroup of P, then $K^{P}=P$.
(g) If K is a p-reduced torsion.free group and eitber $K / p K$ is finite or K countable, then K^{P} is a free P-module of rank $\operatorname{dim}(K / p K)$.
(h) If K is free, then K^{P} is a free P-module. The converse does not hold.
(i) If L is a p-reduced group, $K<L$ and either $(L / K)[p]=0$ or L / K is p reduced, then the submodule $P K$ of L^{P} generated by K is a p-adic bull of K.
(j) If $\left\{a_{i} \mid i \in I\right\}$ is a maximal p-independent subset of the torsion-free p reduced group K, then $\left\{a_{i} \mid i \in I\right\}$ is a maximal p-independent subset of the module K^{P}.

Proof. (a) K satisfies (a)-(d) of 2.3.
(b) Every p-group is a P-module hence (a) applies.
(c) Suppose $p x=0$ for $x \in K^{P}$. Since $\left(K^{P} / K\right)[p]=0, x \in K[p]=0$.
(d) Consequence of (a).
(e) and (f) Conditions (a)-(d) of 2.3 are easily checked.
(g) K^{P} is reduced. If K is countable, then K^{P} is countably generated and by Kaplansky [6, p. 46, Theorem 20], K^{P} is free. Note that always $K^{P} / p K^{P}=$ $K+p K^{P} / p K^{P} \cong K / K \cap p K^{P}=K / p K$. If $K / p K$ is finite, any basic submodule B of K^{P} is complete and by Kaplansky [6, p. 52, Theorem 23], B is a direct summand of K^{P}. Since K^{P} / B is divisible and K^{P} is reduced, we have $K^{P}=B$ and is free. In both cases the rank of K^{P} is $\operatorname{dim}\left(K^{P} / p K^{P}\right)=\operatorname{dim}(K / p K)$.
(h) Combine (e) and (f). That the converse does not hold is clear from (f) or (g).
(i) The submodule $P K$ of L^{P} satisfies (a), (b), (d) of 2.3. Suppose $(L / K)[p]=0$. If $x \in P K$ and $p x \in K$, then $p x \in L$ and hence $x \in L$. But $x \in L$ and $p x \in K$ implies $x \in K$ since $(L / K)[p]=0$. Now suppose that L / K is p-reduced. $P K \cap L / K<L / K$ so $P K \cap L / K$ is p-reduced. Further $P K=(\mathrm{Z}+p P) K=K+p(P K)$, and so $P K \cap L=(K+p(P K)) \cap L=K+[p(P K) \cap L]$ $=K+p(P K \cap L)$ using the Dedekind identity and $\left(L^{P} / L\right)[p]=0$. So $P K \cap L / K=$ $(p(P K \cap L)+K) / K=p(P K \cap L / K)$. We now have that $P K \cap L / K$ is both p reduced and p-divisible, so $P K \cap L=K$. Suppose $x \in P K\left[C L^{P}\right]$ and $p x \in$ $K[C L]$. Then $x \in L \cap P K=K$. This proves (c) of 2.3 also in the second case.
(j) Let $B=\bigoplus_{i \in I} Z a_{i}$ be the p-basic subgroup of K generated by $\left\{a_{i}\right\}$. By (i) we may assume that $B^{P} \subset K^{P}$. Let $\hat{B}=\Pi_{\mathrm{I}} P$. We shall utilize a representation of the whole set-up in \hat{B}. First of all $\phi: B \rightarrow \hat{B}:\left(\sum n_{i} a_{i}\right) \phi=\left(\cdots n_{i} \cdots\right)$ is clearly an embedding. Since $(\hat{B} / B \phi)[p]=0, P(B \phi)=(B \phi)^{P}$, and clearly $(B \phi)^{P}=$ $\bigoplus_{I} P$. Since $\left(K^{P} / B\right)[p]=0$ and K^{P} / B is divisible, we conclude from $B \longrightarrow K^{P}$ $\rightarrow K^{P} / B$ (ex) that $0 \rightarrow \operatorname{Hom}\left(K^{P}, \hat{B}\right) \rightarrow \operatorname{Hom}(B, \hat{B}) \rightarrow \operatorname{Ext}\left(K^{P} / B, \hat{B}\right)=0$ is exact. In particular the embedding $\phi: B \rightarrow \hat{B}$ has a unique extension $\phi: K^{P} \rightarrow \hat{B}$. We claim that ϕ is injective. In fact, suppose $x \in K^{P}$ and $x \phi=0$. Since K^{P} / B is p-divisible, given n, we can write $x=b_{n}+p^{n} x_{n}$ for some $b_{n} \in B$ and some $x_{n} \epsilon$ K^{P}. Now $0=x \phi=b_{n} \phi+p^{n}\left(x_{n} \phi\right)$ implies $b_{n} \phi \in B \phi \cap p^{n} \hat{B}=p^{n}(B \phi)=\left(p^{n} B\right) \phi$. Since ϕ is monomorphic on $B, b_{n} \in p^{n} B$ and $x \in p^{n} K^{P}$. So $x \in \bigcap_{n} p^{n} K^{P}=0$. Thus $\phi: K^{P} \rightarrow \hat{B}$ is an embedding as claimed, and ϕ is also a P-homomorphism by 2.2. Clearly $\left(K^{P}\right) \phi=(P K) \phi=P(K \phi)=(K \phi)^{P}$, and $\left(B^{P}\right) \phi=(B \phi)^{P}$. The latter proves $B^{P}=\bigoplus_{i \in I} P a_{i^{*}}$. Since obviously $\left(\hat{B} /(B \phi)^{P}\right)[p]=0$ we have $\left((K \phi)^{P} /(B \phi)^{P}\right)[p]=0$, and since $K^{P} / B^{P} \cong(K \phi)^{P} /(B \phi)^{P}$ we have $\left(K^{P} / B^{P}\right)[p]=0$. Further $K^{P}=K+p K^{P}=B+p K+p K^{P}=B^{P}+p K^{P}$, so K^{P} / B^{P} is p-divisible. So B^{P} is a free, p-pure, dense submodule of $K^{P_{1}}$ with free generators a_{i}, which shows that $\left\{a_{i} \mid i \in I\right\}$ is a maximal p-independent subset of K^{P}.

We remark that K^{P} need not contain a p-adic hull for each of the subgroups of K. For example, let $\left\{a_{i}\right\}$ be a maximal independent subset of P and $A=$ $\bigoplus_{i} \mathrm{Z} a_{i}$. Then $A^{P} \cong \bigoplus_{2} \kappa_{0} P$ which cannot be a submodule of $P^{P}=P$.

The next proposition shows that the process of forming p-adic hulls has great similarity with a functor.
2.6 Proposition. (a) If K, L are p-reduced groups, K^{P}, L^{P} p-adic bulls of K, L and $\phi: K \rightarrow L$ is a bomomorphism, then there is a unique P-bomomorphism $\phi^{P}: K^{P} \rightarrow L^{P}$ extending ϕ.
(b) If $K_{i}, i=1,2,3$, are p-reduced groups with p-adic bulls K_{i}^{P}, and if ϕ_{1} : $K_{1} \rightarrow K_{2}$ and $\phi_{2}: K_{2} \rightarrow K_{3}$ are bomomorphisms, then $\left(\phi_{1} \phi_{2}\right)^{P}=\phi_{1}^{P} \phi_{2}^{P}$.
(c) In the situation of (a) if ϕ is surjective so is ϕ^{P}. If $(L / K \phi)[p]=0$ or $L / K \phi$ is p-reduced and ϕ is injective, so is ϕ^{P}.

Proof. (a) The homomorphism $\phi: K \rightarrow L^{P}$ has a unique extension ϕ^{P} : $K^{P} \rightarrow L^{P}$ by 2.3(A).
(b) Immediate consequence of (a).
(c) From $K \phi=L$ it follows that $K^{P} \phi^{P}=(P K) \phi^{P}=P\left(K \phi^{P}\right)=P(K \phi)=P L$ $=L^{P}$. For the second part we first note that $(K \phi)^{P}=P(K \phi) \subset L^{P}$ by 2.5(i). Since $\phi: K \rightarrow K \phi$ is an isomorphism so is $\phi^{P}: K^{P} \rightarrow(K \phi)^{P}$. So $\phi^{P}: K^{P} \rightarrow L^{P}$ is injective.

Since $K<L$ does not imply $K^{P}<L^{P}$ as remarked above it is also not true that ϕ injective implies ϕ^{P} injective in all cases.
2.7 Remark. The process described above is actually a functor on the category of p-reduced groups to a skeletal subcategory \mathcal{C} of the category of reduced P-modules. Such a skeletal subcategory contains exactly one object from each isomorphism class of reduced P-modules. For each K, K^{P} is the unique object of \mathcal{C} for which there is a monomorphism $\phi: K \rightarrow K^{P}$ such that $K^{P}=(K \phi)^{P}$ in the sense of Definition 2.4. If $K \longrightarrow M \rightarrow L$ is an exact sequence of p-reduced groups, then $0 \rightarrow K^{P} \rightarrow M^{P} \rightarrow L^{P} \rightarrow 0$ need not be exact. In order to see what happens we discuss the case where $L[p]=0$ in some detail.
2.8 Example. Let K, L be p-reduced groups, $L[p]=0, K^{*}=$ $\operatorname{Ext}\left(Z\left(p^{\infty}\right), K\right)$ and $E=K^{*} \oplus L$. From $K \longrightarrow K^{*} \rightarrow K^{*} / K$ (ex) it follows, using $L[p]=0$, that $\operatorname{Hom}\left(L, K^{*} / K\right) \rightarrow \operatorname{Ext}(L, K) \rightarrow 0$ is exact. Thus every extension of K by L arises from a map of $\operatorname{Hom}\left(L, K^{*} / K\right)$. If $\xi \in \operatorname{Hom}\left(L, K^{*} / K\right)$ then $K \geqslant M \xrightarrow{\square} L$ represents the image of ξ when $M<E, M=\left\{x+y \mid x \in K^{*}, y \in L\right.$ and $y \xi=x+K\}$, and Π is the projection of E onto L. As in Mader [7] we easily calculate that $M \cap K^{*}=K$ and $M+K^{*}=E$. Since $E / M=\left(M+K^{*}\right) / M \cong K^{*} / K^{*}$ $\cap M=K^{*} / K$ and $\left(K^{*} / K\right)[p]=0$ we have $(E / M)[p]=0$. So by $2.5(\mathrm{i}) M^{P}<E^{P}=$ $K^{*} \oplus L^{P}$; also $K^{P}<K^{*}$.
(a) $\Pi^{P}: M^{P} \rightarrow L^{P}$ is surjective and $\operatorname{Ker} \Pi^{P}=M^{P} \cap K^{*}$.

Proof. Since Π is surjective, so is Π^{P} by $2.6(c)$. Further it is clear that Π^{P} is the projection of E^{P} onto L^{P} since this projection obviously extends Π. Therefore, $\operatorname{Ker} \Pi^{P}=M^{P} \cap K^{*}$.
(b) $K^{P} \rightarrow M^{P} \rightarrow L^{P}$ (ex) if and only if $K^{P}=M^{P} \cap K^{*}$.

This is immediate from (a).
(c) $M^{P} \cap K^{*} / K^{P}=p^{\omega}\left(M^{P} / K^{P}\right)=$ maximal divisible submodule of M^{P} / K^{P}.

Proof. Since $M^{P} / M^{P} \cap K^{*} \cong L^{P}$ is reduced and torsion-free we have $p^{a}\left(M^{P} / K^{P}\right) \subset M^{P} \cap K^{*} / K^{P}$. We are finished if we show that $M^{P} \cap K^{*} / K^{P}$ is divisible. Since $\left(E^{P} / E\right)[p]=0$ and $(E / M)[p]=0$ we have $\left(E^{P} / M\right)[p]=0$. Since $\left(E^{P} / M\right)[p]=0$ and M^{P} / M is p-divisible it follows easily that $\left(E^{F} / M^{P}\right)[p]=0$. Now $E^{P} / M^{P}=$ $P E / M^{P}=P\left(K^{*}+M\right) / M^{P}=\left(K^{*}+P M\right) / M^{P}=\left(K^{*}+M^{P}\right) / M^{P} \cong K^{*} / M^{P} \cap K^{*} \cong$ $\left(K^{*} / K^{P}\right) /\left(M^{P} \cap K^{*} / K^{P}\right)$, so $M^{P} \cap K^{*} / K^{P}$ is pure in the divisible module K^{*} / K^{P} and so is itself divisible.
(d) Suppose $K^{*} / K^{P} \neq 0$. Then $M^{P} \cap K^{*}=K^{P}$ for every M only if every subset of L which is \mathbf{Z}-independent is P-independent in L^{P}.

Proof. (1) Let us first note.that $\left(K^{*} / K\right)[p]=0$ and $K^{P} / K p$-divisible together imply that $\left(K^{*} / K^{P}\right)[p]=0$. Since K^{*} / K^{P} is a P-module this means that K^{*} / K^{P} is torsion-free (i.e. $\lambda x=0$ implies $x=0$).
(2) Given $\xi \in \operatorname{Hom}\left(L, K^{*} / K\right)$ and a corresponding extension M of K by L contained in E (i.e. $x+y \in M\left(x \in K^{*}, y \in L\right)$ if and only if $\left.y \xi=x+K\right)$. We have $u+v \in M^{P}\left(u \in K^{*}, v \in L^{P}\right)$ if and only if $u+v=\Sigma \lambda_{i}\left(x_{i}+y_{i}\right)$ where $x_{i}+y_{i} \in M\left(x_{i} \in K^{*}, y_{i} \in L, y_{i} \xi=x_{i}+K\right)$. Further $u+v \in M^{P} \cap K^{*}$ if and only if $\Sigma \lambda_{i} y_{i}=0$. Hence $M^{P} \cap K^{*}=K^{P}$ if and only if $\Sigma \lambda_{i} x_{i} \in K^{P}$ whenever $\Sigma \lambda_{i} y_{i}=0$ for $x_{i}+y_{i} \in M$.
(3) Suppose $\left\{y_{i}\right\}$ is a (finite) Z -independent subset of L but $\Sigma \lambda_{i} y_{i}=0$ in L^{P} for $\lambda_{i} \in P$, not all 0 . Let $x \in K^{*}, x \notin K^{P}$. If $\Sigma \lambda_{i} \neq 0$, choose $\xi \epsilon$ $\operatorname{Hom}\left(L, K^{*} / K\right)$ such that $y_{i} \xi=x$. Such a ξ exists since $\left\{y_{i}\right\}$ is \mathbf{Z}-independent and K^{*} / K is divisible. Then $\Sigma \lambda_{i}\left(x+y_{i}\right)=\left(\Sigma \lambda_{i}\right) x \in M^{P} \cap K^{*}$ but $\left(\Sigma \lambda_{i}\right) x \notin K^{P}$ by (1). Should it happen that $\Sigma \lambda_{i}=0$ then $p \lambda_{j}+\Sigma_{i \neq j} \lambda_{j} \neq 0$ for some j. Now choose ξ such that $y_{i} \xi=x(i \neq j)$ and $y_{j} \xi=p x$. Then it follows exactly as before that $M^{P} \cap K^{*} \neq K^{P}$.

As a rule some Z -independent subsets of L will become P-independent in L^{P}, and clearly $K^{*} / K^{P} \neq 0$ can be achieved. Thus $K^{P} \neq M^{P} \cap K^{*}$ can occur and $K^{P} \longrightarrow M^{P} \rightarrow L^{P}$ need not be exact.

The last lemma of this section settles a technical matter which is needed in §4.
2.9 Lemma. (a) Let M be an unbounded group with $p^{\omega} M=0$. Then $M^{P} / p^{\omega} M^{P}$ is unbounded.
(b) Let L be a p-reduced group, $K<L$ such that L / K is unbounded and $p^{\omega}(L / K)=0$. Then $K^{P}<L^{P}$ by $2.5(\mathrm{i})$. Let $K^{0}<L^{P}$ be such that $K^{0} / K^{P}=$ $p^{\omega}\left(L^{P} / K^{P}\right)$. Then K^{0} is a submodule, $p^{\omega}\left(L^{P} / K^{0}\right)=0$ and L^{P} / K^{0} is unbounded.

Proof. (a) Suppose first that $M / T(M)$ is not p-divisible. Then we have $K \longrightarrow M \rightarrow L(e x)$ where $K / T(M)=p^{\omega}(M / T(M))$ and $L \cong M / K \cong(M / T(M)) /(K / T(M))$ $=(M / T(M)) / p^{\omega}(M / T(M))$. Hence L is $\neq 0$, torsion-free and p-reduced, and therefore $p^{\omega} L^{P}=0$. Since $M^{P} \rightarrow L^{P}$ it follows that $M^{P} / p^{\omega} M^{P} \rightarrow L^{P}$ showing that
$M^{P} / p^{\omega} M^{P}$ is unbounded. Secondly suppose that M / T is p-divisible where $T=$ $T(M)$. Let $T^{*}=\operatorname{Ext}\left(Z\left(p^{\infty}\right), T\right)$. Then T^{*} / T is torsion-free divisible. Since M is p-reduced and M / T is torsion-free and p-divisible we may assume that $T<$ $M<T^{*}$. It is easily checked that $\left(T^{*} / M\right)[p]=0$, and therefore $M^{P}=P M<T^{*}$. Now $p^{\omega} M^{P} \cap T \subset p^{\omega} T^{*} \cap T=p^{\omega} T \subset p^{\omega} M=0$. Therefore $T \cong T+p^{\omega} M^{P} / p^{\omega} M^{P}$ $<M^{P} / p^{\omega} M^{P}$. We are finished if T is unbounded. But if T is bounded, then $M \cong T \oplus M / T$ and since $p^{\omega} M=0$. This means M is bounded which is not so.
(b) Put $L / K=M$. Since $L \rightarrow M$ we have $L^{P} \rightarrow M^{P}$. The composite map $L^{P} \rightarrow M^{P} / p^{\omega} M^{P}$ maps K^{P} and hence K^{0} onto 0 . So we have an induced map $L^{P} / K^{0} \rightarrow M^{P} / p^{\omega} M^{P}$. By (a) $M^{P} / p^{\omega} M^{P}$ is unbounded hence so is L^{P} / K^{0}. By definition K^{0} is a submodule and $p^{\omega}\left(L^{P} / K^{0}\right)=0$.
3. Applications to Hom and Ext. We are concerned with the groups Hom (K, T), $\operatorname{Ext}(K, T)$ for T a reduced p-group and K a p-reduced group. For the results of this section we only need 2.3 and parts of 2.5 of our previous results.
3.1 Theorem. Let T be a reduced p-group and K a p-reduced group. Then the following hold.
(a) The restriction map $\operatorname{Hom}\left(K^{P}, T\right) \rightarrow \operatorname{Hom}(K, T)$ is an isomorphism.
(b) $\operatorname{Ext}\left(K^{P} / K, T\right) \longrightarrow \operatorname{Ext}\left(K^{P}, T\right) \rightarrow \operatorname{Ext}(K, T)$ is exact.
(c) $\operatorname{Ext}\left(K^{P}, T\right) \cong \operatorname{Ext}\left(K^{P} / K, T\right) \oplus \operatorname{Ext}(K, T)$. Let $T^{*}=\operatorname{Ext}\left(Z\left(p^{\infty}\right), T\right)$. Then $\operatorname{Ext}\left(K^{P} / K, T\right) \cong \operatorname{Hom}\left(K^{P} / K, T^{*} / T\right)$ and both groups are torsion-free divisible.
(d) $\operatorname{Ext}\left(K^{P}, T\right)[p] \cong \operatorname{Ext}(K, T)[p]$.

Proof. The exact sequence $K \longrightarrow K^{P} \rightarrow K^{P} / K$ implies the exact sequence $0 \rightarrow \operatorname{Hom}\left(K^{P}, T\right) \rightarrow \operatorname{Hom}(K, T) \rightarrow \operatorname{Ext}\left(K^{P} / K, T\right) \rightarrow \operatorname{Ext}\left(K^{P}, T\right) \rightarrow \operatorname{Ext}(K, T) \rightarrow 0$. By 2.3(A) $\operatorname{Hom}\left(K^{P}, T\right) \rightarrow \operatorname{Hom}(K, T)$ is surjective. This proves both (a) and (b). To prove (c) consider $T \nu T^{*} \rightarrow T^{*} / T$ (ex). We obtain $0 \rightarrow \operatorname{Hom}\left(K^{P} / K, T^{*} / T\right)$ $\rightarrow \operatorname{Ext}\left(K^{P} / K, T\right) \rightarrow \operatorname{Ext}\left(K^{P} / K, T^{*}\right)=0$. Thus $\operatorname{Hom}\left(K^{P} / K, T^{*} / T\right) \cong$ $\operatorname{Ext}\left(K^{P} / K, T\right)$. Since T^{*} / T is torsion-free divisible so is $\operatorname{Hom}\left(K^{P} / K, T^{*} / T\right)$. It follows that (b) splits and all of (c) is proved.
(d) Immediate consequence of (c).

There are immediate consequences when K^{P} is a free module.
3.2 Corollary. If K is a torsion-free p-reduced group such that either $K / p K$ is finite or K countable, and if T is a reduced p-group, then
(a) $\operatorname{Hom}(K, T) \cong \Pi_{\operatorname{dim}(K / p K)} T$.
(b) $\operatorname{Ext}(K, T)[p]=0$.

Proof. By $2.5(\mathrm{~g}) K^{P}=\bigoplus_{d} P$ where $d=\operatorname{dim}(K / p K)$. Hence $\operatorname{Hom}(K, T) \cong$ $\operatorname{Hom}\left(K^{P}, T\right)=\operatorname{Hom}_{P}\left(K^{P}, T\right)=\Pi_{d} T$. Further $\operatorname{Ext}\left(K^{P}, T\right) \cong \Pi_{d} \operatorname{Ext}(P, T)$, and by
3.1(c) and 2.5(f) $\operatorname{Ext}(P, T)=\operatorname{Ext}\left(\mathbf{Z}^{P}, T\right) \cong \operatorname{Ext}(P / \mathbf{Z}, T) \oplus \operatorname{Ext}(\mathbf{Z}, T)=$ $\operatorname{Ext}(P / \mathrm{Z}, T)$ which is torsion-free. Hence $\operatorname{Ext}\left(K^{P}, T\right)$ is torsion-free. By 3.1(d) the proposition foilows.

These results were first proved by Baer [1, p. 229], and later differently by Mader [8].
4. Reduced p-primary quotient groups. Groups may have large ranks and no elements of infinite p-height but no reduced unbounded p-primary epimorphic images. See Baer [1, p. 231, 4.1], and Howard [5, p. 324, 2.2, and p. 325, 2.9]. We shall give a necessary and sufficient condition for the existence of reduced unbounded p-primary epimorphic images. The theorem is motivated by the results of Howard [5] and the one very obvious part of the theorem which we will do first.
4.1 Proposition. If the group K has a reduced unbounded p-primary epimorphic image, then K is the union of an ascending sequence of subgroups $K_{1}<\ldots$ $<K_{i}<K_{i+1}<\cdots$ such that $p^{\omega}\left(K / K_{i}\right)=0$ and K / K_{i} is unbounded for all i.

Proof. Since every p-group can be mapped epimorphically onto any of its basic subgroups by Szele's theorem (Fuchs [3, p. 152, 36.1]) we may assume that K has the epimorphic image $B=\bigoplus_{j=1}^{\infty} B_{j}$ where each B_{j} is a direct sum of cyclic groups of order p^{j} and infinitely many B_{j} are not zero. Let K_{i} be the preimage of $\bigoplus_{1 \leq j \leq i} B_{j}$. Then $\left\{K_{i}\right\}$ obviously is as claimed.

Our main result is the converse of this proposition, i.e. we prove
4.2 Theorem. A group K bas a reduced unbounded p-primary epimorphic image if and only if K is the union of an ascending sequence of subgroups $K_{1}<K_{2}<\ldots<K_{i}<K_{i+1}<\ldots$ such that $p^{a i}\left(K / K_{i}\right)=0$ and K / K_{i} is unbounded.

The theorem is proved by reducing it to the easier case of P-modules by means of the p-adic hull.
4.3 Reduction. If $K=\bigcup K_{i}$ as in 4.2, then K^{P} is the union of an ascending sequence of submodules $L_{1}<\cdots<L_{i}<L_{i+1}<\ldots$ such that K^{P} / L_{i} is unbounded and $p^{\omega}\left(K^{P} / L_{i}\right)=0$.

Proof. Since $p^{\omega}\left(K / K_{i}\right)=0$ we have $K_{i}^{P}<K^{P}$ by 2.5(i). As we have seen in $2.8 K^{P} / K_{i}^{P}$ need not be reduced. Therefore let L_{i} be the submodule of K^{P} with $L_{i} / K_{i}^{P}=p^{\omega}\left(K^{P} / K_{i}^{P}\right)$. By $2.9 K^{P} / L_{i}$ is unbounded and $p^{\omega}\left(K^{P} / L_{i}\right)=0$. It is obvious that $L_{i}<L_{i+1}$ for all i, and $K^{P}=P K=P\left(\bigcup K_{i}\right) \subset P\left(\bigcup L_{i}\right)=\bigcup L_{i}$.

Since $\operatorname{Hom}\left(K^{P}, T\right) \cong \operatorname{Hom}(K, T)$ for any reduced p-group T (3.1(a)) it remains to prove 4.2 for P-modules.
4.4 Theorem. Let K be a P-module and $K_{1}<K_{2}<\ldots<K_{i}<K_{i+1}<\ldots$ an ascending sequence of submodules such that $p^{\omega}\left(K / K_{i}\right)=0, K / K_{i}$ is not
bounded and $U K_{i}=K$. Then there exists a submodule M such that K / M is a reduced unbounded p-primary module. The converse also bolds.

Proof. Let $K_{0}=p^{\omega} K$. Since $p^{\omega}\left(K / K_{1}\right)=0$ we have $K_{0}<K_{1}$. M will be obtained inductively as the union of a chain of submodules

$$
M_{0}<M_{1}<\ldots<M_{i}<M_{i+1}<\ldots
$$

satisfying
(1) $p^{\omega}\left(K / M_{i}\right)=0$;
(2) there are integers $j(i)$ such that $0<j(0)<j(1)<\ldots<j(i)<j(i+1)<\ldots$ and $K_{j(i)}>M_{i}$ for all i;
(3) there are submodules A_{i} of K such that $K / M_{i}=K_{j(i)} / M_{i} \oplus A_{i} / M_{i}$;
(4) for $i \geq 1, K_{j(i)} / M_{i}=\left(K_{j(i-1)}+M_{i}\right) / M_{i} \oplus C_{i}$ where $C_{i}=P\left(a_{i-1}+M_{i}\right)$ for some $a_{i-1} \in K$ and $\infty>\exp C_{i} \geq i$;
(5) for $i \geq 1, K_{j(i-1)} \cap M_{i}=M_{i-1}$, hence $\left(K_{j(i-1)}+M_{i}\right) / M_{i} \cong K_{j(i-1)} / M_{i-1}$;
(6) $K_{j(i)} / M_{i}$ is finitely generated and p-primary.

$M_{i^{\prime}} j(i), A_{i}, a_{i-1}, C_{i}$ will be constructed inductively. We begin with $M_{0}=K_{0}$, $j(0)=0, A_{0}=K$. Suppose $M_{i}, j(i), A_{i}, a_{i-1}, C_{i}$ have already been obtained satisfying (1)-(6). Note that A_{i} / M_{i} is not bounded since otherwise $K / K_{j(i)}$ would be bounded. Let $n=\exp \left(K_{j(i)} / M_{i}\right)$, so $p^{n} K_{j(i)} \subset M_{i}$. Since $p^{\omega}\left(A_{i} / M_{i}\right)=0$ and A_{i} / M_{i} is not bounded, there is $a_{i} \in A_{i}$ such that
(a) $A_{i} / M_{i}=P\left(a_{i}+M_{i}\right) \oplus B / M_{i}$ and $\exp \left(a_{i}+M_{i}\right) \geq k:=n+i+1$.
(For the existence of a_{i} note that every cyclic summand of a p-basic submodule of A_{i} / M_{i} is a direct summand of A_{i} / M_{i} by Kaplansky [6, Theorem 23].) Since $U K_{r}=K$ there is $j(i+1)>j(i)$ such that $K_{j(i+1)} \supset P a_{i}+M_{i}$. Then it follows from (3) (Fuchs [3, p. 38, (b)]) that
(b) $K_{j(i+1)} / M_{i}=K_{j(i)} / M_{i} \oplus\left(A_{i} \cap K_{j(i+1)}\right) / M_{i}$ and from (a) we obtain
(c) $\left(A_{i} \cap K_{j(i+1)}\right) / M_{i}=P\left(a_{i}+M_{i}\right) \oplus\left(B \cap K_{j(i+1)}\right) / M_{i}$.

Define $A_{i+1}=B+p^{k} K$ and $M_{i+1}=K_{j(i+1)} \cap A_{i+1}$. Then $M_{i} \subset K_{j(i)} \cap B \subset$ $K_{j(i+1)} \cap A_{i+1}=M_{i+1}$. We have to verify in addition statements (1^{\prime}) $-\left(6^{\prime}\right)$ which are obtained from (1)-(6) by replacing i by $i+1$. By construction (2^{\prime}) is satisfied. Since $p^{\omega}\left(K / K_{j(i+1)}\right)=0$ and $p^{\omega}\left(K / A_{i+1}\right)=0$, we have $p^{\omega}\left(K / M_{i+1}\right)=0$. So (1^{\prime}) holds. Since $K_{j(i+1)}+A_{i+1} \supset K_{j(i)}+P a_{i}+B \supset K_{j(i)}+A_{i}=K$ and $K_{j(i+1)} \cap$ $A_{i+1}=M_{i+1}$ we have $K / M_{i+1}=K_{j(i+1)} / M_{i+1} \oplus A_{i+1} / M_{i+1}$, and (3^{\prime}) holds. Note that $p^{n} K_{j(i)} \subset M_{i}$ and $K=K_{j(i)}+A_{i}$ imply $p^{k} K \subset p^{n} K=p^{n} K_{j(i)}+p^{n} A_{i} \subset M_{i}+$ $A_{i}=A_{i}$, and so $A_{i+1}=B+p^{k} K \subset A_{i}$. Since $M_{i} \subset K_{j(i)} \cap M_{i+1} \subset K_{j(i)} \cap A_{i+1} \subset$ $K_{j(i)} \cap A_{i}=M_{i}$, we have $M_{i}=K_{j(i)} \cap M_{i+1}$ and so (5^{\prime}) holds. If we show (4') then $\left(6^{\prime}\right)$ is clear from (5^{\prime}) and (6). To show (4^{\prime}), firstly note that $K_{j(i+1)}$) $K_{j(i)}+P a_{i}+M_{i+1}=K_{j(i)}+P a_{i}+A_{i+1} \cap K_{j(i+1)}=K_{j(i)}+P a_{i}+\left(B+p^{k} K\right) \cap K_{j(i+1)} \supset$ $K_{j(i)}+P a_{i}+B \cap K_{j(i+1)} \supset K_{j(i)}+\left(A_{i} \cap K_{j(i+1)}\right)\left(\right.$ by (c)) $\supset K_{j(i+1)}$ (by (b)). So $K_{j(i+1)}=K_{j(i)}+M_{i+1}+P a_{i}$. Secondly, $M_{i+1} \subset\left(K_{j(i)}+M_{i+1}\right) \cap\left(P a_{i}+M_{i+1}\right) \subset$ $\left(K_{j(i)} \cap\left(P \cdot a_{i}+M_{i+1}\right)\right)+M_{i+1} \subset\left(K_{j(i)} \cap A_{i}\right)+M_{i+1}=M_{i}+M_{i+1}=M_{i+1}$. Thus $K_{j(i+1)} / M_{i+1}$ $=\left(K_{j(i)}+M_{i+1}\right) / M_{i+1} \oplus C_{i+1}$ where $C_{i+1}:=P\left(a_{i}+M_{i+1}\right)$ is cyclic and $\exp C_{i+1} \leq k$ since $p^{k} a_{i} \in K_{j(i+1)} \cap p^{k} K \subset M_{i+1}$. To show $\exp C_{i+1} \geq i+1$ suppose $p^{m} a_{i} \in M_{i+1} \subset B+p^{k} K$. Then $p^{m} a_{i}=b+p^{k} x$ with $b \in B, x \in K$. Write $x=y+z$ with $y \in K_{j(i)}, z \in A_{i}$. Then $p^{k} x=p^{k} y+p^{k} z \equiv p^{k} z \bmod M_{i}$. Thus $p^{m} a_{i} \equiv b+p^{k} z \bmod M_{i}$, or $p^{k} z \equiv p^{m} a_{i}-b \bmod M_{i}$. From (a) it follows that $m \geq k$. Hence $\exp C_{i+1}=k=n+i+1 \geq i+1$. This proves (4') and the construction of the M_{i} is finished.

Now let $M=\bigcup M_{i}$. We have to show that K / M is reduced, unbounded and p-primary. We shall show that in fact $K / M \cong \bigoplus C_{i}$. By (4), we have $K_{j(i)} \subset K_{j(i-1)}+P a_{i-1}+M_{i} \subset K_{j(i-2)}+P a_{i-2}+P a_{i-1}+M_{i} \subset \ldots \subset P a_{0}+$ $P a_{1}+\cdots+P a_{i-1}+M_{i}$. Since $K=U K_{r}$ we have $K=\Sigma P a_{r}+M$ or $K / M=$ $\Sigma P\left(a_{r}+M\right)$. Suppose $\Sigma_{r} \lambda_{r} a_{r} \equiv 0 \bmod M$. Since this sum is finite and $M=\bigcup M_{r}$ there is i such that $a_{r} \in K_{j(i)}$ for all r and $\Sigma \lambda_{r} a_{r} \equiv 0 \bmod M_{i}$. We rewrite this as $\Sigma_{r \leq i-1} \lambda_{r} a_{r}+\lambda_{i} a_{i} \equiv 0 \bmod M_{i}$. Now it follows from (4) that $\lambda_{i} a_{i} \equiv 0 \bmod M_{i^{\prime}}$ so $\lambda_{i} a_{i} \equiv 0 \bmod M$. Now we have $\Sigma_{r \leq i-1} \lambda_{r} a_{r} \in K_{j(i-1)} \cap M_{i}=M_{i-1}$. Arguing as before we get $\lambda_{i-1} a_{i-1} \equiv 0 \bmod M$ and $\Sigma_{r \leq i-2} \lambda_{r} a_{r} \in K_{j(i-2)} \cap M_{i-1}=M_{i-2}$. By induction $\lambda_{r} a_{r} \equiv 0 \bmod M$ for all r. Thus we have $K / M=\bigoplus P\left(a_{r}+M\right)$ as clained.
4.5 Remark. In 4.4, P may be any complete discrete valuation ring with
prime ideal (p). The proof uses no other property of P.
4.6 Remark. Considering K as a topological group with the p-adic topology, Theorem 4.3 can be expressed as follows: K bas a reduced unbounded p-primary epimorphic image if and only if K is the union of an ascending sequence of nowhere dense subgroups. Hence if K is of second category in the p-adic topology then every reduced p-primary epimorphic image of K is bounded.

The converse to the last statement is not true since torsion-free groups of finite rank which are \boldsymbol{p}-reduced are of first category (being countable) but have no unbounded reduced p-primary homomorphic image.
5. An alternative P-hull. A different embedding of a group in a P-module is the one described in Cartan-Eilenberg [2].
5.1 Definition. For any abelian group K let $K_{P}=P \otimes K$. The group K_{P} is a P-module with scalar multiplication given by $\lambda(\mu \otimes x)=\lambda \mu \otimes x$. For each homomorphism $f: K \rightarrow K^{\prime}$ let $f_{P}=1 \otimes f$.

The P-hull K_{P} has the following basic properties.
5.2 Proposition. (a) $-_{p}$ is an exact functor on the category of abelian groups to the category of P-modules.
(b) K is embedded in K_{P} if and only if $K[q]=0$ for all primes $q \neq p$. If $K \subset K_{P}$, then $\left(K_{P} / K\right)[p]=0, K_{P}=P K$ and K_{P} / K is p-divisible.

Proof. (a) It is well known that $-_{p}$ is a functor.- Since $\operatorname{Tor}(P, X)=0$ for any X, the functor $-p$ is exact.
(b) Suppose $K[q] \neq 0$ for some prime $q \neq p$. Since every torsion element in a P-module has p-power order, K cannot be embedded in K_{p}. Now suppose $K[q]=0$ for all primes $q \neq p$. Then it is a direct consequence of the definition of Tor [3, p. 264] that $\operatorname{Tor}(P / Z, K)=0$ since $(P / Z)[p]=0$. Thus it follows from (2.1) that $0 \rightarrow \mathbf{Z} \otimes K \cong K \rightarrow K_{P} \rightarrow P / \mathbf{Z} \otimes K \rightarrow 0$ is exact, and K is embedded in K_{p}. Since P / \mathbf{Z} is divisible and $(P / \mathbf{Z})[p]=0, P / \mathbf{Z}$ is a direct sum of groups Q and $Z\left(q^{\infty}\right), q \neq p$. Hence $P / Z \otimes K$ is a direct sum of torsion-free groups $Q \otimes K$ $\cong Q \otimes K / T(K)[3,61.5]$ and q-groups $Z\left(q^{\infty}\right) \otimes K$, and therefore $(P / \mathbf{Z} \otimes K)[p]=0$. Since $K_{P} / K \cong P / \mathbf{Z} \otimes K$, we have $\left(K_{P} / K\right)[p]=0$, and also K_{P} / K divisible. Since $\{\lambda \otimes x \mid \lambda \in P, x \in K\}$ generates K_{P} as a group, and $\lambda \otimes x=\lambda(1 \otimes x)$, it is clear that $\{1 \otimes x \mid x \in K\}=K$ generates K_{P}.

Next we determine K_{P} in one case, and clarify the connection between K^{P} and K_{P}.
5.3 Proposition. (a) If K is a P-module, then $K_{P}=K \oplus\left[\bigoplus_{2} \kappa_{0}(Q \otimes K / T(K))\right]$. Thus $K=K_{P}$ if and only if K is torsion.
(b) If K is p-reduced, then $K^{P}=K_{P} / D$ where D is the maximal divisible submodule of K_{P}.

Proof. (a) We have two homomorphisms $f: K \rightarrow P \otimes K: x f=1 \otimes x$ and $g:$ $P \otimes K \rightarrow K:(\lambda \otimes x) g=\lambda x$. Clearly $f g=1$, hence $K_{P}=\operatorname{Im} f \oplus \operatorname{Ker} g$. Now $\operatorname{Im} f \cong K$ since f is injective, while Ker $g \cong(P \otimes K) / \operatorname{Im} f=(P \otimes K) /\{1 \otimes x \mid$ $x \in K\} \cong P / \mathbf{Z} \otimes K \cong P / \mathbf{Z} \otimes(K / T(K)) \cong \bigoplus_{2 \times_{0}}(Q \otimes K / T(K))$.
(b) We shall show that $K^{\prime}=K_{P} / D$ satisfies (a)-(d) of 2.3. Since K is $p-$ reduced and p-pure in $K_{P}, K \cap D=0$, so K is embedded in K^{\prime}. By definition K^{\prime} is a reduced P-module. Since D, being divisible, is an absolute direct summand we have $K_{P}=L \oplus D$ with $L \supset K$. Hence $K^{\prime} / K=K^{\prime} /[(K \oplus D) / D] \cong K_{P} /(K \oplus D)$ $\cong L / K \leq K_{P} / K$. Since $\left(K_{P} / K\right)[p]=0$, we have $\left(K^{\prime} / K\right)[p]=0$. Since K generates K_{P} as a P-module it also generates K^{\prime}.

From 5.3(c) it is clear Lemma 2.9 holds with lower Ps instead of upper Ps. Hence the application in $\S 4$ goes through with either hull. The same is true for the applications in $\S 3$, since we have the following crucial fact.
5.4 Lemma. If T is a reduced p-group, then the groups $\operatorname{Hom}\left(K_{P}, T\right)$ and $\operatorname{Hom}(K, T)$ are naturally isomorphic.

Proof. We use [3, p. $256(\mathrm{~J})$]. Hom $\left(K_{P}, T\right)=\operatorname{Hom}(K \otimes P, T) \cong$ $\operatorname{Hom}(K, \operatorname{Hom}(P, T)) \cong \operatorname{Hom}(K, T)$ since $\operatorname{Hom}(P, T) \cong T$ by 2.2(a).

It is hard to say which hull is preferable. The hull K_{P} applies to a larger class of groups and is actually a functor. The disadvantage is that one has to consider nonreduced modules, and that the scalar multiplication functions in homological obscurity. We preferred the hull K^{P} because of its connection with the topological completion process for torsion-free K which motivated the whole construction and made it transparent.

BIBLIOGRAPHY

1. R. Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Mach. Ann. 135 (1958), 219-234. MR 20 \#6460.
2. H. Cartan and E. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
3. L. Fuchs, Infinite Abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 \#333.
4. D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391. MR 21 \#3481.
5. E. J. Howard, First and second category abelian groups with the n-adic topology, Pacific J. Mach. 16 (1966), 323-329. MR 34 \# 7640.
6. I. Kaplansky, Infinite Abelian groups, rev. ed., University of Michigan Press, Ann Arbor, Mich., 1969. MR 38 \#2208.
7. A. Mader, Extensions of Abelian groups, Studies on Abelian Groups (Sympos., Montpellier, 1967), Springer, Berlin, 1968, pp. 259-266. MR 43 \# 2079.
8. The group of extensions of a torsion group by a torsion free group, Arch. Math. (Basel) 20 (1969), 126-131. MR 40 \#232.
9. R. Nunke, On extensions of a torsion module, Pacific J. Math. 10 (1960), 597606. MR 22 \# 5656.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822

