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ABSTRACT.  In this paper we define "p-adic hull" for preduced groups K.

The p-adic hull K    of K is a module over the ring P oí p-adic integers contain-

ing K and satisfying certain additional properties. The notion is investigated

and then used to prove some known and some new theorems on Ext(K, T) and

Hom(/(, T) for K torsion-free and  T a reduced p-group.

1. Introduction.   The well-known method of "change of tings" put forth in

Cartan-Eilenberg [2] permits the embedding of an abelian group K in a module

over the ring P of p-adic integers provided only that the torsion subgroup of K is

p-primary.  The disadvantage of this p-adic embedding is that the module need not

be p-reduced although K is p-reduced.   Also, a group which is a p-adic module to

start with may be properly enlarged.   In §2 a "p-adic hull" K    is introduced

axiomatically.   This hull is investigated and it is shown, among other things, that

it has the properties mentioned above.

The concept of "p-adic hull" was suggested by investigations of the author

[8] of the following two problems.

I.  For which torsion-free groups K is Ext(K, T)[p] ¿ 0 for some p-group T?

H.  Which torsion-free groups K possess unbounded reduced p-primary

epimorphic images?

It is shown that the answer to both questions remains the same when K is

replaced by its p-adic hull K  . Now, the theory of torsion-free P-modules is much

simpler than that of torsion-free groups.   See Kaplansky [6, §§15 and 16].   In

particular, a reduced countably generated torsion-free P-module is free, and a pure

rank one submodule of any P-module is a direct summand.   These facts are used in

§3 to give new, simple proofs of results of Baer [1] and Mader [8].   In §4 the

second fact is used to prove a theorem concerning Question II.   In a final §5, we

compare the two possible p-adic embeddings mentioned above.

We use the notation of Fuchs' book [3] which also contains most facts and

concepts needed in this paper. We write maps on the right. If K is a P-module

and S a subset, then PS denotes the submodule generated by S. P-modules K
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218 A. MADER

will have to be considered as modules and abelian groups simultaneously.   Cer-

tain notions coincide whether K is considered a P-module or a   Z-module, among

these are the following: divisible, reduced, p-height, p"K, K[pn], direct sum, complete

direct sum, maximal divisible subgroup (-module).   Otherwise it will be made clear

what is meant.   If no mention of the ring of operators is made, we mean the Z-

module notions.   For instance, "homomorphism" means group homomorphism.

2. The p-adic hull.   The fact which makes things work in this paper is the

standard embedding of the ring of rational integers Z in the ring P of p-adic

integers.  We have

(2.1) Z>-*P+»P/Z    (ex)    with P/Z divisible and iP/Z)[p] = 0.

We derive some simple but useful consequences.

2.2 Lemma.   Let A, K be P-modules, and K reduced.   Then

(a) Hom(A, K) = Homp(A, K).   In particular, Hom(P, K) Si K.

(b) K is in a unique way a (unitary) P-module.

(c) If L is a subgroup of K which is a P-module, then L is a submodule

of K.

Proof,   (a) From (2.1) it follows that Hom(P, K) >—» Hom(Z, K) is exact, i.e.

every homomorphism P —► K is uniquely determined by its image at I.   Let / £

Hom(A, K), and a £ A.   The map P —» K: A —♦ (i\a)f - A(a/) is homomorphic and

has value 0 at 1.  Hence (Aa)/= A(a/) for all A £ P.   Since a was arbitrary, this

proves that every homomorphism is P-linear.   Since every P-homomorphism is addi-

tive, (a) is proven.

(b) If Ax and A • x ate two scalar products, then A —► Ax and A —> A • x ate

two homomorphisms P —» K which coincide on 1.   By (a)  Ax = A • x for all A £ P.

(c) Follows immediately from (b).

The next lemma justifies the definition of "p-adic hull" which will be given

below.

2.3 Lemma.   Let K be a p-reduced group.   Suppose K    is a group such that

(a) K' > K,

(b) K    is a reduced P-module,

(c) (fi'/ri)[p] = 0,

(d) K' = PK.   (Hence K'/K is p-divisible.)

Then

(A) For every reduced P-module L, any homomorphism K —» L has a unique

extension K   —► L.   The extension is a P-homomorphism.

(B) // K    and K    satisfy (a)—(d), then there is a unique P-isomorphism

K   —» K" which is the identity on K.

(C) For each p-reduced group K there is a group K    satisfying (a)—(d).
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Proof.   (A)  Let L* = Ext(Z(p°°), L).   With standard homological tools (see

Harrison [4]) we find L < L*, iL*/L)[p] = 0, L*/L is divisible, L* is reduced,

Ext(A, L*) = 0 for every group A with A[p] = 0, L* is a P-module.   By 2.2 the

P-module structure of L* is unique and L is a submodule.   The exact sequence

K >-> K'  -*>   K'/K implies

HomiK'/K, L*) = 0 — HomOf', L*) — Hom(K, L*) — Ext(K'/K, L*) = 0    (ex).

Hence every <p: K —» L e Hom(K, L*) has a unique extension 0 : K  —» L*.  By

2.2(a) cj>'  is a P-homomorphism, and K'<p' = (PK)c/>' = PiKcf>') C PL = L. thus

c£' € Hom(K', L).

(B) Immediate consequence of (A).

(C) K < K* = Ext(Z(p°°), K).   Let K' = PK C K*.   Then K' > K,  K'  is

reduced since K* is reduced, K    is by construction a P-module and K   = PK,

finally (K'/K)[p] = 0 since  K'/K < K*/K and (K*/K)[p] = 0.

2.4 Definition.   Let K be a p-reduced group.   Any group K    satisfying (a)—

(d) of 2.3 will be called a p-adic hull or P-hull of  K.   We write  K' = Kp.

The p-adic hull has the same degree of uniqueness as does the well-known

divisible hull.   The statement   K' = Kp reads  "K1   is a p-adic hull of K".   As

soon as a specific hull is chosen, it is meant by K    and the ambiguity disappears.

We next determine K     in some cases, and note some of its properties.

2.5 Proposition, (a) // K is a reduced P-module, then K    = K.

(b) // K is a reduced p-group, then K    = fC

(c) // K is p-reduced and K[p] = 0, then K     is torsion-free.

(d) (K   )    = K     for every p-reduced group K.

(e) // \KÀ is a family of p-reduced groups, then (©K¿)P =®KP.

(f) If K is a p-pure subgroup of P, then Kp = P.

(g) If K is a p-reduced torsion-free group and either K/pK is finite or K

countable, then K     is a free P-module of rank dim (K/pK).

(h)   If K is free, then K     is a free P-module.   The converse does not hold.

(i)   If L  is a p-reduced group, K < L and either (L/K)[p] = 0 or L/K is p-

reduced, then the submodule  PK of L     generated by  K is a p-adic hull of K.

(j)  // \a. | z e l\ is a maximal p-independent subset of the torsion-free p-

reduced group K, then \a. | z e I\ is a maximal p-independent subset of the

module  K  .

Proof, (a) K satisfies (a)-(d) of 2.3.

(b) Every p-group is a P-module hence (a) applies.

(c) Suppose px = 0 for x e Kp.  Since (Kp/K)[p] = 0, x e K[p] = 0.

(d) Consequence of (a).

(e) and (f) Conditions (a)—(d) of 2.3 are easily checked.
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(g)  K    is reduced.   If K is countable, then Kp is countably generated and

by Kaplansky [6, p. 46, Theorem 20], Kp is free.   Note that always Kp/pKp =

K + pKp/pKp EK K/K D pKp = K/pK.   If K/pK is finite, any basic submodule B

of K    is complete and by Kaplansky [6, p. 52, Theorem 23], B is a direct Sum-

mand of K   .  Since K  /B is divisible and K    is reduced, we have Kp = B and

is free.   In both cases the rank of Kp is dim(Kp/pKp) = dim(f\/pfv).

(h)  Combine (e) and (f).   That the converse does not hold is clear from (f) or

(g)-

(i)   The submodule PK of Lp satisfies (a), (b), (d) of 2.3.  Suppose

iL/K)[p] =0.   If x £ PK and  px £ K,   then   px £ L   and hence x £ L.   But

x £ L  and   px £ K  implies   x £ K  since   iL4K)[p] = 0.   Now  suppose that

L/K  is p-reduced.  PK C\ L/K < L/K   so  PK D L/K is p-reduced.   Further

PK = (Z + pP)K = K + piPK), and so PKHL = iK + piPK)) nL = K + [piPK) O L]

= K + p(PK n L) using the Dedekind identity and (Lp/L)[p] = 0.   So PK D L/K =

ipiPK C\L)+ K)/K = piPK n L/K).  We now have that PK n L/K is both p-

reduced and p-divisible, so PK D L = K.   Suppose x £ PK[C Lp] and px £

K[C L].   Then x £ L C\ PK = K.   This proves (c) of 2.3 also in the second case.

(j)  Let B = ©¿e, Za; be the p-basic subgroup of K generated by \a{\.   By

(i) we may assume that B    C Kp.   Let B = IIjP.   We shall utilize a representation

of the whole set-up in B.   First of all cf>: B —» B: i2n¿ai)tp' = (• • • «¿ • • •) is

clearly an embedding.   Since (B/Bc/J)[p] = 0, P(Br/i) = (B<?S)P, and clearly iB<f>)p =

(B,P.  Since (Kp/B)[p] = 0 and Kp/B is divisible, we conclude from B  =—» Kp

-»   Kp/B (ex) that 0 — Hom(Kp, B) — Hom(B, B) — Ext(Kp/B, B) = 0 is exact.

In particular the embedding (f>: B —» B has a unique extension cf>: K   —» B.   We

claim that c£ is injective.   In fact, suppose x £ Kp and xtf> = 0.   Since K  /B is

p-divisible, given 72, we can write x = b~   + p"x    for some ¿>    e B and some x    £c »o, 77r77 72 72

Kp.  Now 0 = x<j> = bn<p+ pn(xnth) implies èn<jS £ B<f> O p"B = p"(Bc/.) = (p"B)c/S.

Since r/i is monomorphic on B, ¿>n £ pnB and x e pnKp.   So x £C\npnKp = 0.

Thus (/>: Kp —» B is an embedding as claimed, and tf> is also a P-homomorphism

by 2.2.  Clearly (Kp)tf> = (PK)<7Í = P(K<f>) = (K?i)p, and (Bp)<f> = (Bçi)p.   The

latter proves Bp =^ieIPa{.   Since obviously (B/(B<7j)P)[p] = 0 we have

((Kçb)p/(B0)p)[p] = 0,'and since Kp/Bp S iKcß)p/iBcßf we have (Kp/Bp)[p] = 0.

Further Kp = K + pKp = B + pK + pKp = Bp + pKp, so Kp/Bp is p-divisible.

So Bp is a free, p-pure, dense submodule of Kp' with free generators a¿) which

shows that {a. \i £ I\ is a maximal p-independent subset of K  .

We remark that K    need not contain a p-adic hull for each of the subgroups

of K.   For example, let \a \ be a maximal independent subset of P and A =

©¿Za..   Then Ap S ®2 HQP which cannot be a submodule of PP = P.

The next proposition shows that the process of forming p-adic hulls has great

similarity with a functor.
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2.6 Proposition, (a) // K, L are p-reduced groups, K , L p-adic hulls of

K, L and cp: K —• L is a homomorphism, then there is a unique P-homomorphism

<pp: K    —* L     extending cp.

(b) // K.,  i = 1, 2, 3, are p-reduced groups with p-adic hulls Kp, and if cp^:

K. —> K. and cp-: K2 —> K, zzre homomorphisms, then (cp.cpA    = <£, cp2 .

(c) In the situation of (a) if cp'  is surjective so is qy .   If (L/Kcp)[p] = 0 or

L/Kcfr is p-reduced and cp is injective, so is qy .

Proof, (a)    The homomorphism cp: K —► L     has a unique extension cp

- Lp by 2.3(A).

(b)  Immediate consequence of (a).

(c)  From Kcp = L it follows that KPcpp = (PK)cpp = P(K</>P) = P(Kcp) = PL

= Lp.   For the second part we first note that (Kcp)p = P(Kcp) C Lp by 2.5(i).

Since cp: K —» Kcp is an isomorphism so is cf>   : K    —> (Kcp)   .   So cp   : K    —» L

is injective.

Since /< < L does not imply K    < L     as remarked above it is also not true

that <p injective implies cp    injective in all cases.

2.7 Remark.   The process described above is actually a functor on the cate-

gory of p-reduced groups to a skeletal subcategory C of the category of reduced

P-modules.  Such a skeletal subcategory contains exactly one object from each

isomorphism class of reduced P-modules.   For each K, K     is the unique object

of C for which there is a monomorphism cp: K —> K    such that K    = iKcpA    in

the sense of Definition 2.4.   If K >-* M  -** L is an exact sequence of p-reduced

groups, then 0 —» K    —» Mp —» L   —* 0 need not be exact.   In order to see what

happens we discuss the case where L[p] = 0 in some detail.

2.8 Example.   Let   K,  L   be p-reduced groups,   L[p] = 0,  K* =

Ext(Z(p°°), K) and E = K* © L.   From K ~ K*  -» K*/K (ex) it follows, using

L[p] = 0, that Hom(L, K*/K) —» Ext(L, K) —> 0 is exact.   Thus every extension

of K by L arises from a map of Hom(L, K*/K).  If cf £ Hom(L, K*/K) then

K ^-» Al   -*» L represents the image of f when zM<E, M = (x+y|xe K*, y e L

and y¿; = x + K], and II is the projection of E onto L.   As in Mader [7] we easily

calculate that M n K* = K and M + K* = E.   Since E/M = (M + K*)/M s K*/K*

n/M = KVK and (K*/K)[p] = 0 we have (E//M)[p] = 0.  So by 2.5(i) Mp < Ep =

K* © Lp; also Kp < K*.

(a) IIP: Mp -» Lp is surjective and KerIIP = Mp O K*.

Proof.   Since II is surjective, so is IIP by 2.6(c).   Further it is clear that

IJ    is the projection of E     onto L     since this projection obviously extends II.

Therefore, KerIIp = Mp O K*.

(b) Kp ̂ - Alp -h Lp (ex) if and only if Kp = Mp n K*.

This is immediate from (a).

(c) Mp n K*/KP = pw(Mp/Kp) = maximal divisible submodule of /MP/KP.
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Proof.   Since Mp/Mp n K* S Lp is reduced and torsion-free we have

p^Mp/fip) C Mp n K*/Kp.   We are finished if we show that Mp O K*/Kp is

divisible. Since iEp/E)[p] = 0 and (E/M)[p] = 0 we have iEp/M)[p] = 0. Since

(Ep/-W)[p] = 0 and Mp/M is p-divisible it follows easily that (EF/Mp)[p] = 0. Now EP/MP =

PE/MP = PiK* + M)/Mp = (K* + PM)/MP = iK* + Mp)/Mp a K*/Mp O K* S*

(K*/KP)/(MP n K*/Kp), so Mpry K*/Kp is pure in the divisible module K*/Kp

and so is itself divisible.

(d) Suppose K*/Kp 4 0. Then Mp C\ K* = Kp for every M only if every

subset of L which is Z-independent is P-independent in L   .

Proof. (1) Let us first note.that iK*/K)[p] = 0 and Kp/K p-divisible

together imply that lK*/Kp)[p] = 0.   Since K*/Kp is a P-module this means that

K*/K    is torsion-free (i.e. Ax = 0 implies x = 0).

(2) Given {; £ Hom(L, K*/K) and a corresponding extension M of K by L

contained in E (i.e. x +y £ M ix £ K*, y £ L) if and only if y£ = x + K). We

have u + v £ M     lu £ K*, v £ L   ) if and only if u + v = 2A.(x. + y.) where

x. + y.£M (x. e K*, y. e L, y 4; = x¿ + K). Further u + v £ Mp n K* if and

only if 2Xjyi = 0.   Hence Mp n K* = Kp if and only if 2á¡jcí £ KP whenever

SA.y, = 0 for x. + y. e M.

(3) Suppose \y j is a (finite) Z-independent subset of L but 2k.yi = 0 in

Lp for A. e P, not all 0.   Let x £ K*,x d Kp.   If SA. ¿ 0, choose £ £

Hom(L, K*/K) such that y ¿j = x.   Such a f exists since {y¿! is Z-independent

and K*/K is divisible.   Then 2A.(x + y¿) = (2A(.)x e Mp n K* but (2A¿)x d Kp

by (1).  Should it happen that SA. = 0 then pA . + 2.    A. 4 0 for some /.   Now

choose ff  such that y¿£ = x (z ^ /) and y ¿= px.   Then it follows exactly as

before that Mp O K* 4 Kp.

As a rule some Z-independent subsets of L will become P-independent in

L , and clearly K*/K 4 0 can be achieved. Thus K 4 M O K* can occur

and Kp >-> Mp -» Lp need not be exact.

The last lemma of this section settles a technical matter which is needed

in §4.

2.9   Lemma, (a) Let M be an unbounded group with pœM = 0.   Then

M\ lpmM     is unbounded,

(b) Let L be a p-reduced group, K < L such that L/K is unbounded and

p^iL/K) = 0. Then Kp < Lp by 2.5Ü). Let K° < Lp be such that K°/Kp =

pCÜ(Lp/Kp).   Then K° is a submodule, píü(Lp/K°) = 0 aTja* Lp/K° is unbounded.

Proof, (a)  Suppose first that M/TlM) is not p-divisible.   Then we have

K^_ M -** L(ex) where K/TiM) = p"(M/r(M)) and L S M/K S (M/T(M))4(K/T(M))

= (M/TiM))/pù>(M4T(M)).   Hence L is 4 0, torsion-free and p-reduced, and there-

fore p^L9 = 0.   Since Mp-» Lp it follows that Mp/p"Mp -» Lp showing that
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M  /paM     is unbounded.   Secondly suppose that M/T is p-divisible where T -

TiM).   Let   T* = Ext(Z(p°°), T).   Then   T*/T is torsion-free divisible.  Since

M is p-reduced and M/T is torsion-free and p-divisible we may assume that T <

M < T*.  It is easily checked that iT*/M)[p] = 0, and therefore Mp = PM < T*.

Now pwMp r\TC paT* nT = pcúTC p^M = 0.  Therefore T S* T + paMp/pù'Mp

< M   /paM   .   We are finished if T is unbounded.   But if T is bounded, then

M ^ T © M/T and since pwM = 0.   This means M is bounded which is not so.

(b)  Put L/K = M.   Since L -*» M we have Lp -*> Mp.  The composite map

L   -** M  /paM    maps K    and hence K° onto 0.  So we have an induced map

Lp/K° -» Mp/peoMp.  By (a) Mp/pû3Mp is unbounded hence so is Lp/K°.   By

definition K° is a submodule and p^^/K0) = 0.

3. Applications to Horn and Ext.   We are concerned with the groups Hom(K, T),

Ext(K, T) for T a reduced p-group and K a p-reduced group.   For the results of

this section we only need 2.3 and parts of 2.5 of our previous results.

3.1 Theorem.   Let T be a reduced p-group and K a p-reduced group.   Then

the following hold.

(a) The restriction map Hom(K  , T) —» Hom(K, T) is an isomorphism.

(b) Ext(Kp/K, T)>-» Ext(Kp, T) ■** Ext(K, T) is exact.

(c) Ext(Kp, T) St Ext(Kp/K, T) © Ext(K, T).   Let T* = Ext(Z(p°°), T).

Then Ext(Kp/K, T) Qt Hom(Kp/K, T*/T) and both groups are torsion-free

divisible.

(d) Ext(Kp, T)[p] S Ext(K, T)[pl

Proof.   The exact sequence K >—* Kp -** Kp/K implies the exact sequence

0 - Hom(Kp, T) — Hom(K, T) — Ext(Kp/K, T) -» Ext(Kp, T) — Ext(K, T)->0.

By 2.3(A) Hom(Kp, T) —» Hom(K, T) is surjective.   This proves both (a) and (b).

To prove (c) consider T ^- T* — T*/T (ex).   We obtain 0 — Hom(Kp/K. T*/T)

— Ext(Kp/K, D — Ext(Kp/K, T*) = 0.   Thus Hom(Kp/K, T*/T) »

Ext(Kp/K, T).   Since T*/T is torsion-free divisible so is Hom(Kp/K, T*/T).

It follows that (b) splits and all of (c) is proved.

(d)  Immediate consequence of (c).

There are immediate consequences when K     is a free module.

3.2 Corollary.   // K is a torsion-free p-reduced group such that either K/pK

is finite or K countable, and if T is a reduced p-group, then

(a) Hom(K. T) a H^lK/pK)T.

(b) Ext(K, Dtp] = 0.

Proof.   By 2.5(g) Kp = ®¿P where d = dim(K/pK).   Hence Hom(K. T) Qt

Hom(Kp, T) = Homp(Kp, T) = II^T.   Further Ext(Kp. T) S 11^ Ext(P, T), and by
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3.1(c) and 2.5(f)   Ext(P, T) = Ext(Zp, T) Ot Ext(P/Z, T)© Ext(Z, T) =

Ext(P/Z, T) which is torsion-free.   Hence Ext(KP, T) is torsion-free.   By 3.1(d)

the proposition follows.

These results were first proved by Baer [1, p. 229], and later differently by

Mader [8].

4. Reduced p-primary quotient groups.   Groups may have large ranks and no

elements of infinite p-height but no reduced unbounded p-primary epimorphic

images.  See Baer [l, p. 231, 4.1], and Howard [5, p. 324, 2.2, and p. 325, 2.9].

We shall give a necessary and sufficient condition for the existence of reduced

unbounded p-primary epimorphic images.   The theorem is motivated by the results

of Howard [5] and the one very obvious part of the theorem which we will do first.

4.1 Proposition. // the group K has a reduced unbounded p-primary epimor-

phic image, then K is the union of an ascending sequence of subgroups K. < ■ •.

< K.< fv +1 < . .. such that p^lK/K^ = 0 and K//C is unbounded for all i.

Proof.   Since every p-group can be mapped epimorphically onto any of its

basic subgroups by Szele's theorem (Fuchs [3, p. 152, 36.1]) we may assume that

K has the epimorphic image B =©=,B- where each B • is a direct sum of cyclic

groups of order p1 and infinitely many B ■ ate not zero.   Let  Ki  be the preimage

of ©!<   < B ■•   Then {fÇÎ obviously is as claimed.

Our main result is the converse of this proposition, i.e. we prove

4.2 Theorem.   A group K has a reduced unbounded p-primary epimorphic

image if and only if K is the union of an ascending sequence of subgroups

Kx < K2 < • •. < K. < Ki+1 < ■■. such that p'XK/K?) = 0 and K/K{ is unbounded.

The theorem is proved by reducing it to the easier case of P-modules by

means of the p-adic hull.

4.3 Reduction.   // K = (JK. as in 4.2, then K     is the union of an ascending

sequence of submodules L, < • • • < L . < L +, <••• such that K  /L . is unbounded

and p^l^/L.) = 0.

Proof.   Since p"iK/K?, = 0 we have Kp < Kp by 2.5(i).   As we have seen

in 2.8 K  ¡K    need not be reduced.   Therefore let L. be the submodule of K

with L./KP = palKp/Kp).   By 2.9 Kp/L . is unbounded and paiKp/L^ = 0.   It

is obvious that L. < Lf+1 for all z, and KP = PK = P((JC) C PUJlJ = U^r

Since Hom(K  , T) ^ Hom(K, T) for any reduced p-group T (3.1(a)) it

remains to prove 4.2 for P-modules.

4.4 Theorem.   Let K be a P-module and K. < K- < •• • < K, < K.+, < •. •
12 z z*l

are ascending sequence of submodules such that p  iK/K.) = 0, K/K. is not
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bounded and U^¿ = K.   Then there exists a submodule M such that K/M is a

reduced unbounded p-primary module.   The converse also holds.

Proof.   Let KQ = pú>K.  Since pu>(K/K1) = 0 we have K„ < Kj.  M will be

obtained inductively as the union of a chain of submodules

0 1 i z+1

satisfying

(1) p^K/M .) = 0;

(2) there are integers f(i) such that 0 < j(0) < j(l) < ■ • • < j(i) < j(i + 1)< ...

and K7-(¿) > AL for all »';

(3) there are submodules A¿ of K such that K//VL = K.,.VAL© A^/ilL;

(4) for i > 1, Kj{i/M. = (K.(¿_n + AL)/AL© C. where C. = P(a._j + M) for

some « •_ j e K and » > exp C. > »';

(5)1 for z > 1, Ky(i._n n M. = «..j, hence Ufo.,, + M^/M. ̂  K^. t/M._ p

(6)  ^.(¿/M,- is finitely generated and p-primary.

A. . =B + p*K

AT, /(»), A¿, zz¿      C¿ will be constructed inductively.   We begin with M0 = Kn,

;'(0) = 0, AQ = K.  Suppose AL, ;'(z), A¿, a.,, C¿ have already been obtained satisfy-

ing (l)-(6).  Note that A{/M. is not bounded since otherwise K/K.^ would be

bounded.   Let n = expiK.^/M), so p"K,(¿) C AL.  Since p^A ./AL) = 0 and

A¿/AL is not bounded, there is a. eA. such that
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(a) A/M. = P(a. + Al .)© B/M . and exp (a. + AL) > k :« s + i + 1.

(For the existence of z»¿ note that every cyclic summand of a p-basic sub-

module of A¿/A1. is a direct summand of A ./M. by Kaplansky [6, Theorem 23].)

Since \jKr = K there is j(i + 1) > /'(»') such that K.(¡.+1) D Pzz\ + AL.   Then it

follows from (3) (Fuchs [3, p. 38, (b)]) that

(b) Ky^+j/Mf = Kj(i)/M,® (Ai f*l Kj(i+i))/Mi and from (a) we obtain

(c) (A . n Kj{iH))/M. = P(a. + AI.) © (B n K.(i.+1))/AL.

Define A¿+1 = B + p*K and Al .+1 = K(¿+1) O A.+1.   Then AL C K.(j) nßC

^;(z'+l) ^ ^f+1 = ^i+l*   ^e bave to verify in addition statements (1 )—(6 ) which

are obtained from (1)—(6) by replacing » by z + 1.   By construction (2 ) is satisfied.

Since p"(K/K.(.+1)) = 0 and p"(K/A.n) = 0, we have p^K/Ai.+j) = 0.   So (l')

holds.   Since K.(.+1) + A.+1 D K;.(f)  + Pz»¿ + BD K/(j) + A. = K and K;.(j+1) n

Ai+l=Mi+i wehave K/A1!+1 = Ky^+j/Al^j ©A.+j/Al^j, and (3')holds.  Note

that p"K ,(i) C AL    and   K = K.(¿) + A . imply pkK C p"K = pnK .(i) + pnA. C AL +

A . = A ., and so A .+1 = B + p*K C A..   Since Al. C K.(f) n AL+1 C K;.(¿) n A .+1 C

K.,..n A¿ = AL, we have AL = K.,., n AL+1 and so (5 ) holds.   If we show (4 )

then (6 ) is clear from (5 ) and (6).   To show (4 ), firstly note that K...+1. D

Km + Pa. + Al /+1 = K.( f) + P«. + A.+1 n K.(¿+1) = K.(¿) + Pz»¿ + (B + fit) O K.(.+1) D

Ki(i) + Pflz + ß n K,(m) D K/(») + (¿4í n K,(,+lP <by (c))  3 Ky(l.+1) (by (b)).   So

K/(»+l) = Kj(i) + M,+l + P<V   Secondly, AL+1 C (Ky(¿) + AL+1) n (Pa,. + Mf+1) C

(K.{i) rt (Pu. + M.+1)) + Mi+1 C (Km n A.) + M.n = M. + AL+1 = AL+1. Thus K.( .+1)/AL+1

= (K;(l) + MI+1)/MI+1 © C(+1  where C¿+1 := P(zz¿ + AL+1) is cyclic and

expC¿+1 < k since  p*zz¿ e K î/.+n'"> p*K C AL+1.   To show expC(+1 > z + 1 sup-

pose pma. e AL+1 C B + pkK.   Then pma. = b + pkx with b e B, x e K.   Write

x = y + z with y e K.(¿), z eA,   Then pkx = p*y + pkz = pkz mod M..   Thus

p"^. = b + pkz mod AL, or pkz = pma. - b mod AL.   From (a) it follows that m> k.

Hence expC¿+1 = i * » + i + 1 > i + 1,   This proves (4 ) and the construction of

the M . is finished.
7

Now let   Al =   \JM..   We have to show that   K/M   is reduced, unbounded

and p-primary.   We shall show that in fact   K/M   ^   © C¿.   By (4), we

have Km C *.<,._„ + P«._, + M. C K;.{._2) + Pzz._2 + Pa._x + AL C ... C Pz»0 +

PzZj + ... + Pcz._ j + Al,.   Since K = (JKr we have K = S Pz»r + Al or K/M =

'S, Pia  + M).  Suppose 1, X a   =• OmodM.   Since this sum is finite and M = [JM

there is z such that zz   e K.,.> for all r and 1Á a   = Omod AL.   We rewrite this
r ¡(i) r  r i

as2<;_jAzz  +Ai». = 0 mod At..   Now it follows from (4) that A^. s 0 mod AL,

so A.z». = Omod M.   Now we have  2<._1Aa   e K., ._j. n Al. = Al._ j.   Arguing as

before we get A.   . a.   . = Omod Al and 2,.   ,Az»   e K.,.   ,xOM.   ,=M.   ,.   By
& r—1    r—1 rsi- 2    r  r 7A2— ¿) z—1 i—¿ J

induction A a   = OmodM for all r.   Thus we have K/M = ©P(z»  + Al) as claimed.

4.5   Remark.   In 4.4, P may be any complete discrete valuation ring with
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prime ideal (p).   The proof uses no other property of P.

4.6  Remark.   Considering K as a topological group with the p-adic topology,

Theorem 4.3 can be expressed as follows: K has a reduced unbounded p-primary

epimorphic image if and only if K is the union of an ascending sequence of no-

where dense subgroups.  Hence if K is of second category in the p-adic topology

then every reduced p-primary epimorphic image of K is bounded.

The converse to the last statement is not true since torsion-free groups of

finite rank which are p-reduced are of first category (being countable) but have no

unbounded reduced p-primary homomorphic image.

5. An alternative P-hull.   A different embedding of a group in a P-module is

the one described in Cartan-Eilenberg [2].

5.1 Definition.   For any abelian group K let Kp = P ® K.   The group Kp is

a P-module with scalar multiplication given by A(ft ® x) = Aft ® x.   For each homo-

morphism /:  K —» K'   let fp = 1 ® /.

The P-hull Kp has the following basic properties.

5.2 Proposition, (a)  -„ z's are exact functor on the category of abelian groups

to the category of P-modules.

(b)   K is embedded in Kp if and only if K[q] = 0 for all primes q 4 p.   //

K C Kp, then (Kp4K)[p] = 0, Kp = PK and Kp/K is p-divisible.

Proof, (a)  It is well known that -p is a functor.- Since Tor(P, X) = 0 for

any X, the functor -p is exact.

(b)  Suppose K[q] 4 0 for some prime q 4 P- Since every torsion element in a

P-module has p-power order, K cannot be embedded in Kp.   Now suppose K[q] = 0

fot all primes q 4 p.   Then it is a direct consequence of the definition of Tor

[3, p. 264] that Tor(P/Z, K) - 0 since (P/Z)[p] = 0.   Thus it follows from (2.1)

that 0 —>Z® K Oí K-* Kp—> P/Z ® K — 0 is exact, and K is embedded in

Kp.   Since P/Z is divisible and (P/Z)[p] = 0, P/Z is a direct sum of groups Q

and Z(a°°), q 4 p-  Hence P/Z ® K is a direct sum of torsion-free groups Q ® K

OiQ® K/TlK) [3, 61.5] and a-groups Zlq°°) ® K, and therefore (P/Z ® K)[p] = 0.

Since Kp/K S P/Z ® K, we have (Kp/K)[p] = 0, and also Kp/K divisible.

Since {A®x|AeP, xe/Cj generates Kp as a group, and A ® x = A(l ® x), it is

clear that Í1 %> x\ x £ K\= K generates Kp.
p

Next we determine Kp in one case, and clarify the connection between K

and Kp.

5.3 Proposition, (a)  If K is a P-module, then Kp = K© [© Kq IQ ® K/T(K))].

Thus K = Kp if and only if K is torsion.
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(b)  // K is p-reduced, then K    = Kp/D where D is the maximal divisible

submodule of Kp.

Proof, (a)  We have two homomorphisms /: K —» P ® K: xf = 1 ® x and g:

P ® K -* K:  (A ® x)g = Ax.   Clearly fg = l, hence Kp = Im /© Ker g.   Now

Im/sK since / is injective, while Ker g Oí (P ® K)/ltn f = (P ® K)/{1 ® x|

x £ K\ ss P/Z ® K ss P/Z ® (K/T(K)) Oí m „   (Q ® K/T(X)).
2    ^

(b)  We shall show that K' = Kp /D satisfies (a)-(d) of 2.3.   Since K is p-

reduced and p-pure in Kp, K C\ D = 0, so K is embedded in K .   By definition K

is a reduced P-module.   Since D, being divisible, is an absolute direct summand

we have Kp = L@D with L D K.   Hence «'/K = K'/[(K © D)/D] S Kp/(K © D)

S L/K < Kp/K.   Since (Kp/K)[p] = 0, we have (K'/K)[p] = 0.   Since K generates

Kp as a P-module it also generates K .

From 5.3(c) it is clear Lemma 2.9 holds with lower Ps instead of upper Ps.

Hence the application in §4 goes through with either hull.   The same is true for

the applications in §3, since we have the following crucial fact.

5.4 Lemma.   // T z's a reduced p-group, then the groups Horn (Kp, T) and

Hom(K, T) are naturally isomorphic.

Proof.   We use [3, p. 256 (J)].  Hom(Kp, T) = Hom(K® P, T) oí

Hom(K, Horn (P. T)) Si Hom(K, T) since Hom(P, T) S T by 2.2(a).

It is hard to say which hull is preferable.   The hull Kp applies to a larger

class of groups and is actually a functor.   The disadvantage is that one has to

consider nonreduced modules, and that the scalar multiplication functions in

homological obscurity.   We preferred the hull K    because of its connection with

the topological completion process for torsion-free K which motivated the whole

construction and made it transparent.
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