Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The existence, characterization and essential uniqueness of solutions of $L^{\infty }$ extremal problems
HTML articles powered by AMS MathViewer

by S. D. Fisher and J. W. Jerome PDF
Trans. Amer. Math. Soc. 187 (1974), 391-404 Request permission

Abstract:

Let $I = (a,b)$ be an interval in R and let ${H^{n,\infty }}$ consist of those real-valued functions f such that ${f^{(n - 1)}}$ is absolutely continuous on I and ${f^{(n)}} \in {L^\infty }(I)$. Let L be a linear differential operator of order n with leading coefficient $1,a = {x_1} < \cdots < {x_m} = b$ be a partition of I and let the linear functionals ${L_{ij}}$ on ${H^{n,\infty }}$ be given by \[ {L_{ij}}f = \sum \limits _{v = 0}^{n - 1} {a_{ij}^{(v)}{f^{(v)}}({x_i}),\quad j = 1, \cdots ,{k_i},i = 1, \cdots ,m,} \] where $1 \leq {k_i} \leq n$ and the ${k_i}$ n-tuples $(a_{ij}^{(0)}, \cdots ,a_{ij}^{(n - 1)})$ are linearly inde pendent. Let ${r_{ij}}$ be prescribed real numbers and let $U = \{ f \in {H^{n,\infty }}:{L_{ij}}f = {r_{ij}},j = 1, \cdots ,{k_i},i = 1, \cdots ,m\}$. In this paper we consider the extremal problem \begin{equation}\tag {$\ast $}{\left \| {Ls} \right \|_{{L^\infty }}} = \alpha = \inf \{ {\left \| {Lf} \right \|_{{L^\infty }}}:f \in U\} .\end{equation} We show that there are, in general, many solutions to $( \ast )$ but that there is, under certain consistency assumptions on L and the ${L_{ij}}$, a fundamental (or core) interval of the form $({x_i},{x_{i + {n_0}}})$ on which all solutions to $( \ast )$ agree; ${n_0}$ is determined by the ${k_i}$ and satisfies ${n_0} \geq 1$. Further, if s is any solution to $( \ast )$ then on $({x_i},{x_{i + {n_0}}}),|Ls| = \alpha$ a.e. Further, we show that there is a uniquely determined solution ${s_ \ast }$ to $( \ast )$, found by minimizing ${\left \| {Lf} \right \|_{{L^\infty }}}$ over all subintervals $({x_j},{x_{j + 1}}),j = 1, \cdots ,m - 1$, with the property that $|L{s_ \ast }|$ is constant on each subinterval $({x_j},{x_{j + 1}})$ and $L{s_ \ast }$ is a step function with at most $n - 1$ discontinuities on $({x_j},{x_{j + 1}})$. When $L = {D^n},{s_ \ast }$ is a piecewise perfect spline. Examples show that the results are essentially best possible.
References
    N. I. Achieser and M. Krein, Sur la meilleure approximation des fonctions periodiques au moyen des sommes trigonomĂ©triques, Dokl. Akad. Nauk SSSR 15 (1937), 107-111. J. Favard, Sur les meilleurs procĂ©dĂ©s d’approximation de certaines classes des fonctions par des polynĂŽmes trigonomĂ©triques, Bull. Sci. Math. 61 (1937), 209-224.
  • J. Favard, Sur l’interpolation, J. Math. Pures Appl. (9) 19 (1940), 281–306 (French). MR 5187
  • Georges Glaeser, Fonctions composĂ©es diffĂ©rentiables, SĂ©minaire d’Analyse, dirigĂ© par P. Lelong, 1962/63, No. 2, SecrĂ©tariat mathĂ©matique, Paris, 1963, pp. 4 (French). MR 0188382
  • Michael Golomb, ${\scr H}^{m,p}$-extensions by ${\scr H}^{m,p}$-splines, J. Approximation Theory 5 (1972), 238–275. MR 336161, DOI 10.1016/0021-9045(72)90017-2
  • —, Some extremal problems for differential periodic functions in ${L_\infty }(R)$, Math. Res. Cent. Tech. Summary Rep. 1069, Madison, Wisconsin, 1970.
  • Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • Joseph W. Jerome, Minimization problems and linear and nonlinear spline functions. I. Existence, SIAM J. Numer. Anal. 10 (1973), 808–819. MR 410205, DOI 10.1137/0710066
  • Joseph W. Jerome, Minimization problems and linear and nonlinear spline functions. II. Convergence, SIAM J. Numer. Anal. 10 (1973), 820–830. MR 410206, DOI 10.1137/0710067
  • E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil. 1: Gewöhnliche Differentialgleichungen, 3rd ed., Math. und ihre Anwendungen in Physik und Technik, Band 18, Geest & Portig, Leipzig, 1944. MR 9, 33. I. J. Schoenberg and A. Cavaretta, Solution of Landau’s problem concerning higher derivatives on the halfline, Math. Res. Cent. Tech. Summary Rep. 1050, Madison, Wisconsin, 1970. P. Smith, ${W^{r,p}}(R)$-splines, Dissertation, Purdue University, Lafayette, Indiana, June, 1972.
  • KĂŽsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A65
  • Retrieve articles in all journals with MSC: 41A65
Additional Information
  • © Copyright 1974 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 187 (1974), 391-404
  • MSC: Primary 41A65
  • DOI: https://doi.org/10.1090/S0002-9947-1974-0364983-X
  • MathSciNet review: 0364983