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A COMBINATORIAL APPROACH TO THE

DIAGONAL /V-REPRESENTABILITY PROBLEM^)

BY

MARK LAURANCE YOSELOFFC2)

ABSTRACT.   The problem considered is that of the diagonal N-representa-

bility of a pth-order reduced density matrix, p 2 2, for a system of N identical

fermions or bosons.   A finite number M of allowable single particle states is

assumed.   The problem is divided into three cases, namely:   Case I.  M = N +

p; Case II.  M < N + p; Case III.  M > N + p.  Using the theory of polyhedral
convex cones, a complete set of necessary and sufficient conditions is first

found for Case I.   This solution is then employed to find such conditions for

Case II.   For Case III, two algorithms are developed to generate solutions for

the problem, and examples of the usage of these algorithms are given.

I.   PRELIMINARIES

1.   Physical problem.

a.   Wave functions and density matrices.   In the study of systems of identical

symmetric (bosons) and antisymmetric (fermions) particles, the wavefunction

provides a characterization of such assemblies.   Because of the extremely compli-

cated nature of the wavefunction, simpler objects may be introduced in order to

facilitate an evaluation of various quantities associated with the system.   These

objects are reduced density matrices and are at the heart of the problem to which

this paper is addressed.(^)

In the discussion which follows we will restrict our attention to fermions.

However, by replacing the antisymmetry conditions by symmetry conditions, and

Slater determinants by their permanents, all of the arguments work equally well

for bosons.

As was mentioned above, given a system of N identical antisymmetric par-

ticles with coordinates X., *2, *,,••• , xN, where each x. is of the form
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(t., s) with t. a space coordinate chosen from R  , and s. a spin coordinate chosen

from Z-, the system may be characterized by an   N particle wavefunction

This function is antisymmetric and normalizable.

In terms of such wavefunctions we may now define their pth-order reduced

density matrices, or more simply their p matrices as

ripXx\x'2x\ ...x'p | *j*2x3 ... X )

(1)    f
-J * (x\,x'2,x'if... ,x'p,xp+v... ,xN)V(xv... ,xN)dxp+l...dxN.

Depending upon the context in which p matrices are being considered, other

normalizations may be more appropriate.   For example, Löwdin [8] multiplies the

right-hand side of the above defining equation by (   ), and McWeeney [9] uses

the factor Nl/p\.  Coleman [2], however, points out the general utility of the defini-

tion above as it stands.   As will be pointed out below, the diagonal elements of a

p matrix have a probabilistic interpretation, and this is most easily facilitated by

employing the normalization of equation (1).

If ÎÎ      is a Hermitian operator representing a physical quantity associated

with the system, it may be expanded as

(2) oop = n(0) + Ç o. + i- £oj;. + |f L\fc +...,

where the   72th term is an (?? - l)-particle operator and the prime on the summation

indicates that only terms in which all indices are distinct are summed.   We can

evaluate the average value of this quantity ( 0   )    ,   in the situation given by

a normalized wavefunction *P by using p matrices.   In such a case, we have

<V„-°<(9+J0ira)(x,l l*l>*l

(3) ç , ,
+   I 012r(2\x'jx'2 I xix2)dxldx2 +•••-•

By expanding the operator in this way, we can greatly simplify a computation of an

approximation of its value.   Löwdin [8] gives several examples of the usefulness

of p matrices in this context.

In general, density matrices are bounded linear operators, of trace class,

which satisfy the following conditions:

(i)  they are Hermitian;

(ii)  they are anitsymmetric;

(iii)  the p and (p - l) matrices associated with the same wavefunction are

related by the equation
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r(í"1)(*'lx>3 ■••x'p-l\xlx2xî ••• Vl}

(4)
= p-1 J r(%'ix'2x'3 ... x'p | Xjx2x} ... x^)^.

However, in order for the expansion given by equation (3) to have physical signifi-

cance, the matrices used must satisfy the condition of N-representability ,(4)

which is discussed in the next section.

b.   N-representability.   In this section we will define the properties, for a

p matrix, of being pure state and ensemble N-representable.   We will then special-

ize to the problem of diagonal N-representability and present a theorem connecting

the pure state and ensemble problems in the diagonal case.

A p matrix  r^'Ufx^x.' • • • x' | *i*2x3 ' ' ' x¡) IS sai^ t0 De PUTe state N-

representable if there exists some single normalized antisymmetric wavefunction

V of N particles such that T^' and Ç are related by equation (1).   A p matrix

is said to be ensemble N-representable if it can be written as a convex combina-

tion of pure state N-representable   p matrices.   That is, if there exists a set of

pure state N-representable p matrices jr.^'j and weights w. suchthat

(5) rw=.I«rw,    2>. = i,
i I

and, for all i, u>. > 0.

If we now restrict our attention to the diagonal elements(5) of a p matrix

r     , then it will be called   pure state diagonal N-representable if there exists

some single normalized antisymmetric wavefunction V of N particles such that

the elements T^p\x ^x ̂ c   • • • x   | *!*2*3 • • • x ) of r*'  and V satisfy equation

(1).   As above, the diagonal of a p matrix will be called ensemble diagonal N-

representable if it can be written as a convex combination of pure state diagonal

/V-representable p matrices.

We will now consider pure state diagonal /V-representability in greater detail,

and demonstrate its equivalence to ensemble diagonal A/-representability.

As several authors have described, [2], [8], [13] and [14] in order to facili-

tate an investigation of density matrices, a countable set of single particle func-

tions /.(x),    i = 1, 2, 3, •• • , may be selected.   This set is complete, orthonormal,

and is such that any normalizable single-particle function /(x) may be expanded

as_

(4) See [2], [3], [5], [8], [9], [ill, and [l4].
(5) A p matrix is, in fact, not a matrix, but rather the kernel of a linear operator.   Thus, the

term diagonal really refers to the elements  r(x,x2 • • • x  \ x,*2 • •• x ).   In the finite-

dimensional cases which we shall consider, the p matrix may be written as an actual

matrix.   In these cases, the elements   IXx.x, • • • x   | x.x2 • • • x ) correspond to the

diagonal entries of this matrix.
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(6) f.  ZCKDK,

where K runs over all possible sets of N indices chosen from the natural numbers

and, when K - \k]t k2, ky • • • , kN\,

(7)

CK = J W(xx,x2,x3," • ,)tN)

and £>K is the Slater determinant

(8) (NO-1/2

/*/*!>     ̂      '   '   *     UW

fkfj     fk2^

f.   (*,)    fh   b2)

• • • /*>>

fkkj

In addition, the normalization condition

T.\CK\2 = fm2dxldx2dx3...dxN
K.

is satisfied.

For purposes of actually carrying out a computation as in equation (3), it is

usually necessary to select a finite set of M spin Orbitals.  Löwdin [8] discusses

the problem of choosing the set of M spin orbitals which make the expression

given by equation (6) best approximate the full expansion of the wavefunction,

where the sets K are now restricted to the indices of the functions selected.

If /.,  i = 1, 2, 3j • • • » M, is the set of spin orbitals chosen, then the N-

representability problem can be asked for p matrices and wavefunctions expanded

only on a subspace of L    of the configuration space spanned by all possible

Slater determinants of these finitely many functions.   From the defining properties

of density matrices (4), they may actually be written as matrices on such finite-

dimensional subspaces.  For a p matrix, r^p , the diagonal elements are given

by

(9) r. •    • = (g*     rip)g.    . dx,...dx dx',...dx',
'iV"'í  JV'".   g,f*i   l      p  1      p

where g. is the p x p Slater determinant of the spin orbitals f   ...., f
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and the variables x,,... , x .   It can be shown that, if V is an N-particle wave-

function, expanded as in equation (6), satisfying (7) and (8), I~ is the p matrix

associated with ¥ by equation (2), and L .        .   =(";)r.        . .then

(10) L - £ le/-
1       «     K(«.."«.i eK)

i <>

Conversely, given a p matrix T, if one could choose a set of CR such that for

all i,, • • • » i' , condition (10) is satisfied and, in addition, the normalization

condition

holds, then the diagonal elements of Y and the wavefunction ¥ constructed from

these C"K using equation (6) should satisfy equation (2).   Thus the N-representabil-

ity problem for diagonal elements is to find a set of CR satisfying conditions

(10) and (11).

We can now prove the following theorem, a slightly different version of which

was proved by Ruskai [ill.

Theorem 1.1.   Pure state diagonal N-representability is equivalent to ensemble

diagonal N-representability.

Proof.   If the diagonal of a density matrix is pure state diagonal N-represent-

able, then it is clearly ensemble diagonal N-representable, with the ensemble

consisting of one p matrix.  Conversely, if it is ensemble diagonal N-representable,

then the elements L. may be written as L.        .   = S   w Ls.        . , where

by (10), each L . satisfies

Now, by letting |Cj2 = 2s «<JC*|2,

1       P      K(i,,--«,«\. eK)   ^ s '       K(i,,•••,!•  eK)KCij.'-'.i eK)   V « '       K(fj.«
P

Thus, it is pure state diagonal N-representable.

In the following considerations we will restrict our attention to pure state

diagonal N-representability. Since by Theorem 1-1, pure state diagonal N-

representability is equivalent to ensemble N-representability, our further results

will hold for both.  Therefore, we will use the phrase diagonal N-representable

to mean either of these two equivalent properties.
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2.   Mathematical formulations of diagonal ¿V-representability.   In this section

we will present three equivalent formulations of the diagonal N-representability

problem [7],   In the following, let K be an arbitrary set of N distinct indices

{z,, z'2, • • • , z'^i chosen from {1,2, • • • , M¡.

Solvability problem.   Let the constants y . .   > 0, for all  1 < z, < z, < ...
J ¡r J ¡ j. . ,lp _     i _    I 2

< i   < M, satisfying

1 P
(12)

be given.   Under what conditions on these constants does the system of equations

SK(fi, • -. ,ip€K) lK - yiv ■ .ip>  1<ii<i2<---<ipS M, have a nonnegative

solution for the t„ ?

By making the replacements L. ^     .   = y. .    j    and |C„|   = ¿„ it is clear

that this problem is equivalent to the problem of the N-representability of diagonal

elements as presented at the end of the last section.

Polyhedron problem.   Let XK = (*(< . ), 1 < i, < i. <...<*'   < M, be the
M\ «1''•'<> -   1       2 i> -    '

point in ()-dimensional affine space defined by

xk    j1- Hiv-.ycK,

1       P     (0,    otherwise.

Let C denote the convex hull of the points  X   .   Characterize  C as the inter-

section of halfspaces.

By lettine  Y = (y. . ),   1< i. < i, < . •• < f. < M, with the y . as in

the solvability problem, it will be shown that Y satisfies the conditions of that

problem if and only if it lies in C, as defined in the polyhedron problem.  This

equivalence will be made more precise by the introduction of polyhedral convex

cones in the next section.

A combination of these two formulations will be considered in our solution.

However, we will generally adopt the terminology of the solvability problem in stating

results, in order to preserve the consistency of the presentation.

The final formulation which we present will not be considered explicitly in

the following chapters.   It is included here to give a more pictorial view of the

problem.

Simplex problem.   Let p, N and M, 2 < p < N < M, be given, and consider the

(M - l)-simplex SM_l.   For each (p - l)-face (z,, — , z ), 1 < z, <»'<...<

z   < M, let weights w. _ _ _.   > 0 be given, with the property that

z
1 s i < • •. < i  < m

1 P
tl""»~\p}
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Under what conditions on these weights is it possible to assign  nonnegative

weights  r„   to the  (N -  l)-faces  (¿,, ••• , z^), in such a way that the

weight of a {p - l)-face is equal to the sum of the weights of the (N - l)-faces

which contain it?

This formulation is clearly equivalent to the solvability problem, with

y.        .   being replaced by w .sn...tp        e,    r y     tV'p

Figure 1 displays the simplex problem for the simplest possible case, namely

M = 4, N = 3, and p - 2.   Here, Kj - 11, 2, 3Î,  K2 = {l, 2, 4!, K? = {l, 3, 4!, and

K4 = Í2, 3,4¡.

Figure 1.   Simplex problem, with M = 4, N = 3, p = 2.

3.   Combinatorial and cone theoretic background.   The mathematical objects

lying at the heart of the development in the following chapters are polyhedral

convex cones.   In this section we will outline some important properties of such

cones.

Let Rn be real «-dimensional space.   A convex cone C in R" is a set of

vectors satisfying the following:

(i)  if X € C, and k > 0, then kX e C; and

(ii) if Xv X2 e C, then Xx + X2 e C.

A convex cone C is called polyhedral if it satisfies the additional condition

(iii)   C is the intersection of finitely many closed halfspaces.

In general a halfspace H can be characterized as the set of vectors  Y
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satisfying A • Y < 0 for some vector A.   In particular, A is the exterior normal

to H at the origin.   Therefore, for a polyhedral convex cone C, condition (iii)

may be restated as

(iii') There exists a finite set of vectors A., A2, ... , A   , such that C may

be written as C = {X| A . • X < 0, / = 1, 2, • • • , m\.

In this way it can be seen that C may be characterized as the set of solu-

tions of the system of homogeneous linear inequalities 2?=0«.■*.< 0» 7= 1» 2,

• •• , m, where each vector A . = (a   , a    , • • • , a. ).

At times it will be more convenient to write this system in matrix form.   In

that case, if A is the matrix (a..), i = 1, 2, ••• , n, /= 1, 2, ••• , m, then, for

a vector X, X € C if and only if it satisfies A . X< 0, (6) where the X are now

considered as column vectors.

For a convex cone C, we will say that a subset B C C spans C if every

vector in C can be written as a finite linear combination of vectors in B with

nonnegative coefficients. In this case, we will say that C is the convex-cone

hull of B.   If B is a finite set, say B = ißj, ß2> •••, B^i, then

(13) C = ÍX|X= ¿ ZÍ-.B., M/i >0, z=l,2,...,r|.

If we consider a set S of vectors, then the polar of 5, denoted by S   is de-

fined by

(14) S*={X| X . V< 0, for all V € S\.

Clearly, if Xj. X2 e 5* then for all k > 0, kX^ e 5* and. Xj + X2 e 5*.  Therefore,

S   is a convex cone.

In the case of a convex cone spanned by a finite set B, it can easily be

seen that a vector X satisfies X • V < 0, for all V £ C, if and only if it satisfies

X • V < 0, for all V € B.   Therefore, C*= B*.  Now, since B is finite, say B =

{Bj, B2, ••• ,Bri, B* may be written as B*={X| B, • X < 0, / - 1, 2, ••• , r},

and we therefore get

Theorem 1.2.   // C is the convex-cone hull of a finite subset, then C   is

a polyhedral convex cone.

We will now state the following well-known results:

Theorem 1.3 (J. Farkas).   // C is the convex-cone hull of a finite subset B,

then C=C**=B**.

(6) In inequalities involving vectors or matrices, the symbols s   and  s have different

meanings.   The former denotes that all entries on the left are less than or equal to the

corresponding entries on the right and that at least one inequality is strict.   In the case of

£ , all of the corresponding entries may be equal.
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For a proof of this, one may consult Goldman and Tucker [6], Gale [4], or

Thrall and Tornheim [12].   In the last of these references this is called the double-

description theorem.

Theorem 1.4 (H. Minkowski, J. Farkas).   // C is a polyhedral convex cone,

then C is the convex-cone hull of finitely many vectors.

For a proof of this, one may consult Goldman and Tucker [6] or Gale [4].

A convex cone C is said to be pointed if it does not contain any subspace.

A nonzero vector V e C is called an extreme vector if V = X. + X2, with X,, X

€ C, implies that there exist k., k2> 0 such that &jX, = ¿2X2 = V. An extreme

vector is uniquely determined up to a positive multiple.  For an extreme vector

V, the halfline L = \kV\ k > 0! is called an extreme ray.  In terms of this we may

state the convex-cone analogue of the Kretn-Milman Theorem for convex sets.

Theorem 1.5.   A pointed polyhedral convex cone is the convex-cone hull of

its extreme rays.

A proof of this result may be found in Goldman and Tucker [6].

If S is the set of all of the extreme rays of C, and if for each L. € S one

chooses a nonzero vector V. £ L., then such a set of V. will be called a complete

set of extreme vectors.   Theorem 1.5 may then be restated as

Theorem 1.5'.   A pointed polyhedral convex cone C is the convex-cone hull

of any complete set of extreme vectors of C.

We are now in a position to consider the following system of linear equations,

given in matrix notation by

(15) AX = B,

where A is a fixed mx n matrix.  We now pose the following question:   For which

B does this system have a nonnegative solution for X?

In order to answer this, let X' = (x'), i = 1, 2, • • • , n, be the column vector

of length n defined by

L    if i = f,
(16) x'.=

( 0,    otherwise.

Now, let

(17) Bl = AX\      i = l,2,...,«.

If for a given vector B the system given by equation (15) has a nonnegative

solution X, then clearly X = 2?=1 k .X1, with k. > 0 for all i = 1, 2, • • • , n. But

in that case,
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B = AX = a(¿ /fe.X'\ = £ 4.(AX*') = 52 k.B\

Conversely, if a vector B has the form B = £"_i kB', with &. > 0 for all i -

1, 2, • • • , n, then by reversing these steps we get

b = t kißi - z m^=a( ¿ ^.x¿).
i'=i í=i Vi»i        '

Since £?  , &.X' is a nonnegative vector, such a B yields a nonnegative solution

for the system given by equation (15).   Thus we have

Theorem 1.6.   // A  is a given m x. n matrix, and vectors Bl are defined as in

equation (17), then the system of linear equations AX = B has a nonnegative

solution ¡or X if and only if B can be written as B = 2"_i k.B', with k.>0 for

all i = 1, 2, •• • , n.

Applying Theorems 1.2 through 1.4 to this, we get

Theorem 1.7.   // A  is a given m x n matrix, then the set of vectors B for

which the system of linear equations AX = B has a nonnegative solution for X

is the polyhedral convex cone C defined by

(18) C= Jb| B = ¿ k.B\ k.>0, i= l,2,...,»j,

where B1 is defined as in equation (17).   It is also clear from the way in which

the B' are defined that if A  is of rank n, then the Bl are a complete set of

extreme vectors of C.

According to Theorem 1.3, the vectors contained in this cone C may be

characterized by the following:   B e C if and only if B € C   , and from the defi-

nition of polar cones this is if and only if B • W < 0, for all W e C .  Going one

step further, if C   is pointed, and if we can find some set S which is a complete

set of extreme vectors of C , then S € C if and only if V • W < 0, for all W e S.

We will now present a result which characterizes the extreme rays of C   in

the case in which A is an n x n nonsingular matrix.   This result will be suf-

ficient to handle the situation in which A  is m x n, with m > n  and rank (A) =

n, for the particular system of equations AX = B which we will consider.   In

Chapter III we will examine the case in which A is m x n, with m < n.

In order to obtain the desired result in the case in which A is a nonsingular

n x n matrix, we first define sets S., i = 1, 2, • ■ • , n, where S. «• |1, 2, ••• , «I -

I il.   Now, let H ■ be the hyperplane generated by the set of vectors T.,
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(19) T.= \B>\jeS.\,

with B' defined as in equation (17).   If Wl is a vector such that

(20a) Wf . V = 0, for all V € T.,

and

(20b) Wi ■ # < °.

then clearly W is an extreme vector of the cone C , which is the polar cone of

C, as defined in equation (18). If one takes the set \W\, i = 1, 2, .. • , n, this

is clearly a complete set of extreme vectors of the cone C .   Thus we have

Theorem 1.8.   Let A  be a nonsingular n x n matrix, \B'\ be the set of

vectors generated from the system of linear equations AX = B as in equation

(17), and C the cone defined from these B' as in equation (18).   // \W\, i =

1, 2, • • • , n, is a set of vectors such that, for each i,  W satisfies conditions

(20), with T. defined as in (19), then this set of W is a complete set of extreme

vectors for C , the polar cone of the cone C.

We may also observe that in the case in which A  is a nonsingular n x n

matrix the cone C is of full dimension, that is, it has a nonempty interior.   This

clearly implies that C   is a pointed cone, so that we finally get

Theorem 1.9.   Let A be a nonsingular n x n matrix and let B be a given

vector.   The system of linear equations AX = B will have a nonnegative solution

for X  if and only if B • W < 0, for all i = 1, 2, • ■ • , n, with W as in the state-

ment of Theorem 1.8.

With the background presented in this chapter we are now in a position to

present a solution for the diagonal /V-representability problem in the cases in which

M <N +p.

Before closing this chapter, however, we will make the following note about

the subscripting scheme employed in considering the N-representability problem.

We start with the set of integers \l, 2, • • • , M\.   The vectors Y = (y.        .  )
° m ■ • 'lp

whose diagonal N-representability is to be tested are vectors whose entries are

indexed by all possible subsets of p distinct indices {;'., /', • • • , /  ¡ C

{1, 2, . .. , Mi.   For convenience in referring to such a set we use the ordered

p-tuple z'jz'2 ■ • • ip, where \iy z'2> • • • , ip\ = \jv j2, •■■ , jp\, and 1 < i1 < ¿2

< • • • < ib S M.   Similarly, the variables z„ are indexed by all possible subsets

K of N distinct indices {4j, k2, • • ■ , kN\ C {1, 2, ... , M\.

To give an example, let M = 4, N = 3, and p - 2.   A vector Y is of the form

Y " ^12' y\V y 14« yiy ^ y^-   The variables are tK ,  j = 1, 2, 3, 4, where
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Kj = {1, 2, 3}, K2 = |1, 2, 4}, K3 = jl, 3, 41, and *4 = |2, 3, 4!.   In general,

Y will lie in an (  )-dimensional space, and there will be (JJ) variables.

H.  DIAGONAL N-REPRESENTABILITY WHEN M<N + p

1.   Solution when M = N + p.   In this section we will present an explicit

solution to the diagonal N-representability problem when M = N + p.  Using the

terminology of the solvability problem presented in §1.2, we are given a vector

V = (y«i- • -ip*'  1-il<i2<"'<ip- M' satisfying

Isf,<...<i SM     1      'p     \/>/
1 ö

and must determine whether the system of linear equations

has a nonnegative solution for the rK.

We begin by writing this system of equations in matrix form at AT = Y.

In this form A is an (p) x iN) matrix, whose rows are indexed by all p-tuples

of distinct indices i 1 • > • i" ,  i <f. < ¿2 < • • • < i   < M, and whose columns are

indexed by all sets K of N distinct indices.  T is the vector (rK), whose

entries are indexed by all such sets K, and Y is the vector (y,-... .,■ )•

Since in this case M = N + p, we have that L) = (N).  It is easily verified

that A is a nonsingular square matrix.   Because A takes this form, we may

apply Theorem 1.9.   In order to employ this theorem we must first determine the

set of vectors {B   }, where in this case the B's are indexed by all possible sets

K of N distinct indices.   According to equations (16) and (17), for a given set

K, BK = ATK, where TK = (i£,), with

II,    iffC=K,

( 0,    otherwise.

From this we find BK = (b*       . ), with
i l-'-ip

1       í     ( 0,     otherwise.

Having generated the B   , we must now find a set |W   ! satisfying conditions

(20).   To do this, for an arbitary but fixed N let the constants

(22) wp_. = (-l)i+1(p - /)!(N -p + i- 1)!/(N -p- 1)!,
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IS

j = 0, 1, ... , p, be given.   From these we define the vectors W   , for each K, as

WK = {WK ), with

(23) wf       .   mw      ,

where \K n \il, • • • , i ]\ mp — j, and w . is defined by equation (22). Here

|S| denotes the order of the set S, With this definition we prove the following,

which is a more general result than is needed for this section:

Theorem 2.1.  Let p, N, and M be given, with 2 < p < N, and M = N + t, 0 <

t < p.   If [B   \ is defined according to equation (21), and \W   | is defined accord-

ing to equation (23), then the two sets satisfy conditions (20).

Proof.   In order to demonstrate condition (20a), let h and q be such that 1 <

h <q <t, then we will show that

fi(-l)»-1(ly-g+&-2)l/g-lV     f    (N-q\

(N_p_? + i-2)!      \h-2)     {±.i\p-0   "-''

nN-P + k-l)!/q-l\«/N-qWq\

-p-q + h-l)l    \b-l)     ¿b\p-i)\i)   *-*

-p-q

(24)
= R{-l)h{N-p+h~l)]/q-V

where R = (N - q)\/(N - p)\.   To demonstrate the validity of equation (24), it is

sufficient to prove that

R(-l)h-\N-p + b-2)\ /<?-!

(25) (N-p-q + h-2)\ (ny+C-ïîiKiiiK-**!
= R(-l)h{N-p + h-l)\/q-l\

(N-p-q + b-l)l   \h-l)'

But, the left-hand side of equation (25) is equal to

R(-l)h~1(N-p + h-2)l{q-l)l

{N-.p-q + t,-2)M-2)\(q-h+l)\

_(N-q)lql_

(p-b + l)\{N-p-q + b-l)\{h-mq-h + l)\

{-l)h{p-h + l)\{N-p + b-2)l

(N-p-1)!

RUftN-p + *-2)l(,-l).       xUN_p_q + h_m_l) + q{N_p))
(N-p-q + h-l)\(b-l)\(q-b + l)\

R(-l)h{N-p + h-l)\/q-l\

(N-p-q + h-l)l    \h-l)'
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Thus, equation (25) holds, which implies the validity of equation (24).

Now, to verify that \B   \ and \W   | satisfy condition (20a), let K be any set

of N distinct indices, and let K   be any other such set, where K   ¿ K.   Then,

\K' n K\=N - q, where 0 < q < t.   For such a K and K'

'-%%-r

W* . B'

(26) yK-B«' = i(N-]
,=o \P~l

Applying equation (24) q times in succession to equation (26), we have

tg>       R(-iy{N-p + q-l)\ (N-q\

(N-p-Di     \p-qr*-q

R(~l)^N-p + q-l)l (N-q)l {-l)«+\p-q)l{N-p+q-l)l

(N-p-l)! [p-q)l(N~p)l * (N-p-l)!

R(-l)g(jV_p + g-l)!      R(~l)i+1(N-p + q-l)\

(N-p-1)! (N-p-1)!

= 0.

Thus \BK\ and \WK\ satisfy condition (20a).

To verify condition (20b), if K is any set of N distinct indices, then

BK . iyK = x   „« . JNy =-(n)p!<o,
,.,- -•,!  eK
1 P

so that condition (20b) holds, and the theorem is proved.

We may now apply Theorem 1.9 to the result obtained in Theorem 2.1 to get

Theorem 2.2.   Let p and N be given such that 2 <p < N, and let M = N + p.

Also let the vector Y = (y. . ), 1 < i, < i-, < • • • < i. < M, be given such that
'll- • -lp —    1 2 p — »

Y > 0, and

P

Then the system of linear equations

i t>

L     «je-*,.....«
Mv"',ipeK) l       P

1 < ¡. < i, < — < z   < M, ¿as a nonnegative solution for the tK  if and only if for

K ^ n   ....-.i.  uvK
a/7 sers K o/ oraer N contained in |1, 2, ... , M|,  Y . W* < 0, u/iiÄ W* «e/iW

as z'n equation (23).
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To rephrase this in terms of the diagonal N-representability problem we have

Theorem 2.3.   Let p and N be given such that 2 < p < N, and let M = N + p.

Let L - (L .        . ),  1 < i   < i   < ... < z   < M, be a given vector such that L > 0.
if»»* -   I       2 p - 6 slP

Then L  is diagonal N-representable if and only if

(27a;)        (i) Z L.        .   =(")
ls¿,<...<; <M      'i       'p     \P/

and

(ii)   for all sets  K of order N contained in {1, 2,* • •, M\, if W

is defined as in equation (23), then

(27b) WK . L<0.

2.   Solution when M < N + p.

a.   Inequality conditions.   In this section we will present a set of inequalities

as the solution to the diagonal N-representability problem in the cases in which

M = N + t, with 1 < / < p.   The method used to obtain these results will be based

upon "embedding" such problems as special cases of diagonal N-representability

when M = N + p.

To this end, let L = (L .        . ),  1 < f, < i, < ... < i   < N + t, with 1 < t < p,
'1- • -'p -12 p - ' - "

be a vector whose diagonal N-representability is to be tested in the system with

M = N + t.   From this L we define L = (L .        . ), with 1 < I. < i, < ... < i'   <
if -ip -    1        2 p -

N + p, where

\Li ...; '    if I'li—.iJCfl, 2,..-, N + /!,
(28) L .        .   = I     J       p

'l'"'ù       I
p     10, otherwise.

We then have

Theorem 2.4.   Let t, p, and N be given such that    1 < i < p < N.   Let L =

(L .       . ), 1< i  < i  < ... < i   < N +1, be given,   ¡f L = (L~.       . ), L,< ¿,
if "ip -     1 2 p - 6 / If -Ip -     1

< i2< ... < ip<N + p, is defined from L  by equation (28), then L  is diagonal

N-representable in the system with M = N + t if and only if L is diagonal N-

representable in the system with M = N + p.

Proof.   If L  is diagonal N-representable in the system with M = N + t, then

(29a) £    v-< -(?)•
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(30a)
ISij<- • • <« s/V+p

'K

and for each KCjI,2, ...,N + /), \K\ = N, there exists a tK > 0 such that

K(ij.'..,i  eK) !       P

for ail 1 < i. < z, < .. • < L < N + /.—   i       ¿    _ p —

Clearly, since L .   = 0 for |i,, • • • » «' } Jî |1, 2, ... , A/+/},
1 i\m • 'ip l P

Z L.       .  .i"),
t<-..<ip<;N+p    'ï"lp     \pj

Now, for KCJ1.2, ... ,N+pj, \K\ = N, let

rK,    if K n|N+/+ l,...,N + p}=0,

0,      otherwise.

Then for Uv ... , ip\ C|l, 2, ... , JV + /j, by (29b) we have

(30b) L<1—'<,       «l'"«p     KUv.rf.ip€lO K    KUv--.ipelO  *

For Uj, ••• , i I C |1, 2, •• • , N + pi such that li'j, • • • , ip\ O |N + t + 1, • • • ,

N + pi 4- 0, li'j, •" , ¿pl C K implies that fK = 0, so

(30O VV0"*«,..?.^7"'

Hence L is diagonal N-representable in the system with M = N + p.

Conversely, if conditions (30) hold, then from (30a) and the definition of L,

(29a) holds.  To demonstrate (29b), for K C 11, 2, • • • , N + il, \K\ = N, let tK =

rK, where TK are those satisfying (30b).  From (30c), if K fïÎN + r + 1» ••• »

N + p\¿0, then r~K = 0.  Therefore, from (30b), if If ̂  •• • , z'pl C |l, 2, • • • , N + rl,

L.     . =E.     . =       y      r.
1       P 1       P    KO-j.-'-.f^eK)   K

This sum may be broken into two parts to give

l*i*..i m 2^ tK+ Z ~k
1       P K(i.,•••,!• eK) K(i,,...,i eK)

1 p i p

Knl/V+i+l.« .«,N+pl=0 Kn{N+i+l,. ...Ai+pl ¿0

Z      <k + 0=       Z      «r
Kd-j.-.-.z^eK)   "■ Kdj.-.-.^eK)   *

and (29b) holds.
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Applying Theorem (2.3) to this yields

Theorem 2.5.   Let t, p, and N be given such that l<t<p<N, and let L =

(L¿ _        ), 1 < i j < z'2 < • • • < i   < N + t, be a givep vector.   If L is defined ac-

cording to equation (28), then L is diagonal N-representable in the system with

M = N + t if and only if

«      z     i....,-H.
1 Ù

(ii)   /or a// sets K of order N contained in {1, 2, • • •, N + p\, if W

(31a)

aW

(ii)

is defined as in equation (23), then

(31b) WK . I < 0.

Theorem 2.5 thus gives a solution to the diagonal N-representability problem

in the cases in which"M < N + p.   This solution is given in terms of the normaliza-

tion condition (31a), and a system of inequality conditions (31b).

b.   Equality conditions.  In this section we will sharpen the results just ob-

tained by showing that certain of the inequalities given by (31b) are in fact

equalities.  Here again we have /, p, and N given such that 1 < / < p < N, and

let M = N + t.  Given a vector L = (L{       . ), 1 < i j < z'2 < • • • < ip < N + t, it

is a trivial matter to test whether the normalization condition

is
z     L.   .=n

lf'<iSN+t    *l       $     \P/

holds, and we may consider this condition separately.  Therefore, for the present

we will consider the set of vectors L for which the system of linear equations

<32> £ tK=Li.-.i'
#C(», ,•••,»•   €¡0 1 P

1 P

* S *i < *2 < " * ̂  '• - " + '» has a nonnegative solution for the <K, without re-

gard for the sum of the entries of L.  According to Theorem 1.7, this is the poly-

hedral convex cone C given by

(33) C = {l| £-=Z *KBK, *K > 0 for all k\,

where B    is defined according to equation (21).

Now, define BK = (Ff   ,#< ), 1 < » j < z'2 < • • • < ip < N + p, by
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f...i .    if íz'1,---,zí;¡C¡l,2,...,N + /í,

(34)
otherwise,

and let C be the polyhedral convex cone given by

(35) C= ¡L\ 1= Z^KßK, kK>0 for all k\.

It is clear that if L = (L .        . ),  1 < i.< i   < ... < i   < N + t, is a given vector,__ ' 1 * * • *p —    12 p— i        to

and L = (L¿ t     , ),  1 < z'j < z'2 < — < i   < N + p, is defined according to equation

(28), then L e C if and only if L e C.

We now turn our attention to the system of linear equations (32), with 1 <

i, < ¿, <...<».< N + p.   For this system let BK = (b K       , ), 1 < i, < i, < ...12 p - r ' — — i i- • -ip -    1 2

< z   < N + p, denote the vectors defined by equation (21).   From equations (21)

and (34), if'K C fl, 2, ... , N + il, then BK = BK.   Now, let K' be any set of

order N such that K' C |1, 2, . • • , N + p!, and K' n jN + r + 1, • • • , N + pM 0,

and K any set of order N such that K C (1, 2, • • • , N + r|.   Since B    = B   , we

may apply Theorem 2.1 to get B    • W      =0, where W      is defined by equation

(23).   From this we see that, for all V e C, V • W      = 0, where C is defined by

equation (35).   Now, for the cone C defined by equation (33), since L e C if and

only if L e C, with L  defined by equation (28), we get

Theorem 2.6.   Let t, p and N be given such that  1 <t < p < N, and let L -

(L .        . ),  1 < i   < i   < ... < i   < N + t, be a given vector.   If L  is defined ac-
*1* * '*p        —   i       ¿ p — ° ' '

cording to equation (28), then L  is diagonal N-representable in the system with

M = N + t if and only if

(36a

and

) »       z     v-i-Q
1 Ù

(ii)   for all sets K of order N contained in |1, 2, • • • , N + pi, z'/ W

z's defined as in equation (23), ¿¿en

(36b) „    _ I < 0,    z'/ Kn \N + t+ 1,..., N + p!=0

(36c) ( = 0,    ;/ KOÍN + /+ I,---, N + p}¿0.

Theorem 2.6 thus gives a sharpened version of Theorem 2.5, with certain of

the inequalities being replaced by equalities.

We may view conditions (36b) and (36c) as partitioning the W     into two sets.

The fact that certain of the W     actually satisfy the equality condition for any

L associated with an N-representable L can be interpreted from the point of
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view of the geometry of C , the polar cone of the cone C defined by equation (33).

In this interpretation the two sets into which the W     ate partitioned play different

roles geometrically.   This point is discussed in Chapter IV, where we consider

the geometry of the polar cone for all values of M.

III.   DIAGONAL N-REPRESENTABILITY WHEN M>N + p

1.   Additional cone theoretic background.   In this section we will present

some additional cone theoretic results which will be useful in examining the

diagonal N-representability problem when M > N + p.   In this case, the problem

is to identify those vectors B for which the system AX = B has a nonnegative

solution for X, where A is m x n, with m < n.   Recalling the discussion following

Theorem 1.7, let C be the cone generated by the columns of A, C   be the polar

cone of the cone C, and S be a complete set of extreme vectors of C .   Then

such vectors B ate characterized by the condition that B • W < 0, for all W € S.

The approach here will be to generate all of the extreme vectors of C* by

algorithmic means.   Before proceeding to examine the methods employed it may

be useful, for the arguments which follow, to give a brief geometric description

of the situation.   As we have said, A is w x », with m <n.   The cone C   lies in

»z-dimensional space.   Each of the n columns of A  is the outward pointing normal

at the origin to a bounding hyperplane of C .   Thus, C   is the intersection of the

set of halfspaces H\  i=l,2, ... ,n, where H' = \V\ V ■ A1 <0\, A* being the

z'th column of A.   Since m < n, the number of hyperplanes bounding C   is greater

than the dimension of the space in which C   lies, and this leads to a rather com-

plicated set of extreme vectors.

In constructing the algorithm used, the following theorem will be needed:

Theorem 3.1.   Let C be a polyhedral convex cone in real m-dimensional

space given by C = C\"_1 Hl, with Hl being the halfspace defined by H' =

\V\ V • A1 < 0\, where A1 is some given vector.   Let W be an arbitrary vector,

and let Sw be the set defined by Sw = \Al\ A1 . W = 0}.   Let the sets Sw, for all

W e C, be partially ordered by set inclusion.   Then W is an extreme vector of C

if and only if Sw is maximal with respect to this partial ordering.

Proof.   We will prove the contrapositive statement; namely, W is not an

extreme vector of C if and only if Sw is not maximal with respect to this partial

ordering.   Assume W is not extreme.   Then there exist W,, W2 e C, not multiples

of W, such that W = Wj + Wr   For all A1' e Sw, A¿ . W = 0 implies that A!' . IVj

+ A! . W2 = 0.   But, since VIv W2eC, A' . W{ < 0 and A¿ . W2 < 0.   Therefore,

A1' . Wj = 0 and A¿ . W2 = 0, so A1 e Sw    and A¿ e Sw .   Thus, Sw C Sw    and

S(i/ C Sjp .   If either of these inclusions is proper, then Sw is not maximal and

the implication is proved.   Therefore, we assume that Sw = Sw   = Sw .
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Now define the set / by / = í;| A' 4 5^,1.  For all j 4 J, let k.-W • A' and c. =

Wj • A'. Since /' e /, k. < 0 and c. < 0.  Setting r = k Jc , let t be such that

(37) r  = min|r.}.

Now, define a new vector W    by W   = k W ̂ - cW.   For all ; 4 ],

(38) a' . W3 = ki(Wl , A>) - ct(W . A>) = 0.

For all je},

(39) A' . Wi = ^(Wj . A1') - c({W . A') = ktc. - ck.

But, from equation (37), r  < r., which implies that k c. < c k..   Applying this to

equation (39) gives

(40) A> .Wi<Q.

Now (38) and (40) together imply that W    € C.   From equation (38) we get Sw C

Sw .   Furthermore, A' 4 Sw, but A1 . W   = k c  - c k  = 0.   Thus the inclusion is

proper and S™ is not maximal, proving the implication.

For the opposite implication, assume Sw is not maximal.   Then there exists

a vector Wj e C, such that Sw C Sw    and Sw   ¿ Sw.  Define the set / by / =

l/'l A' i Sw j !> and let

. A'. W
(41)

»A'.W
, = min I—;-

je] }A>.Wl

Now, define a new vector W2 by W2 = W - kWv   For / 4 ], A> . W2 = A>.W<0,

since W eC.  For /' e],

(42) A'.»2.ii'.ir-MA/.»'|).

But, by equation (41), k < {A> . W)/(A' . Wj).   Since A> . W¡ < 0, this yields

(43) ¿y • W < k(A' . Wj).

Applying (43) to (42) gives A' . W2 < 0.   Thus W. e C.  Furthermore, since k >

0, kW1 e C.  Since Wl is not a multiple of W, W2 is not a multiple of W, and

W = kW 1 + W2, W is not an extreme vector and the theorem is proved.

2.  A double description algorithm.   We are now in a position to derive an

algorithm for generating all of the extreme rays of the cone C, in the cases in

which M > N + p.  Several authors have considered the problem of generating all

of the extreme rays of a polyhedral convex cone which is given in terms of its
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bounding hyperplanes [l] and [10].   The algorithm which we will present is a

modification of the one given by Motzkin, Raiffa, Thompson, and Thrall [10].   The

main difference in the two algorithms is the method of selecting those vectors which

are to remain at the completion of each iteration.

In general terms, the method is as follows:

The process starts with some subset of the complete set of bounding hyper-

planes for the cone in question.   Also given along with this list of hyperplanes is

a complete set of extreme vectors for the cone bounded by the subset of hyperplanes.

The remaining hyperplanes are considered one at a time.  As each is introduc-

ed, a new cone, bounded by the previously considered hyperplanes and the one new

hyperplane, is formed.   A complete set of extreme vectors for the newly-formed

cone is then generated from the complete set of extreme vectors for the previously

considered cone, and the process repeats with another hyperplane.   Once all of the

hyperplanes have been used, what remains is a complete set of extreme vectors for

the cone bounded by all of the original set of hyperplanes.  This completes the

algorithmic process.

We will postpone a discussion of the methods of obtaining a "start" for the

algorithm until later in this chapter.  The remainder of this section will detail the

iterative step.   Let Hl,  i = 1, 2, — , n, be the complete set of halfspaces gen-

erating the nz-dimensional cone C, and let A',  i = 1, 2, .. • , n, be the correspond-

ing normal vectors at the origin.   Assume that the cone given by H1,  i = 1, 2, • • • ,

k - 1, has been considered, and that the vectors V., / = 1, 2, • • • , r, are a complete

set of extreme vectors for this cone.

The halfspace Hk is now introduced.   Let /. = V. • A*, for all / = 1, 2, •.. ,

r.   Three cases must be considered:

Case I:     L < 0, for all / = 1, 2, ... , r;

Case II:    /. > 0, for all /- 1, 2, ... , r;

Case III:   There exists /.  and /, such that /.   < 0 and /.   > 0.

In the event that Case I occurs, the cone generated by H1,  i = 1, 2, • • • , k

- 1, lies entirely in the halfspace H .  Therefore, intersecting this preceding

cone with H    leaves it unaltered, and the complete set of extreme vectors is

unchanged.  Thus, the process simply proceeds to the next step by introducing

if**1.

If Case II occurs, then the cone generated by H', i = 1, 2, ... , k - 1, lies

entirely outside of the halfspace H  .  This means that the cone generated by the

complete set H', ¿=1,2,...,«, degenerates to a point, namely, the origin.  In

this case, no further iterations are necessary.

For the third case, a new set of extreme vectors must be generated.  In order

to do this, the vectors V . are first partitioned into three sets, namely,
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s1 = \v.\v..Ak<o\,    s2 = !k.|v..a* = o!,    si = \v.\v.-Ak>o\.

From S.  and S    a new set, S., is constructed in the following manner;

For each vector V. € S} and each vector V. e S    let V. . = IV - I V..  Then

SÁ = {V.   | V. e5,,  V. eS,\.
4 i,;1      1 1        ; 3

Denote the cone generated by H*.  i - 1, 2, • • • , s, by C .   The elements of

S.  are those extreme vectors of C, _.  which lie in the interior of the half space

H .   The elements of S2 are those extreme vectors of C.    t which lie on the

bounding hyperplane of H .  S,  consists of the extreme vectors of C,_,  which

lie outside of H ; therefore, they are not in C,.   Finally, S    consists of a com-

plete set of vectors representing all of the rays in which the hyperplane bounding

H    intersects the set of (m - l)-dimensional faces of C,_.,

Now, to determine a complete set of extreme vectors of C,   once S    has been

formed, it is no longer necessary to consider S  , since all of its elements lie out-

side of C,.   Furthermore, it is clear that the extreme vectors of C,    j, lying in

the interior of H,, are also extreme vectors of C,, and, in fact, they are the only

extreme vectors of C,   interior to H .   So, all of the elements of S,   are extreme

vectors of C,.   Thus, it is only necessary to find those extreme vectors of C,

lying on the bounding hyperplane of /7 ,   This amounts to determining which

vectors in S. US, are extreme.
2 4

In order to do this we apply Theorem 3.1.   Letting S^ be defined as in the

statement of the theorem, we define T = ÍS^I W e S2 u 5^1.   From this we define

5    = \W\ Sw is maximal with respect to the partial ordering on Ti.   From Theorem

3-1 and the discussion above, we find that Î, U^, is a complete set of extreme

vectors for C,.   Once this set is found, the process continues, with the introduc-

tion of a new halfspace.

3.   Implementation of the double description method.   In order to implement

the double description algorithm explained above, a computerized version has

been prepared.   The results obtained by using this program will be presented in

Chapter IV.   In this section we will describe a method for generating a starting

cone for the process.

To find such a starting cone, let H',  i = 1, 2, • •. , n, be the complete set of

generating halfspaces for the zzz-dimensional cone C, whose extreme rays are to

be determined.   Let A',  i = 1, 2, — , n, be the corresponding normal vectors at

the origin.   Now, reindex the halfspaces so that the set S = ¡A1, A2, ... , Am\

consists of m linearly independent vectors.   From these, form a matrix A whose

z'th column is the vector A'.   By the way in which the set S was chosen, A  is

an m x m nonsingular matrix.   In order to find a complete set of extreme vectors

for the cone generated as the intersection of H',  i = 1, 2, ... , m, we may now
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apply Theorem 1.8.  Since A  is a square nonsingular matrix, we can find - A"  .

Theorem 1.8 asserts that the rows of - A"    are a complete set of extreme vectors

for this cone.   Thus, the columns of A  and the rows of - A"    provide a start for

the double description algorithm.

In applying the double description algorithm to the diagonal N-representability

problem, only certain cases in which p = 2 and N = 3 have been computed.   This

is primarily because of storage limitations in the computer system which was used.

For these cases the starting cones, that is, the matrices A and - A" l, were gen-

erated recursively.

Before presenting the recursive scheme, we will describe the method employed

in indexing the rows of A.   Recalling the discussion at the end of Chapter I, the

rows of A are indexed by all subsets of two elements chosen from {1,2, — , M}.

Therefore, we need only consider the pairs of indices z'z'    where  1 < i. < z'   < M.

In indexing the rows of A, these pairs are enumerated by letting z'2 vary from 2

to M, and for each z'2, letting i.  vary from 1 to z'2 - 1.   Thus, the rows of A are

indexed by 12, 13, 23, 14, 24, 34, • • • , IM, 2M, 3M, ... , (M - l)M.

With this indexing in mind, the recursion is as follows:

Assume the A and - A~    have been found for p = 2, N = 3, and M = g - 1.

We are looking for A and - A-1   for p = 2, N = 3, and M = g.   Let A and A

denote the A matrices for M = g - 1   for   M = g, respectively.   In order to generate

A  , let S     ,  denote the set of columns of A      ., and define S    by
g' 6-1 g-1* g    '

W-i^AA.-.^Vij,
where T1  is the triple 12g and T.,  z = 2, 3» • • • > g - 1, is the triple (z - l)(g - l)g.

Letting the elements of S    be the columns of A     then A    has the form° g g g

fr :)■
In order to show that A    is nonsingular, it is only necessary to show that

C is nonsingular.   But, C is of the form

•1    1

1 1

1

1    1     1 • . ■ 1



24 M. L. YOSELOFF

where the super-diagonal and the last row consist of ones and the blank entries

are zeros.  In order to demonstrate the nonsingularity of C, we simply give its

inverse, which is

a  ia  a • •.
Ji -m -h . •.

-h  a -h . • .
i

i

where the blank entries are zeros.

To complete the

which takes the form

To complete the generation of the starting cone for M = g, we present A~ ,

A-!=
g

M-1,    A^BC-^
g-l      g-i

0 C"1

4.   Collapsings and liftings.   In this section we will describe a technique

which is useful in studying the structure of the cone C , the polar cone of the

cone C, where C is the set of all diagonal N-representable vectors for some

given p, N, and M.  We fix our attention on the cases in which p = 2.   For some

fixed M, we will use weighted graphs to display vectors in (2)-dimensional

space.   The vertices of these graphs are the points  1, 2, • • • , M .   The edge

connecting i to /, 1 < i < j < M, is the value of the z;th entry in the vector.  For

example, if M = 7, then the vector

V = (1, 1, - 2, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0),

where the indexing of ( J-dimensional space follows the description in the last

section, would be displayed in graph form as

= -2

=-1

3U- \^ -ml

unconnected = 0
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The technique to be employed involves two operations, collapsing and lifting.

If p and N are fixed, then a collapsing takes a vector from the space for M = g

into the space for M = g-l, and a lifting takes a vector from the space for M = g - 1

into the space for M = g.   Let S = jl, 2, • • • , g!, and let Sfc = S - {k\,  k = 1,

2, • • • , g.  If V = (v ■ _ # s. ) is a vector in ({p-dimensional space, then choosing

some k, 1 < k < e, we can form a new vector V* = (v.        . ) in (gJ )-dimensional
»       —      — o» i j. . .lp p

space, where for each p-tuple i. • • • i., with t., •••,!'   e S,, we set v.        .   =
r" '^ip' i p      k1 'i***'p

v. é     . .   This may be restated by saying that V    is formed from V by simply

deleting those entries of V which are indexed by p-tuples containing k.  Such

a vector V    is called a collapsing of the vector V.  Since this procedure may be

carried out for all k, 1 < k <g, there are g different collapsings for the vector V.

Now, if V = (v.       . ) is a vector in (g~ )-dimensional sapee, then we can
i\'•-ip P r    »

form a new vector V = {v . >#>. ) in (|)-dimensional space by setting

i\...f     if l<*'i<-"<2p<g-l>
v.        .   =\     x       P

'l'"'ù      I
p     ( arbitrary,    otherwise.

Such a vector V is called a lifting of V.  We note that the collapsing Ve of V

is the original vector V.   In this sense, these two operations may be viewed as

inverses of one another.   In terms of these definitions we prove the following

result:

Theorem 3.2.   // p and N are fixed, and if V e C*, then all of the collaps-

ings V , k = 1, 2, . • • , g, of V, are in the cone C _ j.

Proof.   The assumption that V e C    implies that for all K C |1, 2, • ■ • , g\,

\K\ = N, 2     ..».i  eK vii.. -i   - O-  This, in turn, implies that for all K C S,,

\K\ = N, this same inequality holds.   But, since K C S.,  fj, ... , i   € K implies

that z'j, ... , z   e Sk, so

** y     v.    . <o
i, ,•••,! .eK     1        P     i. ,".,£  eK     1        Pi p i p

Therefore, Vk € C*   ,.' 8-1

From Theorem 3.2 we observe that every vector in C    and, in particular,

every extreme vector is a lifting of some vector in C _ j.  Therefore, if one could

characterize the set of vectors in C     ,  which are collapsings of extreme vectors

in C , then by choosing the appropriate liftings and applying them to this set,

one could generate Cg from C*   v   However, the problem of determining such

a set still remains open.

Even without such a set it is possible to generate a partial list of extreme
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vectors for C    from C     ,.   This can be done by determining those liftings of the

extreme vectors and zero vector of CT   , which are extreme vectors of C .   Once these
g-l g

have been found, the problem described above reduces to characterizing those

interior vectors of C _. which are collapsings of extreme vectors of C , It

should be pointed out that there do exist situations in which all of the collapsings

of an extreme vector for a given C    are, indeed, interior vectors of C

particular, for p = 2, N = 3, and M = 7, the vector

■ r In

unconnected  « — 1

where i, j, k, I, m, n, o is any permutation of 1, 2, ... , 7 is extreme  in  C*

but none of its collapsings are extreme vectors of C .

Fixing our attention on the cases in which p = 2 and N = 3, we prove the

following result concerning the liftings of the zero vector in C which produce

extreme vectors in C :
g

Theorem 3.3.   // p = 2, N = 3, and g > 5, r¿e« ¿ie on/y liftings of the zero

vector in C  _.  which are extreme vectors in C    are of two types.   Up to a posi-

tive multiple these are:

Type I:

where z = 1, 2,

Type II:

g-l, and

unconnected  »= 0

g-l

where i., z', • • • , z  _.   is any permutation of 1, 2,

-■ 1

unconnected =» 0

g
- 1.

Proof.   For any vector V = {v.),  1 < i < /' < g, which is a lifting of the zero

vector in C*   ,, V has the form
g-l
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unconnected •» 0

g-l

where w . is the vector entry v. .   Furthermore, if two of these weights, w. and w .,

ate positive, then if K = {i, j, g j,

Lv      = w. + w . > 0,
mn i j        '

m.nefC

which implies that V i C .   Thus, there are two cases to consider:

Case I:    w . < 0 for all i = 1, 2, • • • , g - 1.

Case II:   For some i, w. > 0, for all k ¿ i, w, < 0.

For Case I, since V ¿ 0, there exists some z such that w. < 0. By assumption

w. < 0 for all ;'; therefore, for all sets  K of the form K = \i, j, g\, j = 1, 2, » • • ,

g - 1, j ^ f, 2      .„ f      ^ 0.

Now, if some other weight w. ¿ 0, then since g > 5, there exists some & ¡¿ z,

z,p and, for the set K = {/, k, e], 2        v v      ¿ 0.   However, if W = (zí;'.,) denotes

the type I vector

-1

unconnected = 0

then 2       cVwl     £ 0  if and only if  K is of the form \i, j, g\,  j 4 i, g.   This im-
ffï,nfc«x     mn ' ' ' *-

plies that for all K satisfying the conditions of Case I, if V is not of type I,

then there exists some W which is of type I such that Sy C S   . and Sy 4 S   ..

Therefore, applying Theorem 3.1, no such V can be an extreme vector.

For Case II, if w. > 0, then since V e C    implies 2      cVv      < 0 for all
i ' g m,n€K   mn —

K, it must be the case that w, < - w. fot all h 4 z.   But, this implies that for all

K = !/, *. g], j, k ¿ i, g, 2mn£K vmn 4 0.

Now, if for some ; ¿ i, w .<- w., then for k = \i, j, g] it is also the case that

2      ,„ v      ^ 0.   However, if U' = (zz'.J denotes the type II vector
m,n£K.     mn ' jk Jr

-I

1

unconnected ■ 0

g-l
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where \i7, i-,... , i    . 1 = |1, 2, • • • , g - lj - jz'l, then 2      ,K u'    ¿ 0 if and

only if K is of the form \j, k, g\, j, k 4 i, g.   Thus, again applying Theorem 3.1, if

V satisfies the conditions of Case II and is not of type II, then V is not an extreme

vector.

Letting T = \SW\ W eC 1, we have shown that the set T   = \SW\ W is of type

I or type Hi contains the only possible maximal elements of T such that S C Sw,

where

S = \AK\ KC{l,2,...,g-l},|K|=3l.

That is to say, the vectors of type I and type II are the only liftings of the zero

vector in C     , which can be extreme vectors in C .
8-1 g

To complete the proof of the theorem, it is only necessary to show that all

of the vectors of type I and type II are extreme.  For this it is sufficient to show

that no element of T' contains any other element of T   as a proper subset.  To

see this, if W1 is the type I vector described above, then

5   . = SU¡AK| K = {z, j,g\,j4 i, gi-

lí Ul is the type II vector described above, then

S  . = S U \AK I K = {j, k, g\, j, k 4 U g\.

It is clear by inspection that, for all i, ;, S     £ S   -  S^. $. S^., S^. <t S^., and

S   . <t- S   ..   Thus, all of the elements of T   are maximal elements of T, and the
w j       u

theorem is proved.

The remainder of this section will be concerned with generating extreme

vectors of C    by lifting extreme vectors of C _ j  in the cases in which p = 2

and N = 3.   Recalling that C    is the cone of those vectors B such that AX = B

has a nonnegative solution for X, we have that C    is the cone of vectors such

that WA < 0.  Using the indexing scheme described in the last section, if we let

A, denote the A matrix when M = k (note that this usage of the notation A,  is

different from that of the last section), then we have

(44)

where / _j is the (8~l) x i8^1)  identity matrix and B     j is (g - 1) x i8^1).

If W    denotes an extreme vector of C _ j, then a lifting of W    is of the

form W = (W , W ), where W    is a vector in (g - l)-dimensional space.  The

following theorem will be useful in determining those W which are extreme vectors

of C*:
8
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Theorem 3.4.   // W1 is an extreme vector of C     v and if the lifting W =

(Vf1, W2) is an extreme vector of C*. then W2 is an extreme point of \Y\ YB     .

<-wll

Proof.   From the form of A    displayed in equation (44), we see that the con-

dition WA   < 0 breaks into two parts as

(45a) u/l^      < 0
g-l =

(45b) W1 + W2B    , < 0.
g-i =

Assume Vf    is not an extreme point, then there exist Y , Y , kv k2 such

that W2^k1Y1 + k2Y2, *j + *2- 1, and Y{B _1<-W1, k. > 0, i= 1, 2.   Define

two new vectors V    and V    in ( )-dimensional space by V   = (Vf , Y ),  V   =

(W1, Y2). Now, W1Ag_l<0 and y!Bg_,<- W1 for i = 1, 2.  Therefore, V1,

V2 eC .   But,
g

w = ftp», jy2) = or», ^yi + A2y2). ^(w1, yl) + ^(W1, y2) = ¿r ' + *2v2,

which contradicts the hypothesis that W is an extreme vector of C •  Thus, Vf

is an extreme point of {Y| YB     l<- Vf 1\.

Theorem 3.4 implies that if Vf = (W , Vf ) is an extreme vector of C , then

there exists some (g - l) x (g - l) nonsinguiar submatrix M of B _, such that

W M = - VfM, where WM is the (g - l)-dimensional vector of components of the

vector W corresponding to the indices of the columns of M. Thus, in order to

find all of the liftings of Vf which are extreme vectors of C , we consider the

elements of the set L   ., where

L  ,=\Vf\ Vf = (V/\ W2), where W2M=-W]., for some M e <V|,

with

N = {.M | M is a (g - 1) x (g - 1) nonsingular submatrix of B„_i!»

According to Theorem 3-4, any lifting of Vf    which is extreme in C    is contained

in L   ,.   Therefore, it is sufficient to determine which elements in L   , ate
w * * w

extreme vectors of C .   But, a vector V € C    is extreme if and only if V makes

a zero inner product with a set of (y — 1 linearly independent columns of A .

Since W    is extreme in C     j. W/    makes a zero inner product with a set S j of

(82 ) - 1 linearly independent columns of A     ,.  Furthermore, for Vf 6 L   .,

there exists a set S2 of g - 1 linearly independent columns of B     , such that,

for each column Bl    j 6 S2, W B'_ j = - W   , where W     is the corresponding

component of VI .

Now, each element in S l and S2 is a portion of a column of A  .   Let 5 be
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the set of columns of A    which are these extensions of the elements of S.  and S..
8 i

Clearly, S is a set of linearly independent vectors, and since  \SA = (8~ ) — 1 and

|5 | = g - 1, we have \S\ = (8) - 1.   Furthermore, for any column A1  e S,  WAl = 0.

From this we conclude that for any vector W e L   ,,  W is an extreme vector of C
* . v 8

if and only it W e C .   This is equivalent to the condition that

(46) WA'   < 0
8    -

for all A1 e S.   To carry this one step further, if A    is partitioned into two sub-

matrices:

J   S~l\    and    D  J 's"1
8     \   0   / 8    \B . ,

then, since W1 e C*,  WC   < 0.   Therefore, in order to test condition (46), it is
8 8 =

sufficient to consider only the set of columns T, where A'  e T if and only if

A1   is a column of D    and A' 4 S.
8 8 8

We will now organize the results of the preceding discussion into an algorithm

for generating all of the vectors W which are extreme vectors of C    from an

extreme vector W    of C     ,.   The procedure is the following:

Let

N = ¡M | M is a set of g - 1  linearly independent columns of B     A.

For each Mj e N, let Al2 denote the complementary set of columns in B  _,.   This

partitioning of the columns of B  _,   induces a partition on the entries of W    and

the columns of A     ,.   In terms of this, the condition WA    < 0 becomes

w]a1   , + w\a2   . < 0, W\ + W2M,<0,       Wi + W2,M, < 0.1    g-l 2    g-1 =     ' 1 1 = 2 2 =

Let E = M? l and F = FMV   Set W2 = - w\E.  The condition that W e C* is
2 1 8

that WZM2 <- W .   This can be rewritten as

(47) W\<W\F.

Now, using this construction for each Mj € N, we have  W - {W , W ) is an

extreme vector of C    if and only if condition (47) holds.   A computerized version

of this algorithm has been prepared.   In this version of the algorithm the symmetric

nature of the structure of both cones C     ,  and C    has been exploited to produce

a complete list of extreme vectors of C* which are liftings of extreme vectors

of C _,.   The method allows the generation of this complete list without having

to use all of the set N.

To understand this, we will say that two extreme vectors of some C,   are

equivalent if one can be gotten from the other by exchanging its entries according

to some permutation induced by a permutation of the indices  1, 2, ... , k.   In a
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similar fashion, two sets M, M    e N are equivalent if the triples indexing the

columns of one can be gotten from the triples indexing the columns of the other

by a permutation induced by a permutation of the indices  1, 2, .. • , g, which

leaves g fixed.

Now, we employ one representative from each equivalence class of the sets

M € N and apply it to a complete set of extreme vectors for C _..   It is clear

that at least one representative of each class of extreme vectors which are

liftings of extreme vectors of C will be generated in this manner.   This is
g- 1

the method used in the computerized algorithm.   Results employing this program

will be presented in the next chapter.

IV.   OBSERVATIONS AND SUMMARY OF RESULTS

1. Some remarks on the geometry of C and C . In the preceding chapters

the diagonal N-representability problem has been divided into three cases, de-

pending upon the values of the parameters p, N , and M.   These are

Case 1:     M = N + p;

Case II:    M < N + p;

Case III:   M > N + p.

In this section we will describe the geometry of the cones C and C , which

will be useful in understanding why this is a natural approach to the problem.

Recalling the definition given in §1.3,   a cone is said to be pointed if it

does not contain any subspace.   The term blunted will be used to describe a

cone which does contain a subspace.   It is clear that if C is a blunted cone

in a vector space  V, then  V has a direct sum decomposition  V = V. © V,

such that C decomposes as C = C j © V2, where C    is a pointed cone in V..

For a given p, N, and M, let S = {K|KC{1, 2, ... , M],  \K\ = N\.   For each

K e S, define the vector E    = (e . . ) by

eK I1'     if V"->zpeK,

1       P     10,     otherwise.

The cone C has as a complete set of extreme vectors the set

(48) T={EK| KeS\.

From this the cone C   can be defined as

(49) c*= n HK,
KeS

where H    = {V| V • E    <0j.   In general, the cones  C and C   lie in  real

(   )-dimensional space, and |5| = ('¡1).
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In Case I, since Al = N + p, (p) - (£J).   Also, the elements of T are linearly

independent.   From this it follows that C is pointed and of full dimension.  Em-

ploying Theorem 1.8, for each E    there is a uniquely associated (up to a positive

multiple) extreme vector WK of C*.  Letting f = \WK\K e S\, the elements of f

are linearly independent, and C   is pointed and of full dimension.

For each K € S, let F    denote the bounding hyperplane of H  .  That is,

(50) FK = jV| V.EK = 0l.

In a similar manner, for each W    e T, we can define

HK = \V\ V- WK<0\   and    FK = ¡ V | V . WK = 0¡.

In terms of these definitions, we can describe the geometric connection between

C and  C   in a particularly simple manner.  To do this, let R     and R     be the

extreme rays defined by

RK = \kWK\k>0\    and    RK = \kEK | k > 0{.

Then, from Theorem 1.8, each R    is the intersection of (^) - 1 hyperplanes,

namely R   = f\'^K F   .  Similarly,/?    is also the intersection of ()-1 hyperplanes,

namely R   = f\'^K F   .  That is, the set of extreme rays of C* is precisely the set of

all possible intersections of L) - 1 of the ( ) hyperplanes F , and the set of extreme

rays of C is the set of all possible intersections of (r) — 1 of the (  ) hyperplanes F .

For Case II, since M<N + p and N > p, (*J) < (^).   Let V be the vector

subspace of (   )-dimensional space having the set T as a basis, where T is

defined by equation (48).   The cone Cv (C restricted to V) is pointed and of

full dimension.   The cone C   is then the direct sura of the polar cone of Cv

in V, denoted by Cy and the subspace V , which is the orthogonal complement

of V in (   )-dimensional space.
P ,-*

With this description of C , we can now explain the geometric content of

Theorem 2.6, which gives the solution to the diagonal N-representability problem

when M < N + p.  Let W    be defined as in equation (23).  For each such W   ,

let Z     be the vector in (p)-dimensional space defined by

z?     .   = w?      . ,      Ki, <...< i  < M.
T'-'p       V'p *  l P-

That is, Z    is obtained from W    by deleting all entries which are indexed by

p-tuples involving any of the individual indices M + 1, M + 2, ... , N + p.

By Theorem 2.6, the W     are partitioned into two sets.   This induces a par-

tition of the Z     into two sets, namely

Sj = |ZK| KC{1,2,..., Mil   and    S2 = \ZK \ K <L |1, 2,- • •, M||.



THE DIAGONAL N-REPRESENTABILITY PROBLEM 33

From the result of Theorem 2.6, it is then clear that Sl is a complete set of extreme

vectors for C„, and S2 is a spanning set for V . This, then, clarifies the remark

which follows Theorem 2.6.

For Case III, a complete set of extreme vectors for C   can be described as

follows:   Let T be the set of vectors defined by equation (48).  C   is the cone

in (^)-dimensional space defined by equation (49).  Now a vector V in (*)-

dimensional space is an extreme vector of C   if and only if V e C , and it is con-

tained in the intersection of (T) - 1 faces F    of C , whose outward pointing

normals at the originare linearly independent.  That is, V € C   is an extreme

vector of C   if and only if there exists some set T' C T, such that \T'\ = (^) - 1,

the elements of T' ate linearly independent, and if / = {K| E    e T'j, then V e

f|Ke/F   , where F    is defined by equation (50).   From this it is easily seen that

the number of possible extreme rays of C   is given by

which grows quite rapidly as the parameters /Vf, N, and p increase.   For example,

if M = 8, N = 3, and p = 2, then

(Zh>7j"*i°"
2.   Summary of results.   In this section we will summarize the results obtained

for the diagonal N-representability problem and display solutions to some special

cases when M > N + p.   If M = N + p, then a vector L in (vv-dimensional space

is diagonal N-representable if and only if

lfii.<» • .<i sM       I        p      \P /
1 P

and

(ii)   for all sets K of order N contained in {1, 2,» • •, M\, if WK

is defined as in equation (23), then WK • L < 0.

If M < N + p, and if L is a vector in (^)-dimensional space, then L is

diagonal N-representable if and only if

a)        z      K      =H
1 />

and
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(ii)    for ail sets  K of order N contained in ¡1, 2, • • • , N + pi, if WK

is defined as in equation (23), and L is defined as in equation (28), then

WK . L
_\<0,    if KnlN + t+ I,-.-, N + p\ = 0,

0,    if Kn\N+t + l,..-,N+pM0.

For the case in which M > N + p, a vector L  in (   )-dimensional space is

diagonal N-representable if and only if

«    z   <-,-,= O
1<¡,<".<Í <M       1 P      \P /

and ' P

(ii)    if S  is a complete set of extreme vectors for the cone  C   defined

as in equation (49), then, for all W e S, W • L < 0.

We now display the set S of extreme vectors in several special cases.

Case 1:   p = 2, N = 3» and M = 6.   In this case S consists of 70 vectors.

Employing the equivalence relation described in §111.4, these vectors fall into

four classes, namely:

Class 1:   (15 vectors)

= -1

Class 2: (10 vectors)
unconnected = 0

-2

unconnected = 1

Class 3: (15 vectors)

= -2

unconnected » 1

Class 4: (30 vectors)

--1

= 1

unconnected ■ 0
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Case II:   p = 2, N = 3, ««¿ M = 7.   In this case S consists of 896 ve

falling into 7 classes, namely:

Class 1:   (21 vectors)

_ _ = -1

Class 2:   (21 vectors)

unconnected   « 0

-2

unconnected   = 1

Class 3:   (35 vectors)

Class 4:   (105 vectors)

-2

unconnected   « 1

-1

_- 1

unconnected « 0

Class 5:   (252 vectors)

Class 6:   (420 vectors)

_ =2

-=-4

unconnected * — 1

unconnected « 0
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Class 7:   (105 vectors)

L

= -1

= 1

--2

unconnected   = 0

Both of the above solutions were generated by employing the double descrip-

tion algorithm presented in §§111.2 and IH.3.  For the case in which p = 2, N = 3,

and M = 8, the problem becomes too large to generate the complete set S using

this algorithm.   For this case a portion of the set S was obtained.   This was done

by employing the lifting algoritm described in §111.4 and applying the double

description algorithm to a face of CÏ, rather than all of Cg.   A complete set of

those extreme vectors of C„ which are liftings of extreme vectors of C-. consists

of 29,127 vectors falling into 15 classes.  These are:

Class 1:  (28 vectors)

unconnected = 0

Class 2:   (28 vectors)

= 1

unconnected = — 2

Class 3:  (56 vectors)

-=-2

unconnected = 1

Class 4:  (35 vectors)

-2

unconnected   =* 1
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Class 5:   (3,360 vectors)

Class 6:   (2,0l6 vectors)

Class 7:  (56 vectors)

Class 8:   (840 vectors)

<

_=_4

_-2

unconnected » — 1

-« l

unconnected •= 0

•»-I

» 1

unconnected = 0

-1

1

unconnected   = 0

Class 9:   (5,040 vectors)

t-
X

/tv /\

T,

V

-4

unconnected  = — I
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Class 10:   (420 vectors)

-1

1

unconnected  = 0

Class 11:   (3,360 vectors)

Class 12:   (280 vectors)

Class 13:   (3,360 vectors)

unconnected = 0

- = _1

-= 1

unconnected  = 0

- =_1

-= 1

unconnected  = 0

Class 14:   (168 vectors)

-1

1

-2

unconnected  « 0
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Class 15:   (10,080 vectors)

unconnected « — 1

In addition to these, the double description algorithm applied to a face of

C„ produced 23,240 vectors, none of whose collapsings are extreme in C*.  These

vectors fall into four classes, namely:

Class 1:   (56O vectors)

-1

unconnected   « 0

Class 2:   (2,520 vectors)

= -2

unconnected   = 1

Class 3:   (10,080 vectors)
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Class 4:   (10,080 vectors)

-2

-»2

*<W»XWWW»<W»^M>»i  a>  — 3

.... .. .. .. «_i

unconnected » 0

3.  A probabilistic interpretation.  An interpretation of the vectors L can be

given in terms of particles filling spin orbitals.  From this point of view, for a p

matrix, there are N particles and M positions, each of which can hold one particle.

Then, L . > t  .    is viewed as the product of the total number of p-tuples of par-

ticles and the probability that the spin orbitals 2,, ..., i    are all filled by a

particular p-tuple of particles.  More simply, L. _ < >.    is just the expected number

of p-tuples of particles which lie in the p-tuple of spin orbitals i., • • • , i .  The

Pauli principle states that this value lies between zero and one.

As an example of the form that the diagonal N-representability conditions

take, in terms of this interpretation, we consider the 2-matrix case (i.e. p = 2),

when M = N + p.   Then, from (27a),

lsij<i sfV+2 <)■

which simply states that the sum, over all pairs of spin orbitals, of the expected

number of pairs of particles lying in a pair of spin orbitals is equal to the total

number of pairs of particles.

By applying (27a) and (iii) of §1.1.a (equation (4)), condition (27b) may be

written as L .  .   > L .   + L.   - 1, for all i., i,.  That is, the expected number of
11 »2 —    * 1 '2 t¿ *

pairs of particles lying in a pair of spin orbitals is greater than or equal to the

sum of the expected number of particles in each separate spin orbital minus one.

This condition means that if both members of a pair have a large expectation of

being filled by individual particles, then the pair of spin orbitals has a large

expectation of being filled by a pair of particles.  Similar interpretations in terms

of expected occupancy can be derived for all p matrices.
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