KOEBE SEQUENCES OF ARCS AND NORMAL MEROMORPHIC FUNCTIONS

RV

STEPHEN DRAGOSH

ABSTRACT. Let f be a normal meromorphic function in the unit disk. An estimate for the growth of the modulus of f on a Koebe sequence of arcs is obtained; the estimate is in terms of the order of normality of f. An immediate consequence of the estimate is the following theorem due to F. Bagemihl and W. Seidel: A nonconstant normal meromorphic function has no Koebe values. Another consequence is that each level set of a nonconstant normal meromorphic function cannot contain a Koebe sequence of arcs provided the order of normality of f is less than a certain positive constant C^* .

1. Introduction. A meromorphic function f is normal in the unit disk D: |z| < 1 if and only if the family $\{f(S(z))\}$ is normal in D in the sense of Montel, where S is any conformal map of D onto itself. K. Noshiro [10, Theorem 1], and subsequently O. Lehto and K. I. Virtanen [6, Theorem 3], employed the spherical derivative

$$f^*(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$$

to obtain the following characterization of normal meromorphic functions: f is normal in D if and only if

(1.1)
$$C = C_f = \sup_{z \in D} (1 - |z|^2) f^*(z) < + \infty;$$

C is called the order of normality of f. Using integration, we deduce from (1.1) that an arc γ in D with non-Euclidean length ρ is mapped by f onto an arc with spherical length not exceeding $C\rho$. Thus, f is "more normal" than g when $C_f < C_g$.

Throughout this paper we make use of Pick's (differential) form of Schwarz's lemma. If ϕ is an analytic mapping of D into itself, then

$$(1.2) (1-|z|^2)|\phi'(z)| < 1-|\phi(z)|^2;$$

thus $C_{\phi} \leq 1$, and $C_{f(\phi)} \leq C_f$ for any function f meromorphic in D. Equality holds in all cases if ϕ is a conformal map of D onto itself.

Received by the editors January 5, 1973.

AMS (MOS) subject classifications (1970). Primary 30A74; Secondary 30A72.

Key words and phrases. Normal meromorphic function, order of normality, Koebe lemma, Koebe sequence of arcs, level set, boundary behavior.

If f is defined in D and ζ is a point of the unit circle Γ : |z|=1, we set $|f(\zeta)|=\limsup_{z\to\zeta}|f(z)|.$

In the terminology of cluster sets, $|f(\zeta)|$ is the radius of the smallest closed disk such that the disk has center zero and contains all the cluster values (boundary values) of f at ζ . If $|f(\zeta)| \leq M < +\infty$ for all points ζ in a subarc γ of Γ , then f is said to be bounded (by M) on γ . By combining the classical two-constants estimate for |f(z)| and the estimate (1.1) for |f'(z)|, Lehto and Virtanen obtained a "two-constants theorem" for normal meromorphic functions bounded on a subarc γ . Several related results and examples are discussed in §2.

In §3 we prove the central result of this paper: An estimate for the growth of the modulus of a normal meromorphic function on a Koebe sequence of arcs. Following F. Bagemihl and W. Seidel [1], a sequence of disjoint Jordan arcs $\{\gamma_n\}$ in D is called a Koebe sequence of arcs relative to an open subarc γ of Γ provided (i) each neighborhood of γ contains all but finitely many of the arcs γ_n , and (ii) every open sector Δ of D subtending a subarc whose closure lies in γ has the property that all but finitely many of the arcs γ_n contain at least one Jordan subarc lying entirely in Δ except for its two endpoints which lie on distinct sides of Δ . If γ is defined in D and γ_n is a Koebe sequence of arcs, we set

$$m_n = m_n(\gamma_n; f) = \inf_{z \in \gamma_n} |f(z)|$$
 and $M_n = M_n(\gamma_n; f) = \sup_{z \in \gamma_n} |f(z)|$.

If $\lim_{n} M_n = 0$, zero is called a Koebe value of f. More generally, the complex number c is a Koebe value of f provided zero is a Koebe value of f(z) - c or 1/f, according as c is finite or $c = \infty$. Koebe's lemma states that a nonconstant bounded analytic function has no Koebe values.

Some estimates that we obtain for the growth of |f| are the following (Theorem 1): If f is a meromorphic function in D with order of normality C > 0 and $\{\gamma_n\}$ is a Koebe sequence of arcs relative to an open subarc γ of Γ , then

(1.3)
$$\lim \inf M_n \ge \frac{1 + (1 + C^2)^{1/2}}{C} \exp\left[-(1 + C^2)^{1/2}\right]$$

or

(1.4)
$$\lim \inf M_n \ge \sup_{\zeta \in \gamma} |f(\zeta)|,$$

according as f is unbounded or bounded on y. By combining (1.3) and (1.4) (or (1.3) and Koebe's lemma), we reestablish a result of Bagemihl and Seidel [1, Theorem 1]: A nonconstant normal meromorphic function cannot have zero (and hence any extended complex number) as a Koebe value.

Since f and 1/f have equal spherical derivatives, $C_f = C_{1/f}$. We infer from (1.3) that if 1/f is not bounded on γ , then

(1.5)
$$\lim \sup m_n \le \frac{C}{1 + (1 + C^2)^{\frac{1}{2}}} \exp \left[(1 + C^2)^{\frac{1}{2}} \right].$$

In our investigations, a fundamental role is played by the number $C = C^*$ for which the right-hand sides of (1.3) and (1.5) are equal (and hence equal to one); $C^* \approx 2/3$. In particular, if both f and 1/f are unbounded on γ and $C_f < C^*$, then

$$\lim \sup m_n < \lim \inf M_n$$
.

$$L_{p} = \{z : |f(z)| = R\},$$

such that L_R contains a Koebe sequence of arcs relative to an open subarc γ of Γ , then

$$\frac{1+(1+C^2)^{\frac{1}{2}}}{C}\exp\left[-(1+C^2)^{\frac{1}{2}}\right] \leq R \leq \frac{C}{1+(1+C^2)^{\frac{1}{2}}}\exp\left[(1+C^2)^{\frac{1}{2}}\right], \quad C^* \leq C = C_{f^*}$$

and each point of γ is a limit point of zeros and poles of f; thus (Theorem 2) if either f is a nonconstant normal analytic function in D or $C = C_f$ satisfies $0 < C < C^*$, then $f \in \mathcal{L}$. Moreover, (Theorem 3)

$$C^* = \inf\{C_i : f \notin \mathcal{L}, C_i > 0\}.$$

Whether or not there exists a normal meromorphic function $f \notin \mathcal{L}$ such that $C^* = C$, is an open question.

Finally, in $\S 5$ we discuss the boundary behavior of normal meromorphic functions f for which |f| has a Koebe value.

2. Boundary estimates for normal functions. Let G_{α} be a lens (crescent) bounded by the unit circle $\Gamma\colon |z|=1$ and a circular arc in D that intersects Γ at an angle α , $0<\alpha<\pi$. Excluding the vertices of G_{α} , the boundary of G_{α} consists of an open subarc Γ_{β} of Γ such that $\Gamma-\Gamma_{\beta}$ is viewed under the angle β ($0<\beta<\pi$) from Γ_{β} and an open circular arc Γ_{δ} in D such that $\Gamma-\Gamma_{\beta}$ is viewed under the angle δ ($\beta<\delta<\pi+\beta$) from Γ_{δ} . Note that $\alpha=\delta-\beta$. The harmonic measure ω of Γ_{β} with respect to G_{α} is given by

$$\omega(z, \Gamma_{\beta}, G_{\alpha}) = \alpha^{-1}(\delta - \theta) \quad (\beta < \theta < \delta),$$

where θ is the angle under which $\Gamma - \Gamma_{\beta}$ is viewed from z. In the theorem to follow, we make use of the expression

$$\lambda(z) = \frac{1}{1 - |z|^2} / \frac{\partial \omega}{\partial n} \quad (z \in \Gamma_{\delta}),$$

where $\partial \omega/\partial n$ is the normal derivative of ω at $z \in \Gamma_{\delta}$. Using (1.2), we find that $\lambda(z)$ ($z \in G_{\alpha}$) is invariant under a conformal map $z = \phi(z')$ of D onto itself. Therefore, we can assume that Γ_{δ} passes through z = 0 and that the positive real axis is the inner normal to Γ_{δ} at z = 0. Some elementary calculations yield

$$\lambda_{\alpha} = \lambda(z)|_{z \in \Gamma_{\delta}} = \frac{\alpha}{2 \sin \alpha}.$$

In this setting, Lehto and Virtanen's "two-constants theorem" assumes the following form.

Theorem A. Let f be meromorphic in D with order of normality C ($0 < C < +\infty$), and suppose

$$\sup_{z \in G_{\alpha}} |f(z)| \ge \mu.$$

If f is bounded by M on the open arc Γ_{β} , then

(2.1)
$$M \ge \mu \exp \left[-C\lambda_{\alpha}(\mu + 1/\mu)\right].$$

If

$$\mu_{\alpha} = \frac{1 + \left(1 + 4C^2 \lambda_{\alpha}^2\right)^{1/2}}{2C\lambda_{\alpha}},$$

then the best estimates in (2.1) are obtained by setting

$$\mu = \sup_{z \in G_{\alpha}} |f(z)|, \quad \text{if } \sup_{z \in G_{\alpha}} |f(z)| < \mu_{\alpha},$$

and

$$\mu = \mu_{\alpha}$$
, if $\sup_{z \in G_{\alpha}} |f(z)| \ge \mu_{\alpha}$.

In their version of Theorem A, Lehto and Virtanen assumed that f is bounded by M on the closure of the arc Γ_{β} ; our weaker form is easily verified by an obvious limiting argument using closed subarcs of Γ_{β} .

We briefly indicate once again how the best estimates are obtained. As a function of $\mu \ge 0$,

$$\mu \exp\left[-C\lambda_{\alpha}(\mu+1/\mu)\right]$$

has its maximum at $\mu = \mu_a$. Therefore, if

$$\sup_{z \in G_a} |f(z)| \ge \mu_a,$$

we can choose $\mu = \mu_{\alpha}$ in (2.1) and hence maximize its right-hand side. If

$$\sup_{z \in G_{\alpha}} |f(z)| < \mu_{\alpha},$$

then

$$\mu = \sup_{z \in G_{\alpha}} |f(z)|$$

maximizes the right-hand side of (2.1).

If f is bounded by M on Γ with the (possible) exception of one point, then Theorem A, as stated, does not apply. However, by using a limiting process (as $\alpha \to 0$). Lehto and Virtanen deduced the following estimate of the Pharagmén-Lindelöf type.

Theorem B. Let f be meromorphic in D with order of normality C ($0 < C < + \infty$), and let f be bounded by M on $\Gamma - \{\zeta\}$, $\zeta \in \Gamma$. Then

(2.2)
$$M \ge \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C} \exp\left[-(1 + C^2)^{\frac{1}{2}}\right],$$

unless f is bounded in D, in which case $M \ge C$.

As noted in [6, p. 62], the estimate (2.2) is sharp. The function

(2.3)
$$f(z) = M \exp(b(1+z)/(1-z)) \quad (M > 0, b > 0)$$

is bounded by M on $\Gamma - \{1\}$ and equality holds in (2.2) for $C = C_f$.

We now investigate the sharpness of the estimate (2.2) in case f is bounded by M on all of Γ and unbounded in D. To simplify notation, we henceforth let $C = C_M^*$ be the solution of

(2.4)
$$M = \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C} \exp\left[-(1 + C^2)^{\frac{1}{2}}\right].$$

As in the introduction, we set $C^* = C_1^*$. Using this notation, (2.2) is equivalent to the inequality $C_M^* \leq C$.

Example 1. Let M > 0, and set $C_n = C_{f_n}$, where $f_n(z) = Mz^{-n}$ $(n = 2, 3, \dots)$. Then $C_M^* \le C_n = C_M^* + o(1)$.

Proof. The inequality $C_M^* \leq C_n$ follows from Theorem B. Let

$$\Phi_n(z) = (1 - |z|^2) f_n^*(z) = (1 - |z|^2) \frac{Mn|z|^{n-1}}{M^2 + |z|^{2n}}.$$

Then

$$C_n = \max_{0 \le r \le 1} \Phi_n(r).$$

We have

$$\Phi'_n(r) = \frac{Mnr^{n-2}}{(M^2 + r^{2n})^2} [(n-1)r^{2n+2} - (n+1)r^{2n} - M^2(n+1)r^2 + M^2(n-1)].$$

Now, for all values of n,

(2.5)
$$\Phi'_n(n/(n+1)) < 0;$$

and, for all sufficiently large values of n,

(2.6)
$$\Phi'_n((n-M^{-2})/(n+1)) > 0.$$

To verify (2.6), we note that as $n \to +\infty$ in (2.6), we obtain the valid inequality

$$2 > (4 + 2M^{-2}) \exp[-2(1 + M^{-2})]$$
.

From (2.5) and (2.6), it follows that

(2.7)
$$\Phi'_n((n-t_n)/(n+1)) = 0$$

for some t_n satisfying $0 < t_n < M^{-2}$.

Because Φ_n' has exactly one zero for $0 \le r \le 1$,

(2.8)
$$C_n = \Phi_n((n - t_n)/(n + 1)).$$

If t' is a limit point of the sequence $\{t_n\}$ and we formally compute the limit as $n \to +\infty$ in (2.7), we find that t' satisfies

$$(2.9) t+2=M^2te^{2(1+t)}.$$

However, (2.9) has exactly one solution for t > 0 and thus $t' = \lim_{n} t_n$. Moreover, since t' satisfies (2.9), t' maximizes the function

$$\psi(t) = \frac{2M(t+1)e^{1+t}}{1+M^2e^{2(1+t)}}$$

for which $\psi'(t) = 0$ reduces to (2.9). If we set $t' = (1 + C^2)^{\frac{1}{2}} - 1$, then some elementary computations show that

$$\psi(t') = \psi((1+C^2)^{\frac{1}{12}}-1) = C$$

and that C satisfies (2.4). Thus $C = C_M^*$ and we find

$$\lim C_n = \lim \Phi_n((n-t_n)/(n+1)) = \psi(t') = C = C_M^*$$

Example 1 can be verified by another method that points out a connection between the functions Mz^{-n} and the function in (2.3); this method is based on the following lemma.

Lemma 1. Let $\{g_n\}$ be a sequence of normal meromorphic functions that converges uniformly to g on compact subsets of D. Let $C_n = C_{g_n}$. Then

$$(2.10) C_g \leq \liminf C_n.$$

If there exists an r $(0 \le r < 1)$ such that

(2.11)
$$C_n = (1 - |z_n|^2) g_n^*(z_n), \quad |z_n| \le r,$$

then $C_p = \lim_{n \to \infty} C_n$.

Proof. Let $\{g_{n_k}\}$ be a subsequence such that $\lim C_{n_k} = \lim \inf C_n$. The sequence $\{g'_n\}$ converges uniformly to g' on compact subsets of D; thus, for each $z \in D$,

$$(1-|z|^2)g^*(z) = \lim (1-|z|^2)g^*_{n_k}(z) \le \lim C_{n_k}.$$

Thus

$$C_{g} \leq \lim \inf C_{n}$$
.

If (2.11) holds for some r ($0 \le r < 1$), then

(2.12)
$$\limsup_{n \to \infty} C_n = \limsup_{|z| \le r} \left(\max_{|z| \le r} (1 - |z|^2) g_n^*(z) \right)$$
$$= \max_{|z| \le r} (1 - |z|^2) g^*(z) \le C_g.$$

By (2.10) and (2.12), we have $C_{g} = \lim_{n \to \infty} C_{n}$.

Returning to the sequence $f_n(z) = Mz^{-n}$ $(n = 2, 3, \dots), C_n = C_{f_n}$, set

$$g_n(w) = f_n\left(\frac{w - x_n}{1 - x_n w}\right),\,$$

where x_n is determined from an arbitrary fixed number b>0 by $x_n=e^{-b/n}$. Then $C_n=C_{g_n}$ by (1.2). From (2.8), if $|z|=(n-t_n)/(n+1)$, then $C_n=(1-|z|^2)/\binom{*}{n}(z)$. We choose $z_n=-(n-t_n)/(n+1)$. Then $C_n=(1-|w_n|^2)g_n^*(w_n)$, where w_n is determined by $(w_n-x_n)/(1-x_nw_n)=z_n$. We find

$$w_n = \frac{1 + t_n - b + o(1)}{1 + t_n + b + o(1)}.$$

Since $0 < t_n < M^{-2}$, the condition (2.11) in Lemma 1 holds for all sufficiently large values of n. Therefore,

$$\lim C_n = C_R,$$

where g is the limit of the sequence $\{g_n\}$. A direct calculation yields

$$g(w) = \lim M \left(\frac{1 - e^{-b/n}w}{w - e^{-b/n}} \right) = M \exp \left(b \frac{1 + w}{1 - w} \right).$$

As noted in (2.3), $C_g = C_M^*$. This reestablishes Example 1.

3. Estimates on Koebe sequences. We now obtain some estimates for the growth of the modulus of a normal function on a Koebe sequence of arcs.

Theorem 1. Let f be meromorphic in D with order of normality C $(0 < C \le + \infty)$. Let γ be an open subarc of Γ and let $\{\gamma_n\}$ be a Koebe sequence of arcs relative to γ . Set $M = \sup_{\zeta \in \gamma} |f(\zeta)|$. If f is not bounded on γ , then

(3.1)
$$\lim \inf M_n \ge \frac{1 + (1 + C^2)^{1/2}}{C} \exp \left[-(1 + C^2)^{1/2} \right];$$

and if f is bounded on y, then

$$(3.2) lim inf $M_n \ge M$.$$

Also, if $0 < C < +\infty$ and f is analytic in a domain $G \subseteq D$ for which γ is a free boundary arc, then

$$(3.3) \qquad \qquad \lim\inf M_n \geq M.$$

Proof. If $C = +\infty$, we let the right-hand side of (3.1) equal zero. Thus we assume that $0 \le C \le +\infty$. If f is not bounded on γ , we can choose a point $\zeta^* \in \gamma$ such that

$$|f(\zeta^*)| > \frac{1 + (1 + C^2)^{1/2}}{C}$$
.

Let γ^* be an open arc such that $\zeta^* \in \gamma^*$ and the closure of γ^* lies in γ . Let ζ and ζ' denote the left and right endpoints, respectively, of γ^* as viewed from z=0, and let r and r' be the radii at ζ and ζ' , respectively. For all sufficiently large values of n, the arc γ_n has a Jordan subarc γ_n^* with an endpoint on each of r and r' and otherwise lying in the sector subtending γ^* . Let r_n and r'_n denote the segments on r and r', respectively, such that the arc

$$\Gamma_n = r_n \cup \gamma_n^* \cup r_n'$$

is a Jordan crosscut of D. The region bounded by $\Gamma_n \cup \Gamma - \gamma^*$ is denoted by D_n . Then $\lim D_n = D$ in the obvious sense. For all sufficiently large values of n, we can choose a point $z_n \in D_n$ such that

$$|f(z_n)| > \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C}$$

and $\lim z_n = \zeta^*$. By the principle of monotoneity for harmonic measures,

(3.4)
$$\omega(z_n, \gamma^*, D) \leq \omega(z_n, \Gamma_n, D_n).$$

Let $z=\phi_n(w)$, $z_n=\phi_n(0)$, be a conformal map of |w|<1 onto D_n . Then $\Gamma_n=r_n\cup\gamma_n^*\cup r_n'$ corresponds to a subarc $\Lambda_n\cup\Lambda_n^*\cup\Lambda_n'$ of |w|=1 subtended by a central angle of measure $(\delta_n+\delta_n^*+\delta_n')/2\pi$, where r_n corresponds to the subarc Λ_n subtended by a central angle of measure $\delta_n/2\pi$, etc. Since $\{z_n\}$ converges to ζ^* , $\lim \omega(z_n,\gamma^*,D)=1$; thus, by (3.4) and the invariance of harmonic measure under ϕ_n ,

(3.5)
$$\lim_{n \to \infty} (\delta_{n} + \delta_{n}^{*} + \delta_{n}^{\prime})/2\pi = 1.$$

By performing rotations if necessary, we can assume that the arcs Λ_n have a common right endpoint as viewed from w=0. The segments r_n converge uniformly to ζ ; thus, the sequence $\{\phi_n\}$ converges uniformly to ζ on $\bigcap \Lambda_n$. If $\bigcap \Lambda_n$ is a proper subarc of |w|=1, it follows that $\{\phi_n\}$ converges uniformly to ζ on compact subsets of |w|<1 (see [4, Corollary 1] or [6, Theorem 10]). However, $\phi_n(0)=z_n$ and $\lim z_n=\zeta^*\neq \zeta$. Thus $\bigcap \Lambda_n$ is a singleton and $\lim \delta_n=0$. In a similar fashion it is seen that $\lim \delta_n'=0$. From (3.5),

$$\lim \delta_{m}^{*} = 2\pi.$$

Let G_n be the lens bounded by Λ_n^* and the circle through w=0 joining the endpoints of Λ_n^* . Since Λ_n^* is subtended by the central angle δ_n^* , it follows from some simple geometric considerations that G_n has vertex angle a_n given by

$$\alpha_n = \pi - \frac{1}{2} \delta_n^*.$$

We now apply the estimate of Theorem A to the function $f(\phi_n(w))$. First, set

$$M_n^* = \sup_{w \in \Lambda_n^*} |f(\phi_n(w))| \leq M_n,$$

$$\lambda_n = \lambda_{\alpha_n} = \frac{\alpha}{2 \sin \alpha_n},$$

$$\mu_n = \mu_{\alpha_n} = \frac{1 + (1 + 4C^2 \lambda_n^2)^{\frac{1}{2}}}{2C\lambda_n}.$$

Since

$$|f(\phi_n(0))| = |f(z_n)| > \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C} > \mu_n,$$

we use $\mu = \mu_n$ in (2.1) to obtain the estimate

$$M_n \ge M_n^* \ge \mu_n \exp\left[-C\lambda_n(\mu_n + 1/\mu_n)\right].$$

By (3.6) and (3.7), $\lim_{n \to \infty} \lambda_n = \frac{1}{2}$; thus,

$$\lim \mu_n = \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C}$$
.

The estimate (3.1) now follows.

Before we continue with the proof of Theorem 1, we cite Bagemihl and Seidel's result [1, Theorem 1] which shall be used later in our proof.

Corollary 1. Let f be meromorphic in D with order of normality C ($0 < C < +\infty$). Then f has no Koebe values.

Proof. Let γ be any open subarc of Γ . If f is bounded on γ , then Koebe's lemma implies that w=0 cannot be a Koebe value of f on a Koebe sequence of arcs relative to γ . If f is not bounded on γ , then the estimate (3.1) implies the same conclusion. If w=c is a Koebe value of f, then we consider f(z)=f(z)-c or f(z)=1/f(z), depending on whether c is finite or $c=\infty$. In either case, f is normal and therefore cannot have zero as a Koebe value; thus c cannot be a Koebe value of f and the corollary is proved.

We now return to the proof of Theorem 1. If f is bounded on y, then, by Fatou's theorem, f has radial limits almost everywhere on y. The estimate (3.2) now follows from the maximum principle as noted by MacLane [7, Theorem 9]. (Let y^* be any closed subarc of y such that f has a radial limit at each endpoint of y^* . The maximum principle is applied to f in the region bounded by y_n^* , r', y_{n+1}^* , r; our notation here is that used in the proof of (3.1). It is worth noting that if f is the maximum of f for f in the closure of f, then equality holds in (3.2).)

Now suppose f is analytic in a domain $G \subseteq D$ for which γ is a free boundary arc. If M is finite, then we just proved the desired estimate (3.3) (even if $C = +\infty$). Therefore assume $M = +\infty$ and $0 < C < +\infty$. Then either (i) there is a point $\zeta^* \in \gamma$ at which f is unbounded or (ii) for each open subarc γ^* of γ ,

$$M^* = \sup_{\zeta \in \gamma^*} |f(\zeta)| < + \infty,$$

and sup $M^* = + \infty$. If (ii) occurs, then (3.2) implies that for each open subarc $\gamma^* \subset \gamma$,

$$\lim \inf M_n \geq M^*.$$

Thus $\lim_{n \to \infty} M_n = +\infty = M$.

Finally, suppose (i) occurs. (It can be deduced from a theorem of McMillan [8, Theorem 1] that if

$$\limsup \, M_{n_{\underline{k}}} < + \infty$$

for any subsequence $\{\gamma_{n_k}\}$, then ∞ is a Koebe value of f on a Koebe sequence of arcs relative to a subarc of f having f as one endpoint. Since f of f has no Koebe values; it follows that f has no Koebe value f as required. We sketch a proof that in spirt is somewhat similar to that of McMillan. It is also similar to the type of argument used by Barth and Schneider [2] to prove MacLane's lemma.) Let us first assume that f can be chosen so that

(3.8)
$$M_n < M' \quad (n = 1, 2, \cdots).$$

Select an open subarc γ^* for which the closure lies in γ and such that $\zeta^* \in \gamma^*$. Let Δ be the open sector subtending γ^* . Since γ is a free boundary arc of G, there exists an $\epsilon > 0$ such that G contains the set

$$\Delta_{\epsilon} = \Delta \cap \{z : 1 - \epsilon < |z| < 1\}.$$

Choose a sequence $\{z_k\}$ in Δ_{ϵ} such that $\lim z_k = \zeta^*$ and such that

(3.9)
$$|f(z_k)| > M' + k \quad (k = 1, 2, \dots).$$

We can also assume that the Riemann surface of f over the extended plane (sphere) has no branch points over any of the radial segments

$$R_k = \{w : |w_k| \le |w| < +\infty, \text{ arg } w = \text{arg } w_k, w_k = f(z_k)\}.$$

If the regular element $e_{z_k}(w, w_k)$ of $z = f^{-1}(w)$ is continued along R_k , there are two possibilities: either the continuation defines a transcendental singularity in a finite distance or at $w = \infty$, or the continuation defines a regular or algebraic element at $w = \infty$. In each case, the branch of f^{-1} defined by the continuation maps the segment of R_k in question onto a Jordan arc γ_k' with initial point z_k . By (3.8) and (3.9), $\gamma_k' \cap \gamma_n = \emptyset$ $(n = 1, 2, \cdots)$. In the first case, γ_k' terminates at a point of $\Gamma - \gamma$; in the second case, γ_k' terminates at a pole of f outside Δ_{ξ} . It is apparent that from the sequence $\{\gamma_k'\}$ we can find a Koebe sequence of arcs on which f has Koebe value ∞ . This contradiction shows that the condition (3.8) cannot hold; that is, $\limsup M_n = +\infty$. By the same argument, $\limsup M_{nk} = +\infty$ for any subsequence $\{\gamma_{nk}\}$. Thus, $\lim M_n = +\infty$, and this completes the proof of (i).

Corollary 2. Let f be meromorphic and normal in D. Let γ be a subarc of Γ such that f is analytic in a domain $G \subset D$ and γ is a free boundary arc of G. If f is bounded on a Koebe sequence of arcs relative to γ , then f is bounded on γ ; moreover,

We shall make use of the estimate (3.3) in the following form.

$$M = \sup_{\zeta \in \gamma} |f(\zeta)| \le \liminf_n M_n < + \infty.$$

Since f and 1/f have the same order of normality, we can apply Theorem 1 to 1/f to obtain the following result.

Corollary 3. Let f be meromorphic in D with order of normality C ($0 < C \le +\infty$). Let γ be an open subarc of Γ and let $\{\gamma_n\}$ be a Koebe sequence of arcs relative to γ . Set

$$m = \inf_{\zeta \in \gamma} \left(\liminf_{z \to \zeta} |f(z)| \right).$$

If w = 0 is a boundary value of f on γ , then

(3.10)
$$\lim \sup m_n \le \frac{C}{1 + (1 + C^2)^{\frac{1}{2}}} \exp \left[(1 + C^2)^{\frac{1}{2}} \right];$$

and if w = 0 is not a boundary value of f on y, then

$$\lim \sup m_n \leq m$$
.

Also, if $0 \le C \le +\infty$ and f omits w=0 is a domain $G \subseteq D$ for which y is a free boundary arc, then

$$\lim \sup m_n \leq m$$
.

The following example is concerned with the sharpness of the estimate (3.1) of Theorem 1.

Example 2. Let $w = \phi(z)$ be an analytic map of D into |w| < 1 such that w = 0 is a boundary value of ϕ at $\zeta = 1$ and

$$\lim_{|z|\to 1;\ z\in\sigma}|\phi(z)|=1,$$

where σ is a spiral in D (see [11, p. 14]). Let $g_n(w) = Mw^{-n}$ and set $f_n(z) = g_n(\phi(z))$. By (1.2) and Example 1,

$$C_{f_n} \leq C_{g_n} = C_M^* + o(1).$$

Also, f_n is unbounded at $\zeta = 1$ so that the estimate (3.1) applies. Since

$$\lim_{|z|\to 1; z\in\sigma} |f_n(z)| = M,$$

(3.1) can be written as $C_M^* \leq C_{I_m}$. Thus

$$C_M^* \leq C_{f_n} \leq C_M^* + o(1).$$

4. Level sets of normal functions. We now consider the family ${\mathfrak L}$ defined in the introduction.

Lemma 2. Suppose the nonconstant normal meromorphic function f & L. Then

$$C^* \leq C = C_f.$$

If the level set L_R of f contains a Koebe sequence of arcs $\{\gamma_n\}$ relative to the open subarc γ of Γ , then the following hold:

(ii)
$$\frac{1+(1+C^2)^{\frac{1}{2}}}{C}\exp\left[-(1+C^2)^{\frac{1}{2}}\right] \le R \le \frac{C}{1+(1+C^2)^{\frac{1}{2}}}\exp\left[(1+C^2)^{\frac{1}{2}}\right],$$

(iii) if ζ is any point of γ and

$$R' < \frac{1 + (1 + C^2)^{1/2}}{C} \exp[-(1 + C^2)^{1/2}],$$

then, in each neighborhood of ζ , there is a component U of the set $f^{-1}(|w| < R')$ and a component V of the set $f^{-1}(|w| > 1/R')$ such that the closures of U and V lie in D.

Proof. We first verify (ii). Both f and 1/f must be unbounded on y (and in fact on each subarc of y), otherwise the assumption concerning L_R is

impossible by MacLane's lemma. Since $R = \lim_{n \to \infty} m_n$, the inequality (ii) follows from (3.1) and (3.10).

If $f \notin \mathcal{Q}$, then there exists an R such that (ii) holds for $C = C_f$; thus $C^* \leq C$. Finally, we verify (iii). Let $\zeta \in \gamma$. Since f and 1/f are unbounded on each subarc of γ , Corollary 2 implies that ζ is a limit point of poles and zeros of f. For each positive integer k, let U_k be a component of $f^{-1}(|w| < R')$ containing a zero z_k of f, and let V_k be a component of $f^{-1}(|w| > 1/R')$ containing a pole p_k of f, where $z_k \to \zeta$ and $p_k \to \zeta$. By (ii), the level sets L_R , and $L_{1/R'}$ cannot contain a Koebe sequence of arcs. Thus the diameters of U_k and V_k tend to zero as $k \to +\infty$. Because L_R contains the Koebe sequence $\{\gamma_n\}_{n=1}^{\infty}$, the closures of U_k and V_k lie in D for all sufficiently large values of k.

The next result follows from (i) and (iii) of Lemma 2.

Theorem 2. Let f be meromorphic in D with order of normality C ($0 < C < +\infty$). If either f is analytic in D or $C < C^*$, then $f \in \mathbb{Z}$.

We now show that C^* cannot be replaced by any larger number in Lemma 2 and Theorem 2.

Theorem 3. $C^* = \inf \{C_i: f \notin \mathfrak{L}, C_i > 0\}$.

Proof. Lemma 2 states that C^* is a lower bound for the set in question. For each value $k=3,\,4,\,\cdots$, let T_k be a regular non-Euclidean polygon in D with k sides and center z=0 and such that each vertex angle of T_k has magnitude $2\pi/3$. Let n be a fixed positive integer, and let $w=f_k(z)$ be an analytic n-to-1 map of T_k onto |w|<1 such that $f_k(z)=0$ only for z=0. We extend f_k from T_k to all of the unit disk D by the usual reflection technique. It is apparent that the level set L_1 of f_k consists of the boundary of T_k and all its reflections. Thus L_1 contains a Koebe sequence of arcs relative to Γ and hence $f_k \notin \mathcal{L}$.

We intend to show that f_k can be constructed so that

$$\lim_{k \to +\infty} f_k(z) = z^n$$

uniformly on compact subsets of D and

$$C_{f_k} = (1 - |z_k|^2) f_k^*(z_k),$$

where $|z_k| \le r \le 1$. Then, by Lemma 1,

$$\lim C_{f_1} = C_n,$$

where C_n is the order of normality of z^n . By Example 1,

$$\lim C_n = C^*.$$

Since $f_k \notin \mathcal{L}$, this implies the assertion of our theorem.

Because the expression $(1-|z|^2)f_k^*(z)$ is invariant under reflections through non-Euclidean lines of the unit disk D,

$$C_{f_k} = \sup_{z \in T_k} (1 - |z|^2) f_k^*(z).$$

Also D is the kernel of the domains T_k . Thus, we need only concern ourselves with the construction of f_k on T_k . Let T_k be positioned so that there is a vertex of T_k located on the positive real axis at r_k . The conformal map $z = b_k(w)$ of |w| < 1 onto T_k such that $b_k(0) = 0$ and $b_k(1) = r_k$ can be given in terms of hypergeometric functions as follows (see [5, p. 83]):

$$z = b_k(w) = r_k s_k \psi_2(w) / \psi_1(w),$$

where

$$\psi_1(w) = F\left(\frac{1}{6} - \frac{1}{k}, \frac{1}{6}, 1 - \frac{1}{k}; w^k\right), \qquad \psi_2(w) = wF\left(\frac{1}{6} + \frac{1}{k}, \frac{1}{6}, 1 + \frac{1}{k}; w^k\right),$$

and

$$s_k = \frac{\psi_1(1)}{\psi_2(1)} = \frac{\Gamma(1 - 1/k)\Gamma(5/6 + 1/k)}{\Gamma(1 + 1/k)\Gamma(5/6 - 1/k)}.$$

Let $w = g_k(z)$ be the inverse of b_k and set $w = f_k(z) = [g_k(z)]^n$. We have $\lim b_k(w) = w$ uniformly on $|w| \le 1$. Thus,

$$\lim f_k(z) = z^n$$

uniformly on compact subsets of D. By Lemma 1, C_n , the order of normality of z^n , satisfies

$$(4.1) 0 < C_n \le \liminf C_{f_k}.$$

We now show that f'_k , and hence f'_k , is bounded independent of k on the closure of T_k . First,

$$b'_{k}(w) = r_{k} s_{k} \frac{\psi_{1} \psi'_{2} - \psi_{2} \psi'_{1}}{\psi_{1}^{2}} k w^{k-1}$$

$$= r_{k} s_{k} \frac{1/k}{(w^{k})^{1-1/k} (1 - w^{k})^{1/3} \psi_{1}^{2}} k w^{k-1} = r_{k} s_{k} \frac{1}{(1 - w^{k})^{1/3} \psi_{1}^{2}}.$$

The quantity $\psi_1 \psi_2' - \psi_2 \psi_1'$ has the above simplification using the technique of Carathéodory [3, p. 164]. Thus,

$$|b'_{k}(w)| \ge \frac{r_{3}s_{3}}{2^{1/3}} \frac{1}{|\psi_{1}|^{2}} \ge \frac{r_{3}s_{3}}{2^{1/3}} \frac{1}{F^{2}(1/6, 1/6, 2/3; 1)},$$

and

$$|f'_{k}(z)| \le n|g'_{k}(z)| \le n\frac{2^{1/3}}{r_{3}s_{3}}F^{2}(\frac{1}{6}, \frac{1}{6}, \frac{2}{3}; 1).$$

It now follows that there exists a compact set $|z| \le r < 1$ such that $C_{f_k} = (1 - |z_k|^2) f_k^*(z_k)$, where $|z_k| \le r$; for if $|z_k| \to 1$, then (since f_k^* is bounded independent of k on the closure of T_k) $\lim C_{f_k} = 0$. This contradicts (4.1).

5. Functions bounded on Koebe sequences. Although a nonconstant normal meromorphic function f cannot have a Koebe value, |f| can have a Koebe value R as evidenced by the functions of Examples 1 and 2 and Theorem 3. It must be the case that $0 < R < + \infty$. Also, a function f can be "very normal" and yet |f| can have a Koebe value. For example, if M > 0 and f(z) = z/M then |f| has a Koebe value and $C_f = 1/M$.

Let f be meromorphic and normal in D. Suppose |f| has R as a Koebe value on a Koebe sequence of arcs $\{\gamma_n\}$ relative to an open subarc γ of Γ . If no point of γ is a limit of poles of f, then Corollary 2 yields $|f(\zeta)| \leq R$ ($\zeta \in \gamma$). By Fatou's theorem, f has radial limits at almost every point of γ ; these radial limits all have modulus R. If no point of γ is a limit point of zeros of f, then Corollary 2 applied to 1/f yields

$$\lim_{z \to \zeta} \sup |f(z)|^{-1} \le R^{-1} \qquad (\zeta \in \gamma);$$

that is, f has no boundary values w on γ such that |w| < R. On the other hand suppose $\zeta \in \gamma$ is a limit point of zeros of f; let $z_k \to \zeta$ be such a sequence of zeros. Choose R' (0 < R' < R) such that the Riemann surface of f has no branch points over the circle |w| = R'. Let U_k be the component of $f^{-1}(|w| < R')$ containing z_k . For all sufficiently large values of k, U_k cannot intersect any of the arcs γ_n since

$$\lim m_n(\gamma_n; f) = R > R'.$$

Since f has radial limits of modulus R > R' at almost every point of γ , we conclude that the diameter of U_k tends to zero as $k \to +\infty$. Thus $|w| \le R'$ lies in the set of boundary values of f at ζ . Since R' can be chosen arbitrarily close to R, we conclude that $|w| \le R$ is the set of boundary values of f at ζ .

In the foregoing discussion, we have assumed that no point of γ is a limit point of poles of f. The following theorem shows that this is the case if C_f is sufficiently small.

Theorem 4. Let f be meromorphic in D with order of normality C > 0. Let |f| bave the Koebe value R on a Koebe sequence of arcs $\{y_n\}$ relative to an open subarc y of Γ . If $C < C^*$, then either f or 1/f is bounded on y.

Proof. Suppose both f and 1/f are unbounded on γ . Then, by (3.1),

$$R = \lim M_n \ge \frac{1 + (1 + C^2)^{\frac{1}{2}}}{C} \exp\left[-(1 + C^2)^{\frac{1}{2}}\right]$$

and by (3.10),

$$R = \lim m_n \le \frac{C}{1 + (1 + C^2)^{\frac{1}{2}}} \exp \left[(1 + C^2)^{\frac{1}{2}} \right].$$

Because $C < C^*$, these inequalities are inconsistent. Thus, either f or 1/f is bounded on y.

REFERENCES

- 1. F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), 9-18. MR 25 #5183.
- 2. K. F. Barth and W. J. Schneider, A short proof of a lemma of G. R. MacLane, Proc. Amer. Math. Soc. 20 (1969), 604-605. MR 38 #4688.
- 3. C. Carathéodory, Funktionentheorie, Band 2, Birkhäuser, Basel, 1950; English transl., Theory of functions of a complex variable. Vol. 2, Chelsea, New York, 1954. MR 12, 248; 16, 346.
- 4. S. Dragosh, Sequences of normal meromorphic functions, Arch. Math. 23 (1972), 183-187.
- 5. G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 #308.
- 6. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65. MR 19, 403.
- 7. G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Studies, 49, no. 1 (1963), 83 pp. MR 26 #6419.
- 8. J. E. McMillan, On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc, Ann. Acad. Sci. Fenn. Ser. AI No. 384 (1965), 1-12. MR 35 #4431.
- 9. R. Nevanlinna, Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Berlin, 1953; English transl., Die Grundlehren der math. Wissenschaften, Band 162, Springer-Verlag, Berlin and New York, 1970. MR 15, 208; 43 #5003.
- K. Noshiro, Contributions to the theory of meromorphic functions in the unit circle,
 Fac. Sci. Hokkaido Imperial Univ. 7 (1939), 149-159.
- 11. W. Seidel, On the cluster values of analytic functions, Trans. Amer. Math. Soc. 34 (1932), 1-21.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823