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ABSTRACT.   Let / be a normal meromorphic function in the unit disk.   An

estimate for the growth of the modulus of / on a Koebe sequence of arcs is ob-

tained;  the estimate is in terms of the order of normality of /.   An immediate

consequence of the estimate is the following theorem due to F.    Bagemihl and

W. Seidel:  A nonconstant normal meromorphic function has no Koebe values.

Another consequence is that each level set of a nonconstant normal meromorphic

funcrion cannot contain a Koebe sequence of arcs provided the order of norm-

ality of / is less than a certain positive constant  C*.

1.   Introduction.   A meromorphic function / is normal in the unit disk D:

\z\ < 1 if and only if the family i/(S(z))i is normal in D in the sense of Montel,

where S is any conformai map of D onto itself.   K. Noshiro [10, Theorem l],

and subsequently O.   Lehto and K. I. Virtanen [6, Theorem 3], employed the

spherical derivative

l + l/WI2
to obtain the following characterization of normal meromorphic functions: / is

normal in D if and only if

(1.1) C = C,= sup (l-|z|2)/*(z)< + ~;
zeD

C is called the order of normality of /.   Using integration, we deduce from (1.1)

that an arc y in D with non-Euclidean length p is mapped by / onto an arc with

spherical length not exceeding Cp.   Thus, / is "more normal" than g when

C,<C .
f      e

Throughout this paper we make use of Pick's (differential) form of Schwarz's

lemma.   If <f> is an analytic mapping of D into itself, then

(1.2) (l-|z|2)|«p'U)|<l-|<pU)|2;

thus C j, < 1, and C., j,, < C. tot any function / meromorphic in D.   Equality

holds in all cases if (f> is a conformai map of D onto itself.
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If / is defined in D and C is a point of the unit circle T: \z\ = 1, we set

|/(£)| = limsup|/(z)|.
M-JL

In the terminology of cluster sets, \f(Q\ is the radius of the smallest closed disk

such that the disk has center zero and contains all the cluster values (boundary

values) of / at £. If |/(£)| <iW <+ oo for all points Ç in a subarc y oí T, then

/ is said to be bounded (by M) on y. By combining the classical two-constants

estimate for |/(z)| and the estimate (1.1) for \f (z)|, Lehto and Virtanen obtained

a "two-constants theorem" for normal meromorphic functions bounded on a subarc

y.   Several related results and examples are discussed in §2.

In §3 we prove the central result of this paper: An estimate for the growth

of the modulus of a normal meromorphic function on a Koebe sequence of arcs.

Following F. Bagemihl and W. Seidel [il, a sequence of disjoint Jordan arcs

\y \ in D is called a Koebe sequence of arcs relative to an open subarc y of T

provided (i) each neighborhood of y contains all but finitely many of the arcs y ,

and (ii) every open sector A of D subtending a subarc whose closure lies in y

has the property that all but finitely many of the arcs y   contain at least one

Jordan subarc lying entirely in A except for its two endpoints which lie on dis-

tinct sides of A.  If / is defined in D and [y i is a Koebe sequence of arcs,

we set

*«-W«(y«î/)-   ¡f*   l/(z)l     and    Mn = Mr»(>V 0 =   SUPI/M-
z ^ n z   i* n

If lim Mn = 0, zero is called a Koebe value of /.  More generally, the complex

number c is a Koebe value of / provided zero is a Koebe value of f(z) — c or

1//, according as c is finite or c = »■  Koebe's lemma states that a nonconstant

bounded analytic function has no Koebe values.

Some estimates that we obtain for the growth of |/| are the following (Theorem

1): If / is a meromorphic function in D with order of normality C > 0 and \y \ is

a Koebe sequence of arcs relative to an open subarc y of I", then

(1.3) lim inf Mm >1 + (1+C2)* exp[-(l +C2)*]
n- c

or

(1.4) lim inf Mn> sup|/(£)|»
ley

according as / is unbounded or bounded on y.  By combining (1.3) and (1.4) (or

(1.3) and Koebe's lemma), we reestablish a result of Bagemihl and Seidel [l,

Theorem l]: A nonconstant normal meromorphic function cannot have zero (and

hence any extended complex number) as a Koebe value.

Since / and 1// have equal spherical derivatives, C. = C^-  We infer from

(1.3) that if l/f is not bounded on y, then
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(1.5) lim sup m   <-5 expKl + C2)M].
"'l + u + c2)*

In our investigations, a fundamental role is played by the number C = C   tot

which the right-hand sides of (1.3) and (1.5) are equal (and hence equal to one);

C  % 2/3.   In particular, if both / and 1// are unbounded on y and C.<C, then

lim sup m   < lim inf M .'■TI 71

In §4 we consider the family ¿L.  A nonconstant meromorphic function / £ £

if and only if every level set of / does not contain a Koebe sequence of arcs.   A

lemma of G. R. MacLane [7, p. ll] states that each nonconstant bounded analytic

function belongs to ¿L; a brief proof of MacLane's lemma has been given by K. F.

Barth and W. J. Schneider [2].  More generally, MacLane [7, Theorems 1 and 17]

proved that each nonconstant normal analytic function belongs to ic.  We prove

the following results: (Lemma 2) If the nonconstant normal meromorphic function

/ has a level set L Rt

Lg-i*:!/(*)!-a!,
such that L R contains a Koebe sequence of arcs relative to an open subarc y

of T, then

1 + (1+C2)H exp[-(l +C2)*]< R <-^-ttt exp[(l +C2)%    C*<C = Cf,
c 1 + (1+C2)* '

and each point of y is a limit point of zeros and poles of /; thus (Theorem 2) if

either / is a nonconstant normal analytic function in D ot C - C. satisfies

0 < C < C*  then / £ £.  Moreover, (Theorem 3)

C*=iat\Cf:flt £, C^Ol.

Whether or not there exists a normal meromorphic function / 4 i. such that

C = C. is an open question.

Finally, in §5 we discuss the boundary behavior of normal meromorphic func-

tions / for which l/l has a Koebe value.

2.  Boundary estimates for normal functions.   Let Ga be a lens (crescent)

bounded by the unit circle T: \z\ = 1 and a circular arc in D that intersects T at

an angle a, 0 < a < n.   Excluding the vertices of G a, the boundary of Ga con-

sists of an open subarc To of T such that T - To is viewed under the angle

ß (0 < ß < n) from Fß and an open circular arc Tg in D such that T - Tß is

viewed under the angle 8 iß < 8 < n + ß) from Tj. Note that a = 8 - ß.  The

harmonic measure w of Yß with respect to G a is given by

cüiz, rß, Ga) = a~li8 -6)     iß<6< 8),
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where 6 is the angle under which T — T „ is viewed from z.   In the theorem to

follow, we make use of the expression

a(2) = _L_/^    (zers),

where da/dn is the normal derivative of a> at z e Tg. Using (1.2), we find that

/\(jz) (z e Ga) is invariant under a conformai map z = qAz ) of D onto itself.

Therefore, we can assume that Tg passes through 2=0 and that the positive real

axis is the inner normal to T? at z = 0.   Some elementary calculations yield

a zels    2 sin a

In this setting, Lehto and Virtanen's "two-constants theorem" assumes the

following form.

Theorem A.   Let f be meromorphic in D with order of normality C (0 < C <

+ oo), and suppose

sup |/(z)| > u.
zeG„

a.

If f is bounded by M on the open arc T „,  then

(2.1) M > zt exp[-CAa(p + 1/p)].

1 + (1 + 4C2\2aYA

*»"       1cTa        '

then the best estimates in (2.1) are obtained by setting

p=   sup \f(z)\,    if  sup |/(z)| < aa,

and

zeG„ zeG„
a a

p = pa,    if   sup|/U)| >ua.
zeG„

a

In their version of Theorem A, Lehto and Virtanen assumed that / is bounded

by M on the closure of the arc Ta; our weaker form is easily verified by an

obvious limiting argument using closed subarcs of Tß.

We briefly indicate once again how the best estimates are obtained.  As a

function of p > 0,

p exp[-CAa(p + l/fz)]

has its maximum at p = pa.   Therefore, if

sup |/(z)| > ua,

z€Ga
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we can choose p = pa in (2.1) and hence maximize its right-hand side.   If

sup |/(z)| < ¡ia,

zeGa

then

p = sup |/(z)|

zeGa

maximizes the right-hand side of (2.1).

If / is bounded by M on T with the (possible) exception of one point, then

Theorem A, as stated, does not apply.  However, by using a limiting process (as

a —» 0).   Lehto and Virtanen deduced the following estimate of the Pharagmén-

Lindelöf type.

Theorem B.   Let f be meromorphic in D with order of normality C(0<C< + oo),

and let f be bounded by M on Y - \£\, £ £ Y.   Then

(2.2) M>1 + (l¿C2)\xp[-(l + C2)*],

unless j is bounded in D,  in which case M >C.

As noted in [6, p. 62], the estimate (2.2) is sharp.   The function

(2.3) fiz) = M expibil + z)/il - z))      (M > 0, b > 0)

is bounded by M on   Y - |l¡ and equality holds in (2.2) for C = C..

We now investigate the sharpness of the estimate (2.2) in case / is bounded

by M on all of Y and unbounded in D.   To simplify notation, we henceforth let

C = CM be the solution of

(2.4) M = 1 + (l¿C2)*ezp[-(l + C2)M].

As in the introduction, we set C  = Cy.  Using this notation, (2.2) is equivalent

to the inequality C.. < C.

Example 1.   Let M > 0, and set C   = C. , where f (z) = Mz~" in = 2, 3, •••).
* * n • n

Then CM <C= CM + oil).

Proof.   The inequality CM < C    follows from Theorem B.   Let

<Mz) = (l-|z|2)/*(z) = (l-|z|2)M*l2

Then

C   =  max   0 (r).

M2 + |z|2"

We have

rp'(r) .     y "2     [(„ _ l)r27i+2 _ (n + l)r2n _ M2(n + l)r2 + ^ _ ^

(M2 + r2")2
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Now, for all values of 72,

(2.5) *'>/(»+ l))<0;

and, for all sufficiently large values of tz,

(2.6) <D];((72-M-2)/(«+l))>0.

To verify (2.6), we note that as 72 —» + 00 in (2.6), we obtain the valid inequality

2 > (4 + 2AT2) exp[-2(l + M-2)].

From (2.5) and (2.6), it follows that

(2.7) $' ((72 - t )/(« + !)) =0
72 71

1-2for some t    satisfying 0 < t   <M~

Because $   has exactly one zero for 0 <r < 1,

(2.8) C   = $ ((72 - t)/(n + 1)).
72 72

If í   is a limit point of the sequence {t } and we formally compute the limit

as 72—» + 00 in (2.7), we find that t   satisfies

(2.9) / + 2 = zM2¿e2(1+i).

However, (2.9) has exactly one solution for t > 0 and thus t  = lim tn.   Moreover,

since t   satisfies (2.9), t   maximizes the function

i + mV<1+í)

for which tff'(t) = 0 reduces to (2.9).   If we set t  = (l + C2)^ - 1, then some

elementary computations show that

^G') = ̂ ((i + c2)*-i)=c

and that C satisfies (2.4).  Thus C = C„ and we find

lim C   = lim $ «72 - t)/(n + D) = iff(t') = C = C*
n n n r m

Example 1 can be verified by another method that points out a connection

between the functions Mz~n and the function in (2.3); this method is based on

the following lemma.

Lemma 1.   Let \gn\ be a sequence of normal meromorphic functions that

converges uniformly to g on compact subsets of D.   Let C   = C    .   Then
n       871

(2.10) Cg < um inf C,.

// there exists an r (0 < r < l) such that
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(2.11) ^ = (l-|zjVn(zn),       Kl<r,

then C   = lim C .
g n

Proof. Let \e , I be a subsequence such that lim C_, = lim inf C . The

sequence {gL } converges uniformly to g on compact subsets of D; thus, for

each z £ D,

(1 - |z|2)g*(z) = lim(l - |z|2)g* iz) < lim C„ .

Thus

C   < lim inf C .
g — 71

If (2.11) holds for some r (0 < r < I), then

lim sup Cn = lim sup j max (l - |z| )gn(z)l
(2.12) VW*r

= max(l-|z|2)g*(z)<C .

\z\<r

By (2.10) and (2.12), we have C   = lim Cn.

Returning to the sequence fniz) = Mz~" in = 2, 3, • • • ), Cn = C.  , set

(«/ - x \
- ),
1 -X  w     '

71 '

where x    is determined from an arbitrary fixed number b > 0 by x   = e~°    .   Then

Cn = Cgn by (1.2).   From (2.8), if |z| = in - t^/in + l), then Cn = (l - |z| 2)/*(z).

We choose zn = - in - tj/in + l).  Then Cm - (l - |wj 2)«*Un), where a/n is

determined by (u/   - x )/(l - x w/ ) = z .   We find' 71 71 71     71 71

1 + i  -b + oil)
n

W     = -T-T'

"    l + tn + b + oil)

Since 0 < <n < M-2, the condition (2.11) in Lemma 1 holds for all sufficiently

large values of n.  Therefore,

lim C   = C ,

where g is the limit of the sequence \gj.  A direct calculation yields

giw) = lim Ml--^ ) = M exp (è- ).
\w - e-b/n J \l-w}

As noted in (2.3), Cg = CM.  This reestablishes Example 1.

3.  Estimates on Koebe sequences.   We now obtain some estimates for the

growth of the modulus of a normal function on a Koebe sequence of arcs.



214 STEPHEN DRAGOSH

Theorem 1. Let f be meromorphic in D with order of normality C (0 < C < + oo).

Let y be an open subarc of T and let \y \ be a Koebe sequence of arcs relative

to y.   Set M = sup?ey |/(£)|.  ¡f f is not bounded on y,  then

(3.1) lim inf Mn>1+ (l¿ ^ exp[-(l + C2)*];

and if f is bounded on y,  then

(3.2) lim inf M   > M.
72 —

A/50, if 0 < C < + oo and f is analytic in a domain G C D for which  y is a

free boundary arc, then

(3.3) lim inf Mfí > M.

Proof.   If C = + oo, we let the right-hand side of (3.1) equal zero.   Thus we

assume that 0 < C < + oo.   If / is not bounded on y, we can choose a point

£   e y such that

„O, >1ííí¿l£1h.

Let y   be an open arc such that £   e y   and the closure of y   lies in y.   Let

£ and £' denote the left and right endpoints, respectively, of y   as viewed from

z = 0, and let r and f   be the radii at £ and £',  respectively.  For all sufficiently

large values of n, the arc y    has a Jordan subarc y    with an endpoint on each of

r and r   and otherwise lying in the sector subtending y .   Let r    and r    denote

the segments on r and r , respectively, such that the arc

i  = t u y u r
n       n       ' n        n

is a Jordan crosscut of D.   The region bounded by T   u T - y* is denoted by D .

Then lim Dn = D in the obvious sense.   For all sufficiently large values of 72,

we can choose a point z    e D    such that

and lim z^ = £ ,   By the principle of monotoneity for harmonic measures,

(3.4) cû(z , y*, D)<(ù(z ,T ,D ).
" — 71 72 71

Let z = ô(w), z_ = ó(0), be a conformai map of \w\ < 1 onto D .   Then T   =
72 72 rn I n 72

i„ U yn U r    corresponds to a subarc A^u A* uA    of |uz| = 1 subtended by a

central angle of measure (<5_ + S   + ô\ )/2i7, where r    corresponds to the subarc^ 71 72 71 ' 71 .

Afl subtended by a central angle of measure 8 /2rr, etc.   Since íz  i converges

to £ , lim co(zn, y , D) = 1; thus, by (3.4) and the invariance of harmonic measure

under tp1   ,
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(3.5) lim (8   +8* +8')/2n= 1.
v-'"v 7! 77 77

By performing rotations if necessary, we can assume that the arcs An have

a common right endpoint as viewed from w = 0.   The segments r    converge uni-

formly to C; thus, the sequence f<p I converges uniformly to ¿on   f IA .   If

II A    is a proper subarc of \w\ = 1, it follows that \(f> I converges uniformly to

C on compact subsets of \w\ < 1 (see [4, Corollary l] or [6, Theorem 10]).  How-

ever, ó (0) = z    and lim z   = C  ¿ C-   Thus II A    is a singleton and lim 8=0.
r n n n n ü n

In a similar fashion it is seen that lim 5=0.   From (3.5),
n

(3.6) lim 8* = 2ir.
71

Let Gn be the lens bounded by A   and the circle through w = 0 joining the

endpoints of An.   Since Afl is subtended by the central angle 8 , it follows from

some simple geometric considerations that G    has vertex angle a    given by

(3.7) an . n - lÁ8\

We now apply the estimate of Theorem A to the function fi(f> iw)).   First, set

M* = sup   |/(<p («,))| < M ,
"     weA* n -    "

a
n

Pa

2 sin ex

1 + (1 + 4C2A2)H
71

2CÄ
71

Since

|/(rpn(0))|=|/Un)|>1 + (lc+C2)H>pn,

we use p = pn in (2.1) to obtain the estimate

\><>^exp[-CAn(pn + l/p.n)].

By (3.6) and (3.7), lim Xn = Vr, thus,

1 + U + C2)*
hm/in=-_-

The estimate (3.1) now follows.

Before we continue with the proof of Theorem 1, we cite Bagemihl and Seidel's

result [l, Theorem l] which shall be used later in our proof.

Corollary 1.   Let f be meromorphic in D with order of normality C (0 < C <

+ oo).   Then f has no Koebe values.
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Proof.   Let y be any open subarc of T.  If / is bounded on y, then Koebe's

lemma implies that w = 0 cannot be a Koebe value of / on a Koebe sequence of

arcs relative to y.  If / is not bounded on y, then the estimate (3.1) implies the

same conclusion.  If w = c is a Koebe value of /, then we consider F(z) = f(z) — c

or F(z) = l/f(z), depending on whether c is finite or c = oo.  In either case, F is

normal and therefore cannot have zero as a Koebe value; thus c cannot be a Koebe

value of / and the corollary is proved.

We now return to the proof of Theorem 1.   If / is bounded on y, then, by Fatou's

theorem, / has radial limits almost everywhere on y.   The estimate (3.2) now

follows from the maximum principle as noted by MacLane [7, Theorem 9l.  (Let y

be any closed subarc of y such that / has a radial limit at each endpoint of y .

The maximum principle is applied to / in the region bounded by y ,r,y +,, r;

our notation here is that used in the proof of (3.1).  It is worth noting that if M is

the maximum of \{(£)\ for £ in the closure of y, then equality holds in (3.2).)

Now suppose / is analytic in a domain G CD tot which y is a free boundary

arc.   If M is finite, then we just proved the desired estimate (3-3) (even if C = + ~).

Therefore assume M = + ~ and 0 < C < + oo.   Then either (i) there is a point

£   e y ax. which / is unbounded or (ii) for each open subarc y   of y,

M*=  sup  |/(£)|< + »,

and sup M  = + oo.  If (ü) occurs, then (3.2) implies that for each open subarc y Cy,

lim inf Mn > zM*.

Thus lim M   = + oo = M.
72

Finally, suppose (i) occurs.   (It can be deduced from a theorem of McMillan

[8, Theorem l] that if

lim sup Al     < + oo
"A

for any subsequence {y    }, then »¡sa Koebe value of / on a Koebe sequence

of arcs relative to a subarc of y having £   as one endpoint.  Since 0 < C < + oo,

/ has no Koebe values; it follows that lim M   = + oo as required.  We sketch a

proof that in spirt is somewhat similar to that of McMillan.  It is also similar to the

type of argument used by Barth and Schneider [2] to prove MacLane's lemma.)  Let

us first assume that M   can be chosen so that

(3.8) M„<M'      (t»=1,2,.-.).

Select an open subarc y   for which the closure lies in y and such that £   e y .

Let A be the open sector subtending y .  Since y is a free boundary arc of G,

there exists an e > 0 such that G contains the set
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Ae = An \z: l-e< \z\< I}.

Choose a sequence {zfcj in Af such that lim zk = £   and such that

(3.9) |/U4)|>iM' + *      U=l,2,...).

We can also assume that the Riemann surface of / over the extended plane (sphere)

has no branch points over any of the radial segments

Rk = \w : \wk\ < \w\ < + oo, arg w = arg wk, wk = fizJU

If the regular element e    iw, w.) oí z = (~ iw) is continued along Rk, there are

two possibilities: either the continuation defines a transcendental singularity in a

finite distance or at w = », or the continuation defines a regular or algebraic

element at w = oo»  In each case, the branch of /"    defined by the continuation maps

the segment of R,  in question onto a Jordan arc y.   with initial point z..   By

(3.8) and (3.9), y.  n y   =0  in = 1, 2, • • • ).   In the first case, y,  terminates at

a point of Y - y; in the second case, y,  terminates at a pole of / outside A .   It

is apparent that from the sequence {yA we can find a Koebe sequence of arcs on

which / has Koebe value °°.   This contradiction shows that the condition (3.8)

cannot hold; that is, lim sup M   = + oo.   By the same argument, lim sup M     = + »

for any subsequence jy    f.   Thus, lim M   = + °°, and this completes the proof of (i).

We shall make use of the estimate (3-3) in the following form.

Corollary 2.   Let f be meromorphic and normal in D.   Let y be a subarc of

Y such that f is analytic in a domain G CD and y is a free boundary arc of G.

If f is bounded on a Koebe sequence of arcs relative to y, then f is bounded on

y; moreover,

M =  sup |/(£)| < lim inf Mn < + «..
(,ey

Since / and 1// have the same order of normality, we can apply Theorem 1

to 1// to obtain the following result.

Corollary 3.   Let f be meromorphic in D with order of normality C (0 < C <

+ oo).  Let y be an open subarc of Y and let \y \ be a Koebe sequence of arcs

relative to y.   Set

Aiminf|/(z)|Vm m inf
ley \ z-Ç

// w = 0 is a boundary value of f on y, then

(3.10) lim sup «   <-— exp [(l + C2YA];
1 + (1 + C2)H

and if w = 0 is not a boundary value of f on y, then

lim sup m   < m.
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Also,  if 0 < C < + oo a72a' / omits w = 0 /s a domain G C D for which y is a

free boundary arc, then

lim sup m   < m.
*        72 —

The following example is concerned with the sharpness of the estimate (3.1)

of Theorem 1.

Example 2.   Let w = <ß(z) be an analytic map of D into \w\ < 1 such that

22V = 0 is a boundary value of r/> at £ = 1 and

lim      \<p(z)\ = 1,
|ar| —»1 ; zea

where o is a spiral in D (see [ll, p. 14]).   Let g (w) = Mw~n and set / (z) =

g (rp(z)).   By (1.2) and Example 1,

C,   <C     = C* + o(l).

Also, /_ is unbounded at £= 1 so that the estimate (3.1) applies.   Since

lim      |/n(z)| = M,
I jar] —>1 ; zecr

(3.1) can be written as CM < C . .   Thus
*" In

Cm £ c t S cm + o(i).
71

4.   Level sets of normal functions.   We now consider the family X defined in

the introduction.

Lemma 2.   Suppose the nonconstant normal meromorphic function f 4 ¿~.   Then

(i) C*<C=Cf.

If the level set LR of f contains a Koebe sequence of arcs \y \ relative to the

open subarc y of T, then the following hold:

(ii)        1 + (l^C2)Hexp[-(l + C2)*] < R <-£~Tr**pKl + C2)%
C ~ 1 + (1 + C2)A

(iii) if £ is any point of y and

«'<1 + (l;C2)*exp[-(l + C2)*],

then, in each neighborhood of £, there is a component U of the set f~ (\w\ < R')

and a component V of the set f~ (\w\ > 1/R') such that the closures of U and V

lie in D.

Proof.   We first verify (ii).   Both / and  l/f must be unbounded on y (and

in fact on each subarc of y),   otherwise the assumption concerning L R is
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impossible byMacLane's lemma.   Since R = lim M   = lim m  , the inequality (ii)

follows from (3.1) and (3.10).

If / 4 X, then there exists an R  such that (ii) holds for C = C.; thus C  <C.

Finally, we verify (iii).   Let £ £ y.   Since / and 1// are unbounded on each

subarc of y, Corollary 2 implies that £ is a limit point of poles and zeros of /.

For each positive integer k, let U,  be a component of /" (|u;| < R ) containing

a zero z,   of /, and let V.   be a component of /" (|if | > 1/R ) containing a pole

p.   of /, where z, —» £ and p. —» £.   By (ii), the level sets LR, and Lj ,R,

cannot contain a Koebe sequence of arcs.   Thus the diameters of U,   and V,   tend

to zero as k —» + oo.   Because LR contains the Koebe sequence (y i, the closures

of U,   and V.   lie in D tot all sufficiently large values of k.

The next result follows from (i) and (iii) of Lemma 2.

Theorem 2.   Let f be meromorphic in D with order of normality C (0 < C <

+ oo).   // either f is analytic in D or C < C ,  then /£ i.

We now show that C   cannot be replaced by any larger number in Lemma 2

and Theorem 2.

Theorem 3.   C*= inf \C : f 4 £, Cf > 0\.

Proof.   Lemma 2 states that C   is a lower bound for the set in question.   For

each value k = 3, 4, - - •, let T,   be a regular non-Euclidean polygon in D with

k sides and center z = 0 and such that each vertex angle of T,  has magnitude

2?7/3.   Let tí be a fixed positive integer, and let w = fAz) be an analytic n-to-1

map of T,   onto  \w\ < 1 such that /,(z) = 0 only for z = 0.   We extend /■   from

T,   to all of the unit disk D by the usual reflection technique.   It is apparent

that the level set Lj of /.   consists of the boundary of T.  and all its reflections.

Thus L y contains a Koebe sequence of arcs relative to Y and hence /.  4 *■-

We intend to show that /,  can be constructed so that

lim    fkiz) = z"
*—+oo

uniformly on compact subsets of D and

c/4-ü-ww
where |z,| <r < 1.   Then, by Lemma 1,

lim C.   = C ,
'k       "

where Cn is the order of normality of z".   By Example 1,

lim C   = C .
71
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Since /■  4 ¿-, this implies the assertion of our theorem.

Because the expression (1 - |z| )fAz) is invariant under reflections through

non-Euclidean lines of the unit disk D,

C,  -  sup(l-|z|2)/*(z).

'*     zerk

Also D is the kernel of the domains T^.  Thus, we need only concern ourselves

with the construction of /.  on T..  Let T.  be positioned so that there is a vertex

of Tk located on the positive real axis at r..  The conformai map z = h Aw) of

\w\ < 1 onto T,  such that b,(0) = 0 and hAl) = r.  can be given in terms of hyper-

geometric functions as follows (see [5, p. 83]):

z = bAw) = rkskiff2(w)/iffAw),

where

and

_*l(l)     TU - l//e)r(5/6 + l/k)

Sk    ->2U)     r(l + l/k)T(5/6-l/k)'

Let w = gAz) be the inverse of hk and set w = fAz) = [gAz)]n.  We have

lim h Aw) = w uniformly on \w\ < 1.   Thus,

lim fAz) = z"

uniformly on compact subsets of D.   By Lemma 1, C , the order of normality of

z", satisfies

(4.1) 0<C   < lim inf C. .

We now show that fk, and hence /¿, is bounded independent of A on the

closure of T^.   First,

*tW = Vi—¡s—*•"
^1

= T.s. —.  .   . ,.-——-—±kw       =r.s.
(wk) » *» /k(l - wk) » V \ (1 - "*) "ty?

The quantity iff ■ ̂jr  - iff^ has the above simplification using the technique of

Carathéodory [3, p. 164].  Thus,

21/3 \tffA2 ~ 2Vi F2(l/6, 1/6, 2/3; l)
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and
91/3     „, 1     i     o      \

i/;u)i<«i^)i<^F2(I,^,r,i).

It now follows that there exists a compact set |z| < r < 1 such that C.  =

(l - \zk\ )/*,Czt), where |zfc| <r; for if |zfe| —» 1, then (since /¿ is bounded

independent of k on the closure of T,) lim C.   = 0.  This contradicts (4.1).

5.   Functions bounded on Koebe sequences.   Although a nonconstant normal

meromorphic function / cannot have a Koebe value, |/| can have a Koebe value

R as evidenced by the functions of Examples 1 and 2 and Theorem 3.  It must be

the case that 0 < R < + ».   Also, a function / can be "very normal" and yet |/|

can have a Koebe value.   For example, if W > 0 and fiz) = z/M then |/| has a

Koebe value and C. = l/M.

Let / be meromorphic and normal in D.  Suppose |/| has R as a Koebe value

on a Koebe sequence of arcs \y \ relative to an open subarc y of Y.  If no

point of y is a limit of poles of /, then Corollary 2 yields \fi£)\ <R i£ £ y).   By

Fatou's theorem, / has radial limits at almost every point of y; these radial

limits all have modulus R.  If no point of y is a limit point of zeros of /, then

Corollary 2 applied to 1// yields

limsupl/WI-^/r1      i££y);
x—t

that is, / has no boundary values w on y such that \w\ < R.   On the other hand

suppose £ £ y is a limit point of zeros of /; let z, —> £ be such a sequence

of zeros.  Choose R   (0 < R  < R) such that the Riemann surface of / has no

branch points over the circle \w\ = R .   Let U.  be the component of /"* (|tf | < R )

containing z^.  For all sufficiently large values of k, U.  cannot intersect any

of the arcs y   since

limmiy:f)=R>R'.-
n

Since / has radial limits of modulus R > R   at almost every point of y, we con-

clude that the diameter of U,  tends to zero as k —» + ».   Thus \w\ < R   lies in

the set of boundary values of / at £.  Since R   can be chosen arbitrarily close

to R, we conclude that \w\ < R is the set of boundary values of / at £.

In the foregoing discussion, we have assumed .that no point of y is a limit

point of poles of /. The following theorem shows that this is the case if C, is

sufficiently small.

Theorem 4.   Let f be meromorphic in D with order of normality C > 0.   Let

l/l have the Koebe value R on a Koebe sequence of arcs \y ] relative to an open

subarc y of Y.   If C < C* then either f or l/f is bounded on y.
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Proof.   Suppose both / and  1// are unbounded on y.   Then, by (3.1),

R = UmM   >1 + (ltC2)Hexp[-(l + C2)*]
72 - C r

and by (3.10),

R = limw   <-E--exp[(l + C2)A]," * 1 + (1 + C2)A

Because C < C , these inequalities are inconsistent.   Thus, either / or 1// is

bounded on y.
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