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ABSTRACT. Let f be a normal meromorphic function in the unit disk. An
estimate for the growth of the modulus of f on a Koebe sequence of arcs is ob~
tained; the estimate is in terms of the order of normality of f. An immediate
consequence of the estimate is the following theorem due to F. Bagemihl and
W. Seidel: A nonconstant normal meromorphic function has no Koebe values.
Another consequence is that each level set of a nonconstaat normal meromorphic
function cannot contain a Koebe sequence of arcs provided the order of norm-
ality of f is less than a certain positive constant C*

1. Introduction. A meromorphic function { is normal in the unit disk D:
|z| < 1 if and only if the family {f(S(z))} is normal in D in the sense of Montel,
where S is any conformal map of D onto itself. K. Noshiro [10, Theorem 1],
and subsequently O. Lehto and K. L. Virtanen [6, Theorem 3], employed the
spherical derivative

1*) = If' ()|
1+](2)|2
to obtain the following characterization of normal meromorphic functions: f is
normal in D if and only if
(1.1) C= C; = sup (1- |z|2)/*(2) <+ oo

z€D
C is called the order of normality of f. Using integration, we deduce from (1.1)

that an arc y in D with non-Euclidean length p is mapped by f onto an arc with
spherical length not exceeding Cp. Thus, f is “‘more normal’’ than g when
C,<C.

Throughout this paper we make use of Pick’s (differential) form of Schwarz’s
lemma. If ¢ is an analytic mapping of D into itself, then

(1.2) 1 -1z)¢' )| < 1 - |p)]%
thus Cy <1, and C f) S (o ; for any function { meromorphic in D. Equality

holds in all cases if ¢ is a conformal map of D onto itself.
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If { is defined in D and { is a point of the unit circle I': |z| = 1, we set

17| = lim sup |f(2)].
Jul

In the terminology of cluster sets, |f({)| is the radius of the smallest closed disk
such that the disk has center zero and contains all the cluster values (boundary
values) of [ at {. If |f({)] <M <+ e for all points { in a subarc y of T, then
f is said to be bounded (by M) on y. By combining the classical two-constants
estimate for |/(z)| and the estimate (1.1) for |f'(z)|, Lehto and Virtanen obtained
a ‘‘two-constants theorem’’ for normal meromorphic functions bounded on a subarc
y. Several related results and examples are discussed in $2.

In $3 we prove the central result of this paper: An estimate for the growth
of the modulus of a normal meromorphic function on a Koebe sequence of atcs.
Following F. Bagemihl and V. Seidel [1], a sequence of disjoint Jordan arcs
{yn} in D is called a Koebe sequence of arcs relative to an open subarc y of I
provided (i) each neighborhood of y contains all but finitely many of the arcs y,,
and (ii) every open sector A of D subtending a subarc whose closure lies in y
has the property that all but finitely many of the arcs y, contain at least one
Jordan subarc lying entirely in A except for its two endpoints which lie on dis-
tinct sides of A. If [ is defined in D and {y,} is a Koebe sequence of arcs,
we set

m,=my,;[)= zietf)f" lf(z)] and M, =MU(y; ()= zsel;l[; 17 ()|

If lim M_ =0, zero is called a Koebe value of f. More generally, the complex
number ¢ is a Koebe value of f provided zero is a Koebe value of f(z) - c or
1/f, according as c is finite or ¢ = 0. Koebe’s lemma states that a nonconstant
bounded analytic function has no Koebe values.

Some estimates that we obtain for the growth of |f| are the following (Theorem
1): If { is a meromorphic function in D with order of normality C > 0 and ly"} is
a Koebe sequence of arcs relative to an open subarc y of I, then

2\%
(1.3) lim inf M_ zliﬂ-cf—c)—exp[-(l +CH¥]
or
(1.4) lim inf M_ > sup|f (),

Ley

according as f is unbounded or bounded on y. By combining (1.3) and (1.4) (or
(1.3) and Koebe’s lemma), we reestablish a result of Bagemihl and Seidel [1,
Theorem 1]: A nonconstant normal meromorphic function cannot have zero (and
hence any extended complex number) as a Koebe value.

Since f and 1/f have equal spherical derivatives, C /= C,/p Ve infer from
(1.3) that if 1/f is not bounded on ¥, then
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C
1+(1+CH%
In our investigations, a fundamental role is played by the number C = C* for
which the right-hand sides of (1.3) and (1.5) are equal (and hence equal to one);
C*= 2/3. In particular, if both f and 1/f are unbounded on y and C /< C*, then

(1.5) lim sup m, < exp [l +Cc?)*1.

lim sup m_ < lim inf M_.

In §$4 we consider the family £. A nonconstant meromorphic function f € £
if and only if every level set of f does not contain a Koebe sequence of arcs. A
lemma of G. R. MacLane [7, p. 11] states that each nonconstant bounded analytic
function belongs to &; abrief proof of MacLane’s lemma has been given by K. F.
Barth and W. J. Schneider [2]. More generally, MacLane [7, Theorems 1 and 17]
proved that each nonconstant normal analytic function belongs to £. We prove
the following results: (Lemma 2) If the nonconstant normal meromorphic function
f has a level set L p,

Lp=tz: /&) = Rl

such that L 5 contains a Koebe sequence of arcs relative to an open subarc y
of I, then

)%
1+(1+C% exp[-(l+C2)%]SRS"—""C_'{_%exp[(l +CH4], c*<c=c,
C 1+(1+C?

and each point of y is a limit point of zeros and poles of f; thus (Theorem 2) if
either { is a nonconstant normal analytic function in D or C=C f satisfies
0<C < C* then f € £ Moreover, (Theorem 3)

c*=intlc,: [ £ &, C;> Ok,

Whether or not there exists a normal meromorphic function f ¢ & such that
c*=C / is an open question.

Finally, in §5 we discuss the boundary behavior of normal meromorphic func-
tions f for which |f| has a Koebe value.

2. Boundary estimates for normal functions. Let G, be a lens (crescent)
bounded by the unit circle I': |z| = 1 and a circular arc in D that intersects [ at
an angle a, 0 < a <z Excluding the vertices of G ,, the boundary of G, con-
sists of an open subarc I'g of I such that I' - T'g is viewed under the angle
B (0 <B <) from I'g and an open circular arc I'5 in D suchthat I'-T'g is
viewed under the angle & (8<8<w + f) from I's. Note that @ = - 8. The
harmonic measure @ of l"ﬁ with respect to G, is given by

(O(Z’ Pﬁ’ Ga)=a’1(8-0) (B< 0<8),
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where 0 is the angle under which I' - T"5 is viewed from z. In the theorem to
follow, we make use of the expression

1 ow
A(z) = :TZ-I—Z/B; (Z € Fs)y

where dw/0n is the normal derivative of @ at z € I'y. Using (1.2), we find that
Mz) (z € G,) is invariant under a conformal map z = ¢(z") of D onto itself.
Therefore, we can assume that ' passes through z = 0 and that the positive real
axis is the inner normal to I'5 at z = 0. Some elementary calculations yield

a
Aa= A(Z)Izers = -2-—s—i-n—a.

In this setting, Lehto and Virtanen’s “‘two-constants theorem’’ assumes the
following form.

Theorem A, Let f be meromorphic in D with order of normality C (0 < C <
+ =), and suppose
sup |f(2)| > p.
z€G

If [ is bounded by M on the open arc T’ g then

(2.1) M>pexpl-Ca(p+ 1/p)l
If

1+ (1 +4CA2%
2C) ’

a

Mo =

then the best estimates in (2.1) are obtained by setting

p=sup {2, if sup |/(2)] < pg
zeGa

z€G,
and
p=pg if suplf(2)] >p,e
z eGa
In their version of Theorem A, Lehto and Virtanen assumed that f is bounded
by M on the closure of the arc FB; our weaker form is easily verified by an
obvious limiting argument using closed subarcs of I’ B
We briefly indicate once again how the best estimates are obtained. As a
function of >0,

pexp[-CA (p + 1/p)]
has its maximum at g = p,. Therefore, if

sup |f(2)] > py

€
zGa
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we can choose. i = i, in (2.1) and hence maximize its right-hand side. If
sup 1/ < g
z€G,
then
p=sup |{(z)|
z€G,
maximizes the right-hand side of (2.1).

If f is bounded by M on I' with the (possible) exception of one point, then
Theorem A, as stated, does not apply. However, by using a limiting process (as
a —0). Lehto and Virtanen deduced the following estimate of the Pharagmén-
Lindeldf type.

Theorem B. Let [ be meromorphic in D with order of normality C (0 <C <+ ),
and let [ be bounded by M on T - {{}, { € I". Then
2\%
LL“_E__C_)_ expl-( + CH¥,
unless [ is bounded in D, in which case M > C.

(2.2 M>

As noted in [6, p. 62], the estimate (2.2) is sharp. The function
(2.3) f(z)=Mexp(b(l +2)/(1-2) (M>0,5>0)

is bounded by M on I' - {1} and equality holds in (2.2) for C = C/.

We now investigate the sharpness of the estimate (2.2) in case f is bounded
by M on all of I' and unbounded in D. To simplify notation, we henceforth let
C-= C; be the solution of

1+(1+ )

(2.4) M= —F— expl-(1 + cH”.

As in the introduction, we set c*= C Using this notation, (2.2) is equivalent
to the mequaixty C <C.

Example 1. Let M >0, and set C _C,, wbere [(2)=Mz""(n=2,3,...).
Then Cpy <C_=Cpy + o(1).

Proof. The inequality C <C, follows from Theorem B. Let

® ()2 (1= |22 %(e) = (1 = o2y Mrlal"
M? 4 |z|2"
Then
C, = max (] (r)
O<rs<l
We have

QL(r) = M [z - )22 (2 + 172" = M2 + 1)r2 + M2(n = 1)].
(M? 4+ 727)2
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Now, for all values of n,
(2.5) (D;(n/ n+1)<o0;
and, for all sufficiently large values of =,
(2.6) @ (- M2/ (n + 1)) > 0.
To verify (2.6), we note that as n — + o in (2.6), we obtain the valid inequality
2> (4+ 2M~2) exp[-2(1 + M~ D))
From (2.5) and (2.6), it follows that
(2.7) O (n-1)R+1)=0
for some ¢, satisfying 0 <t < M2,
Because Q,: has exactly one zero for 0 <r <1,
(2.8) C,=0 ((n-1,)(n+1)
If ¢’ is a limit point of the sequence {tni and we formally compute the limit
as n— + o in (2.7), we find that ¢’ satisfies

(2.9) t+2=M2e2(140,

However, (2.9) has exactly one solution for ¢ > 0 and thus ¢’ = lim ¢ o Moreover,
since ¢’ satisfies (2.9), t' maximizes the function

2M(2 + 1)el*t
M2e2(1+t)

Y(e) =

1+

for which ¥'(¢) = 0 reduces to (2.9). If we set ¢' = (1 + C2)*% = 1, then some
elementary computations show that

() =yl + CcD)%-1)=C
and that C satisfies (2.4). Thus C = C; and we find
. . *
lim C, = lim (Dn((n - t")/(n +D=y()=C= Cye

Example 1 can be verified by another method that points out a connection
between the functions Mz™" and the function in (2.3); this method is based on
the following lemma.

Lemma 1. Let {g "} be a sequence of normal meromorpbic functions that
converges uniformly to g on compact subsets of D. Let C n=C o Then
n 4

(2.10) C, < lim inf C,.

If there exists an r (0 <r< 1) such that
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(2.11) C,=-lz, 0%z, lz,l<n
then C_=1im C,.

Proof. Let {g } be a subsequence such that lim C = lim inf C . The
sequence lgn¥ convetges uniformly to g on compact subsets of D; thns, for
each z € D,

(1 - |2|9g*(z) = lim(1 - |z|2)g:k(z) <lim C e

Thus
C8 < lim inf C .

If (2.11) holds for some r (0 <7 < 1), then

lim sup C, = lim sup(max (1- |z|2)g:(z))
(2.12) ler
= max (1 - |2|2)g*(2) < C,

z|<r

By (2.10) and (2.12), we have C8 =limC, .
Retuming to the sequence /,(z) =Mz7" (n =2, 3,:..), C,=C, , set

(73,

where x is determined from an arbittary fixed number & >0 by x, = €%/, Then
C,=C, by (L2). From(28),if |z| =(n~1,)/(n + 1), then C, —(- |21 27%(=).
We choose z,==(-t )/(n+ 1). Then C, —(l- w, |2)g (w ), where w is
determined by (w, - )/(l -xw )=z, We find

l+t,-b+o(1)
T rbro)

Since 0 <t <M~2, the condition (2.11) in Lemma 1 holds for all sufficiently
large values of n. Therefore,

lim C = Cg,
where g is the limit of the sequence !g"}. A direct calculation yields
. 1-e-b/ny, l+w
g(W)— lim M(m) =M exp( i-—w .
As noted in (2.3), C, = Cy. This reestablishes Example 1.

3. Estimates on Koebe sequences. We now obtain some estimates for the
growth of the modulus of a normal function on a Koebe sequence of arcs.
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Theorem 1. Let f be meromorphic in D with order of normality C (0 < C <+ o).
Let y be an open subarc of I and let {ynl be a Koebe sequence of arcs relative
to y. Set M=sup,., |({). If [ is not bounded on y, then

1+(1+CH)%

(3.1) lim inf M_ > = exp[-(1 + C?)"),
and if f is bounded on vy, then
(3.2) lim inf M_ > M.

Also, if 0 <C <+ o and [ is analytic in a domain G CD for which y is a
free boundary arc, then

(3.3) lim inf M_ > M.

Proof. If C =+ o, we let the right-hand side of (3.1) equal zero. Thus we
assume that 0 <C <+ oo, If f is not bounded on y, we can choose a point
¢* € y such that

2\%
V(g*)‘>l+(lgC) .

Let y* be an open arc such that 4 *e y* and the closure of y* lies in y. Let

¢ and ¢’ denote the left and right endpoints, respectively, of y* as viewed from
z=0, and let r and r’' be the radii at ¢ and Z, respectively. For all sufficiently
large values of n, the arc y, has a Jordan subarc y: with an endpoint on each of
r and r’ and otherwise lying in the sector subtending y* Let r, and r’: denote
the segments on 7 and r’, respectively, such that the arc

rﬂ = rn U y: v r‘n
is a Jordan crosscut of D. The region bounded by Fn ul- y* is denoted by D .

Then lim D =D in the obvious sense. For all sufficiently large values of n,
we can choose a point z, € D such that

1+0+cH”
C

. * . . . .
and lim z_ - {”. By the principle of monotoneity for harmonic measures,

1)l >

*
(3n4) 0(2”9 Y, D) S (L)(znr Fﬂ’ Dn).

Let z = ¢, (), z, = ¢,(0), be a conformal map of |w| <1 onto D_. Then I, =
r,U y: u r': corresponds to a subarc A U A: U A': of |w| =1 subtended by a
central angle of measure (5, + 8: +8,)/2m, where 7, corresponds to the subarc
A, subtended by a central angle of measure 3 /2, etc. Since {z,} converges
to £* lim olz,, y% D) = 1; thus, by (3.4) and the invariance of harmonic measure
under ¢ ,
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(3.5) lim (6 + 8: +8')/2m=1.

By performing rotations if necessary, we can assume that the arcs A have
a common right endpoint as viewed from w = 0. The segments 7, converge uni-
formly to ¢; thus, the sequence {@,} converges uniformly to { on ﬂA
N A, is a proper subarc of |w| =1, it follows that {¢ } converges umformly to
¢ on compact subsets of |w| <1 (see [4, Corollary 1] or [6, Theorem 10]). How-
ever, ¢n(0) =z, and limz = C*4 ¢ Thus N An is a singleton and lim 8, = 0.
In a similar fashion it is seen that lim 3’: = 0. From (3.5),

(3.6) lim a’; = 2n.

Let G, be the lens bounded by A: and the circle through w = 0 joining the
endpoints of A:. Since A: is subtended by the central angle 6:, it follows from
some simple geometric considerations that G has vertex angle a_ given by

(307) a-" =T - 1/28:.

We now apply the estimate of Theorem A to the function /(¢n(w)). First, set

= sup |f(¢ @) <M,

n
wEA

a
A=A =—0n
n e, 2$man’

1+1+ 4CZ'\3;)%
bo“ba =——Zex
n

n

Since
1+ +cH*
(@, O = |7z )| > — 7y
we use p=p  in(2.1) to obtain the estimate
*
M >M >p exp[—C)xn(y" + l/un)].

By (3.6) and (3.7), lim )t" =Y, thus,
: 1+(1+C?H*
lim By, = ——-C———0
The estimate (3.1) now follows.
Before we continue with the proof of Theorem 1, we cite Bagemihl and Seidel’s

result [1, Theorem 1] which shall be used later in our proof.

Corollary 1. Let { be meromorphic in D with order of normality C (0 < C <
+ ), Then [ bas no Koebe values.
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Proof. Let y be any open subarc of I'. If f is bounded on y, then Koebe's
lemma implies that w = 0 cannot be a Koebe value of f on a Koebe sequence of
arcs relative to y. If f is not bounded on y, then the estimate (3.1) implies the
same conclusion. If w =c is a Koebe value of f, then we consider F(z) = f(z) = ¢
or F(z) = 1/{(z), depending on whether c is finite or ¢ = co. In either case, F is
normal and therefore cannot have zero as a Koebe value; thus ¢ cannot be a Koebe
value of f and the corollary is proved.

We now return to the proof of Theorem 1. If f is bounded on y, then, by Fatou’s
theorem, f has radial limits almost everywhere on y. The estimate (3.2) now
follows from the maximum principle as noted by MacLane [7, Theorem 9]. (Let y*
be any closed subarc of y such that { has a radial limit at each endpoint of y*.
The maximum principle is applied to  in the region bounded by y:, ' y:ﬂ, r;
our notation here is that used in the proof of (3.1). It is worth noting that if ¥ is
the maximum of {f({)| for { in the closure of ¥, then equality holds in (3.2).)

Now suppose f is analytic in a domain G CD for which y is a free boundary
arc. If M is finite, then we just proved the desired estimate (3.3) (even if C =+ o).
Therefore assume M =+ o0 and 0 <C <+ . Then either (i) there is a point
¢* € y at which { is unbounded o (ii) for each open subarc y* of y,

M*= sup |f(Q)] <+ e,
Ley*
and sup M* = + oo, If (ii) occurs, then (3.2) implies that for each open subarc y*Cy,
lim inf M, > M".

Thus limM_ =+ co=M,
Finally, suppose (i) occurs. (It can be deduced from a theorem of McMillan
[8, Theorem 1] that if

lim sup M"Ie <+00

for any subsequence {y !, then o is a Koebe value of { on a Koebe sequence

of arcs relative to a subarc of y having {* as one endpoint. Since 0 <C <+ oo,

/ has no Koebe values; it follows that lim M_ =+ o as required. We sketch a
proof that in spirt is somewhat similar to that of McMillan. It is also similar to the
type of argument used by Barth and Schaeider [2] to prove MacLane’s lemma.) Let
us first assume that M’ can be chosen so that

(3.8) M <M (n=1,2,...).

Select an open subarc ¥* for which the closure lies in ¥ and such that { *e y*.
Let A be the open sector subtending y*. Since ¥ is a free boundary arc of G,
there exists an €> 0 such that G contains the set
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A=Aniz:1-e<|z[< 1}
Choose a sequence {z,} in A, such that lim z, = ¢* and such that

(3.9) fN>M +k  (k=1,2,...)

We can also assume that the Riemann surface of f over the extended plane (sphere)
has no branch points over any of the radial segments

R, ={w: lwy| < [w| <+ o0, arg w = arg w, wy, = f(2))}

If the regular element e Zk(w. w,) of z=f" @) is continued along R, there are
two possibilities: either the continuation defines a transcendental singularity in a
finite distance or at w = oo, or the continuation defines a regular or algebraic
element at w = co. In each case, the branch of [~ ! defined by the continuation maps
the segment of R, in question onto a Jordan arc y,: with initial point z,. By
(3.8) and (3.9), y,: Ny,=2 (n=1,2,...). In the first case, yI; terminates at
a point of I" - y; in the second case, 'y; terminates at a pole of f outside Ae’ It
is apparent that from the sequence {yé} we can find a Koebe sequence of arcs on
which f has Koebe value «. This contradiction shows that the condition (3.8)
cannot hold; that is, lim supM_ =+ co. By the same argument, lim sup M, =+
for any subsequence {yn k;' Thus, lim M, = + 0, and this completes the proof of (i).
We shall make use of the estimate (3.3) in the following form.

Corollary 2. Let f be meromorphic and normal in D. Let y be a subarc of
T such that { is analytic in a domain G CD and y is a free boundary arc of G.
If f is bounded on a Koebe sequence of arcs relative to y, then f is bounded on
y; moreover,

M= sup|f({)] < lim inf M, < + oo.
Ley

Since f and 1/f have the same order of normality, we can apply Theorem 1

to 1/f to obtain the following result.

Corollary 3. Let f be meromorphic in D with order of normality C (0 <C <
+ o). Let y be an open subarc of T and let {y,} be a Koebe sequence of arcs
relative to y. Set
m= inf (lirn inf l/(z)l).
Ley \ 2=
If w=0 is a boundary value of { on y, then

(3.10) lim sup m_ < exp[(1 + C2)%;

1+ +cH4
and if w =0 is not a boundary value of [ on y, then

lim sup m < m.
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Also, if 0< C <+ o and f omits w =0 is a domain G CD for which y is a
free boundary arc, then

lim sup m < m.

The following example is concerned with the sharpness of the estimate (3.1)
of Theorem 1.
Example 2. Let w = ¢(2) be an analytic map of D into |w| <1 such that
w =0 is a boundary value of ¢ at { =1 and
lim  |¢()| =1,
z|—1; z€o0
where o is a spiral in D (see [11, p. 14]). Let g (w) = Mw™" and set f,(z) =
g,(¢(2)). By (1.2) and Example 1,
*
C, < Ce, = Ch+ o(1).

n

Also, {, is unbounded at ¢ =1 so that the estimate (3.1) applies. Since
lim |f ()| = M,

z|—1; z€0

(3.1) can be written as C; <C,. Thus

fa'"

Cy<C, <Cy+oll)
n

f/
4. Level sets of normal functions. We now consider the family £ defined in
the introduction.

Lemma 2. Suppose the nonconstant normal meromorphic function [ ¢ . Then

) c*<c=c,

If the level set L of [ contains a Koebe sequence of arcs ly,} relative to the
open subarc y of T, then the following hold:

%
G L) (s <R ——C explli + €O,
¢ 1+ +CcH%
(iii) i ¢ is any point of y and
2\%
R <1—+£1—+—Q- exp[-(1+ c?%,

C
then, in each neighborhood of {, there is a component U of the set f~'(|lw| <R')
and a component V of the set [~ |w| > 1/R") such that the closures of U and V
lie in D.

Proof. We first verify (ii). Both f and 1/f must be unbounded on y (and
in fact on each subarc of y), otherwise the assumption conceming L is
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impossible by MacLane’s lemma. Since R =lim M =limm_, the inequality (ii)
follows from (3. 1) and (3.10).

If f¢ &, then there exists an R such that (ii) holds for C = C F] thus C*<C.

Finally, we verify (iii). Let { € y. Since f and 1/f are unbounded on each
subarc of y, Corollary 2 implies that { is a limit point of poles and zeros of f.
For each positive integer k, let U, be a component of f~ 1(jw| <R') containing
a zero z, of [, and let V, be a component of f~ Y|w| > 1/R") containing a pole
by of f, where z, — { and p, — ¢ By (ii), the level sets L/ and L,/
cannot contain a Koebe sequence of arcs. Thus the diameters of U, and V, tend
to zero as k — + . Because L contains the Koebe sequence {yni: the closures
of U, and V lie in D for all sufficiently large values of k.

The next result follows from (i) and (iii) of Lemma 2.

Theorem 2. Let { be meromorphic in D with order of normality C (0 < C <
+ ). If either [ is analytic in D or C <C% then f € L.

We now show that C* cannot be replaced by any larger number in Lemma 2
and Theorem 2.

Theorem 3. C*= inf Cpfd &, c,> ok

Proof. Lemma 2 states that C* is a lower bound for the set in question. For
each value k =3, 4, --., let T, be a regular non-Euclidean polygon in D with
k sides and center z = 0 and such that eachvertexangle of T, has magnitude
2n/3. Let n be a fixed positive integer, and let w = f k(z) be an analytic n-to-1
map of T, onto |w| <1 such that /k(z) =0 only for z = 0. We extend f, from
T, to all of the unit disk D by the usual reflection technique. It is apparent
that the level set L, of f, consists of the boundary of T, and all its reflections.
Thus L, contains a Koebe sequence of arcs relative to I' and hence f, ¢ L.

We intend to show that [ x can be constructed so that

lim f,(2) = 2"
k—+00

uniformly on compact subsets of D and
2y, %
C/k ==z, 19, (z,)s

where Izkl <r<1, Then, by Lemma 1,

lim C’k = C"’

where C_ is the order of normality of z"”. By Example 1,

lim C_=C*
n
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Since f, ¢ £, this implies the assertion of our theorem.
Because the expression (1 - |z|2)/:(z) is invariant under reflections through
non-Euclidean lines of the unit disk D,
C, = sup (1 - Izlz)/: (z).

ko zeT,
Also D is the kernel of the domains T,. Thus, we need only concem ourselves
with the construction of f, on T,. Let T, be positioned so that there is a vertex
of T, located on the positive real axis at 7,. The conformal map z =5 h(W) of
|w| <1 onto T, such that b, (0) =0 and (1) =7, can be given in terms of hyper-
geometric functions as follows (see [5, p. 83]):

z =b W) =r,s,4,(w)/ ¥, (w),

where

ol 11 1 o1 11 1
¥ w) = g-;’g’l-;,“/). 'ﬁz(“')-wp(g+;’g.l+;.W).

LD - vers/s + /e
g () T U+ 1/B0G/6- 170

Let w = g,(z) be the inverse of b, and set w =[,(z) = [g,(2)]". We have
lim b, (w) = w uniformly on |w| <1. Thus,
lim f,(2) = 2"

uniformly on compact subsets of D. By Lemma 1, C_, the order of normality of
2", satisfies

(4.1) 0<C <liminfC, .
n- ,le

Ve now show that /,:, and hence /:, is bounded independent of & on the
closure of Tk‘ First,

'ﬁz'/';“bz'ﬁ'l Pt
-3
¥

b w) =75,

=75 17k hwkl = p s, ————
Kok (o kyL~1/k(q _ w")‘“cﬁ} LTI w")V3¢§

The quantity ¢1¢2' - ¢2¢; has the above simplification using the technique of
Carathéodory [3, p. 164]. Thus,

"33 1 7353 1
213 |y |2 7 2V3 F21/6,1/6,2/% 1)

LA
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and

|/k(z)l<n|gh(z)|<n Fz(; 3 1).

It now follows that there exists a compact set |z| <7 <1 such that C
1- Izk|z)f;(zk), where |z,| <r; for if |z,| — 1, then (since /: is bounded
independent of k& on the closure of T,.) lim C = 0. This contradicts (4.1).

5. Functions bounded on Koebe sequences. Although a nonconstant normal
meromorphic function f cannot have a Koebe value, |f| can have a Koebe value
R as evidenced by the functions of Examples 1 and 2 and Theorem 3. It must be
the case that 0 <R < + oo. Also, a function f can be *'very normal’’ and yet |f|
can have a Koebe value. For example, if M >0 and f(z) =z/M then |f| has a
Koebe value and C, = 1/M.

Let { be meromorphic and normal in D. Suppose |f| has R as a Koebe value
on a Koebe sequence of arcs {y,} relative to an open subarc y of I'. If no
point of y is a limit of poles of f, then Corollary 2 yields |/({)] <R ({ € y). By
Fatou's theorem, { has radial limits at almost every point of y; these radial
limits all have modulus R. If no point of y is a limit point of zeros of f, then
Gorollary 2 applied to 1/f yields

lim s;up F@ITT <R (Ley)

that is, f has no boundary values w on y such that |w| <R. On the other hand
suppose { € y is a limit point of zeros of f; let z, — { be such a sequence

of zeros. Choose R’ (0 <R’<R) such that the Riemann surface of f has no
branch points over the circle |w| =R'. Let U & be the component of f “(jw| <R"
containing z,. For all sufficiently large values of &, U, cannot intersect any

of the arcs y, since

lim m (y,; f)=R>R."

Since f has radial limits of modulus R > R’ at almost every point of y, we con-
clude that the diameter of U & tends to zero as k — + 0o, Thus |w|< R’ lies in
the set of boundary values of { at {. Since R’ can be chosen arbitrarily close
to R, we conclude that |w| <R is the set of boundary values of { at &.

In the foregoing discussion, we have assumed that no point of y is a limit
point of poles of f. The following theorem shows that this is the case if C ! is
sufficiently small.

Theorem 4. Let { be meromorphic in D with order of normality C > 0. Let
|fl bave the Koebe value R on a Koebe sequence of arcs ly,} relative to an open
subarc y of I. If C <C% then either [ or 1/f is bounded on y.
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Proof. Suppose both f and 1/f are unbounded on y. Then, by (3.1),

1+ +cCH%

C exp[-(1+ c?#)

R=1im M >
C )
R=limm <——— _ expl(1 + C%)"],
"T1+(+CH
Because C < C¥, these inequalities are inconsistent. Thus, either { or 1/f is
bounded on y.
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