KOEBE SEQUENCES OF ARCS AND NORMAL MEROMORPHIC FUNCTIONS

BY

STEPHEN DRAGOSH

Abstract

Let f be a normal meromorphic function in the unit disk. An estimate for the growth of the modulus of f on a Koebe sequence of arcs is obtained; the estimate is in terms of the order of normality of f. An immediate consequence of the estimate is the following theorem due to F. Bagemihl and W. Seidel: A nonconstant normal meromorphic function has no Koebe values. Another consequence is that each level set of a nonconstant normal meromorphic function cannot contain a Koebe sequence of arcs provided the order of normality of f is less than a certain positive constant C^{*}.

1. Introduction. A meromorphic function f is normal in the unit disk D : $|z|<1$ if and only if the family $\{(f(s))\}$ is normal in D in the sense of Montel, where S is any conformal map of D onto itself. K. Noshiro [10 , Theorem 1], and subsequently O. Lehto and K. I. Virtanen [6, Theorem 3], employed the spherical derivative

$$
f^{*}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

to obtain the following characterization of normal meromorphic functions: f is normal in D if and only if

$$
\begin{equation*}
C=C_{f}=\sup _{z \in D}\left(1-|z|^{2}\right) f^{*}(z)<+\infty ; \tag{1.1}
\end{equation*}
$$

C is called the order of normality of f. Using integration, we deduce from (1.1) that an arc γ in D with non-Euclidean length ρ is mapped by f onto an arc with spherical length not exceeding $C \rho$. Thus, f is "more normal" than g when $C_{f}<C_{g}$

Throughout this paper we make use of Pick's (differential) form of Schwarz's lemma. If ϕ is an analytic mapping of D into itself, then

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right| \leq 1-|\phi(z)|^{2} ; \tag{1.2}
\end{equation*}
$$

thus $C_{\phi} \leq 1$, and $C_{f(\phi)} \leq C_{f}$ for any function f meromorphic in D. Equality holds in all cases if ϕ is a conformal map of D onto itself.

[^0]If f is defined in D and ζ is a point of the unit circle $\Gamma:|z|=1$, we set

$$
|f(\zeta)|=\underset{z \rightarrow \zeta}{\lim \sup }|f(z)|
$$

In the terminology of cluster sets, $|f(\zeta)|$ is the radius of the smallest closed disk such that the disk has center zero and contains all the cluster values (boundary values) of f at ζ. If $|f(\zeta)| \leq M<+\infty$ for all points ζ in a subarc γ of Γ, then f is said to be bounded (by M) on γ. By combining the classical two-constants estimate for $|f(z)|$ and the estimate (1.1) for $\left|f^{\prime}(z)\right|$, Lehto and Virtanen obtained a "two-constants theorem" for normal meromorphic functions bounded on a subarc γ. Several related results and examples are discussed in $\S 2$.

In $\S 3$ we prove the central result of this paper: An estimate for the growth of the modulus of a normal meromorphic function on a Koebe sequence of arcs. Following F. Bagemihl and W. Seidel [1], a sequence of disjoint Jordan arcs $\left\{\gamma_{n}\right\}$ in D is called a Koebe sequence of arcs relative to an open subarc γ of Γ provided (i) each neighborhood of γ contains all but finitely many of the arcs γ_{n}, and (ii) every open sector Δ of D subtending a subarc whose closure lies in γ has the property that all but finitely many of the arcs γ_{n} contain at least one Jordan subarc lying entirely in Δ except for its two endpoints which lie on distinct sides of Δ. If f is defined in D and $\left\{\gamma_{n}\right\}$ is a Koebe sequence of arcs, we set

$$
m_{n}=m_{n}\left(\gamma_{n} ; f\right)=\inf _{z \in \gamma_{n}}|f(z)| \text { and } M_{n}=M_{n}\left(\gamma_{n} ; f\right)=\sup _{z \in \gamma_{n}}|f(z)| .
$$

If $\lim M_{n}=0$, zero is called a Koebe value of f. More generally, the complex number c is a Koebe value of f provided zero is a Koebe value of $f(z)-c$ or $1 / f$, according as c is finite or $c=\infty$. Koebe's lemma states that a nonconstant bounded analytic function has no Koebe values.

Some estimates that we obtain for the growth of $|f|$ are the following (Theorem 1): If f is a meromorphic function in D with order of normality $C>0$ and $\left\{\gamma_{n}\right\}$ is a Koebe sequence of arcs relative to an open subarc γ of Γ, then

$$
\begin{equation*}
\lim \inf M_{n} \geq \frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim \inf M_{n} \geq \sup _{\zeta \epsilon \gamma}|f(\zeta)|, \tag{1.4}
\end{equation*}
$$

according as f is unbounded or bounded on γ. By combining (1.3) and (1.4) (or (1.3) and Koebe's lemma), we reestablish a result of Bagemihl and Seidel [1, Theorem 1]: A nonconstant normal meromorphic function cannot have zero (and hence any extended complex number) as a Koebe value.

Since f and $1 / f$ have equal spherical derivatives, $C_{f}=C_{1 / f}$ We infer from (1.3) that if $1 / f$ is not bounded on γ, then

$$
\begin{equation*}
\lim \sup m_{n} \leq \frac{C}{1+\left(1+C^{2}\right)^{1 / 2}} \exp \left[\left(1+C^{2}\right)^{1 / 2}\right] . \tag{1.5}
\end{equation*}
$$

In our investigations, a fundamental role is played by the number $C=C^{*}$ for which the right-hand sides of (1.3) and (1.5) are equal (and hence equal to one); $C^{*} \approx 2 / 3$. In particular, if both f and $1 / f$ are unbounded on γ and $C_{f}<C^{*}$, then

$$
\lim \sup m_{n}<\lim \inf M_{n} .
$$

In §4 we consider the family \mathcal{L}. A nonconstant meromorphic function $f \in \mathscr{L}$ if and only if every level set of f does not contain a Koebe sequence of arcs. A lemma of G. R. MacLane [7, p. 11] states that each nonconstant bounded analytic function belongs to \mathscr{L}; a brief proof of MacLane's lemma has been given by K. F. Barth and W. J. Schneider [2]. More generally, MacLane [7, Theorems 1 and 17] proved that each nonconstant normal analytic function belongs to $£$. We prove the following results: (Lemma 2) If the nonconstant normal meromorphic function f has a level set L_{R},

$$
L_{R}=\{z:|f(z)|=R\}
$$

such that L_{R} contains a Koebe sequence of arcs relative to an open subarc γ of Γ, then
$\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \leq R \leq \frac{C}{1+\left(1+C^{2}\right)^{1 / 2}} \exp \left[\left(1+C^{2}\right)^{1 / 2}\right], \quad C^{*} \leq C=C_{f}$,
and each point of γ is a limit point of zeros and poles of f; thus (Theorem 2) if either f is a nonconstant normal analytic function in D or $C=C_{f}$ satisfies $0<C<C^{*}$, then $f \in \mathscr{L}$. Moreover, (Theorem 3)

$$
C^{*}=\inf \left\{C_{f}: f \notin \mathscr{L}, C_{f}>0\right\}
$$

Whether or not there exists a normal meromorphic function $f \not \& £$ such that $C^{*}=C_{f}$ is an open question.

Finally, in $\S \delta$ we discuss the boundary behavior of normal meromorphic functions ffor which $|f|$ has a Koebe value.
2. Boundary estimates for normal functions. Let G_{a} be a lens (crescent) bounded by the unit circle $\Gamma:|z|=1$ and a circular arc in D that intersects Γ at an angle $a, 0<\alpha<\pi$. Excluding the vertices of G_{a}, the boundary of G_{a} consists of an open subarc Γ_{β} of Γ such that $\Gamma-\Gamma_{\beta}$ is viewed under the angle $\beta(0<\beta<\pi)$ from Γ_{β} and an open circular arc Γ_{δ} in D such that $\Gamma-\Gamma_{\beta}$ is viewed under the angle $\delta(\beta<\delta<\pi+\beta)$ from Γ_{δ}. Note that $\alpha=\delta-\beta$. The harmonic measure ω of Γ_{β} with respect to G_{α} is given by

$$
\omega\left(z, \Gamma_{\beta}, G_{\alpha}\right)=\alpha^{-1}(\delta-\theta) \quad(\beta<\theta<\delta)
$$

where θ is the angle under which $\Gamma-\Gamma_{\beta}$ is viewed from z. In the theorem to follow, we make use of the expression

$$
\lambda(z)=\frac{1}{1-|z|^{2}} / \frac{\partial \omega}{\partial n} \quad\left(z \in \Gamma_{\delta}\right),
$$

where $\partial \omega / \partial n$ is the normal derivative of ω at $z \in \Gamma_{\delta}$. Using (1.2), we find that $\lambda(z)\left(z \in G_{a}\right)$ is invariant under a conformal map $z=\phi\left(z^{\prime}\right)$ of D onto itself. Therefore, we can assume that Γ_{δ} passes through $z=0$ and that the positive real axis is the inner normal to Γ_{δ} at $z=0$. Some elementary calculations yield

$$
\lambda_{\alpha}=\left.\lambda(z)\right|_{z \in \Gamma_{\delta}}=\frac{\alpha}{2 \sin \alpha}
$$

In this setting, Lehto and Virtanen's "two-constants theorem" assumes the following form.

Theorem A. Let f be meromorphic in D with order of normality $C(0<C<$ $+\infty$), and suppose

$$
\sup _{z \in G_{a}}|f(z)| \geq \mu
$$

If f is bounded by M on the open arc Γ_{β}, then

$$
\begin{equation*}
M \geq \mu \exp \left[-C \lambda_{\alpha}(\mu+1 / \mu)\right] . \tag{2.1}
\end{equation*}
$$

If

$$
\mu_{a}=\frac{1+\left(1+4 C^{2} \lambda_{a}^{2}\right)^{1 / 2}}{2 C \lambda_{a}}
$$

then the best estimates in (2.1) are obtained by setting

$$
\mu=\sup _{\boldsymbol{z} \in G_{a}}|f(z)|, \quad \text { if } \sup _{\boldsymbol{z} \in G_{a}}|f(z)|<\mu_{a},
$$

and

$$
\mu=\mu_{a}, \quad \text { if } \sup _{z \in G_{a}}|f(z)| \geq \mu_{a} .
$$

In their version of Theorem A, Lehto and Virtanen assumed that f is bounded by M on the closure of the arc Γ_{β}; our weaker form is easily verified by an obvious limiting argument using closed subarcs of Γ_{β}.

We briefly indicate once again how the best estimates are obtained. As a function of $\mu \geq 0$,

$$
\mu \exp \left[-C \lambda_{a}(\mu+1 / \mu)\right]
$$

has its maximum at $\mu=\mu_{a}$. Therefore, if

$$
\sup _{z \in G_{a}}|f(z)| \geq \mu_{a}
$$

we can choose $\mu=\mu_{a}$ in (2.1) and hence maximize its right-hand side. If

$$
\sup _{z \in G_{a}}|f(z)|<\mu_{a}
$$

then

$$
\mu=\sup _{z \in G_{\alpha}}|f(z)|
$$

maximizes the right-hand side of (2.1).
If f is bounded by M on Γ with the (possible) exception of one point, then Theorem A, as stated, does not apply. However, by using a limiting process (as $\alpha \rightarrow 0$). Lehto and Virtanen deduced the following estimate of the PharagménLindelöf type.

Theorem B. Let f be meromorphic in D with order of normality $C(0<C<+\infty)$, and let f be bounded by M on $\Gamma-\{\zeta\}, \zeta \in \Gamma$. Then

$$
\begin{equation*}
M \geq \frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \tag{2.2}
\end{equation*}
$$

unless f is bounded in D, in which case $M \geq C$.
As noted in [6, p. 62], the estimate (2.2) is sharp. The function

$$
\begin{equation*}
f(z)=M \exp (b(1+z) /(1-z)) \quad(M>0, b>0) \tag{2.3}
\end{equation*}
$$

is bounded by M on $\Gamma-\{1\}$ and equality holds in (2.2) for $C=C_{f}$.
We now investigate the sharpness of the estimate (2.2) in case f is bounded by M on all of Γ and unbounded in D. To simplify notation, we henceforth let $C=C_{M}^{*}$ be the solution of

$$
\begin{equation*}
M=\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \tag{2.4}
\end{equation*}
$$

As in the introduction, we set $C^{*}=C_{1}^{*}$. Using this notation, (2.2) is equivalent to the inequality $C_{M}^{*} \leq C$.

Example 1. Let $M>0$, and set $C_{n}=C_{f_{n^{\prime}}}$ where $f_{n}(z)=M z^{-n}(n=2,3, \ldots)$. Then $C_{M}^{*} \leq C_{n}=C_{M}^{*}+o(1)$.

Proof. The inequality $C_{M}^{*} \leq C_{n}$ follows from Theorem B. Let

$$
\Phi_{n}(z) \doteq\left(1-|z|^{2}\right) f_{n}^{*}(z)=\left(1-|z|^{2}\right) \frac{M n|z|^{n-1}}{M^{2}+|z|^{2 n}}
$$

Then

$$
C_{n}=\max _{0 \leq r \leq 1} \Phi_{n}(r)
$$

We have

$$
\Phi_{n}^{\prime}(r)=\frac{M n r^{n-2}}{\left(M^{2}+r^{2 n}\right)^{2}}\left[(n-1) r^{2 n+2}-(n+1) r^{2 n}-M^{2}(n+1) r^{2}+M^{2}(n-1)\right]
$$

Now, for all values of n,

$$
\begin{equation*}
\Phi_{n}^{\prime}(n /(n+1))<0 ; \tag{2.5}
\end{equation*}
$$

and, for all sufficiently large values of n,

$$
\begin{equation*}
\Phi_{n}^{\prime}\left(\left(n-M^{-2}\right) /(n+1)\right)>0 . \tag{2.6}
\end{equation*}
$$

To verify (2.6), we note that as $n \rightarrow+\infty$ in (2.6), we obtain the valid inequality

$$
2>\left(4+2 M^{-2}\right) \exp \left[-2\left(1+M^{-2}\right)\right] .
$$

From (2.5) and (2.6), it follows that

$$
\begin{equation*}
\Phi_{n}^{\prime}\left(\left(n-t_{n}\right) /(n+1)\right)=0 \tag{2.7}
\end{equation*}
$$

for some t_{n} satisfying $0<t_{n}<M^{-2}$.
Because Φ_{n}^{\prime} has exactly one zero for $0<r<1$,

$$
\begin{equation*}
C_{n}=\Phi_{n}\left(\left(n-t_{n}\right) /(n+1)\right) . \tag{2.8}
\end{equation*}
$$

If t^{\prime} is a limit point of the sequence $\left\{t_{n}\right\}$ and we formally compute the limit as $n \rightarrow+\infty$ in (2.7), we find that t^{\prime} satisfies

$$
\begin{equation*}
t+2=M^{2} t e^{2(1+t)} \tag{2.9}
\end{equation*}
$$

However, (2.9) has exactly one solution for $t>0$ and thus $t^{\prime}=\lim t_{\boldsymbol{n}}$. Moreover, since t^{\prime} satisfies (2.9), t^{\prime} maximizes the function

$$
\psi(t)=\frac{2 M(t+1) e^{1+t}}{1+M^{2} e^{2(1+t)}}
$$

for which $\psi^{\prime}(t)=0$ reduces to (2.9). If we set $t^{\prime}=\left(1+C^{2}\right)^{1 / 2}-1$, then some elementary computations show that

$$
\psi\left(t^{\prime}\right)=\psi\left(\left(1+C^{2}\right)^{1 / 2}-1\right)=C
$$

and that C satisfies (2.4). Thus $C=C_{M}^{*}$ and we find

$$
\lim C_{n}=\lim \Phi_{n}\left(\left(n-t_{n}\right) /(n+1)\right)=\psi\left(t^{\prime}\right)=C=C_{M}^{*} .
$$

Example 1 can be verified by another method that points out a connection between the functions $M z^{-n}$ and the function in (2.3); this method is based on the following lemma.

Lemma 1. Let $\left\{g_{n}\right\}$ be a sequence of normal meromorphic functions that converges uniformly to g on compact subsets of D. Let $C_{n}=C_{8_{n}}$. Then

$$
\begin{equation*}
C_{g} \leq \lim \inf C_{n} \tag{2.10}
\end{equation*}
$$

If there exists an $r(0 \leq r<1)$ such that

$$
\begin{equation*}
C_{n}=\left(1-\left|z_{n}\right|^{2}\right) g_{n}^{*}\left(z_{n}\right), \quad\left|z_{n}\right| \leq r \tag{2.11}
\end{equation*}
$$

then $C_{g}=\lim C_{n}$.
Proof. Let $\left\{g_{n_{k}}\right\}$ be a subsequence such that $\lim C_{n_{k}}=\lim \inf C_{n^{\prime}}$. The sequence $\left\{g_{n}^{\prime}\right\}$ converges uniformly to g^{\prime} on compact subsets of D; thus, for each $z \in D$,

$$
\left(1-|z|^{2}\right) g^{*}(z)=\lim \left(1-|z|^{2}\right) g_{n_{k}}^{*}(z) \leq \lim C_{n_{k}}
$$

Thus

$$
C_{8} \leq \lim \inf C_{n}
$$

If (2.11) holds for some $r(0 \leq r<1)$, then

$$
\begin{align*}
\lim \sup C_{n} & =\lim \sup \left(\max _{|z| \leq r}\left(1-|z|^{2}\right) g_{n}^{*}(z)\right) \tag{2.12}\\
& =\max _{|z|_{\leq r}}\left(1-|z|^{2}\right) g^{*}(z) \leq C_{g} .
\end{align*}
$$

By (2.10) and (2.12), we have $C_{g}=\lim C_{n}$.
Returning to the sequence $f_{n}(z)=M z^{-n}(n=2,3, \cdots), C_{n}=C_{f_{n}}$, set

$$
g_{n}(w)=f_{n}\left(\frac{w-x_{n}}{1-x_{n} w}\right)
$$

where x_{n} is determined from an arbitrary fixed number $b>0$ by $x_{n}=e^{-b / n}$. Then $C_{n}=C_{8_{n}}$ by (1.2). From (2.8), if $|z|=\left(n-t_{n}\right) /(n+1)$, then $C_{n}=\left(1-|z|^{2}\right) f_{n}^{*}(z)$. We choose $z_{n}=-\left(n-t_{n}\right) /(n+1)$. Then $C_{n}=\left(1-\left|w_{n}\right|^{2}\right) g_{n}^{*}\left(w_{n}\right)$, where w_{n} is determined by $\left(w_{n}-x_{n}\right) /\left(1-x_{n} w_{n}\right)=z_{n}$. We find

$$
w_{n}=\frac{1+t_{n}-b+o(1)}{1+t_{n}+b+o(1)}
$$

Since $0<t_{n}<M^{-2}$, the condition (2.11) in Lemma 1 holds for all sufficiently large values of n. Therefore,

$$
\lim C_{n}=C_{g},
$$

where g is the limit of the sequence $\left\{g_{n}\right\}$. A direct calculation yields

$$
g(w)=\lim M\left(\frac{1-e^{-b / n} w}{w-e^{-b / n}}\right)=M \exp \left(b \frac{1+w}{1-w}\right) .
$$

As noted in (2.3), $C_{g}=C_{M}^{*}$. This reestablishes Example 1.
3. Estimates on Koebe sequences. We now obtain some estimates for the growth of the modulus of a normal function on a Koebe sequence of arcs.

Theorem 1. Let f be meromorphic in D with order of normality $C(0<C \leq+\infty)$. Let γ be an open subarc of Γ and let $\left\{\gamma_{n}\right\}$ be a Koebe sequence of arcs relative to γ. Set $M=\sup _{\zeta \epsilon \gamma}|f(\zeta)|$. If f is not bounded on γ, then

$$
\begin{equation*}
\lim \inf M_{n} \geq \frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \tag{3.1}
\end{equation*}
$$

and if f is bounded on γ, then

$$
\begin{equation*}
\lim \inf M_{n} \geq M \tag{3.2}
\end{equation*}
$$

Also, if $0<C<+\infty$ and f is analytic in a domain $G \subset D$ for which γ is a free boundary arc, then

$$
\begin{equation*}
\lim \inf M_{n} \geq M \tag{3.3}
\end{equation*}
$$

Proof. If $C=+\infty$, we let the right-hand side of (3.1) equal zero. Thus we assume that $0<C<+\infty$. If f is not bounded on γ, we can choose a point $\zeta^{*} \in \gamma$ such that

$$
\left|f\left(\zeta^{*}\right)\right|>\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C}
$$

Let γ^{*} be an open arc such that $\zeta^{*} \in \gamma^{*}$ and the closure of γ^{*} lies in γ. Let ζ and ζ^{\prime} denote the left and right endpoints, respectively, of γ^{*} as viewed from $z=0$, and let r and r^{\prime} be the radii at ζ and ζ, respectively. For all sufficiently large values of n, the arc γ_{n} has a Jordan subarc γ_{n}^{*} with an endpoint on each of r and r^{\prime} and otherwise lying in the sector subtending γ^{*}. Let r_{n} and r_{n}^{\prime} denote the segments on r and r^{\prime}, respectively, such that the arc

$$
\Gamma_{n}=r_{n} \cup \gamma_{n}^{*} \cup r_{n}^{\prime}
$$

is a Jordan crosscut of D. The region bounded by $\Gamma_{n} \cup \Gamma-\gamma^{*}$ is denoted by D_{n}. Then $\lim D_{n}=D$ in the obvious sense. For all sufficiently large values of n, we can choose a point $z_{n} \in D_{n}$ such that

$$
\left|f\left(z_{n}\right)\right|>\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C}
$$

and $\lim z_{n}=\zeta^{*}$. By the principle of monotoneity for harmonic measures,

$$
\begin{equation*}
\omega\left(z_{n}, \gamma^{*}, D\right) \leq \omega\left(z_{n}, \Gamma_{n}, D_{n}\right) \tag{3.4}
\end{equation*}
$$

Let $z=\phi_{n}(w), z_{n}=\phi_{n}(0)$, be a conformal map of $|w|<1$ onto D_{n}. Then $\Gamma_{n}=$ $r_{n} \cup \gamma_{n}^{*} \cup r_{n}^{\prime}$ corresponds to a subarc $\Lambda_{n} \cup \Lambda_{n}^{*} \cup \Lambda_{n}^{\prime}$ of $|w|=1$ subtended by a ${ }_{n}=n t r a l$ angle of measure $\left(\delta_{n}+\delta_{n}^{*}+\delta_{n}^{\prime}\right) / 2 \pi$, where r_{n} corresponds to the subarc Λ_{n} subtended by a central angle of measure $\delta_{n} / 2 \pi$, etc. Since $\left\{z_{n}\right\}$ converges to $\zeta^{*}, \lim \omega\left(z_{n}, \gamma^{*}, D\right)=1$; thus, by (3.4) and the invariance of harmonic measure under ϕ_{n},

$$
\begin{equation*}
\lim \left(\delta_{n}+\delta_{n}^{*}+\delta_{n}^{\prime}\right) / 2 \pi=1 \tag{3.5}
\end{equation*}
$$

By performing rotations if necessary, we can assume that the arcs Λ_{n} have a common right endpoint as viewed from $w=0$. The segments r_{n} converge uniformly to ζ; thus, the sequence $\left\{\phi_{n}\right\}$ converges uniformly to ζ on $\bigcap \Lambda_{n}$. If $\bigcap \Lambda_{n}$ is a proper subarc of $|w|=1$, it follows that $\left\{\phi_{n}\right\}$ converges uniformly to ζ on compact subsets of $|w|<1$ (see [4, Corollary 1] or [6, Theorem 10]). However, $\phi_{n}(0)=z_{n}$ and $\lim z_{n}=\zeta^{*} \neq \zeta$. Thus $\bigcap \Lambda_{n}$ is a singleton and $\lim \delta_{n}=0$. In a similar fashion it is seen that $\lim \delta_{n}^{\prime}=0$. From (3.5),

$$
\begin{equation*}
\lim \delta_{n}^{*}=2 \pi \tag{3.6}
\end{equation*}
$$

Let G_{n} be the lens bounded by Λ_{n}^{*} and the circle through $w=0$ joining the endpoints of Λ_{n}^{*}. Since Λ_{n}^{*} is subtended by the central angle δ_{n}^{*}, it follows from some simple geometric considerations that G_{n} has vertex angle a_{n} given by

$$
\begin{equation*}
\alpha_{n}=\pi-1 / 2 \delta_{n}^{*} . \tag{3.7}
\end{equation*}
$$

We now apply the estimate of Theorem A to the function $f\left(\phi_{n}(w)\right)$. First, set

$$
\begin{aligned}
& M_{n}^{*}=\sup _{w \in \Lambda_{n}^{*}}\left|f\left(\phi_{n}(w)\right)\right| \leq M_{n}, \\
& \lambda_{n}=\lambda_{a_{n}}=\frac{a_{n}}{2 \sin a_{n}}, \\
& \mu_{n}=\mu_{a_{n}}=\frac{1+\left(1+4 C^{2} \lambda_{n}^{2}\right)^{1 / 2}}{2 C \lambda_{n}} .
\end{aligned}
$$

Since

$$
\left|f\left(\phi_{n}(0)\right)\right|=\left|f\left(z_{n}\right)\right|>\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C}>\mu_{n}
$$

we use $\mu=\mu_{n}$ in (2.1) to obtain the estimate

$$
M_{n} \geq M_{n}^{*} \geq \mu_{n} \exp \left[-C \lambda_{n}\left(\mu_{n}+1 / \mu_{n}\right)\right]
$$

By (3.6) and (3.7), $\lim \lambda_{n}=1 / 2$; thus,

$$
\lim \mu_{n}=\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C}
$$

The estimate (3.1) now follows.
Before we continue with the proof of Theorem 1, we cite Bagemihl and Seidel's result [1, Theorem 1] which shall be used later in our proof.

Corollary l. Let f be meromorphic in D with order of normality C ($0<C<$ $+\infty$). Then f bas no Koebe values.

Proof. Let γ be any open subarc of Γ. If f is bounded on γ, then Koebe's lemma implies that $w=0$ cannot be a Koebe value of f on a Koebe sequence of arcs relative to γ. If f is not bounded on γ, then the estimate (3.1) implies the same conclusion. If $w=c$ is a Koebe value of f, then we consider $F(z)=f(z)-c$ or $F(z)=1 / f(z)$, depending on whether c is finite or $c=\infty$. In either case, F is normal and therefore cannot have zero as a Koebe value; thus c cannot be a Koebe value of f and the corollary is proved.

We now return to the proof of Theorem 1. If f is bounded on γ, then, by Fatou's theorem, f has radial limits almost everywhere on γ. The estimate (3.2) now follows from the maximum principle as noted by MacLane [7, Theorem 9]. (Let γ^{*} be any closed subarc of γ such that f has a radial limit at each endpoint of γ^{*}. The maximum principle is applied to f in the region bounded by $\gamma_{n}^{*}, r^{\prime}, \gamma_{n+1}^{*}, r$; our notation here is that used in the proof of (3.1). It is worth noting that if M is the maximum of $|f(\zeta)|$ for ζ in the closure of γ, then equality holds in (3.2).)

Now suppose f is analytic in a domain $G \subset D$ for which γ is a free boundary arc. If M is finite, then we just proved the desired estimate (3.3) (even if $C=+\infty$). Therefore assume $M=+\infty$ and $0<C<+\infty$. Then either (i) there is a point $\zeta^{*} \in \gamma$ at which f is unbounded or (ii) for each open subarc γ^{*} of γ,

$$
M^{*}=\sup _{\zeta \in \gamma^{*}}|f(\zeta)|<+\infty,
$$

and $\sup M^{*}=+\infty$. If (ii) occurs, then (3.2) implies that for each open subarc $\gamma^{*} \subset \gamma$,

$$
\lim \inf M_{n} \geq M^{*}
$$

Thus $\lim M_{n}=+\infty=M$.
Finally, suppose (i) occurs. (It can be deduced from a theorem of McMillan [8, Theorem 1] that if

$$
\lim \sup M_{n_{k}}<+\infty
$$

for any subsequence $\left\{\gamma_{n_{k}}\right\}$, then ∞ is a Koebe value of f on a Koebe sequence of arcs relative to a subarc of γ having ζ^{*} as one endpoint. Since $0<C<+\infty$, f has no Koebe values; it follows that $\lim M_{n}=+\infty$ as required. We sketch a proof that in spirt is somewhat similar to that of McMillan. It is also similar to the type of argument used by Barth and Schneider [2] to prove MacLane's lemma.) Let us first assume that M^{\prime} can be chosen so that

$$
\begin{equation*}
M_{n}<M^{\prime} \quad(n=1,2, \ldots) \tag{3.8}
\end{equation*}
$$

Select an open subarc γ^{*} for which the closure lies in γ and such that $\zeta^{*} \in \gamma^{*}$. Let Δ be the open sector subtending γ^{*}. Since γ is a free boundary arc of G, there exists an $\epsilon>0$ such that G contains the set

$$
\Delta_{\epsilon}=\Delta \cap\{z: 1-\epsilon<|z|<1\} .
$$

Choose a sequence $\left\{z_{k}\right\}$ in Δ_{ϵ} such that $\lim z_{k}=\zeta^{*}$ and such that

$$
\begin{equation*}
\left|f\left(z_{k}\right)\right|>M^{\prime}+k \quad(k=1,2, \ldots) \tag{3.9}
\end{equation*}
$$

We can also assume that the Riemann surface of f over the extended plane (sphere) has no branch points over any of the radial segments

$$
R_{k}=\left\{w:\left|w_{k}\right| \leq|w|<+\infty, \arg w=\arg w_{k}, w_{k}=f\left(z_{k}\right)\right\} .
$$

If the regular element $e_{z_{k}}\left(w, w_{k}\right)$ of $z=f^{-1}(w)$ is continued along R_{k}, there are two possibilities: either the continuation defines a transcendental singularity in a finite distance or at $w=\infty$, or the continuation defines a regular or algebraic element at $w=\infty$. In each case, the branch of f^{-1} defined by the continuation maps the segment of $R_{\boldsymbol{k}}$ in question onto a Jordan arc $\gamma_{\boldsymbol{k}}^{\prime}$ with initial point $z_{\boldsymbol{k}}$. By (3.8) and (3.9), $\gamma_{k}^{\prime} \cap \gamma_{n}=\varnothing(n=1,2, \ldots)$. In the first case, γ_{k}^{\prime} terminates at a point of $\Gamma-\gamma$; in the second case, γ_{k}^{\prime} terminates at a pole of f outside Δ_{ϵ}. It is apparent that from the sequence $\left\{\gamma_{k}^{\prime}\right\}$ we can find a Koebe sequence of arcs on which f has Koebe value ∞. This contradiction shows that the condition (3.8) cannot hold; that is, $\lim \sup M_{n}=+\infty$. By the same argument, $\lim \sup M_{n_{k}}=+\infty$ for any subsequence $\left\{\gamma_{n_{k}}\right\}$. Thus, $\lim M_{n}=+\infty$, and this completes the proof of (i).

We shall make use of the estimate (3.3) in the following form.
Corollary 2 Let f be meromorphic and normal in D. Let γ be a subarc of Γ sucb that f is analytic in a domain $G \subset D$ and γ is a free boundary arc of G. If f is bounded on a Koebe sequence of arcs relative to γ, then f is bounded on γ; moreover,

$$
M=\sup _{\zeta \epsilon \gamma}|f(\zeta)| \leq \lim \inf M_{n}<+\infty
$$

Since f and $1 / f$ have the same order of normality, we can apply Theorem 1 to $1 / f$ to obtain the following result.

Corollary 3. Let f be meromorphic in D with order of normality $C(0<C \leq$ $+\infty)$. Let γ be an open subarc of Γ and let $\left\{\gamma_{n}\right\}$ be a Koebe sequence of arcs relative to γ. Set

$$
m=\inf _{\zeta \in \gamma}\left(\liminf _{z \rightarrow \zeta}|f(z)|\right) .
$$

If $w=0$ is a boundary value of f on γ, then

$$
\begin{equation*}
\lim \sup m_{n} \leq \frac{C}{1+\left(1+C^{2}\right)^{1 / 2}} \exp \left[\left(1+C^{2}\right)^{1 / 2}\right] ; \tag{3.10}
\end{equation*}
$$

and if $w=0$ is not a boundary value of f on γ, then

$$
\lim \sup m_{n} \leq m .
$$

Also, if $0<C<+\infty$ and f omits $w=0$ is a domain $G \subset D$ for which γ is a free boundary arc, then

$$
\lim \sup m_{n} \leq m
$$

The following example is concemed with the sharpness of the estimate (3.1) of Theorem 1 .

Example 2. Let $w=\phi(z)$ be an analytic map of D into $|w|<1$ such that $w=0$ is a boundary value of ϕ at $\zeta=1$ and

$$
\lim _{|z| \rightarrow 1 ; z \in \sigma}|\phi(z)|=1
$$

where σ is a spiral in D (see $[11, \mathrm{p} .14]$). Let $g_{n}(w)=M w^{-n}$ and set $f_{n}(z)=$ $g_{n}(\phi(z))$. By (1.2) and Example 1,

$$
C_{f_{n}} \leq C_{g_{n}}=C_{M}^{*}+o(1)
$$

Also, f_{n} is unbounded at $\zeta=1$ so that the estimate (3.1) applies. Since

$$
\lim _{|z| \rightarrow 1 ; z \in \sigma}\left|f_{n}(z)\right|=M,
$$

(3.1) can be written as $C_{M}^{*} \leq C_{f_{n}}$. Thus

$$
C_{M}^{*} \leq C_{f_{n}} \leq C_{M}^{*}+o(1)
$$

4. Level sets of normal functions. We now consider the family $£$ defined in the introduction.

Lemma 2. Suppose the nonconstant normal meromorphic function $f \notin$. Then (i)

$$
C^{*} \leq C=C_{f}
$$

If the level set L_{R} of f contains a Koebe sequence of arcs $\left\{\gamma_{n}\right\}$ relative to the open subarc γ of Γ, then the following bold:
(ii) $\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right] \leq R \leq \frac{C}{1+\left(1+C^{2}\right)^{1 / 2}} \exp \left[\left(1+C^{2}\right)^{1 / 2}\right]$,
(iii) if ζ is any point of γ and

$$
R^{\prime}<\frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right]
$$

then, in each neighborbood of ζ, there is a component U of the set $f^{-1}\left(|w|<R^{\prime}\right)$ and a component V of the set $f^{-1}\left(|w|>1 / R^{\prime}\right)$ such that the closures of U and V lie in D.

Proof. We first verify (ii). Both f and $1 / f$ must be unbounded on γ (and in fact on each subarc of γ), otherwise the assumption concerning L_{R} is
impossible by MacLane's lemma. Since $R=\lim M_{n}=\lim m_{n}$, the inequality (ii) follows from (3.1) and (3.10).

If $f \notin \mathcal{L}$, then there exists an R such that (ii) holds for $C=C_{f}$; thus $C^{*} \leq C$.
Finally, we verify (iii). Let $\zeta \in \gamma$. Since f and $1 / f$ are unbounded on each subarc of γ, Corollary 2 implies that ζ is a limit point of poles and zeros of f. For each positive integer k, let U_{k} be a component of $f^{-1}\left(|w|<R^{\prime}\right)$ containing a zero z_{k} of f, and let V_{k} be a component of $f^{-1}\left(|w|>1 / R^{\prime}\right)$ containing a pole p_{k} of l, where $z_{k} \rightarrow \zeta$ and $p_{k} \rightarrow \zeta$. By (ii), the level sets $L_{R^{\prime}}$ and $L_{1 / R^{\prime}}$ cannot contain a Koebe sequence of arcs. Thus the diameters of U_{k} and V_{k} tend to zero as $k \rightarrow+\infty$. Because L_{R} contains the Koebe sequence $\left\{\gamma_{n}\right\}^{0}$, the closures of U_{k} and V_{k} lie in D for all sufficiently large values of k.

The next result follows from (i) and (iii) of Lemma 2.
Theorem 2. Let f be meromorphic in D with order of normality $C(0<C<$ $+\infty$). If either f is analytic in D or $C<C^{*}$, then $f \in \mathscr{L}$.

We now show that C^{*} cannot be replaced by any larger number in Lemma 2 and Theorem 2.

Theorem 3. $C^{*}=\inf \left\{C_{f} f \notin \mathscr{L}, C_{f}>0\right\}$.
Proof. Lemma 2 states that C^{*} is a lower bound for the set in question. For each value $k=3,4, \cdots$, let T_{k} be a regular non-Euclidean polygon in D with k sides and center $z=0$ and such that each vertex angle of T_{k} has magnitude $2 \pi / 3$. Let n be a fixed positive integer, and let $w=f_{k}(z)$ be an analytic n-to- 1 map of T_{k} onto $|w|<1$ such that $f_{k}(z)=0$ only for $z=0$. We extend f_{k} from T_{k} to all of the unit disk D by the usual reflection technique. It is apparent that the level set L_{1} of f_{k} consists of the boundary of T_{k} and all its reflections. Thus L_{1} contains a Koebe sequence of arcs relative to Γ and hence $f_{k} \notin \mathscr{L}$.

We intend to show that f_{k} can be constructed so that

$$
\lim _{k \rightarrow+\infty} f_{k}(z)=z^{n}
$$

uniformly on compact subsets of D and

$$
C_{f_{k}}=\left(1-\left|z_{k}\right|^{2}\right) f_{k}^{*}\left(z_{k}\right),
$$

where $\left|z_{k}\right| \leq r<1$. Then, by Lemma 1 ,

$$
\lim C_{f_{k}}=C_{n},
$$

where C_{n} is the order of normality of z^{n}. By Example 1 ,

$$
\lim C_{n}=C^{*}
$$

Since $f_{k} \notin \mathscr{L}$, this implies the assertion of our theorem.
Because the expression $\left(1-|z|^{2}\right) f_{k}^{*}(z)$ is invariant under reflections through non-Euclidean lines of the unit disk D,

$$
C_{f_{k}}=\sup _{z \in T_{k}}\left(1-|z|^{2}\right) f_{k}^{*}(z)
$$

Also D is the kernel of the domains T_{k}. Thus, we need only concern ourselves with the construction of f_{k} on T_{k}. Let T_{k} be positioned so that there is a vertex of T_{k} located on the positive real axis at r_{k}. The conformal map $z=b_{k}(w)$ of $|w|<1$ onto T_{k} such that $b_{k}(0)=0$ and $b_{k}(1)=r_{k}$ can be given in terms of hypergeometric functions as follows (see [5, p. 83]):

$$
z=b_{k}(w)=r_{k} s_{k} \psi_{2}(w) / \psi_{1}(w)
$$

where

$$
\psi_{1}(w)=F\left(\frac{1}{6}-\frac{1}{k}, \frac{1}{6}, 1-\frac{1}{k} ; w^{k}\right), \quad \psi_{2}(w)=w F\left(\frac{1}{6}+\frac{1}{k}, \frac{1}{6}, 1+\frac{1}{k} ; w^{k}\right),
$$

and

$$
s_{k}=\frac{\psi_{1}(1)}{\psi_{2}(1)}=\frac{\Gamma(1-1 / k) \Gamma(5 / 6+1 / k)}{\Gamma(1+1 / k) \Gamma(5 / 6-1 / k)}
$$

Let $w=g_{k}(z)$ be the inverse of b_{k} and set $w=f_{k}(z)=\left[g_{k}(z)\right]^{n}$. We have $\lim b_{k}(w)=w$ uniformly on $|w| \leq 1$. Thus,

$$
\lim f_{k}(z)=z^{n}
$$

uniformly on compact subsets of D. By Lemma $1, C_{n}$, the order of normality of z^{n}, satisfies

$$
\begin{equation*}
0<C_{n} \leq \liminf C_{f_{k}} \tag{4.1}
\end{equation*}
$$

We now show that f_{k}^{\prime}, and hence f_{k}^{*}, is bounded independent of k on the closure of $\boldsymbol{T}_{\boldsymbol{k}}$. First,

$$
\begin{aligned}
b_{k}^{\prime}(w) & =r_{k} s_{k} \frac{\psi_{1} \psi_{2}^{\prime}-\psi_{2} \psi_{1}^{\prime}}{\psi_{1}^{2}} k w^{k-1} \\
& =r_{k} s_{k} \frac{1 / k}{\left(w^{k}\right)^{1+1 / k}\left(1-w^{k}\right)^{1 / 3} \psi_{1}^{2}} k w^{k-1}=r_{k} s_{k} \frac{1}{\left(1-w^{k}\right)^{1 / 3} \psi_{1}^{2}}
\end{aligned}
$$

The quantity $\psi_{1} \psi_{2}^{\prime}-\psi_{2} \psi_{1}^{\prime}$ has the above simplification using the technique of Carathéodory [3, p. 164]. Thus,

$$
\left|b_{k}^{\prime}(w)\right| \geq \frac{r_{3} s_{3}}{2^{1 / 3}} \frac{1}{\left|\psi_{1}\right|^{2}} \geq \frac{r_{3} s_{3}}{2^{1 / 3}} \frac{1}{F^{2}(1 / 6,1 / 6,2 / 3 ; 1)}
$$

and

$$
\left|f_{k}^{\prime}(z)\right| \leq n\left|\delta_{k}^{\prime}(z)\right| \leq n \frac{2^{1 / 3}}{r_{3} s_{3}} F^{2}\left(\frac{1}{6}, \frac{1}{6}, \frac{2}{3} ; 1\right) .
$$

It now follows that there exists a compact set $|z| \leq r<1$ such that $C_{f_{k}}=$ ($1-\left|z_{k}\right|^{2}$) $f_{k}^{*}\left(z_{k}\right)$, where $\left|z_{k}\right| \leq r$; for if $\left|z_{k}\right| \rightarrow 1$, then (since f_{k}^{*} is bounded independent of k on the closure of T_{k}) lim $C_{f k}=0$. This contradicts (4.1).
5. Functions bounded on Koebe sequences. Although a nonconstant normal meromorphic function f cannot have a Koebe value, $|f|$ can have a Koebe value R as evidenced by the functions of Examples 1 and 2 and Theorem 3. It must be the case that $0<R<+\infty$. Also, a function f can be "very normal" and yet $|f|$ can have a Koebe value. For example, if $M>0$ and $f(z)=z / M$ then $|f|$ has a Koebe value and $C_{f}=1 / M$.

Let f be meromorphic and normal in D. Suppose $|f|$ has R as a Koebe value on a Koebe sequence of arcs $\left\{\gamma_{n}\right\}$ relative to an open subarc γ of Γ. If no point of γ is a limit of poles of f, then Corollary 2 yields $|f(\zeta)| \leq R(\zeta \in \gamma)$. By Fatou's theorem, f has radial limits at almost every point of γ; these radial limits all have modulus R. If no point of γ is a limit point of zeros of f, then Corollary 2 applied to $1 / f$ yields

$$
\underset{z \rightarrow \zeta}{\lim \sup }|f(z)|^{-1} \leq R^{-1} \quad(\zeta \in \gamma)
$$

that is, f has no boundary values w on γ such that $|w|<R$. On the other hand suppose $\zeta \epsilon \gamma$ is a limit point of zeros of f; let $z_{k} \rightarrow \zeta$ be such a sequence of zeros. Choose $R^{\prime}\left(0<R^{\prime}<R\right)$ such that the Riemann surface of f has no branch points over the circle $|w|=R^{\prime}$. Let U_{k} be the component of $f^{-1}\left(|w|<R^{\prime}\right)$ containing z_{k}. For all sufficiently large values of $k, U_{\boldsymbol{k}}$ cannot intersect any of the arcs γ_{n} since

$$
\lim m_{n}\left(\gamma_{n} ; f\right)=R>R^{\prime}
$$

Since f has radial limits of modulus $R>R^{\prime}$ at almost every point of γ, we conclude that the diameter of U_{k} tends to zero as $k \rightarrow+\infty$. Thus $|w| \leq R^{\prime}$ lies in the set of boundary values of f at ζ. Since R^{\prime} can be chosen arbitrarily close to R, we conclude that $|w| \leq R$ is the set of boundary values of f at ζ.

In the foregoing discussion, we have assumed that no point of γ is a limit point of poles of f. The following theorem shows that this is the case if C_{f} is sufficiently small.

Theorem 4. Let $\|$ be meromorphic in D with order of normality $C>0$. Let $|f|$ bave the Koebe value R on a Koebe sequence of arcs $\left\{\gamma_{n}\right\}$ relative to an open subarc γ of Γ. If $C<C^{*}$, then either f or $1 / f$ is bounded on γ.

Proof. Suppose both f and $1 / f$ are unbounded on γ. Then, by (3.1),

$$
R=\lim M_{n} \geq \frac{1+\left(1+C^{2}\right)^{1 / 2}}{C} \exp \left[-\left(1+C^{2}\right)^{1 / 2}\right]
$$

and by (3.10),

$$
R=\lim m_{n} \leq \frac{C}{1+\left(1+C^{2}\right)^{1 / 2}} \exp \left[\left(1+C^{2}\right)^{1 / 2}\right] .
$$

Because $C<C^{*}$, these inequalities are inconsistent. Thus, either f or $1 / f$ is bounded on γ.

REFERENCES

1. F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), $9-18 . \quad$ MR 25 \#5183.
2. K. F. Barth and W. J. Schneider, A short proof of a lemma of G. R. MacLane, Proc. Amer. Math. Soc. 20 (1969), 604-605. MR 38 \#4688.
3. C. Carathéodory, Funktionentheorie, Band 2, Birkhäuser, Basel, 1950; English transl., Theory of functions of a complex variable. Vol. 2, Chelsea, New York, 1954. MR 12, 248; 16, 346.
4. S. Dragosh, Sequences of normal meromorphic functions, Arch. Math. 23 (1972), 183-187.
5. G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 \#308.
6. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65. MR 19, 403.
7. G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Studies, 49, no. 1 (1963), 83 pp. MR 26 \#6419.
8. J. E. McMillan, On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc, Ann. Acad. Sci. Fenn. Ser. AI No. 384 (1965), 1-12. MR 35 \#4431.
9. R. Nevanlinna, Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Berlin, 1953; English transl., Die Grundlehren der math. Wissenschaften, Band 162, Springer-Verlag, Berlin and New York, 1970. MR 15, 208; 43 \# 5003.
10. K. Noshiro, Contributions to the theory of meromorphic functions in the unit circle, J. Fac. Sci. Hokkaido Imperial Univ. 7 (1939), 149-159.
11. W. Seidel, On the cluster values of analytic functions, Trans. Amer. Math. Soc. 34 (1932), 1-21.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

[^0]: Received by the editors January 5, 1973.
 AMS (MOS) subject classifications (1970). Primary 30A74; Secondary 30 A72.
 Key words and phrases. Normal meromorphic function, order of normality, Koebe lemma, Koebe sequence of arcs, level set, boundary behavior.

