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ABSTRACT. Variational boundary value problems for quasilinear elliptic
systems in divergence form are studied in the case where the nonlinearities
are nonpolynomial. Monotonicity methods are used to derive several existence
theorems which generalize the basic results of Browder and Leray-Lions. Some
features of the mappings of monotone type which arise here are that they act in
nonreflexive Banach spaces, that they are unbounded and not everywhere
defined, and that their inverse is also unbounded and not everywhere defined.

Introduction. This paper is concemed with the existence of solutions for
variational boundary value problems for quasilinear elliptic systems in diver-
gence form

(%) Aw = Y (0% (<, 4,0, V™)
lal< m

on open subsets Q of R”. Existence theorems for problems of this type were
first obtained by Visik [34], [35] using compactness arguments and a priori
estimates on (m + 1)st derivatives. Since 1963, these problems have been exten-
sively studied by Browder and others in the context of the theory of mappings of
monotone type from a reflexive Banach space to its dual and in the case where
the coefficients A, have polynomial growth in # and its derivatives. Basic
improvements of Browder’s original results [3] were given by Leray-Lions [25]
where the monotonicity conditions imposed on A involve only the variation of
A,, |a| = m, with respect to the top order derivatives V™, and by Browder [7],
[8] where the usual coercivity assumption is replaced either by a local a priori
bound and a stronger monotonicity condition or by a global a priori bound and
some oddness condition.

It is our purpose here tq extend the existence theorems of [3], [25], [7], [8]
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to the case where the coefficients A, do not necessarily have polynomial growth
in u and its derivatives. The crucial points in the treatment of “‘rapidly (or
slowly) increasing’ A ;s are that the Banach spaces in which the problems seem
to be appropriately formulated—the Orlicz-Sobolev spaces—are not reflexive and that
the corresponding mappings of monotone type are not bounded nor everywhere defined
and do not generally satisfy a global a priori bound (and consequently are not
generally coercive). In this respect, the examination of the trivial situation where
m =0 is already quite revealing (see Examples 2.3 and 3.13). Our study is based
upon an extension of the theory of non everywhere defined unbounded pseudomono-
tone mappings in reflexive Banach spaces (Browder [9], [10], Browder-Hess [11])
to the context of complementary systems. These are quadruples of (generally non-
reflexive nonseparable) normed spaces related to each.other in roughly the same
way as conjugate Orlicz spaces.

A simple example to which our results can be applied is the Dirichlet problem
for the operator

> (- l)lalD “p(D%)) + lower order terms,
|d|=m
where p: R — R is any strictly increasing odd continuous function going to + e at
+ o0, with no restrictions on its growth, and where the lower order terms satisfy a
growth condition involving p and a sign condition (see Example 5.6).

Monotonicity methods have previously been used to study systems of the form
(¥ with rapidly increasing coefficients by Donaldson [12] (cf. also Gossez [17])
who treated the case where the problem is coercive, the A ,'s satisfy a monotonicity
condition with respect to all the derivatives of z and some restriction is imposed
on the nature of the growth of the coefficients (the conjugate N-functions are
required to have the A, property). Each of these three limitations is removed or
weakened in the present paper. Our results also include and sharpen the existence
theorem announced recently by Fougéres [15] where the second limitation above is
weakened. Last year Browder [9] (cf. also Hess [22], [23]) considered systems of
the form (#) with top order terms of polynomial growth but *‘strongly nonlinear’
lower order terms. Our results will be generalized elsewhere so as to include this
situation (see Example 4.12),

In $1 we define the notion of complementary system and give some important
examples. Pseudomonotone mappings in complementary systems are considered in
$2 and several of their properties are investigated. In 33 we prove our main exis-
tence theorems for functional equations involving pseudomonotone mappings in
complementary systems. They are applied to systems of the form (%) with rapidly
(or slowly) increasing coefficients in §$4 and 5.

Some of the results presented here were announced in [19]. The author would
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like to thank Professor F. E. Browder for several stimulating conversations,
Professor M. Jodeit for his help in the proof of Lemma 4.14, and the referee for
suggesting a simple proof of Lemmas 1.5, 1.6 and 1.7.

1. Complementary systems. The usual functional setting (X, X*) consisting
of a reflexive Banach space X and its dual X* does not seem suitable for the
study of systems of the form (*) with rapidly (or slowly) increasing coefficients.
In this section we consider a more general setting, that of complementary systems,
and prove that the Orlicz-Sobolev spaces generate complementary systems.

We begin by listing briefly some definitions and well-known facts from Orlicz
space theory (cf. [24], [28]). Let Q be an open subset of R, with Lebesgue
measure dx, and let M be a N-function (i.e. a real-valued continuous, convex,
even function of ¢t € R satisfying M(¢) > 0 for t> 0, M(s)/t = 0 as ¢t — 0 and
M()/t — + 0 as t — + ). The Orlicz class £ u(Q) is defined as the set of
(equivalence classes of) real-valued measurable functions # on Q such that
JaM(u(x)) dx < + oo, and the Orlicz space L m(@) as the linear hull of £ Q.

L (Q) is a Banach space with respect to the Luxemburg norm

llall agy = inf{k >0; fn M(u/k) dx < l}.

The closure in L,(Q) of the bounded measurable functions with compact support
in { is denoted by E,(Q). The inclusions E,(Q) C&,(Q) CL,(Q) hold. More-
over, Ey(Q) = £,(Q) if and only if £,(Q) = L (@) if and only if M has the A,
property for large values of ¢, or for all values of t, according to whether Q has
finite measure or not, i.e., there exists k> 0 such that M(2) < kM(¢) for large
values of ¢, or for all values of t. E,(Q) is separable, but L Q) is separable
if and only if L\(Q) = E,(Q). The dual of E Q) can be identified by means of
the scalar product fa uvdx to LM(Q), where M is the N-function conjugate to M:

M(z) = supits - M(s); s € R}.

Note that M= M and that Young’s inequality holds: ts < M(2) + M(s) for all ¢, s
€R. The norm on LM(Q) dual to || ||y on E,(Q) is called the Orlicz norm and
denoted by || “M It is equivalent to || | @y My < "M <2?]| @y The norm on
L, (@) dualto || “M on E_(Q) turns out to be | lmy Holder’s inequality holds:

J;””d" < "u"M "”"(ﬁ)

forall u €L,(Q) and » eLM(Q)'
Definition 1.1. Let Y and Z be real Banach spaces in duality with respect
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to a continuous pairing (,) and let Y, and Z; be subspaces of Y and Z
respectively. Then (Y, Yo; Z, Z() is called a complementary system if, by means
of (,), Y can be identified (i.e., is linearly homeomorphic) to Z and Z§ o Y,

For instance (Ly(@), Ey(@); L (D), E #@) is a complementary system.
More general examples arise in the theory of Banach function spaces [28]. Other
examples are (X** X; X*, X*) and (X*, X*; X**, X) where X is a Banach
space. Note that in a complementary system, Y is o(Y, Z) dense in Y. Note
also that if c1Y, [c1Z,] denotes the (norm) closure of Y, [z, in Y [Z], then
(Y, c1Y; Z, c1Z)) is a complementary system.

It will be important in the applications to know a method by which given a
complementary system (Y, Y; Z, Z)) and a closed subspace E of Y, one can
construct a new complementary system (E, E; F, F(). Some restncnon must be
imposed on E. Define E,=ENY, F= Z/E‘L and F = {z + Eo, z €Zy}CF,
where 1 denotes the orthogonal in the duality (Y, Z), i.e. ={z€Z;(y,2)=0
forall y € EyL

Lemma 1.2, The pairing (,) between Y and Z induces a pairing between
E and F if and only if E ) is o(Y, Z) dense in E. In this case, (E, E; F, Fo)
is a complementary system if E is (Y, Z,) closed, and conversely, when Z,
is complete, E is o(Y, Z,) closed if (E, Ey; F, F) is a complementary system.

Proof. The pairing between Y and Z induces a pairing between E and F
if and only if E C E'(','L. so that the first part of the lemma follows from the bipolar
theorem. The pairing between E and F obtained in this way is continuous and
E% can be identified to F. To prove that F§ can be identified to E when E is
o(Y, Z,) closed, define a mapping A from E into F§ by

(AN (z + E) = (v, 2+ EQ) g p = (¥ 2y 2

for Y €E and z €Z,. A is linear, connnuous and one-to-one. Let L € F§j and

consider the continuous linear form on Z,/ (E NZgy:
zZ + (Eo N Zo) —'L(z + EO)

for z €Z,. Since the dual of Z/(Ey N Z,) can be identified to (Et N Zo)l =
o(Y, ZyklE = E, we conclude that there exists y € E such that Ay = L. Con-
sequently A is onto, and by the closed graph theorem, A is a linear homeomor-
phism between E and F¥. Conversely, suppose now that A is onto and that zZ,
is complete. To show that E is oy, Z 0) closed, it suffices, by the Krein-
Smulian theorem [14, p. 429], to prove that the limit y € Y of a bounded o(Y, Zy
convergent net y, € E lies in E. But the bounded sets of E are relatively com-
pact for 0(E, Z;)) because A transforms a bounded set of E into a bounded set
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of F% and A~! is continuous from the weak* topology of F} to o(E, Z,). Con-
sequently y € E. Q.E.D.

We will refer to the complementary system (E, Ey; F, F() constructed above
as the complementary system generated by E in (Y, Yo Z, Z;). Note that
o(E, F) and o(E, F) are the topologies induced on E by o(Y, Z) and o(Y, Zy)
respectively, so that F, is precisely the subspace of E§ consisting of those
linear forms on E, which are o(Y,, Z) continuous. The situation is much
simpler when Z = Z, since then Lemma 1.2 can be applied to the o(Y, Z;)
closure of any subspace of Y.

The definition of a complementary system was first given by Donaldson [12],.[13],
but his analogue of Lemma 1.2 appears incorrect. Variants were also considered
in a reflexive setting by Hess [22].

Let W™L,(Q) be the Orlicz-Sobolev space of functions u such that « and
its distribution derivatives up to order m lie in LM(Q). W”‘LM(Q) is a Banach
space with respect to the norm

]
2
@D Il - <|a§m1I0°u|l<M) .

W™ L, (Q) will always be identified to a subspace of the product H| dl<m Ly@) =
1 L,; this subspace is o(Il Ly, II Eﬁ) closed. Let W§ Ly(Q) be the

o(lLy, 1 EE) closure of D(Q) in W™L,(Q). We wish to apply Lemma 1.2 to

W™ L, (Q) and WL, (Q), starting with the complementary system (I Ly, 1 Ey;
oL, NE ﬁ). This is possible under the mild assumption that Q has the segment

property (i.e. there exist a locally finite open covering {0} of J and correspond-
ing vectors {y } such that for x edn 0,and 0<t<1, x+1ty, €Q)

Theorem 1.3. Suppose that Q has the segment property. Then (a) @) is
o(ll Ly, TIL2) dense in WLy (@), &) D@) is oM Ly, M Ly) dense in
Wg L ().

D (@) denotes the restrictions to @ of the functions in D (R?). Thus, when
Q has the segment property, W™Ly(Q) and WFL,(Q) generate complementary
systems in (II L, ME,; 1 Lo 1 Eﬁ)' The proof of Theorem 1.3 is based on the

following lemmas.

Lemma 1.4, Let u, € £,(R") satisfy u, — u a.e. in R* and Muy) <w,y a.e,
in R”, where w, — w in L'(R). Then u €L, (R") and uy— u for olLy(R™), L'JM'(R’I»'

Proof. By Fatou’s lemma, u € £,(R"). It is sufficient to show that, for all
ve QE(R"), u,v— uv in L'(R"). By contradiction, assume that for some v €

EA—‘(R"), 8 >0 and subsequence b &

»
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fnlubkv— uv|dx > 6.
R

Since w, — w in LY(R"), there is a subsequence, again denoted by b, and
g € LY(R?) such that wy, S < g a.e. in R" (see e.g. N. Bourbaki, Intégration,

Chapitre IV, §3, Théoréme 3). Therefore |"b v| < g + M(v) by Young's inequality,
and by Lebesgue’s theorem, u, v — av in L 1(R"), a contradiction. Q.E.D.

Lemma 1.5. Let u € Ly(R") and denote by u,, the translated function:
u(x) =ulx~y). Then u,— u for o(Ly(R™), LE(R")) as ly| — 0.

Proof. We can assume without loss of generality that u € £, (R"). Since
M(uy) = M (), converges to M () in L'(R?), Lemma 1.5 follows from Lemma 1.4.
Q.E.D.

Lemma 1.6. Let u € L, (R") and denote by u, the regularized function: u =
u*p,, where P € D(R™), bas support in B, (0, R?) and satisfies ¢, >0 and
fR" @ (x)dx =1. Then u, — u for o(Ly(R"), LH(R"» as ¢ — 0,

Proof. We can assume without loss of generality that u € £, (R™). By
Jensen’s inequality, M (z,) <M (2) * ¢,. Since M) *¢, — M (u) in L1(R7),
Lemma 1.6 follows from Lemma 1.4. Q.E.D.

Lemma 1.7. Let u € L,(Q) and denote by u,, the function u =up , where
Y, (x) =y (x/r) and ¢ eD(R") satisfies 0< Y <1, Y(x)=1 for |x| <1 and
Y(x)=0 for |x| >2. Then u,— u for o(Ly(Q), Lﬁ(ﬂ)) as r — oq

Proof. We can assume without loss of generality that z € £,(Q). Since
M)y M () and ¥ M («) = M(2) in LYQ), Lemma 1.7 follows from Lemma
1.4. Q.E.D.

Remark 1.8. The weaker versions of the last three lemmas where G(LM, L‘-‘)

is replaced by o(L,, Eﬁ) follow easily by transposition from the fact (cf. e.g.

[13]) that if u € Ey(R™), then u, u, and u, lie in Ey(R") and converge in norm
to # as |y|, € and 1/7—0.

Proof of Theorem 1.3. The proof uses arguments which are standard in
Sobolev space theory (cf. e.g. [1, pp. 11-14]) and we only sketch it.

Let u € W"L,(Q). Using Lemma 1.7, we can assume that z has compact
support K C Q. If K CQ, then the conclusion can be derived from Lemma 1.6. If
K meets 0Q, then, using the covering {0} of dQ and a partition of unity, we are
reduced to the case K C O, for some i. Clearly, KC O for some open set O
with compact closure 0 in 0, Write I' = O naQ, l" I~ ty, where y, is
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the vector associated with O, in the segment propertv and 0 < ¢ <

min {1, |y, |~ dist (O do )L Extend u outside K by zero and define u(x) =

u(x + ty,). Then u, P W"'LM(R"\I" ), and by the segment property, dist (l" Q) >0,
Using Lemma 1.5, we see that u, — u in W™Ly(Q) for o(I1 L, I LM) as t— 0,
so that it suffices to approximate each u, by functions in D@). But this can be
done by means of Lemma 1.6 because dxst r, Q) >o.

To prove part (b), first note that if u € W"'LM(Q) then the function %
obtained by extending u outside Q by zero belongs to W”L,(R"). Now let « €
WL (9) As above, we are reduced to the case KCO; for some i. Define
u (x) =ulx~ ty,). Then u, € W"L,(R") and suppu, C Q by the segment property.
 —uin W"‘LM(Q) for oM Ly, ML ),
so that it suffices to approximate each.x, by functions in 2(Q). But this can be
done by means of Lemma 1.6 because suppz, is compact in . Q.E.D.

Moreover, using Lemma 1 5 we see that u

Remark 1.9. The above proof shows that the densities in Theorem 1.3 are
sequential.

Let W™E,(Q) be the space of functions # such that # and its distribution
derivatives up to order m lie in Ey(Q), and WGE,(Q) the (norm) closure of D@
in WmLy(Q). Clearly, W"E,(Q) is the intersection of W™L,(Q) with IIE, and

WTE, (@) C W"E, (Q).

Corollary 1.10. If Q has the segment property, then (a) D) is (norm) dense in
W"’EM(Q), (b) WGE(Q) is the intersection of WB"LM(Q) with 1 E,,.

Proof. By Theorem 1.3, D (@) is dense in W™E,(Q) for o(I1 E,, 11 L)
Since 11 Ly is the dual of IME, and D@) is convex, D (@) is norm dense in
W™E,(Q). The proof that D (Q) is norm dense in the intersection of WL, (@)
with Il Ey is similar. Q.E.D.

Part (a) of Theorem 1.3 sharpens Theorem 4.1 of Donaldson-Trudinger [13]
where o(Il L, 1T L;) is replaced by o(l Ly, MEL). Part (a) of Corollary 1.10
was obtained in [13, Theorems 2.1 and 2,3]. When 9Q is sufficiently good, one
can define a trace function from W™L,(Q) into W™=1L,(3Q) whose kermel in
W™L,(Q) [W™E,(Q)] is precisely WgL,(Q) [WyE,(Q)] (see A. Fougéres, C. R.
Acad. Sci. Paris, January 1972, in the particular case where M has the A2
property).

We now investigate a property of the norm which will be useful later when
dealing with the duality mapping. Let (Y, Y; Z, Z) be a complementary sys-
tem and let || ||y be a (equivalent) norm on Y. Denote by || ||y o the restriction
of | |y to Y, by | |z the norm on Z dual to || “Yo and by || “Zo the restric-
tion of || || to Z.
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Lemma 1.1L The norm || ||y is dual to || "ZO if and only if || ||y is
o(Y, Z)) lower semicontinuous and the ball B(0, Y) is (Y, Z) dense in
B,(0, Y). The inequality (y, z) < |lyllyllzll; bolds forall y €Y and z € Z if
and only if B{(0, Y) is a(Y, Z) dense in B,(0, Y).

Proof. Since B,(0, Z,) is.the polarin Z; of B,(0, Y,), the first part of the
lemma follows from the bipolar theorem. The second part is an easy consequence
of the Hahn-Banach theorem. Q.E.D.

A (equivalent) norm || ||, on Y satisfying all the conditions of Lemma 1.11

will be called admissible. For instance, in the complementary system (L, (Q),
E,(Q); LM(Q)’ EH(Q)), both the Luxemburg and the Orlicz norms are admissible.

Lemma L12. Let (Y, Y; Z, Z,)) be a complementary system and let || |y
be an admissible norm on Y. Let E be a closed subspace of Y satisfying the
conditions of Lemma 1.2. Then the restriction || ||g of || |y to E is admissible
in the complementary system (E, E; F, F,) generated by E in (Y, Yy; Z, Z).

Proof. Since o(Y, Z,) induces o(E, Fy) on E, || ||g is o(E, F) lower
semicontinuous. The inequality (e, /) g g < leligll/llz for e €E and [ €F
follows from the definition of the quotient norm || ||z. Q.E.D.

Thus, when Q has the segment property, the formula (1.1) and its analogue

where || "(M) is replaced by || ||, define admissible norms in the complementary
systems generated by W”L,(Q) and WJL,(Q) in (I Ly, E,; 11 Lo NE- )

2. Mappings of monotone type. In this section pseudomonotonicity and the
type (M) property are introduced for non everywhere defined unbounded mappings
in complementary systems. Conditions are given under which the sum of two
pseudomonotone mappings (or homotopies) is pseudomonotone. The example of
the duality mapping is considered.

Definition 2.1. Let (Y, Y; Z, Z() be a complementary system and let V be
a dense subspace of Y,. A mapping T from Y into 22 is said to be of type (M)
with respect to V if (a) T is finitely continuous from V to the a(Z, V) topology
of Z (i.e. Ty is a nonempty 0(Z, V) compact convex subset of Z for each
y €V and T is upper semicontinuous from each finite-dimensional subset of V
to the 0(Z, V) topology of Z), (b) for any net (y, z,) such that z; € Ty, y; €
V, y; bounded, y,— y €Y for o(¥, Zy) z,— z €Z for 0(Z, V) and
lim sup(y,, ;) <(y, 2), it follows that z € Ty. A mapping T from Y into 2%
said to be pseudomonotone with respect to V if (a) and (b)' hold, where (b)’ =
(b) except that one also requires (y,, z,) —(y, 2) in the conclusxon More
generally, a one-parameter family of mappings T, from Y into 22, telo, 1), is
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said to be a pseudomonotone homotopy with respect to V if (i) T is finitely con-
tinuous from [0, 1] x V to the o(Z, V) topology of Z, (ii) for any net (¢, y,, z,)
such that z, €T, (y) t;— 1ty €V,y, bounded, y,— y €Y for o(Y, Zo)
z,—»z€Z for o(Z V) and lim sup (y, z;) <{y, 2), it follows that z € T (y)
and (¥p 2,)— 0 2).

Similar definitions can be given for sequentially of type (M) with respect to
V, sequentially pseudomonotone with respect to V or sequentially pseudomonotone
bhomotopy with respect to V, where one requires (b), (b)’ or (ii) to hold only for
ordinary sequences. Note that all those definitions are invariant by translating T
or T, by a fixed element of V or by addingto T or T, a fixed element of Z,.

In $4 and 5 we will show that under suitable assumptions on the coefficients,
systems of the form (¥ with rapidly (or slowly) increasing coefficients give rise to
mappings of the above type. Other examples, related to the theory of monotone
mappings in nonreflexive Banach spaces, will be mentioned in $3.

Pseudomonotonicity and the type (M) property were first defined by Brézis
[2). The extension of Brézis’ original results to non everywhere defined unbounded
mappings in reflexive Banach spaces was carried out by Browder [9], [10] and
Browder-Hess [11]. The concept of pseudomonotone homotopy is due to Browder
[10]. The definitions given above are generalizations of those of 9l

In general, the sum of two pseudomontone mappings with respect to V is not
pseudomonotone with respect to V, even for monotone mappings when Y = Y, =
Z=Z,= 2 cf.[s, p. 101]. Some boundedness condition is needed.

Proposition 2.2. Let (Y, Y; Z, Z,) be a complementary system and let
{5, v —2%1el0, 1]} and {T; ¥ — 2%; 1 €10, 11} be two pseudomonotone
bomotopies with respect to a dense subspace V of Y,. Suppose that for each
bounded set A in V,

Uis,(y);y € A and t € [0, 11}
is bounded in Z. Then {S, + T Y — 2%. 1 €l0, 11} is a pseudomonotone homo-
topy with respect to V.

Proof. The finite continuity of S + T follows easily from the o(Z, V) com-
pactness of S (y) and T [(y) for each t € [0,1] and y € V. Let (¢, y, z) be a
net such that z, €(S, + T, )(y) t;—t y, €V, y, bounded, y,— y eY for
oY, Zy), 2z, — z €Z for o(Z V) and

(2.1) lim sup(y, 2,) <(y, ).

We must show that z €(S; + T )(y) and (y, 2,)— (¥, 2). Clearly, it suffices to
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prove the latter convergence for a subnet. Write z, = u; + v; with u; €S, (y))

1
and v, € Tt,-(y i)‘ Since y; remains bounded in V, u; remains bounded in Z, and
thus, passing to a subnet, we can assume that u; — u for 0(Z, Y). We claim
that

(2.2) lim sup(y, u;) <(y, u),

Indeed, if this is not true, then, for a subnet, (y, #;) — a>(y, 4), and it follows
from (2.1) that

(2.3) lim sup(y, v;) = lim sup(y, z, - u,) <(y, z - u);

but v, =z~ for ¢(Z, V), so that by the pseudomonotonicity of {T,},(y, v;)
—(y, z — u), which contradicts (2.3). Now (2.2) and the pseudomonotonicity of
{s,} imply z €5 (y) and (y, ;) —(y, #). Replacing in (2.1), we obtain

lim sup(y » v;) <(y, z - w),

and consequently, by the pseudomonotonicity of {T,}, z~u € T (y) and (y, v,)
— (y, Z - u). Q.E.D.

A one-parameter family of mappings §, from Y into 2%, 1 €0, 1], is said
to be bounded on V if it satisfies the boundedness assumption of Proposition
2.2. It is said to be strongly quasibounded on V with respect to y €V if for
each c,, ¢, >0 there exists k(cy, ¢,) >0 such that whenever z €S (y) with
tefo,1], y €V, |yl <cy and {y - ¥, 2) < c,, then ||zl < k(cy, c,). Of course,
“‘bounded’’ implies *‘strongly quasibounded’’, but the converse is not true, even
for individual monotone mappings when Y=Y,=Z2=2Z,=V = 2, of. [11,
Proposition 14] and [27, p. 305]. Here is another example of a different nature.

Example 2.3. Consider the complementary system (Ly(Q), Ey(Q); Lﬁ(ﬂ),
Eﬁ(ﬂ)), where M is assumed to have a continuous first derivative p, and define

$: D($) C Ly(@) — L-(Q) by
D(S) = {u € Ly(@); plu(x)) € L5 QN, Su= p(a).

Clearly, S is monotone, and it is easily verified that E,(Q)C D(S) C&,(Q). The
argument of [11, Proposition 14] shows that in a complementary system (Y, Y ;
Z, Z,) with Y, complete, a monotone mapping from Y into 22 s strongly
quasibounded on Y with respect to ¥ € Y provided its domain contains some
ball B.(¥, Y,), €>0. Hence $ is strongly quasibounded on E (@) with respect
to any point of E,(Q). However, S will be bounded on Ey(Q) if and only if
Ey(Q) = L,(Q). The *“if”’ part follows from [24, p. 173). To prove the *‘only if”’
part let u € L,(Q) and define
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{u(x) if |x| <n and |u(x)| < =,
u =
n

0 otherwise.

Since u, remains bounded in E u @), Su , femains bounded in LE(Q)' Thus there
exists K> 0 such that

sz;unp(un)dx= an(u")dx+an'(p(u"))de LM(un)dx

for all #, and consequently, by Fatou’s lemma, fq M(u)dx <K<+ oo, ie. u €
£,(Q). Hence L u(@ € £,(Q), which implies Ly(Q) = E(Q). In §4 we will see
that § is pseudomontone with respect to any dense subspace V of E M(Q).

The following proposition is closely related to Theorem 1 of Browder-Hess
[11] where the notion of strong quasiboundedness was introduced.

Proposition 2.4 Let (Y, Y; Z, Z)) be a complementary system and let
{St: Y —2%;tel0, 1]} and {T‘: Y —2%;; €[0, 11} be two pseudomonotone bomo-
topies with respect to a dense subspace V of Y, Suppose that {S tl is strongly
quasibounded on V with respect to some y €V, and that there exists b: R = R
continuous such that whenever z € T (y) with ¢t €[0,1) and y €V, then (y~y, z)>
=b(lyDllyll. Then {S,+T;Y— 22; t €[0, 11} is a pseudomonotone homotopy
with respect to V.

Proof. With the notations of the proof of Proposition 2.2, we have, passing
to a subnet if necessary,

()’,'-57: ui)=<yi—)7' zi)‘()’,‘“?' v,’)S()"‘Y' z)+€+b(||>',~||)||}',~|| <e

which implies, by the strong quasiboundedness of {5}, that u; remains bounded
in Z. The proof can then be completed exactly as that of Proposition 2.2. Q.E.D.

If {S,} and {T,} are two sequentially pseudomonotone homotopies with
respect to V and if the boundedness assumptions of either Proposition 2.2 or
2.4 are satisfied, then {S +T tl is a sequentially pseudomonotone homotopy with
respect to V provided Y, is separable. The proofs are similar.

Remark 2.5. The sum of two mappings of type (M) with respect to V is not
necessarily of type (M) with respect to V,even when Y=Y, =Z=2Z,=V =1 2
and both mappings are bounded on V, cf. [2, p. 128]. Note that a compact map-
ping T (i.e. D(T)=Y, T single-valued, continuous from Y to Z and the images
of bounded sets in Y are relatively compact in Z) may not be of type (M) with
respect to any V: consider T: I> — 1% defined by Tx=(||x||,0,...). Howevera
completely continuous mapping T (i.e. D(T)=Y, T single-valued and continuous
on each bounded set of Y from o(Y, Z;) to the norm topology of Z) is pseudo-
monotone with respect to any V.
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We now turn to the study of the duality mapping. Let (Y, Yy; Z, Z;) be a
complementary system. Let || ||, be a (equivalent) norm on Y and let || ||Y0,

Il |z and || |, , be defined as in S1. The corresponding (normalized) duality
mapping J: Y — 2% is defined by

Jy =1z € Z; |zl = llylly and (. 2) = llylly 2]l 2}

The restncnon of J to Y, is the usual duality mapping from the normed space
Y, into 2Y 0 Note that ]| is bounded on Y.

Proposition 2.6. If || ||, is admissible, then J: Y — 2% is pseudomonotone
with respect to any dense subspace V of Y.

Proof. Let V be a dense subspace of Y. The finite continuity of | follows
from the well-known properties of the usual duahty mapping (cf. e.g. [6, $7D.
Let ()'i’ zi) be a net such that 2, €]y, y, €V, y, bounded, y, —> y € Y for
o(Y, Zy), z;, — z € Z for 0(Z, V) and lim sup (y,, 2;) <(y, 2). Since || ||y is
admissible, we have

Iyllyllzllz 2y, 2) > lim sup(y;, 2,) > lim inf(y;» 2;)

= Lim inf ||y ly 2]z > llyll7 and [I]Z

because | |ly is o(Y, Zy) Ls.c. and || || is 0(Z, V) Ls.c. Consequently,
Iolly = Izlz and (5, 2 = Iylglellz, i = € Jy. Moreover, (3,0 2 — (3. )
(and in addition |ly lly — llylly and llz;lz — lizllz). Q.E.D.

The following lemma is, in some technical sense, a substitute for the notion
of mapping of type (S), (cf. [6], [9]) whose introduction in our general context

seems useless.

Lemma 2.7. Let (Y, Y; Z, Z;)) be a complementary system and let {r; Y
— 2%, 1 €0, 11} be a pseudomonotone homotopy with respect to a dense sub-
space V of Y. Let ] be the duality mapping corresponding to an admissible
norm || ||y on Y. If anet (¢, y, z,) satisfies z; e(J+T, )(y) t,—t y, €V,
y; bounded, y, —y €Y for a(Y Zy), z, >z €Z for o(Z V) and lim sup(y , z))
<(y. 2), then z €(J + T)y), (y;» 2 ) -—»(y- z) and |lylly — lylly-

Proof. The first two assertions follow from Propositions 2.6 and 2.2, and it
suffices to prove the last assertion for a subnet. Writing 2z, = u; + v; with u; €
Jy;and v; €T, (y ), we obtain, as in the proof of Proposmon 2.2,u; —>u for
o(Z, V) and hm sup(y; ;) <(y, w). It follows, by the argument of the proof of
Proposition 2.6, that ||yl||Y lyly. QE.D.
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3. Abstract existence theorems. This section contains our main existence
theorems for functional equations involving mappings of monotone type in com-
plementary systems. In the first theorem the mapping is assumed to be coercive,
an assumption which.is progressively weakened in the following theorems.

Theorem 3.1. Let (Y, Y(; Z, Z)) be a complementary system and let T:
Y— 2% bea mapping of type (M) with respect to a dense subspace V of Y.

Suppose that T is coercive on V with respect to some y €V, i.e., that

infl(y -7, Dyl z € Tl =+ as fy] =, y e V.
Then the range R(T) of T contains Z.

Proof. Let T be the directed set of all finite-dimensional subspaces F of
V containing y ordered by inclusion. For each F € ¥, denote by jp the injec-
tion of F into V, by jE the dual projection of Z onto F* and by Tp = jE Tig:
F — 2F" the Galerkin approximant of T. Clearly, the mapping Ty is upper
semicontinuous, takes values in the nonempty compact convex subsets of F* and
is coercive on F. This implies, by a standard argument (cf. e.g. [7, p. 10])
based on the multivalued version of the Brouwer fixed point theorem [6, $6], that
R(Tg) = F*. In particular, given z € Z, there exists yp € F and 2z € Tyg
such that jfzp = jE2z. It follows from the coercivity of T that yp remains
bounded in V as F €F. Hence, passing to a subnet, we can assume that yp —
y €Y for o(Y, Z;). We have zp — z for 0(Z, V) because (4, z) = (1, z) as

soon as F contains u. Moreover, since z € Z,,
'YEr Zp) = (Y g Z) (v, 2).

Consequently, by the type (M) property of T, z € Ty. Q.E.D.

If T is sequentially of type (M) with respect to any dense subspace V of a
dense subspace V' of Y, and if T is coercive on V' with respect to
y €V', then R(T) D Z provided Y and Z, are separable. The proof is
similar and is obtained by starting with an increasing sequence of finite-dimen-
sional subspaces of V' containing y, whose union V is dense in v'.

Example 3.2. Let T be a maximal monotone mapping from a Banach space
X into 2% and consider the mapping T: X** — 2X* whose graph is given by

gr T, = {(x** x*); there exists a net {x,, x¥) € gr T with
x, bounded in X, x; — x** for o(X**, x*)

and x¥ — x* in norm}.

. . . X* . .
Assume that T, is maximal monotone from X** into 2 . (This is the case for
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instance if T is the subdifferential of a convex function [13], [16], or the mono-
tone operator associated with a saddle function [18].) Then, by an easy general-
ization of the arguments of {16], R(T|) = X* when T is coercive on its domain

D(T) = {x € X; Tx nonempty}

with respect to a point of its domain. Under the additional assumptions that D(T)
is a dense subspace of X and T is finitely continuous from D(T) to the
a(X*, D(T)) topology of X*, this result also follows from Theorem 3.1. Indeed,
one can then show that in the complementary system (X**, X; X*, X*), T, is
pseudomonotone with respect to D(T).

Example 3.3. Let T be a maximal monotone mapping from a Banach space
X into 2X* and define T,: X**—2%X" by

gr T, = {(x**, x*); there exists a net (x;, x}) € gr T with

x; bounded in X, x,— x** for a(X**, X*),

x7 — x* for o(X*, D(T)) and lim sup(x,, x¥) < (x**, x*)}

If D(T) is a dense subspace of X and if T is finitely continuous from D(T) to
the o(X*, D(T)) topology of X*, then, in the complementary system (X**, X;
X*, X*), T, is of type (M) with respect to D(T). Consequently R(T,) = X* when
T is coercive on D(T) with respect to a point of D(T). This result essentially
contains the existence theorem of Donaldson [12].

Rematk 3.4. It is not known whether the range of a maximal monotone map-
ping T: X*— Zx, X a Banach space, T coercive on D(T) with respect to a
point of D (T), is all of X. This is true if D(T)=X* and T is single-valued and
finitely continuous from X* to the o(X, X*) topology of X (cf. [4]; however it
is not clear whether a mapping satisfying all those conditions exists, unless X
is reflexive) or more generally (cf. [16, p. 3871), using the arguments of (32, p.
405-406], if the norm closure of R(T) is convex. By means of the method of
Theorem 3.1, one can give another extension of the result of [4]: R(T) = X if
D(T) is a a(X*, X) dense subspace of X* and T is finitely continuous from
D(T) to the o(X, D(T)) topology of X.

Theorem 3.5. Let (Y, Yy; Z, ZO) be a complementary system and let T:
D(T) C Y — 22 be a pseudomonotone mapping with respect to a dense subspace
V of Y, Suppose that for some y €V,

inflly =57, D Iyl + lzll; z € Ty} > + 0 as |yl — 0, y €D(T),

and that there exists bh: Rt — R* continuous such that inf{(y-i, z); z € Ty} >
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= b(lyl) for y €V with |ly|| sufficiently large. Suppose also that Y admits an
equivalent admissible nom || ||y. Then R(T)DZ,

Proof. For simplicity we will assume that T is single-valued and that the
restriction of || "Y to Y, is Gateaux differentiable. The same arguments carry over
immediately to the general case, using the degree theory for multivalued mappings
(cf. [20]).

Since the assumptions and the conclusion are invariant by adding to T a
fixed element of Z; or by translating T by a fixed element of V, it suffices to
show that 0 € R(T) and we can assume that 5 =0. Endow Y with || |Iy.
Choose R >0 so large that

G.n @ T ylgt + 1Tyl >0
for all y €S,(0, Y) N D(T), and that for some H >0,
(3.2) (3 Ty) >-H

for all y on the sphere Sx(0, V). Let J: Y —2% be the duality mapping corre-
sponding to || |ly. Note that ] is single-valued on Y. For ¢ € [0, 1], define
T,= (1 -8T +¢t]. Let F be the directed set of all finite-dimensional subspaces
F of V and denote by T, ], T:, F the Galerkin approximants of T, J, T,
respectively. Clearly, T, p= (1 - )T + t] .

If there exists Fy € such that T, ) £0 forall FDF,, t€[0,1] and
y €Sp(0, F), then, by a finite-dimensional degree argument (cf. e.g., [9, Theorem 8]),
we can find for each F D F, an element yp € BR(0, F) satisfying Tglyg) = 0.
It is then easy to go to the limit using the pseudomonotonicity of T and to obtain
0 eR(T).

In the contrary case, there exist a cofinal subset of F, still denoted by {F}
for simplicity, tp €[0,1] and yg €5,(0, F) such that T,F‘F(y,_-) =0. We can
assume that fp — t € [0, 1] amd Yye—y €Y for oY, Zo). Three cases must be
distinguished: t =0,0<¢<1 and t=1. If t =0, then Ty — 0, for
o(Z, V) because

(u, Tyg) = (1- tF)'l(u, T’F(yF» - tF(l - tF)" l(u, ]yF)
(3.3)

-1
=-tg(1- tF) (1, Iyg)
as soon as F contains u. Moreover,
Ops Typ) =- tp(l - tF)-l"}’Fui — 0.

Consequently, by the pseudomonotonicity of T, Ty =0, and thus 0 € R(T). If
0<t<1,then T,yg— 0 for 0(Z, V) because, using (3.3),
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(u, T,()'p» = (u, T’F(yF» + (g - D (x, Tyg) = (u, Jyp)

=(tp == tp(=12)1 ~ 1)u, Jyp)
as soon as F contains u. Moreover

e Tp) = g = 0(= tp(1-t)™1 = Dlygl> — 0.

Consequently, by the pseudomonotonicity of T, (cf. Proposition 2.2), 0 € T (y).
In addition, by Lemma 2.7, [lyglly = lylly, so that y € S,(0, Y). But this con-
tradicts (3:1) because it follows from 0 = (1 - t)Ty + tz with z € Jy that

@ Tzt + 1Tyl == 11 = =R+ 1 - )~ 'R = 0.
Finally, if t= l, then
e Typy == tp( = 1) Hygl§ — - o,

which contradicts (3.2). Q.E.D.

Remark 3.6. The assumption involving b is automatically satisfied if T is
monotone. It can also be replaced by the assumption that T is strongly quasi-
bounded on V with respect to y.

In the sequential version of Theorem 3.5, one requires that T be sequentially
pseudomonotone with respect to any dense subspace V of a dense subspace V'
of Y, that y € V', that the inequality inf{y-7, z); z € Ty} >~ b (|ly|l) holds for
y € V' with [ly|| sufficiently large, and that Y, and Z be separable.

As a specialization of Theorem 3.5, we have

Corollary 3.7. Let (Y, Yy; Z, Z,)) be a complementary system and let T:
D(T) C Y — 2% be a pseudomonotone mapping with respect to a dense subspace
V of Y. Suppose that there exists k>0 such that for some y €V,

inflly -7, 2y~ z € Ty} > -k

for y € D(T) with |ly|| sufficiently large, and that T=1: Z— 2Y is bounded on
R(T). Suppose also that Y admits an equivalent admissible norm || ||y. Then
R(T) > Z,,.

Theorems 3.1 and 3.5 generalize results of Brézis [2], Browder [3], [7], [9]
and Browder-Hess [11]. The very weak coercivity condition in Theorem 3.5 was
introduced in [9] as a weakening of the so-called subcoercivity condition of
Corollary 3.7 considered in [11]. These asymptotic conditions imply the exis-
tence of a global a priori bound, i.e. that T~ 1. Z — 2Y is bounded on R(T).
(Note that the example T: R— R: x — x2 shows that a global a priori bound is
not sufficient in general to get surjectivity.) In the next two theorems, only a local
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a priori bound is needed. However some additional structural condition must be
imposed on the mapping T, either some oddness condition or some stronger mono-
tonicity condition.

Theorem 3.8. Let (Y, Y; Z, Z)) be a complementary system and let
{T,: D(T)CY— 2Z2; 1 €0, 11} be a pseudomonotone homotopy with respect to a
dense subspace V of Y. Suppose that T, is odd on V outside some ball of V.
Suppose that each z € Z, bas a (norm) neighbourhood N in Z such that

U{Tl' Y2);z € N and t € [0, 11}

is bounded in Y. Suppose also that Y admits an equivalent admissible norm
I ly- Then R(T,)DZ; for each t €[0, 1].

Proof. For simplicity we will assume that T is single-valued and that the
restriction of || ||y to Y, is Gateaux differentiable. The same arguments carry
over immediately to the general case, using the Borsuk-Ulam theorem for multi-
valued mappings (cf. [21]).

It suffices to show that R(T() D Z . Let z €Z,. Endow Y with || ||y. By a
compactness argument, there exist a neighbourhood JUin Z of the segment [0, 2]
and R >0 such that T (y) ¢ N forall ¢ €10, 1] and y €540, Y) N D(T)).
Taking R larger if necessary, we can assume that T,(- y)=-T,() for y €V
with y ¢ BR(0, V). Let J: Y — 2% be the duality mapping corresponding to
| ly- Defiae T,, =T,+ €] and choose €, >0 such that T, O ¢ [0, 2] for all
telo, 1], 0 <e<e0 and y €50, Y)ND(T). Let F be the dxrected set of all
finite-dimensional subspaces of V and denote by T" e I t,e, g the Galerkin
approximants of T, ], Tz ¢ respectively. Clearly, T, = Tz,F + €] and
Ty ¢F is odd on F outside By (0, F).

Suppose first that for each € with 0<e<¢€; and each F € F there exists
F' = F'(¢, F) with F' D F such that Tt'e’F:(y);é{"]F:(Z) forall tef0, 1], y €
$z(0, F) and £ €0, 11. Then, by a finite-dimensional degree argument (cf. e.g.
[9, Theorem 9]) based on the Borsuk-Ulam theorem, we can find y¢ g+ € Bg(0, F ") satis-
fying Tg ¢ pe(ye po) =1 ’k1(2). Consider now the cofinal subset of F consisting
of those F “(e, FYs as € =0 and F €F. We can assume that Yept— ¥ €Y for
a(Y, Zy). We have Ty g+) — 2 for 9(Z, V) because

(u, To(ye,F D) =z, To’e()'e,p ) - e(u, Iyer?)

= (u, z) - €(u, ]ye‘F )

’ . .
as soon as F' contains u. Moreover, since z €Z,
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()’e,p 'y To()'e’p D)= <ye,F tyZ)- ‘")'C,F ' “% — (¥ z).
Consequently, by the pseudomonotonicity of Ty, z = To(y). Thus z € R(T).

In the contrary case, there exist € with 0 < €< ¢, a cofinal subset of ?,
still denoted by {F} for simplicity, ¢tz €[0, 1], y € S50, F) and & €10, 1]
such that T‘F:‘.F(y"‘) = &g iE(2). We can assume that tp — ¢ €[0, 1], — €
€[0,1),and yp— y €Y for a(¥, Z;). Ve have T,F,e(yp)—' &z for 0(Z, V)
because

(u, TtF,e (yF» =(u, ‘fpz)
as soon as F contains u. Moreover, since z € Z,
()’Fv Ttp,e(}’p))= (VF» fp"') = (¥ fz).

Consequently, since {T, 2 Y — 2%; ¢ €0, 11} is a pseudomonotone homotopy
with respect to V (cf. Proposition 2.2), £z = T, ¢O). In addition, by Lemma
2.7, lyglly = llylly, so that y €S5(0, Y). But this contradicts the definition of
€. Q.E.D.

As a specialization of Theorem 3.8, we have

Corollary 8.9. Let (Y, Yy; Z, Z)) be a complementary system and let T:
D(T) C Y — 2% be a pseudomonotone mapping with respect to a dense subspace V
of Yo Suppose that T is odd on V outside some ball of V. Suppose that each
z €Z, bas a(norm) neighbourbood in Z whose image by T-! is bounded in Y.
Suppose also that Y admits an equivalent admissible norm | ||y. Then R(T) DZ,.

Theorem 3.10. Let (Y, Y; Z, Z)) be a complementary system and let T:
Y — 2% be a pseudomonotone mapping with respect to a dense subspace V of Y,
Suppose that T is monotone and that its graph is closed in the following sense:
if yp2) €grT, y, >y €Y for oY, Zy), y; bounded, z,— z €Z, in norm,
then (y, z) €gr T. Suppose that each z € Z ) has a (norm) neighbourbood in Z
whose image by T~ is bounded in Y. Suppose also that Y admits an equivalent
admissible norm | |ly. Finally suppose that T (V) meets Z, Then R(T) D Z.

Proof. Since the assumptions and the conclusion are invariant by translating
T by a fixed element of V, we can assume that T(0) meets Z,. Let | be the
duality mapping corresponding to || ||ly. Define T, =T +¢€], €>0. By Proposi~
tion 2.2, the monotonicity of T and Theorem 3.1, R(T,) D Z for each ¢ > 0.

Moreover, since T"l is bounded on its domain, the relations
(y-y"z=-2) =(y-y'su-u')+(y-y',v-0')

>ely-y'v-v)2elylly -y’ Iy
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where z2=u + v with u € Ty and v € Jy and similarly for z', show that the appli-
cation z & | T l(z)“Y is single-valued and continuous on R(T,) for the norm of Z.
Let z €Zand take y, €T 1(2). We will show that Ye remains bounded in Y as
¢l 0. Then, taking a subnet such that y, — y € Y for (Y, Z;) and writing z =
ue + €v, with u, € Ty, and v, € ]y, we obtain u, — 2 in norm, so that, by the
closedness of the graph of T, z € Ty. To show that y, remains bounded in Y as
€l0, take z5 € T(O) N Z,. By a compactness argument, there exists & >0 such
that

T-Yu € Z; dist(u; [z, z )<8l=T" D

is bounded in Y, say ||T'l(u)||y <K forall u €l. Choose ¢, with 0 <¢; <
8/2K. We claim that ||T; '@)lly <2K for all z €[z, z;] and 0 <e<¢,. Indeed,
if this is not true, then for some € with 0 <e<¢, and some u € [z, zl],

ITe 1(“)"1' >2K. Since |T; l(zl)"Y =0 and ||T;l(o)|ly is continuous on R(T)
D Z,y, there exists z, € [z, z;] with llTe'l(zz)HY = 2K. Write z, = u, + €v, With
u, €Ty, and v, € Jy,. We have |ly,|ly =2K. On the other hand, the distance
from u, to z, €[z, z;] is less than |lev,||; = €2K < 8. Thus u, €N and con-
sequently y, € T~ (u,) must satisfy |ly,|ly < K, a contradiction. Q.E.D.

Remark 3.11. If T: Y — 22 is strictly monotone (i.e. (y; =y, 23 = 2,) >0
for (yy, z;) and (y, z,) in gr T with y; # y,), then the equation z € Ty with
z € Z has at most one solution y € D(T).

Remark 3.12. In the reflexive situation Y=Yy Z=Z, if T: Y — 22 is
monotone and pseudomonotone Wwith respect to a dense subspace V of Y, then T
is maximal monotone. Indeed, endow Y with a strictly convex equivalent norm
(cf. [26)); it follows from Proposition 2.2 and Theorem 3.1 that R(J + T) = Z,
which implies that T is maximal monotone (cf. [33, p. 78).

When Y, and Z, are separable, Theorems 3.8 and 3.10 have sequential
versions: one requires in Theorem 3.8 that {T; D(T)CY — 2%; 1 €lo0, 11} be
sequentially pseudomonotone with respect to any dense subspace V of a dense sub-
space V' of Y, and that T, be odd on V' outside some ball of V', and in
Theorem 3.10 that T be sequentially pseudomonotone with respect to any dense
subspace V of a dense subspace V' of Y, that its graph be sequentially closed,
and that T(V') meet Z,.

Theorem 3.8 generalizes and sharpens results of Browder [8], [9] where a
global a priori bound is required. Theorem 3.10 is a partial extension of
Rockafellar’s result [32] that a maximal monotone mapping T from a reflexive
Banach space X into 2X* is onto if (and only if) each point of X* has a neigh-
bourhood whose image by T-! is bounded in X.

The weakening of the usual asymptotic condition of coercivity is crucial for
the applications, as is seen from the following example.
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Example 3.13. Consider the mapping S: D(S) C L, (Q) — L(Q) of Example
2.3, where M and M are assumed to have continuous fust denvauves p and p
tespectively. Then § is coercive on Ey(Q) if and only if EL(Q) = Lo(Q). The
*‘if” part follows from the inequality

p@u = M(z) + M(p(w)) > M(u), u € R,

and Lemma 3.14 below. To verify the ‘‘only if’’ part, note that if S is coercive
on E(Q), then § =1 is bounded on the dense subspace of E= (Q) consisting of
all bounded functions with compact support in {J, and thus, by the discussion in
Example 2.3, EM(Q) = LM(Q). Of course, E,(Q) £ L, (Q) and EM(Q) # LM(Q)
can happen simultaneously (cf. e.g. [24, p. 28]), in which case S is not every-
where defined on L (Q), nor bounded or coercive on Ej(Q), and S™! is not
bounded on E A—d(ﬂ). We will see in $4 that each point of E-(Q) has a neighbourhood in
Li\-d(g) whose image by S”! is bounded in Lﬁ(ﬂ), so that the assumptions of
Corollary 3.9 and Theorem 3.10 are satisfied by S. The present discussion also
shows that the range of T in Corollary 3.9 and Theorem 3.10 is not necessarily
all of Z.

Lemma 3.14. Let Q be an open subset of R" and let M be a N-function. If
LE(Q) = EH(Q)’ then

-1
“u“(M)fa M) dx — + oo
as "'I"(M)—' + 00, u €L, (Q).

Proof. First assume that @ has infinite measure. Then M has the A,
property for all values of t: there exists k such that M(2:) < kM(¢) for ¢ €R.
Necessarily, & > 2. Defining a function f: (1, + o[ — [k, + ol by

) = A1 = DR L ¥ i £ € 127, 2711] and r= (1 - N27 + A2,

we obtain M(rt) < /() M(s) for ¢ € R and r> 1, ive. M{f()r~10) > f(IM() for £ € R
and r> 1. Since f(r}=1 stricely increases from k to + o as r € [1, + oo, its
reciprocal function g(s) is well defined and strictly increases from 1 to + o as

s € [k + o[, and we have

(3.4) M(st) > sg(sIM(?)

for t €R and s >k Now take u € L,(Q) with [Jully,> k. I €> 0 satisfies
“”“(M)" €> k, then
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fn M) de > (ful gy, ~ Ogllull gy, = ) [ Ml gy, ~ O~ D
2 (“u"(M) - ‘)8(“"“(/") -9
by definition of the Luxemburg norm || “(M)’ so that
S, M dx > al gl gy

which proves the lemma when 0 has infinite measure.

If Q has finite measure, then M has the A, property for large values of ¢,
and thus (3.4) holds only for ¢ > ¢, and s > k. For u € L, (Q), denote by Q_
the subset of Q0 where |u(x)| > ¢, As above we obtain

(3.5) Jo, M@ dx >l g g0l gy 0,)

provided [luf ,, ), 9u> k, where {|uf| M).a, denotes the Luxemburg norm of « in

L,(Q,)). But there exists a constant ¢ such that

Nl ay o, < Nty 0 < Nl g, + Ny gn@, < 20l g, + €

for all u € L,(Q). Consequently the conclusion of the lemma follows from
(3.5). Q.E.D.

We conclude this section with the following result where, simultaneously,
no global a priori bound is required and no additional structural condition is
imposed on the mapping T.

Theorem 3.15. Let (Y, Yo; Z, Z ) be a complementary system and let T:
Y—2% bea pseudomonotone mapping with respect to a dense subspace V of
Y, Suppose that the graph of T is closed in the following sense: if (yi, zi)
egtT, y,—y€Y for (Y, Zy), y, bounded, z, — z € Z  in norm, then (y, z)
€ gt T. Suppose that there exists k> 0 such that, for some y €V,

(3.6) infly -7, 2D)llyl~ z € Tyl >-%

for y € D(T) with |y|| sufficiently large, and that T~ is strongly quasi-
bounded on Z with respect to any z € Z . Suppose also that Y admits an
equivalent admissible norm | ||y,. Then R(T) D Z.

Proof. Translating T by a fixed element of V, we can assume that y = 0.
Let ] be the duality mapping corresponding to || ||,. Define T, =T +¢], ¢>0.
By Proposition 2.2, condition (3.6) and Theorem 3.1, R(T,) D Z, for each € >0.
Thus, given z € Z;, we can write z = u+e€v, with u €Ty, and v, € Jy,. Ve
will show chat y, remains bounded in Y as €10, so that the conclusion follows
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as in the proof of Theorem 3.10. If |ly|ly is large enough, then, by (3.6),

- klyly S(@e ue)= (e 21 - €lly s

which implies that ey, remains bounded in Y. Consequently .=z - ev, remains
bounded in Z. Since

(Yer #e=2)== (Yo €v)<0

and T-!is strongly quasibounded with respect to 2z, we conclude that y,
remains bounded in Y. Q.E.D.

Theorem 3,15 is a variant of both Corollary 3,7 and Theorem 3,10. It will be
seen in §4 that the mapping S of Example 3,13 satisfies the assumptions of
Theorem 3.15. In the sequential version of Theorem 3.15, one requires that Y,
and Z be separable, that T be sequentially pseudomonotone with respect to any
dense subspace V of a dense subspace V' of Y,, that y € V' and that the
graph of T be sequentially closed.

It may be of interest to compare in a familiar situation the various asymptotic and
structural conditions considered in this section. Let X be a reflexive Banach space and
let T: X — X* be a single-valued mapping which is pseudomonotone with respect
to X. Then T is onto if one of the following conditions is satisfied:

(1) T is coercive on X with respect to some X € X (Theorem 3.1),

(2) T~!: X*— 2% is bounded on X*; moreover for some ¥ € X and k € R*,
(x =%, Tx) >~ k|x|| for ||x|| sufficiently large (Corollary 3.7),

(3) for some ¥ €X, (x -~ %, Tx)||x||~! + ||Tx|]| = + o when ||x|| — oo; more-
over, for some b: R* — R* continuous, (x = %, Tx) > - b(|x|)) for ||x| suffi-
ciently large (Theorem 3.5),

(4) T~ is locally bounded on X*; moreover T is odd outside some ball of
X (Corollary 3.9),

5) T-!is locally bounded on X*; moreover T is monotone (Theorem 3.10),

(6) T~! is strongly quasibounded on X* with respect to any x* € X*; more-
over for some ¥ €X and k €RY, (x =%, Tx) >~ & ||x|| for ||x|| sufficiently large
(Theorem 3.15).

Remark 3.16. In the sequential versions of the theorems of this section, if
the mappings are only sequentially of type (M) or sequentially pseudomonotone with
respect to one V, then the same conclusions hold, with essentially the same
proofs, provided the mappings are assumed to be strongly quasibounded.

Remark 3.17. All the applications in $§4 and 5 could be treated by con-
sidering only the case V =Y, (cf. Remarks 4.7, 5.2 and 3.16).

4. Applications I. Under suitable assumptions on the coefficients, systems
of the form
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@1 AW = T (-DFD%4 ..., Vmy)
|a. <m

with rapidly (or slowly) increasing coefficients define pseudomonotone mappings,
so that the results of $3 can be applied. In this section we consider the case
where the A 's satisfy a monotonicity condition with respect to all the deriva-
tives of u. For simplicity we discuss a single equation instead of a system.
Our results can also easily be extended to ‘‘anisotropic’’ situations where the
rate of growth of A, depends on @, as considered in [15] (see Example 4.12).

The following notations will be used. If £ ={£,; |a| < m} € R°™ is an m-jer,
with a=(a .-, ) a multi-index of integers and |a|=a, + .-+ a,, then
¢=1&,;5 lal=mle R’m denotes its top order part and 7 ={£; |a| <m} € R°m-1
its lower order part. For u a derivable function, £ («) denotes {D%; |a| < m}.
The nonnegative reciprocal function of a N-function M is denoted by M-,
N < M means that there exists k such.that N(£) < M(kt) for large values of ¢,
and N<<M means that for each € >0, N(t)/M(et) — 0 as ¢ — . One has
N < M if and only if M < N, and N<< M if and only if M<K N. P(E,,r)
denotes those u in L, (Q) whose distance to E,(Q) (with respect to the Orlicz
norm) is strictly less than r and B (0, L,) the ball in L(Q) (with respect to
the Orlicz norm) of radius 7 and center 0. The inclusions P(E M 1)C f.M(Q)
and L, (Q) C E\(Q) for N<<M hold (cf. [24]).

Let Q be an open subset of R”. The basic conditions imposed on the
coefficients A, of (4.1) are

(4.2) Carathéodory condition. Each A (x, £) is a real-valued function
defined on Q@ x R°™ which is measurable in x for fixed £ and continuous in &
for fixed x.

(4.3) Growth condition. There exists an N-function M, a(x) € E (Q) and b,
c € R* such that, forall |a|<m, x €Q and € € R°™,

4, O <al) + b 2 B~ 'M(cEp).
1BI<m

(4.4) Monotonicity condition. Forall x € Q and &, ¢’ €R°™,

T (A x, &)= Ax, ENE,-£2)20.

o< m

Let Y bea o(IT Ly, 11 Eﬁ) closed subspace of W"L,(Q) such that

(4.5) Y =o{[ILy. [TL)el ¥,

where Y, =Y NW™E,(Q); here M is the N-function involved in (4.3). Let f €
Y¢. The Variational Boundary Value Problem for A(u) = f with respect to Y asks
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for an element u € Y such.that A, (£()) € L-(@) for all |a| <m and a(y, v) =
@) for all v €Y, where
alu, v) = f ) A (£(@))D % dx
Hal<m
is the Dirichlet form associated with A. The analytical fact which allows the
application of the results of $3 to this problem is contained in

Theorem 4.1. Let A be an operator of the form (4.1) satisfying (4.2), (4.3)
and (4.4). Let Y bea o(l Ly, Tl Eﬁ) closed subspace of W"’LM(Q) satisfying
(4.5) and let (Y, Y ; Z, Z)) be the complementary system generated by Y in
(ML, NE,; I Ly 1| Eﬁ)' Let T be the mapping from

D(T)={ue Y; A (£@)) € L5(Q) for all |a| < m}

into Z defined by (v, Tu) = a(u, v) forall v € Y, Then T is pseudomonotone
with respect to any dense subspace V of Y.

Remark 4.2. By means of an argument similar to that used at the beginning of
the proof of Theorem 4.1 below, one can see that D(T) = {u € Y§E|a|5,,,A @)D %
€ LYQ)}. Note also that (4.5) implies that (v, Tu) = a(u, v) for all u € D(T) and
vey.

The following lemmas will be needed in the proof of Theorem 4.1. In relation
with Lemma 4.3, we remark that the continuity result of [24, p. 170] cannot be
applied here to derive the finite continuity of T. Lemma 4.5 is concerned with
maximal monotonicity; it generalizes a result of Donaldson [12, p. 519].

Lemma 4.3. Suppose that (4.2) and (4.3) hold (with a(x) € Lﬁ(ﬂ)). Then the
mapping w = (wB)IﬁISm — (A “(w»l o|sm Sends W Ey into T L and is finitely
continuous from M1 Ey to the o1l Lo, M E,) topology of Tl Ly

Proof. It is immediate that 4 ,(w) € L_(Q) if w €Il E,. We will show that
the mapping is continuous from each simplex in I E,; to the o (Il Las nmE,)
topology of Il Ly Let S =conv fw!,..., w'} be a simplex in II E, and write
w= 2;=l)tiwi €S with A, >0 and 27_, A =1. Ve have

r r
M- lM(cwﬁ) = A_A‘IM(i:El )\icwg) <M 1(,§1 A, M(cw%)),

which implies that each A ,(w) remains bounded in LM(Q) when w runs over S.

It is then easy to complete the proof by means of the following lemma. Q.E.D.
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Lemma 4.4 (ct. [24, p. 132]). If @ sequence g, € Ly(Q) converges a.e. to g
and if g remains bounded in L\(Q), then g € Ly(Q) and g, — g for oLy, Eﬁ)‘

Lemma 4.5. Suppose that (4.2), (4.3) and (4.4) hold (with a(x) € LE(Q))'
Let g eI Ly and b €1l Lo satisfy
(4.6) fo 2 (A -b)w,-g,)dx>0
lal<m

for all w €1 L™ with compact.support in Q. Then A (g)=h, for all |a| < m.

Proof. Let Q, ={x €Q; |x| <k and [8,(x)| <k forall |a| <m}. Clearly,
Q, CQ, 4, and for each ball B, meas(B N (Q\Qk)) — 0 as k — x. Denote by
X; the characteristic function of Q. Fix k and replace w in (4.6) by wx, -
8Xy + 8X; = wk — g% + gl, where 1> k:

0< fnZ(Aa(wk-gk+gl)—ba)(w’; —gk +gh-gn)dx
= [ E A Gk gt 1 g - A 0) (g - g,)ax
S XORPROICETRES

+ fn Z(A a(w’e - g’e + gl) - ba)(w’; - g‘;)a’x.

The first integral of the right-hand side is zero because A a(w" -gt+gh-
A ,(0) = 0 outside Q, and gl - g,=0in Q,, the second integral goes to zero
as | — + «, and the last integral is equal to

_f“Z(z“a_(w'e gt gD - b )Wk - g% )dx
because w’fl - gﬁ =0 outside ,. Hence, letting [ — o, we obtain
(4.7) In E(Aa(wk)—ba)(w’; -gk)dx >0

for all w € 11 L* with compact support in Q. Applying Minty’s classical
argument [30] to the mapping w € 1 L¥(Q,) (4, () €1l L-(Q,) which is
everywhere defined, monotone and finitely continuous by Lemma 4.3, we deduce
from (4.7) that A (@) =h, a.e. in Q, for all |a| <m. Since k was arbitrary,
A (g)=h, ae.in Q forall |a|] <m. Q.E.D.

Remark 4.6. Suppose that EM(Q) = Lﬁ(ﬂ) and write X =11 E,, X* =11 Lo

X**=TI L. Then, using the method of Lemma 4.5, one can show that the map-
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ping S: X — X*: w —(A4,(w)) satisfies the assumption of Example 3.2: S, is
maximal monotone (and is given by §;: D(S,) C X** — X*: w | (4 ,(w)) with
D(S)) ={w e X** A (w) € Lﬁ(ﬂ) for all |a} < m}). It is not known whether the
analogous result is true for the mapping T|Y o Y, — Y§ of Theorem 4.1 (the
answer is yes when TlYo is the gradient of a convex functional on Y, cf. [16]).
It is not even known whether the mapping T: D(T) C Y§* — Y§ is always maxi-
mal monotone (cf. [17]).

Proof of Theorem 4.1. Let V be a dense subspace of Y. By Lemma 4.3,
V CD(T) and T is finitely continuous from V to the o{Z, V) topology of Z. Let
u; be a net with u; €V, u; bounded, u; — u €Y for olY, Z), Tu, — [ € Z for
o(Z, V), and

(4.8) lim sup(u;, Tu) <(u, f).

We must prove that « € D(T), Tu={ and (u;, Tu;)—(u, ). As usual, cne can
pass to a subnet if necessary.

First we show that for each |a| < m, A,(£(x,)) remains bounded in Ly Q).
Let w= (w'B) el Ey,. Ve have

(4.9) J‘o (A @) - A, @) (D%, - w,)dx >0
ie.,
LzAa(f(ui))wa dx

< fnzAa(f(ui))D“uidxq. IOZAa(w)wadx- fnZAa_(w)D“ui dx.

The first integral of the right-hand side remains bounded from above by (4.8) (if
i > some i), the second integral is independent of i and the last integral remains

bounded. Hence, passing to a trivial subnet, each A (£ (2,)) remains bounded in
LE(Q) for O(Ln—a’ Ey); i.e., remains bounded in L_(Q).

Consequently, we can assume that each A (£ @ — b, € LI-”-(Q) for
o(Ly, Ey). It follows that the linear form f € Z = Y§ can be identified to (b,) €

nn Lﬁ' More precisely, the action of [ over V is clearly given by
)= [ ThD%dx, vev;

since V is dense in Y, and Y satisfies (4.5), this formula also describes the
action of { over Y, i.e., holds for v € Y. Now going to the limit in (4.9) and
using the facts that o(Il Ly, I1 E=) induces o(Y, Zg) on Y and a(x) € EL(Q),
we obtain
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JyZ 0o - AN 0% - w,)dx 20

forall w=(w /3) €Tl L™ with compact support in {J. It then follows from Lemma
4.5 that A (£@)) = b, for all |a| < m, i.e. that u €D(T) and Tu=f.
To prove that (u;, Tu,)— (u, f), we first deduce from (4.9) that

L = lim inf fn ZAa(«f(ui))Dauidx

2 [ ZA@) 0% -w)ds + fo T A, w dx

for all w=(wpg €Il L™ with compact support in 0. Let Q, ={x €Q; |x| <k and
|D%u(x)| < & for all |a| < m} and denote as above by X, the characteristic func-
tion of .. Then

L3 [ T a6 - 4500 0% - x,D%w)ds

+ f 3 A,0)(D%% - x,D*u)dx + f T A, @)X, D udx,
Q Q
where the first integral is zero. Letting & — + o0, we get
L> fnZAa(f(u))Daudx.

This inequality and (4.8) imply (u, Tu)—(u, /) Q.E.D.

Remark 4.7. The arguments in the above proof show that the graph of T in
Theorem 4.1 is closed with respect to the convergence involved in Theorems
3.10 and 3.15. They also show that T is strongly quasibounded on Y with
respect to any y € Y, Similar remarks apply to Theorem 4.15.

The combination of Theorem 4.1 with the results of $3 leads to several
existence theorems for (4.1). For instance:

Theorem 4.8. Let A be an operator of the form (4.1) satisfying (4.2), (4.3)
and (4.4). Let Y bea o(IILy, 1l Eﬁ) closed subspace of W"Ly(Q) satisfying
(4.5). Suppose that a(u, u) ||u|l,;’{M)-—» + 00 as “""m.(M)—’ + 00 in Yo Then, for
each (1 E,, 11 EE) continuous linear form { on Y, the V.B.V.P. for Alu)
= f with respect to Y has at least one solution.

Theorem 4.9. Let A be an operator of the form (4.1) satisfying (4.2), (4.3)
and (4.4), Let Y bea o(I1 Ly, 11 Eﬁ) closed subspace of W™L,(Q) satisfying
(4.5). Suppose that for each o(Il Ey, 11 E,]) continuous linear form [ on Y,

there exist a constant K and a neighbourbood J of f in Y§ such that for any
g €N and any solution u of the V.B.V.P. for Alu) = g with respect to Y,
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"“",,,,(M)S K. Then, for each c(I1 E,, Tl Eﬁ) continuous linear form [ on Y, the
V.B.V.P. for A(u) = f with respect to Y bas at least one solution.

Remark 4.10. If condition (4.4) is strenghthened to
2L Al &) =A, e, ENE, -€2)>0

laf<m

forall x €Q and &, &' € R°™ with & £ &', then the mapping T is strictly mono-
tone, and the solutions in Theorems 4.8 and 4.9 are unique.

Concrete analytical conditions on the coefficients A, implying coercivity or
a local a priori bound can be deduced from Lemma 3.14 or from the treatment of
the following example respectively.

Example 4.11. Consider the Dirichlet problem for the operator

Alw) = (- Db
[T<m

on an open subset Q of R” with the segment property. Here p: R— R is a non-
decreasing odd continuous function with p(+ ) = + co. Write M(2) = [} p(s)ds.
Then the assumptions (4.2), (4.3), (4.4) of Theorem 4.9 are easily verified, and
Theorem 1.3 implies that Y = WL, (Q) satisfies (4.5). The dual Z of Y, =
WTE, Q) is

WL Z(Q) = {/ eD'@Q);f-= %m(- I)I“|D“/a with f, € L,;(Q)},

and the subspace Z of Y{ consisting of those linear forms on Y, which are
oMl Ey, E.) continuous is

WME-(Q) - {/ e D'Q); /= %m(- Dllpes, with £, E,‘n‘(ﬂ)}.

To verify the local a priori bound, let /= (f,) € Z,. Choose c such that
foﬂ(Z/a)dx < c for all |a| <m, and define

T‘:{g: (g,) € Z; fo M(2g,) <c+1 forall |a] S"}-

T is a neighbourhood of f in Z since the functional a(x) — [g M(a(x))dx is
continuous on ¥ (Eﬁ, 1) (because it is convex on LH(Q), finite on gﬁ(ﬂ) B
?(EM-, 1) and bounded from above on B,(0, Lﬁ), cf. [24, p. 74]). We claim that

the possible solutions of the V.B.V.P. for A(u) = g with respect to Y remain
bounded in Y as g €. Indeed, if « is such a solution, then

fnz (D %u)D%vdx = faZgaDavdx
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for all v € Y, and thus for all v €Y since (4.5) holds. In particular,

fnZP(Dau)Daudx - fozgao“udx.

The left-hand side is greater than [uZ M(D®)dx, and the right-hand side is less
than

faZA—d(Zga) dx + IQZM<%D'11) dx <c' + -;- j;z M(D%u) dx.
Consequently,
f Y M(D%u)dx <2,
Hol<m
which implies that # remains bounded in Y. Theorem 4.9 can thus be applied: for
each f € W“"’Eﬁ(ﬂ), the V.B.V.P. for Ax) = f with respect to W'L,(Q) has at
least one solution.

Example 4.12. We indicate briefly a simple anisotropic situation to which the
method of Theorem 4.9 can be applied. Consider the Dirichlet problem for the
operator

AW = X (=Dl (%)

lol<m

on a bounded open subset Q of R” with the segment property. For each a, p,:
R — R is a nondecreasing odd continuous function with p (+ ) = + oo, Write
M) = [§p(s)ds and consider the complementary system (1L, ,MEy ;
n Ly 1 Eﬁo? and the space Y =o(l Ly ,TI El-“-a)cli)(ﬂ). It Mg > Mg for
a<p lie. a;<PB, foreach i=1,...,n),then Yo=YNIEy is
o(l LM & 1 L[-"- a) dense in Y. The proof is similar to that of Theorem 1.3; the
assumptions ) bounded and M, > M g for a< B (which can be slightly weakened
using Proposition 4.13 below) are needed in order to apply Leibnitz’s formula. The
arguments of Theorem 4.1 and Example 4.11 carry over with little change, and we
obtain: for each [ € D(Q) which can be written as

/= ¥ (=pllpey,

la{<m

with f € E'A—4 (Q), there exists u € Y such that p (D) € Lﬁa(ﬂ) for all |a] <m
a

and aly, v) = f(v) forall v € Y. In the case where p, has polynomial growth
for |a| = m, the result of this example is related, although different, to the exis-
tence theorems of Browder [9] and Hess [22], [23] about equations with strongly

nonlinear lower order terms.
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We now turn to the case where  is bounded with, say, a locally Lipschitzian
boundary so that the generalized version of the Sobolev imbedding theorem [13] is
valid on Q. Then the growth condition (4.3) can be weakened and a lower order
perturbation can be introduced.

First we recall the result of [13]. Let C, be an N-function and suppose first
n > 2. Changing the values of C;, on a bounded subset of R, one can assume
et e/t d < v oo 1 f‘; Cy U 0)/t1*1/ 7 dy = + o, define a new N-function
C, by C71(9) =[5 C51 /et
sequence of N-functions Cy, C),-- -, C,, where ¢ =4(Cy) < is such that
ST C L@/ mdt = 4 oo bur [7C N1/ dt < voo, Tf m=1, write g(Cp) =0.

" dt. Repeating this process, one obtains a finite

Proposition 4.13 (cf. [13]). Let Q be a bounded open subset of R™ with
locally Lipschitzian boundary. Let M be an N-function and let u € W™L,(Q).
For m — qM) < |a| < m, write M, = m—|a| Starting with Cq =M. Then (a) for
m-qM)<lal<m Dz €Ly Q) with continuous injection, and D% € Ey(Q)
with compact injection if N<< M_; (b) for |a] < m - ¢(M), D% € C@) with com-
pact injection. Moreover, if u € W"E (Q), then in (a), D% €E M a(Q).

The following lemma completes Proposition 4.13. It implies that the injec-
tion of W™L,(Q) into W""'lLM(Q). is compact.

Lemma 4.14. Let 0< <1 and let C be a N-function such that
3 cMe)/et*edr < + w and [T C5Me)/t'*€dt = + oo, Then the N-function C,
defined by CT I(s) = [ Cs 1)/t ¥ dr satisfies CoKC,

Proof. It is easy to verify that, in general, C; << C, if and only if
C;l(s)/Cgl(s) — 0 as s — + . We have here
1 S el 1+e

Cyl(e)/e"7€ar
C5 1(s) f 00
- [ Cateyetar + L fic W)/t ¥ dr.
C5 (s CslGs)

The first term on the right-hand side — 0 as s — oo, Writing ¢ = C(7), the
second term becomes

-1
c:ls)
1 j'o fC(;(f)/Co(f)“‘dr
Cols) Yegt
c-Us)
= -1 Io r(l/Co(r)‘)'dr
cCo'l(s) Cgl(l)
-1 cg 'l 1

[7/C,y (€] +

cyls)
[° ey ura
€Cy l(s) cgly  eCils) e

-1
ol



NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 193

The first term of the right-hand side — 0 as s — o. Since C((r) >7 for 7> 7,
the second term is less than
Co L)

f o 1/#dr

1 o ¢

f -1 l/Co(f) dr +
ecgl(s) Co (D eC(‘)‘l(s)
which clearly — 0 as s — «, Q.E.D.

With the notations of Proposition 4.13, the new growth condition imposed on
the coefficients of (4.1) is

(4.10) There exist a N-function M, N-functions N, satisfying M < N, for
|al <m and Ny < M, for m - gM) < |a| < m, a,(x) GEEG(Q) for |a| <m and

b, ¢ € R* such that, for all la|]<m, x€Qand £€ R°m,

|40 6)] <ay () +b lﬁ%;,m N3N g(cép).

(Note that the N-functions N, for |a| < m - g(M) can always be replaced by
greater N-functions. Combining this with the fact that any given L} function on
Q belongs to some Ey(Q) (cf. [24, p. 60]), we see that (4.10) holds as soon as
an analogous condition with only a(x) € L}Q) for |a| <m - ¢M) holds. Similar
remarks apply to (5.1) in the next section.)

On the lower order perturbation

(4.11) Bw= Y (-D"b7B (x4 ..., V™" lu)
|7|Sm=1

we impose the related conditions

(4.12) Each B.y(x, n) is a real-valued function defined on  x R°™-! which
is measurable on x for fixed 7 and continuous in 7 for fixed x.

(4.13) There exist N-functions P, satisfying P, << M, for m - q(M) <y
<m-1, d,(x) €E, (Q), d(x) € LI(Q), ec€ C(Rs’”""(M) 1) and ¢ € R* such
that for all x €Q and n € R°™=! with component #? in R Sm—qM)-1

ifm-gM)<|yl<m-~1,

B, (x, 7| <et®[a, @) P-ip )];
1B Gl S e [7(x +m-?(M)§%|Sm-l 7 Palens
if |yl <m - qM),

1B, (x, )| < e(n")[i(x) + p Ps(cﬂs)]-

m—q(M)<|8|<m=1
Denote Tljy, Ly @by MLy . Let Y bea oMLy 1T Eﬁa) closed
subspace of W™L,(Q) such that

(4.14) v=o([lLy, . IILR )1 ¥,
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where Yo=Y NW”E, (@)=Y NIl Ey,. For instance, by a simple generalization

of Theorem 1.3, Y = W"’LM(Q) or Y = W’(;’LM(Q) satisfy (4.14). Let f € Y*,

The V.B.V.P. for Au) + B(u) = { with respect to Y asks for an element

u € Y such that Aa(f(u)) € L‘ﬁ (Q) for all |a] < m and a(y, v) + b(z, v) =
a

f@) for all v €Y, where als, v) and b(, v) are the Dirichlet forms associated

with A and B respectively. The following analogue of theorem 4.1 allows the
application of the results of $3 to this problem.

Theorem 4.15. Let Q be a bounded open subset of R® with locally
Lipschitzian boundary. Let A be -an operator of the form (4.1) satisfying (4.2),
(4.10), (4.4) and B an operator of the form (4.11) satisfying (4.12), (4.13). Let Y
beao(lLy Il ES a) closed subspace of W"Ly(Q) satisfying (4.14) and let

(Y, Yy Z, Z,) be the complementary system generated by Y in (N Ly ,TEy ;
ML- ,TE- ). Let T be the mapping [rom
Na Na

DT ={ue Y;A (@) € Lﬁa(Q) for all |a| <m}

into Z defined by (v, Tu) = a(u, v) + blu, v) forall v €Y, Then T is pseudo-
monotone with respect to any dense subspace V of Y.

The following lemmas will be needed in the proof of Theorem 4.15 and later,
Lemma 4.16 is a generalized version of the Vitali convergence theorem. Lemma
4.17 can be proved by standard arguments on Nemytskii operators as in [24, §17]
and by the method of Lemma 4.3. ) is assumed to be bounded.

Lemma 4.16 (cf. [24, p. 99)). If the sequence u (x) € Ey(Q) converges a.e.
in Q, then it converges in norm in E\(Q) if and only if the norms are uniformly
absolutely continuous, i.e. for each €> 0 there exists 8> 0 such that ||unxn|| N

<€ for all n and Q' CQ with meas(Q’) < 8.

Lemma 4.17. Let glx, 4, v) = glx, ujyeeey uy vyyeeey u]) be a real-valued
function defined on Q x R! x R! and satisfying the Carathéodory condition. Sup-
pose that there exist N-functions N and N, a(x) € L\(Q), d(v) € C(R/) and
c; eRY such that, forall x €Q, u €eR! and v €RJ,

1
lg(x, u, v)| S_d(v)Ez(x) +Y N'lNi(ciuiﬂ.

i=1
Then the mapping (u(x), vx)) — glx, ux)v(x)) sends l'li?(E Ny 1/ ci) X H’. L*(Q)
into L\(Q) and is finitely continuous to the o(Ly, Eﬁ) topology of L\(Q); it is
uniformly bounded on each l'll.B'ri(O, LN:‘) X HJ.st(O, L™) when r; < l/ci for all
i=1,+.., I; moreover it is continuous to the norm topology of E P(Q) when

P<<LN. If welet N(t) =t, N=¢) = t and Lpy(Q) = LYQ), then the above mapping sends
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ﬂi?(E N Ve x ﬂj L®Q) into LYQ) and is continuous; it is uniformly bounded
1
on each “iBr,-(o’ LNi) x l'l’.st(O, L®) when r,<1/c,forall i=1,+-., L

Proof of Theorem 4.15. Clearly T =T, + T, where T, is given by D(T)) =
D(T) and (v, T,u) = aly, v) forall v €Y, and T, by D(T)) =Y and (u T,u) =
b(u, v) for all v € Y. By a simple generalization of Theorem 4.1, T, is pseudo-
monotone with respect to any dense subspace V of Y,. We will show that T, is
completely continuous (cf. Remark 2.5), and then the conclusion of Theorem 4.15
will follow from Proposition 2.2.

Let u; be a bounded net in Y such that u;— z €Y for o(Y, Z). By Prop-
position 4.13, DYu, — DYu in Ep_(Q) for m- ¢(M) <|y| <m~-1 and in c@
for |y| <m - g(M), so that, by Lemmas 4.16 and 4.17, B, (n{u)) — B,y(n(u)) in
Ep, (@) for m - g(M) <|yl <m - Land in LYQ) for |y| <m - g(M), which implies
T u) — T,(u) in Z. Q.E.D.

The existence theorems for (4.1) obtained in this section generalize results of
Browder [3], [7]. Theorem 4.8 (with a lower arder perturbation as in Theorem 4.15)
also includes the result of Donaldson [12] where the conjugate N-functions are
required to have to A, property.

5. Applications II. We continue the study of systems of the form (4.1) with
rapidly (or slowly) increasing coefficients and consider now the case where the
A ’s satisfy the monotonicity conditions introduced by Leray-Lions [25].

Let Q be a bounded open subset of R” with locally Lipschitzian boundary.
The basic conditions imposed on the coefficients A, are now, in addition to (4.2):

(5.1) There exist a N-function M, N-functions N, satisfying M < N for
la| <m, Ny< M for |a| =m and N, <<M, for m~qM) < |a|<m, aylx) €
E< a(Q) for |a| = m, a(x) € L a(Q) for |a| < m, a N-function P satisfying
P<<M, e e CR*™=2M)=1) 504 ¢ € R* such that for all x €Q and & € R°™
with component &7 in RSm—aM)-1

if |a| =m,

q Nl -1 .
|A,(x, &) <elé )Eza(x) + IBE»: N; Nﬁ(cfﬁ) + m—q(%ﬁ |B|<mp N'B(cfﬁgj ;
if |al <m,

Ao OISeENfead s B RP s 3 R 'Wglet )

m—-qg(M)<|B|<m
(5.2) For each x in Q, 7y eR°™=1 ¢ and ¢' in Rs:” with £ ¢,
| ‘Z Al & P-4,k ¢\ O, - ¢.)>0.
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(5.3) Foreach x in Q,¢ and ¢' in Rs’;',
| |2 Agl &M=L =Lo) o 400

as [{]— + in Rs"", uniformly for bounded 7 in R°™-1

Let Y bea oIl Ly 11 Eﬁa) closed subspace of W™L,(Q) such that (4.14)
holds. Let f € Y*, The V.B.V.P. for A(u) = f with respect to Y asks for an ele-
ment z €Y such that A (£()) € Lﬁa(ﬂ) for all |a| <m and a(z, v) = f(v) for
all v ey,

More generally we consider a one-parameter family of operators

(5-4) A= X (-DHD%4 0 4, o0, VM, )
o|<m

where ¢ €[0, 1. The coefficients A j(x, £, t) are assumed to satisfy (4.2), (5.1),
(5.2), (5.3) for each t; moreover it is assumed that they are continuous in (£, ¢)
for fixed x, that the functions M, N, a,(x), P, e and the constant ¢ of (5.1) can
be chosen independently of ¢, and that the convergence in (5.3) is uniform in .
Briefly we will say that (4.2), (5.1), (5.2), (5.3) are satisfied uniformly in t.

The following analogue of Theorems 4.1 and 4.15 generalizes results of
Leray-Lions [25] and Browder [7].

Theorem 5.1. Let Q be a bounded open subset of R® with locally
Lipschitzian boundary. Let {A;t €10, 11} be a one-parameter family of operators
of the form (5.4) satisfying (4.2), (5.1), (5.2), (5.3) uniformly in t. Let Y be a
oLy @ OE ﬁa) closed subspace of W™L,(Q) satisfying (4.14) and let

(Y, Yy; Z, Z,)) be the complementary system generated by Y in (Il Ly ,MEy ;
NL- ,MIE- ) Foreach t, let T, be the mapping from
Na Na t

D(T)={ue Y; A (£@), ) € Ly (@) for all |a| <m}

into Z defined by (u, T u) = a(u, v) for all v €Y, where at(u, v) is the Dirichlet
form associated with A, Then {T: D(T)CY — Z; t €0, 11} is a sequentially
bseudomonotone homotopy with respect to any dense subspace V of Y.

Remark 5.2. By means of an argument similar to that used at the beginning of
the proof of Theorem 5.1 below, one can see that

xr)-{uey; T Aalet m0oue L@}

= {u €Y; hE A (@) tD%u € L‘(Q)}.
|=m

Proof of Theorem 5.1. Let V be a dense subspace of Y,. By a simple
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generalization of Lemma 4.3, V C D(T,) for each ¢ and T is finitely continuous
from [0, 1] x V to the o(Z, V) topology of Z. Let (1, u;) be a sequence with
u €V, u; > u €Y for oY, Zy), t; > 1, Tt,-("i) — [ €Z for o(Z, V) and

(5.5) lim sup{#,, T, .(”i)) <(u, f)

13
We must prove that u € D(T ), T (u) = { and (4, Tzi(“i))"’<"' > As usual, one can pass
to a subsequence if necessary.

First we show that, for each |a| <m, 4,(£(x), t,) remains bounded in
L- (Q) Since C<<D implies that, for each ¢ > 0 C(s) < D(es) for s > s, it

follows from (5.1) that when |a| < m, for each € > 0, there exists K, such that

1A, £, t)|5e(§q)|}a(x)+l(€+ > N;lM,B(ecfﬁ)]

m—qM)S|B|<m

forall x €Q,¢ e R°™ and t €[0, 1]. Thus, choosing € sufficiently small, say

1/e> sup{||D'Bui||(M ypi=1,2,--. and m - g(M) <'|B| < m}, we deduce from

Lemma 4.17 that A (£ (u!.), t;), |a| <m, remains bounded in Lﬁ Q). To see that
a

A€ (), t,) also remains bounded in Lﬁ a(ﬂ) when |a| =m, let w = (w /3) €

Ill Bl=m EN ﬁ(ﬂ). By an argument similar to the preceding one, 4 (W), (z)),t,),
|a| = m, remains bounded in Lﬁ a(Q). We have, by (5.2),

J, 2, A6l 1) - A o), 1) O%, - )ax 20,
i.e.

fn T A,EG), w, dx

lo|=m

< Jo B, e 100"
- o AalE) )% s o o ALt ) 1 - D),

The first integral of the right-hand side remains bounded from above by (5.5),
and the preceding discussion shows that the last two integrals remain bounded.
Hence A (€(u), 1)), |a| = m, remains bounded in Lﬁa(ﬂ) for a(Lﬁa, E Na.)’ i.e.

remains bounded in L— (Q).
Na

Consequently, we can assume that, for each |a| <m, A (), t,) = b €
Lﬁa(ﬂ) for U(LﬁaE Ng It follows that the linear form f € Z = Y} can be identi-

fiedto (by) ell L5 . More precisely the action of f over V is clearly given by
a
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)= fnZ b, D%vdx, ve V.

Ia. <m

Since V is dense in Y, and Y, satisfies (4.14), this formula also describes the
action of f over Y, i.e. holds for v € Y. On the other hand, by Proposition 4.13,
we can assume that Dau — D% a.e. in Q when |a| < m. We will show that this
almost everywhere convergence also holds (for a subsequence) when |a| =m. It
will then follow from Lemma 4.4 that A (£ (), t) = b, for all |a| < m, i.e., that
u €D(T) and T ) ={.

Let O, ={x €Q; |D %u(x)| < & for all |a| = m} and denote by X, the charac-
teristic funcnon of Q,. Clearly, 2, CQ,,, and meas (Q\Qk) — 0 as k— oo,
Fix k and let > k. We have, by (5 2),

ko, |aEm (A, 7l t) - Ag(Ew), 1)) (D% - D?u)dx
< fﬂz E';m (A, (@) ), 1) - A (@), t))(D%u - D%u)dx
< fnlalzi,,, A (@), ), ) = A€, ) (x, D% - D%u)dx
= {, Z_,,A &), )0, dx_j Z A (E(w), t)x,D udx
+ f3|£mAa(x,((u), nu,), 1) (x,D%u - D®u ) dx.

Going to the limit as i — + o, we obtain for the first integral of the right-hand
side

(5.6) lim sup fnl‘lz, Ay (&), 1)D%u dx < f“l>|: boD%udx

because of (5.5) and
(5.7) f Z A &), £ )P, dx-.f > b D%udx

U-|<m

(the last convergence holds since A (£ (ui), tl.)—» b, for o(Lﬁ 2 E Na.) and
D%;— D in nom in Ey Q) when |a| <m). The second integral converges
to - fg 2| a|=mbaxlD°‘udx. Since, by Lemmas 4.16 and 4.17, A (x,{ @), nlx),t))
— A (x £ @), 9(x), 1) in norm in E ﬁa(ﬂ) when |a| = m, the last integral also

converges. Thus
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lim sup fok |a|>=:,,, (A4, a), 1) - A€W, 1) (D4 - D) dx

s fﬂ\ﬂ[ lalz=m (ha - A0, nlw), D% udx,

and letting [ — oo,

1—00

lim sup fo |}T“. (A, (LG, 7w, 1) - A, (€@, 1) (D%u - D*u)dx 0.

Since the integrand is nonnegative by (5.2), it converges to 0 in Ll(Qk) as i — oo,
On the other hand, by a previous argument,

T (A, (€W, 0= AW, ), t) (D> -D%u) =0 in LYQ,)

-

as i — oo, Thus

Y A, ¢, D-A &), t (D% -D%) =0 in L1@Q,).

lal=m

This is true for each k, so that there is a subsequence such that

(5.8) lfV_‘ (A, (€@, D - A,€w), t)(D%% - D)= 0 ae.in O

as i— ., Now we can argue as in the classical case [25], [7], using the full
force of conditions (5.2) and (5.3). It first f9llows from (5.8) and (5.3) that, for
a.e. x €Q, {(u,)(x) remains bounded in R°™. Taking, for a given x9, a sub-
sequence such that { (ui)(xo) — ¢, we deduce from (5.8) that
|Z (A, (E@ GO, 1) - A0 7 0, ND*a:®) - ¢%) =0,
al=m
which implies, by (5.2), % =¢ («)(x°). Therefore ¢ (ui)(xo) converges for the
original sequence to { («)(x?), and the almost everywhere convergence of Daui to
D%, |a| = m, is proved.
To complete the proof of Theorem 5.1, it remains to show that (u, Tzi("i))
—(u, [). Because of (5.7) and (5.6), it suffices to verify that
.9) lim inf A ), t)D%u dx > A (€@, D udx.
(5.9 im in fn‘aEm o&@), t)D%u dx > f“la‘lgm &l u

Define {1, as above and fix k. We have, by (5.2),
fn‘%i (A ., L@, ), 1) = A5 (EGw), 1)) (x,D%u - D%u)dx > 0.
al=m

Going to the limit as above,
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lim inf | la}lzmAa(f(ui), £)D %, dx

[—00

>- fa |2|2m (4,0, ¢, 7(a), D) = A, (@), ) x,D%u dx
¥ fn |aLl:ZmAa(ka(u), 7u), )D%u dx
= LHZ Aa(f(u). t)D%u dx

+ fn\ﬁk l"’Em (Au.(o’ 7](11), l) - Aa.(‘f(u)' t»Dau dx.

Letting & — o, we obtain (5.9). Q.E.D.

Remark 5.3. If the assumptions of Theorem 5.1 are verified and if B is a
perturbation of the form (4.11) satisfying (4.12) and (4.13), then {S,: D(S,)C Y
—Z;t €[0, 11} defined by D(S,) = D(T) and (v, S ) = a,(u, v) + bz, v) for all
v €Y, is a sequentially pseudomonotone homotopy with respect to any dense sub-
space V of Y. Note also that Theorem 5.1 applies in particular to a single
operator A. In this case the arguments of the above proof show that the graph of
T is sequentially closed with respect to the convergence involved in Theorem
3.10 and 3.15. Finally note that these arguments also show that {T: D(T,)C Y
—Z; t €[0, 11} is strongly quasibounded on Y with respect to any y € Y,

The combination of Theorem 5.1 with the results of §3 leads to several
existence theorems for (4.1). For instance:

Theorem 5.4. Let Q be a bounded open subset of R™ with locally
Lipschitzian boundary. Let A be an operator of the form (4.1) satisfying (4.2),
(5.1), (5.2) and (5.3). Let Y bea o(ll Ly o 1| Eﬁ ) closed subspace of W™L,(Q)

a

satisfying (4.14). Suppose that a(u, u)||u'||;:(M)
Then for each o(I1 E), 2 1 E,T, ) continuous linear form  on Y, the V.B.V.P.
a

— 4+ 00 as ||u|[m‘(m-—-o +ooin Y.

for A(u) = with respect to Y has at least one solution.

Theorem 5.5. Let Q be a bounded open subset of R® with locally
Lipschitzian boundary. Let {A pLE [0, 11} be a one-parameter family of operators
of the form (5.4) satisfying (4.2), (5.1), (5.2), (5.3) uniformly in t. Let Y be a
oLy, M E5 a) closed subspace of W™L,(Q) satisfying (4.14). Suppose that

A, is odd and that for each o(I1 E) o NE N a) continuous linear form f on Y,

there exist a constant K and a neighbourbood J of f in Y§ such that, for any
g €J, any t €0, 1] and any solution u of the V.B.V.P. for A (u) =g with
respect to Y, """m.(M)S K. Then for each t €[0, 1] and each oM Ey , I EITla.)
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continuous linear form [ on Y, the V.B.V.P. for A (u) = [ with respect to Y
bas at least one solution,

Concrete analytical conditions on the coefficients A, implying coercivity or
a local a priori bound can be deduced from Lemma 3.14 or from the treatment of
the following example respectively.

Example 5.6. Consider the Dirichlet problem for the operator P(u) + A(x),

P)= X (-1lpe(pn2)),

al=m

Ala) = Z (- l)laIDaAa(x, u oo, V1Y)

|=m

+ X (-Dkbea (&, 4, .0, V),

|a.|< m

on a bounded open subset Q of R" with locally Lipschitzian boundary. Here
p: R — R is a strictly increasing odd continuous function with p(+ o) = + oo
Write M(¢) = [§ p(s)ds. It is assumed that the A s satisfy the growth condition
(5.1) with N_= M for simplicity and the sign condition

(5.10) 2 Al £)X, >0
lol<m

for all £ € R°™. To apply Theorem 5.5, we consider the one-parameter family
At(u) = P) + (1= 0)A@), t €0, 1]. It is easily verified that (4.2), (5.1), (5.2),
(5.3) hold uniformly in t. Clearly, A, is odd. As before, Y = Wy'Ly(Q) satisfies
(4.5), Y= W3E,Q), Y§=Z = W""'LE(Q) and the subspace Z of Y§ consist-
ing of those linear forms on Y which are ¢(IIE,,, IIE;) continuous in
W"”Eﬁ(ﬂ). To verify the local a priori bound, let /= (f)) €Z,. Let r>1,
choose ¢ such that fnﬂ(r/ 2J4x < ¢ for all |a| < m, and define

T(={g=(ga)62;fn MGg,)<c +1 forall |a|5m}.

JUis a norm neighbourhood of f in Z (cf. Example 4.11), We claim that if r is
taken large enough, then the possible solutions of the V.B.V.P. for A !(u) =g
with respect to Y remain bounded in Y as g € and ¢ €[0, 1. Indeed, if u is
such a solution, then we obtain as in Example 4.11, using (5.10),

fnlalzmM(D“u)de fnhﬁmﬁ(rga)dx-r fnhEm }D“u) dx.

Now, by Poincar€’s inequality (Lemma 5.7 below), the last integral of the right-
hand side is less than
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II M(Da'u)dx+c f Z M(mﬂ )dx.

Consequently a bound on fg 2| af=m M(D®u)dx can be derived provided r>c_ a

and r>1+c c o It follows that D%, |a| = m, remains bounded in LM(Q)

Hence, by Poincaré’s inequality (Corollary 5.8 below) # remains bounded in
WG Ly(@). Theorem 5.5 can thus be applied: for each / € W™"E(Q), the V.B.V.P.
for P(u) + A(u) = [ with respect to W7'L,(Q) has at least one solution.

Lemma 5.7. Let Q be a bounded open subset of R". Then there exist con-

stants c_ and c such that
m m,Q

fa > M(D%x)dx <c_, InhEmM(cm‘nD“u)dx

l<m
for all u € WLy (Q)

Proof. It suffices to show that

(5.11) o Madx < an<2¢1—a-"-

forall u € WéLM(Q), where d is the diameter of Q. First suppose that u € Q).
Then

M(u(xl, E R x"))=M( ! ———-(f X vee, xn)df)

%J‘m (d (5 I ...,xn))dg,

and thus

3
(5.12) f a M@b)Mx < f Q M(d 3;"1—(’:)) dx.

Now suppose that u € WlL,(Q) has compact support in @ and consider its
regularized function #, (cf. Lemma 1.6). Then (5.12) holds for z:

JoMa GNax < fom (( )(x)>dx

Since u, — u for o(LM, E,ﬁ) as € — 0 and since the functional a(x)

JaMa(x))dx is a(L,, Eﬁ) lower semicontinuous on L,(Q) (because it is the
convex functional conjugate to b(x) = [o M(b(x))dx on Eﬁ(ﬂ), cf. [29, p. 220)),

JaMtx)dx < Lim int J Mz G))x.

On the other hand, writing d du/dx, = v, we have
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Jo Mo N = [, m [fan(x - y)¢€(y)d)]dx

S o Mol =y )y d - oM@ (x)ax.

If f[qM@)dx = + oo, then (5.12) holds trivially for u. If fg M(v)dx <+ o, then
M@)),— M@) in LY(Q) as € — 0, and consequently (5.12) holds for «. Finally,
let u be arbitrary in W(l)L (@) and consider an open set Q' >Q with diameter
less than 2d. Then the function « obtained by extending z by zero outside
belongs to W})L 4 (@) and has compact support in Q', so that

jn, M@)dx < (Zd a—a—u;-)dx

which implies (5.11). Q.E.D.

Corollary 5.8. Let Q be a bounded open subset of R*. Then the two norms

a 2 V4 a2 Y
la|2<:m I u"(M)) and (I‘I\: ID u]LM)')

a|=m

are equivalent on WL, (Q).

Proof. If D% remains bounded in L u(Q) for each |a| = m, then for some
k>0, fqM(D%/k)dx <1 for each |a| = m. By Lemma 5.7,

MD%u/kc_ )dx<c_c!,
Iﬂ |aEm m,Q ="m

which implies that D% remains bounded in L (Q) for each |a| <m. Q.E.D.
The existence theorems for (4.1) obtained in this section generalize results
of Leray-Lions [25] and Browder [7], [8]. Theorem 5.4 (and its anisotropic
variant, cf. introduction to S4 and Example 4.12) also includes the result
announced recently by Fougéres [15] where the conjugate N-functions are required

to have the A, property.
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