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ABSTRACT.  Variational boundary value problems for quasilinear elliptic

systems in divergence form are studied in the case where the nonlinearities

are nonpolynomial.   Monotonicity methods are used to derive several existence

theorems which generalize the basic results of Browder and Leray-Lions.   Some

features of the mappings of monotone type which arise here are that they act in

nonreflexive Banach spaces, that they are unbounded and not everywhere

defined, and that their inverse is also unbounded and not everywhere defined.

Introduction.   This paper is concerned with the existence of solutions for

variational boundary value problems for quasilinear elliptic systems in diver-

gence form

(*) A(u)=   £    (-l)HDaAa(x,z2, ...,V-„)

|a|<m

on open subsets 0 of R".   Existence theorems for problems of this type were

first obtained by Visik [34], [35] using compactness arguments and a priori

estimates on (m + l)st derivatives.  Since 1963, these problems have been exten-

sively studied by Browder and others in the context of the theory of mappings of

monotone type from a reflexive Banach space to its dual and in the case where

the coefficients Aa have polynomial growth in zz and its derivatives.   Basic

improvements of Browder's original results [3] were given by Leray-Lions [25]

where the monotonicity conditions imposed on A involve only the variation of

Aa>  \a\ ~ m> witrl respect to the top order derivatives  "'"zz, and by Browder [7],

[8] where the usual coercivity assumption is replaced either by a local a priori

bound and a stronger monotonicity condition or by a global a priori bound and

some oddness condition.

It is our purpose here tq extend the existence theorems of \2>], [25], [7], [8]
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to the case where the coefficients A a do not necessarily have polynomial growth

in u and its derivatives.   The crucial points in the treatment of "rapidly (or

slowly) increasing" Aa's are that the Banach spaces in which the problems seem

to be appropriately formulated-the Orlicz-Sobolev spaces-are not reflexive and that

the corresponding mappings of monotone type are not bounded nor everywhere defined

and do not generally satisfy a global a priori bound (and consequently are not

generally coercive).   In this respect, the examination of the trivial situation where

m = 0 is already quite revealing (see Examples 2.3 and 3.13).   Our study is based

upon an extension of the theory of non everywhere   defined unbounded pseudomono-

tone mappings in reflexive Banach spaces (Browder [9], [10], Browder-Hess [ll])

to the context of complementary systems.   These are quadruples of (generally non-

reflexive nonseparable) normed spaces related to each.other in roughly the same

way as conjugate Orlicz spaces.

A simple example to which our results can be applied is the Dirichlet problem

for the operator

£   (- l)laIDa(/>(Daa)) + lower order terms,

\a\=m

where p: R —* R is any strictly increasing odd continuous function going to + « at

+ oo, with no restrictions on its growth, and where the lower order terms satisfy a

growth condition involving p and a sign condition (see Example 5.6).

Monotonicity methods have previously been used to study systems of the form

(*) with rapidly increasing coefficients by Donaldson [12] (cf. also Gossez [17])

who treated the case where the problem is coercive, the ^a's satisfy a monotonicity

condition with respect to all the derivatives of a and some restriction is imposed

on the nature of the growth of the coefficients (the conjugate Af-functions are

required to have the A2 property).   Each of these three limitations is removed or

weakened in the present paper.   Our results also include and sharpen the existence

theorem announced recently by Fougères [15] where the second limitation above is

weakened.   Last year Browder [9] (cf. also Hess [22], [23]) considered systems of

the form (*) with top order terms of polynomial growth but "strongly nonlinear"

lower order terms.   Our results will be generalized elsewhere so as to include this

situation (see Example 4.12).

In §1 we define the notion of complementary system and give some important

examples.   Pseudomonotone mappings in complementary systems are considered in

§2 and several of their properties are investigated.   In §3 we prove our main exis-

tence theorems for functional equations involving pseudomonotone mappings in

complementary systems.   They are applied to systems of the form (*) with rapidly

(or slowly) increasing coefficients in §§4 and 5.

Some of the results presented here were announced in [19].   The author would
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like to thank Professor F. E. Browder for several stimulating conversations,

Professor M. Jodeit for his help in the proof of Lemma 4.14, and the referee for

suggesting a simple proof of Lemmas 1.5, 1.6 and 1.7.

1. Complementary systems.   The usual functional setting (X, X*) consisting

of a reflexive Banach space X and its dual X* does not seem suitable for the

study of systems of the form (*) with rapidly (or slowly) increasing coefficients.

In this section we consider a more general setting, that of complementary systems,

and prove that the Orlicz-Sobolev spaces generate complementary systems.

We begin by listing briefly some definitions and well-known facts from Orlicz

space theory (cf. [24], [28]).   Let Q be an open subset of R", with Lebesgue

measure dx, and let M be a N-function (i.e. a real-valued continuous, convex,

even function of t e R satisfying Mit) > 0 for / > 0, Mit)/t —» 0 as t —» 0 and

M it)/t —► + oo as t —► + «O.   The Orlicz class £M(fl) is defined as the set of

(equivalence classes of) real-valued measurable functions a on 0 such that

fQM(u(x)) dx <+ oo, and the Orlicz space LM(Q) as the linear hull of ¿^(Q).

LMiQ) is a Banach space with respect to the Luxemburg norm

||a||(M) = infj* > 0; fa Miu/k)dx < l\.

The closure in LJSÏ) of the bounded measurable functions with compact support

in D is denoted by EMiQ).   The inclusions EMiQ) c£M(Q) C LM(Q) hold.   More-

over, EM(Q) = £M(Q) if and only if £M(Q) = LMiù) if and only if M has the A2

property for large values of r, or for all values of /, according to whether ß has

finite measure or not, i.e., there exists k > 0 such that Ai(2/) < kMit) fot large

values of /, or for all values of /.   EMiQ) is separable, but LM(Q) is separable

if and only if LM(Q) = EM(Q).   The dual of EM(Q) can be identified by means of

the scalar product fQ uvdx to L„(ß), where M is the ¿V-function conjugate to M:

Mit) = supi/s - M(s); s e Rj.

Note that M = M and that Young's inequality holds: ts < M(t) + M(s) fot all /, s

£ R.  The norm on L^(Q) dual to || ||(Af) on EM(Q) is called the Orlicz norm and

denoted by  || ||r   It is equivalent to || ||(!q): || ||(M) < || ^ < 2|| ||(¡c}).   The norm on

LM(Q) dual to || |)M on E^Q) turns out to be || ||(M).  Holder's inequality holds:

J.
for all 22 £LM(Q) and v e L  (Q).

Definition 1.1.  Let Y and Z be real Banach spaces in duality with respect
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to a continuous pairing ( ,) and let  Y0 and ZQ be subspaces of  Y and Z

respectively.   Then iY, YQ; Z, Z0) is called a complementary system if, by means

of ( , ),  V*, can be identified (i.e., is linearly homeomorphic) to Z and Z*, to Y.

For instance ÍLMiíl), E^iü); L-iSl), £n(ß)) is a complementary system.

More general examples arise in the theory of Banach function spaces [28].   Other

examples are (X**, X; X*, X*) and (X*, X*; X**, X) where X is a Banach

space.   Note that in a complementary system, Y0 is ff(Y, Z) dense in  Y.  Note

also that if cl Yn [clZQ] denotes the (norm) closure of YQ [ZQ] in  Y [Z], then

iY, cl YQ; Z, clZn) is a complementary system.

It will be important in the applications to know a method by which given a

complementary system (Y, YQ; Z, ZQ) and a closed subspace E of Y, one can

construct a new complementary system (E, En; F, Fn).  Some restriction must be

imposed on E.  Define EQ = E n YQ,  F = Z/E¿ and F„ = Í* + e\; z e ZQ! C F,

where 1 denotes the orthogonal in the duality (Y, Z), i.e. EQ = \z £ Z; (y, 2) = 0

for all y eE0¡.

Lemma 1.2.   The pairing ( ,)  between Y and Z induces a pairing between

E and F if and only if EQ is oiY, Z) dense in E.   In this case, (E, EQ; F, FQ)

is a complementary system if E is oiY, ZQ) closed, and conversely, when ZQ

is complete, E is criY, ZQ) closed if (E, EQ; F, FQ) ¿s a complementary system.

Proof.   The pairing between  Y and Z induces a pairing between  E and F

if and only if E C EQ   , so that the first part of the lemma follows from the bipolar

theorem.   The pairing between E and F obtained in this way is continuous and

Eg can be identified to F.   To prove that FJ can be identified to E when E is

oiY, ZQ) closed, define a mapping A from E into F*, by

(Ay) (2 + Eg) =   (y, 2 + E¿-) £ _p = (y, 2>yz

for VcE and 2 eZj.   A is linear, continuous and one-to-one.   Let L £ FJ and

consider the continuous linear form on Z0/(EQ O Zn):

2 + (E¿n Z0)-L(2 + Eo)

for z £ ZQ.   Since the dual of Z0/iEQ C\ ZQ) can be identified to (Eg n ZQ)   =

ff(Y, Z0)clE0 = E, we conclude that there exists y £ E such that Ay = L.   Con-

sequently A is onto, and by the closed graph theorem, A is a linear homeomor-

phism between E and F*,.   Conversely, suppose now that A is onto and that ZQ

is complete.   To show that E is oiY, ZQ) closed, it suffices, by the Krein-

Smulian theorem [14, p. 429], to prove that the limit y £ Y of a bounded oiY, ZQ)

convergent net y. £ E lies in E.   But the bounded sets of E are relatively com-

pact for oiE, ZQ) because A transforms a bounded set of E into a bounded set
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of Fq and A-1 is continuous from the weak* topology of F*, to aiE, ZQ).  Con-

sequently y e E.    Q.E.D.

We will refer to the complementary system  (E, EQ; F, Fn) constructed above

as the complementary system generated by E in (Y, YQ; Z, ZQ).   Note that

aiE, F) and ff(E, FQ) ate the topologies induced on E by ff(Y, Z) and ff(Y, ZQ)

respectively, so that FQ is precisely the subspace of E*, consisting of those

linear forms on EQ which are ff(Y0, ZQ) continuous.   The situation is much

simpler when Z = ZQ since then Lemma 1.2 can be applied to the ff(Y, ZQ)

closure of any subspace of YQ.

The definition of a complementary system was first given by Donaldson [ 12],.[ 13],

but his analogue of Lemma 1.2 appears incorrect.  Variants were also considered

in a reflexive setting by Hess [22].

Let WmLMiQ) be the Orlicz-Sobolev space of functions zz such that u and

its distribution derivatives up to order 772 lie in LM(ß). WmLMiù) is a Banach

space with respect to the norm

(1.1) (,l-"D"*f
WmLM(ñ) will always be identified to a subspace of the product III gt      LM(ß) ~

II LM; this subspace is ff(II LM, II E-) closed.   Let Vlm LM(ß) be the

ff(n LM, II E-) closure of 3) (ß) in r"LM(Q).   We wish to apply Lemma 1.2 to

W'L^Uî) and Wq LM(ß), starting with the complementary system (II LM, U EM;

II L-, Il E-).   This is possible under the mild assumption that 0 has the segment
M M

property (i.e. there exist a locally finite open covering  !0¿} of dCl and correspond-

ing vectors  iy .\ such that for x e ß O 0¿ and 0 < / < 1, x + ty{ e il):

Theorem 1.3.   Suppose that ß has the segment property.   Then (a) 2) (ß) z's

ff(n LM, U L-) aer2se ¿72 W""LM(ß), (b) 3)(ß) ¿s ff(ü LM, II L-) ^7232? ¿72

WJLM(0).

ÍD (ß) denotes the restrictions to ß of the functions in S (Rn).   Thus, when

ß has the segment property, WmLMiQ) and WmLMiil) generate complementary

systems in (II LM, II EM; II L-, Il E-).   The proof of Theorem 1.3 is based on the

following lemmas.

Lemma 1.4.   Let uh e£M(Rn) satisfy uh—>u a.e. in R" aTja" M iuh) < wh a.e.

in R". where wh—w in LKW). Then u e £M(R") aW 22^-» 22 /or o(LM(R"), L-(Rn)).

Proof. By Fatou's lemma, 22 exM(R"). It is sufficient to show that, for all

v e£-(R"), u.v—> uv in L (R"). By contradiction, assume that for some v e

£-(R"), o > 0 and subsequence h,,
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k \uh   v - uv\ dx > S.

Since wh  —» w in L (Rn), there is a subsequence, again denoted by hk, and

g e L (Rn) such that wh   < g a.e. in R" (see e.g. N. Bourbaki, Integration,

Chapitre IV, §3, Théorème 3). Therefore   |«6.w| < g + M(v) by Young's inequality,

and by Lebesgue's theorem, afc v —» aw in L (Rn), a contradiction.    Q.E.D.

Lemma 1.5.   Let a eLM(R") and denote by a    the translated function:

uix) = a(x - y).   TAe« «v -, u for oiLAR"), L-(Rn)) as  \y\ — 0.

Proof.  We can assume without loss of generality that a ex^R").  Since

M (a ) = M (a)   converges to M (a) in L (R"), Lemma 1.5 follows from Lemma 1.4.

Q.E.D.

Lemma 1.6.   Let a £ L„(R") and denote by a, tee regularized function: uf =

u *<p(, a/iere tpe eiD(R"), ¿as support in Bf(0, R") and satisfies <pf > 0 ara/"

J    6eix)dx = 1.   T¿en a, — a /or ff(L„(Rn), L-(R")) as e — 0.

Proof. We can assume without loss of generality that a e£M(R").   By

Jensen's inequality, M(af)<M(a) * <p{. Since M (a) *<pe —» M (a) in LHR"),

Lemma 1.6 follows from Lemma 1.4.    Q.E.D.

Lemma 1.7.   Let u £ LM(n) and denote by uf the function uf = utfrr, where

xjfix) = iffix/r) and iff e3)(Rn) satisfies 0<iff<l,iffix) = l for |x| < 1 ana"

ifiix) = 0 /or |x| > 2.   T/jen a, -» u for oiLAQ), L-(Q)) asr-*«,
— r m m

Proof. We can assume without loss of generality that a e£M(Q). Since

M iu ) < iff M (a) and iff M (a) —* M (a) in L iù), Lemma 1.7 follows from Lemma

1.4.    Q.E.D.

Remark 1.8.   The weaker versions of the last three lemmas where o~ÍLM, L-)

is replaced by ff(LM, E-) follow easily by transposition from the fact (cf. e.g.

[13]) that if a eEM(R"), then a , u( and uf lie in EMiW) and converge in norm

to a as  |y|, e and 1/r —• 0.

Proof of Theorem 1.3.  The proof uses arguments which are standard in

Sobolev space theory (cf. e.g. [1, pp. 11-14]) and we only sketch it.

Let a £ V^LAQ).  Using Lemma 1.7, we can assume that a has compact

support KCQ.  If K C 0, then the conclusion can be derived from Lemma 1.6.  If

K meets dQ, then, using the covering }0¿} of c5il and a partition of unity, we are

reduced to the case K C 0. tot some i.  Clearly, K C 0| for some open set 0{

with compact closure 5| in 0¿.  Write T =0'{C\ dQ,, T( = T - ry¿ where yf is
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the vector associated with   0{  in the segment property and   0 < t <

min ¡I, |yr|~   dist iO'., dO )\.   Extend 22 outside K by zero and define u ix) =

uix + <y¿).   Then u( e WmLM(W\r(), and by the segment property, distil^, ß) >0.

Using Lemma 1.5, we see that u(—.u in  WmLM(Q) for ff(II LM, II L-) as  t —» 0,

so that it suffices to approximate each u   by functions in 5) (ß).   But this can be

done by means of Lemma 1.6 because dist (T , ß) > 0.

To prove part (b), first note that it u e WmLMiQ), then the function u

obtained by extending 22 outside ß by zero belongs to  V^L^W).   Now let 22 £

W™LMiSl).  As above, we are reduced to the case K C 0¿ for some 2.   Define

u(ix) = uix - ty{).  Then a( £ VfmLMiW) and supp zz, C ß by the segment property.

Moreover, using Lemma 1.5, we see that «t —» zz in WmLMiü) for ff(II LM, II L-),

so that it suffices to approximate each ut by functions in X (ß).   But this can be

done by means of Lemma 1.6 because suppu( is compact in ß.    Q.E.D.

Remark 1.9.   The above proof shows that the densities in Theorem 1.3 are

sequential.

Let VfmEMiÇl) be the space of functions 22 such that 22 and its distribution

derivatives up to order 772 lie in EM(ß), and WmEMiti) the (norm) closure of 5) (ß)

in WmLM(ß).   Clearly, V/mEMiQ) is the intersection of VfmLMiü) with IIEM and

W^E^Cl) c WmEMiü).

Corollary 1.10.   // ß has the segment property, then (a) 2Xß~) is inorm) dense in

VT'E^iß),  (b) WmEMiil) is the intersection of W£LM(ß) with II E^.

Proof.   By Theorem 1.3, 3)(0) is dense in WmEMiÇl) fot ff(II EM, U L-).

Since II L- is the dual of II EM and 3) (ß) is convex, 3) (ß) is norm dense in

W'E^ß).   The proof that 3) (£2) is norm dense in the intersection of WmLMiQ)

with u EM is similar.    Q.E.D.

Part (a) of Theorem 1.3 sharpens Theorem 4.1 of Donaldson-Trudinger [13]

where ff(II LM, U L-) is replaced by ff(II LM, U E-).   Part (a) of Corollary 1.10

was obtained in [13, Theorems 2.1 and 2.3]-   When d£l is sufficiently good, one

can define a trace function from WmLMiÛ) into Wm~1L/.idil) whose kernel in

V/mLMiü) [WmEM(ß)] is precisely WmLMiQ) [WmEMiQ)] (see A. Fougères, C. R.

Acad. Sei. Paris, January 1972, in the particular case where M has the A2

property).

We now investigate a property of the norm which will be useful later when

dealing with the duality mapping.  Let iY, Y0; Z, ZQ) be a complementary sys-

tem and let  || ||y be a (equivalent) norm on  Y.  Denote by  || ||y    the restriction

of || || y to YQ, by || || z the norm on Z dual to || ||y    and by || ||z    the restric-

tion of || || z to Z„.
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Lemma 1.11.   The norm  || ||y  is dual to  \\ \\z    if and only if || ||y is

oiY, Z0) lower semicontinuous and the ball Bj(0, Yn) is oiY, Z.) dense in

ByiO, Y).   The inequality (y, z) < ||y||Y ||z||z holds for all y £ Y and z £ Z if

and only if B,(0, YQ) is oiY, Z) dense in ByiO, Y).

Proof. Since ByiO, ZQ) is the polar in ZQ of ByiO, YQ), the first part of the

lemma follows from the bipolar theorem. The second part is an easy consequence

of the Hahn-Banach theorem.    Q.E.D.

A (equivalent) norm  || ||y on  Y satisfying all the conditions of Lemma 1.11

will be called admissible.   For instance, in the complementary system iLMiQ),

EAÙ); L-(Q), E-(O)), both the Luxemburg and the Orlicz norms are admissible.
m M m

Lemma 1.12.   Let iY, YQ; Z, ZQ) be a complementary system and let || ||Y

be an admissible norm on Y.   Let E be a closed subspace of Y satisfying the

conditions of Lemma 1.2.   Then the restriction  || ||B of || ||y to E is admissible

in the complementary system (E, EQ; F, FQ) generated by E in iY, Yn; Z, Zß).

Proof.   Since oiY, ZQ) induces oiE, FQ) on E,  || ||E is ff(E, F0) lower

semicontinuous.   The inequality (e, f)E p < \\e\\E\\f\\p for e £ E and f £ F

follows from the definition of the quotient norm  || ||p.    Q.E.D.

Thus, when Ü has the segment property, the formula (1.1) and its analogue

where  || ||.M. is replaced by  || \\M define admissible norms in the complementary

systems generated by WmLMiQ) and W£LM(Q) in (II LM, II EM; n L-, II E-).

2. Mappings of monotone type.   In this section pseudomonotonicity and the

type (M) property are introduced for non everywhere defined unbounded mappings

in complementary systems.   Conditions are given under which the sum of two

pseudomonotone mappings (or homotopies) is pseudomonotone.   The example of

the duality mapping is considered.

Definition 2.1.   Let iY, YQ; Z, Z0) be a complementary system and let  V be

a dense subspace of YQ.   A mapping T from  Y into 2     is said to be of type (M)

with respect to V it (a) T is finitely continuous from  V to the oiZ, V) topology

of Z (i.e.  Ty is a nonempty a(Z, V) compact convex subset of Z for each

y £ V and  T is upper semicontinuous from each finite-dimensional subset of V

to the ff(Z, V) topology of Z), (b) for any net iy{, z¿) such that zi £ Ty^ y; £

V, y. bounded, yi—> y eY for oiY, Z„), z.—>z£Z fot ct(Z, V) and
7.

lim sup(y., z.)<(y, z), it follows that z £ Ty.   A mapping T from  Y into 2     is

said to be pseudomonotone with respect to V it (a) and (b)    hold, where (b)   =

(b) except that one also requires (y., z{) —*iy, z) in the conclusion.   More

generally, a one-parameter family of mappings  T   from  Y into 2   , t £ [0, 1], is
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said to be a pseudomonotone homotopy with respect to V if (i) T is finitely con-

tinuous from [0, 1 ] x V to the ff (Z, V) topology of Z, (ii) for any net (/, y., z.)

such that z. e T/.(yi), t\ —* t, yi e V, y(. bounded, y,- —» y e Y fot ff(Y, ZQ),

2f-<z£Z for ff(Z, V) and lim sup (y¿, z¿) < (y, z), it follows that z e T(iy)

and <yf, z,>->(y, z).

Similar definitions can be given for sequentially of type (M) with respect to

V, sequentially pseudomonotone with respect to V or sequentially pseudomonotone

homotopy with respect to V, where one requires (b), (b)   or (ii) to hold only for

ordinary sequences.   Note that all those definitions are invariant by translating T

or T   by a fixed element of V or by adding to T or T   a fixed element of ZQ.

In §§4 and 5 we will show that under suitable assumptions on the coefficients,

systems of the form (*) with rapidly (or slowly) increasing coefficients give rise to

mappings of the above type.   Other examples, related to the theory of monotone

mappings in nonreflexive Banach spaces, will be mentioned in §3.

Pseudomonotonicity and the type (M) property were first defined by Brézis

[2],   The extension of Brezis' original results to non everywhere defined unbounded

mappings in reflexive Banach spaces was carried out by Browder [9], [10] and

Browder-Hess [11].   The concept of pseudomonotone homotopy is due to Browder

[10].   The definitions given above are generalizations of those of [9].

In general, the sum of two pseudomontone mappings with respect to  V is not

pseudomonotone with respect to  V, even for monotone mappings when  Y = Yq =

Z = Z0 = / , cf. [5, p. lOl].   Some boundedness condition is needed.

Proposition 2.2.   Let (Y, Y0; Z, ZQ) be a complementary system and let

\S(: Y —> 2Z; t e [O, 1]¡ and \Tt: Y —» 2Z; t e [O, l]i be two pseudomonotone

homotopies with respect to a dense subspace V of Y0.   Suppose that for each

bounded set A  in V,

\J\St(y);y e A and t e [0, l]|

is bounded in Z.   Then \S  + T : Y —» 2   ; / e [O, 1 ]j is a pseudomonotone homo-

topy with respect to V.

Proof.   The finite continuity of S + T follows easily from the ff(Z, V) com-

pactness of S(iy) and T^y) for each t £ [0, l] and y £ V.   Let (tf y¿, z.) be a

net such that z   e is    + T,)iy), t. —» /, y, e V, y . bounded, y.—» y e Y for

ff(Y, Z0), z. -. z e Z fot a (Z, V) and

(2.1) lim sup(y¿, z.) < (y, z).

We must show that 2 e iS{ + T()iy) and {y¿, *,-)—> (y, z).   Clearly, it suffices to
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prove the latter convergence for a subnet.   Write z. = a¿ + v,  with a. £ S Ay.)

and v. e T   (y.).  Since y. remains bounded in  V, a. remains bounded in Z, and

thus, passing to a subnet, we can assume that a¿ —♦ a for ct(Z, YQ).   We claim

that

(2.2) lim sup(y¿, a¿) < (y, a),

Indeed, if this is not true, then, for a subnet, (y , a¿) —» a>(y, a), and it follows

from (2.1) that

(2.3) lim sup(y., v.)= lim sup(y., z. - a.) < (y, « - a);

but vi —» z - a for ff(Z, V), so that by the pseudomonotonicity of [T,!, (y, v.)

~'(y, z - a), which contradicts (2.3). Now (2.2) and the pseudomonotonicity of

\S(\ imply a £ Stiy) and (y¿, a¿) —♦ (y, a).   Replacing in (2.1), we obtain

lim sup(y¿, v¿) < (y, z - u),

and consequently, by the pseudomonotonicity of {T(\, z — u £ T (y) and (y-, v)

_ (y, z - a).    Q.E.D.

A one-parameter family of mappings S   from Y into 2   , r e [0, 1], is said

to be bounded on V it it satisfies the boundedness assumption of Proposition

2.2.   It is said to be strongly quasihounded on  V with respect to y  £ V if for

each Cy, c2 > 0 there exists   kicy, c2) > 0 such that whenever z £ S(iy) with

t £ [0, 1], y £ V,   \\y\\ < Cy and (y - y, z) < c2, then  ||z|| < k(cv c2).   Of course,

"bounded" implies "strongly quasibounded", but the converse is not true, even

for individual monotone mappings when  Y = Y0 = Z = ZQ = V=l , cf. [ll,

Proposition 14] and [27, p. 305].  Here is another example of a different nature.

Example 2.3.   Consider the complementary system (LM(Q), EMiÙ); L-(iî),

E-(iî)), where M is assumed to have a continuous first derivative p, and define

S: D iS) C LM(fi) — L-(Q) by

DiS) = [a £ LM(Q); p(a(x)) e Lj¡(Q)l,       Su = p(a).

Clearly, S is monotone, and it is easily verified that E^iQ) C D (5) C JLM(Q).   The

argument of [11, Proposition 14] shows that in a complementary system (Y, Yn;

Z, ZQ) with Y0 complete, a monotone mapping from Y into 2    is strongly

quasibounded on Y0 with respect to y e Y0 provided its domain contains some

ball B£iy, YQ), e > 0.  Hence S is strongly quasibounded on EM(ñ) with respect

to any point of EMiQ).  However, S will be bounded on EMiÙ) it and only if

EM(ß) = LMiti).  The "if" part follows from [24, p. 1731.  To prove the "only if"

part let a £ LMiQ) and define
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!u(x) if |x| <72 and \uix)\ < n,

0 otherwise.

Since 2z_ remains bounded in EM(ß), Su    remains bounded in L-(ß).   Thus there

exists K > 0 such that

K>  buJpl»m )dx=   ÍMiu )dx+ [nMipiu ))dx>   f M(u )dx
— JQ    72'        n J¡¡ 71 JQ      ^       71 —   Jq 71

for all 72, and consequently, by Fatou's lemma, fQ M (zz) dx < K < + oo, i.e. 22 e

£M(ß).  Hence LM(ß) C £M(ß), which implies LM(Q) = EM(ß).  In §4 we will see

that S is pseudomontone with respect to any dense subspace V of E.,(ß).

The following proposition is closely related to Theorem 1 of Browder-Hess

[ll] where the notion of strong quasiboundedness was introduced.

Proposition 2.4   Lei (Y, YQ; Z, Zn) be a complementary system and let

\St: Y —» 2Z; / e [O, l]i and \T{: Y —» 2Z; t £ [O, 1]! be two pseudomonotone homo-

topies with respect to a dense subspace V of Y0.   Suppose that [S(\ is strongly

quasibounded on V with respect to some y  £ V, and that there exists h: R —♦ R

continuous such that whenever z £ T (y) with t £ [O, l] and y eV, then (y-y, z)>

- b (||y||) ||y||.   Then \S( + T : Y —» 2Z; t e [O, l]j is a pseudomonotone homotopy

with respect to V.

Proof.  With the notations of the proof of Proposition 2.2, we have, passing

to a subnet if necessary,

(y¿ - y, «¿) = (y i - y, *¿) - (y,- - y. v ¿) < (y - y, z) + e + h(\\y.\\) \\y.\\ < c,

which implies, by the strong quasiboundedness of \St\, that 2z¿ remains bounded

in Z.  The proof can then be completed exactly as that of Proposition 2.2.   Q.E.D.

If [S \ and fT ! are two sequentially pseudomonotone homotopies with

respect to V and if the boundedness assumptions of either Proposition 2.2 or

2.4 are satisfied, then \S  + T(\ is a sequentially pseudomonotone homotopy with

respect to V provided Yn is separable.   The proofs are similar.

Remark 2.5.   The sum of two mappings of type (M) with respect to V is not

necessarily of type (M) with respect to V, even when Y = Y0=Z = Z0 = V = l

and both mappings are bounded on V, cf. [2, p. 128].   Note that a compact map-

ping T (i.e. D (T) = Y, T single-valued, continuous from Y to Z and the images

of bounded sets in Y are relatively compact in Z) may not be of type (M) with

respect to any V: consider T: I2 -* I2 defined by Tx = (||x||, 0, • • •).  However a

completely continuous mapping T (i.e. D(T)= Y,  T single-valued and continuous

on each bounded set of Y from a(Y, ZQ) to the norm topology of Z) is pseudo-

monotone with respect to any V.
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We now turn to the study of the duality mapping.   Let iY, YQ; Z, ZQ) be a

complementary system.   Let || ||Y be a (equivalent) norm on  Y and let || ||y  ,

||z and  || ||z    be defined as in §1.   The corresponding (normalized) duality
z

mapping /: Y —> 2     is defined by

/y = \z £ Z; ||2||z = ||y||y and (y, z) = ||y||y ||2||z!.

The restriction of / to  Yn is the usual duality mapping from the normed space
Y*

YQ into 2   0.   Note that / is bounded on  Y.

Proposition 2.6.   // || ||y  is admissible, then J: Y —♦ 2     is pseudomonotone

with respect to any dense subspace V of Y0.

Proof.   Let V be a dense subspace of YQ.   The finite continuity of / follows

from the well-known properties of the usual duality mapping  (cf. e.g. [6, §7]).

Let (y¿, z.) be a net such that z{ e Jy., y. eV,y. bounded, y  —» y eY tot

oiY, ZQ), z(—>zeZ fot oiZ, V) and lim sup (y¿, z.)<(y, z).   Since || ||y is

admissible, we have

llv||YWlz >iy- z) > lim sup(y¿. z¿) > lim inf(y¿, 2.)

= liminf||y.||y||2.Hz>||y!|y  and  ||z|||

because  || ||y is oiY, ZQ) l.s.c. and  || ||z is oiZ, V) l.s.c.    Consequently,

llylly = Miz aad (y- z) = llyllyllzllz' i<e-  z eJy-   Moreover, (y¿, z.) _ (y, z)

(and in addition  Hy^ly — ||y||y and  ||2.||z -. ||z||z).    Q.E.D.

The following lemma is, in some technical sense, a substitute for the notion

of mapping of type  (S)+ (cf. [6], [9]) whose introduction in our general context

seems useless.

Lemma 2.7.   Let iY, YQ; Z, ZQ) be a complementary system and let \T •. Y

—» 2   ; t e [0, l]i be a pseudomonotone homotopy with respect to a dense sub-

space  V of Yg.   Let J  be the duality mapping corresponding to an admissible

norm  || ||y on  Y.   If a net (r¿, y{, 2¿) satisfies z. e i] + T^.Xy,.), í¿ —» t, y¿ 6 V,

y. bounded, y.—* y e Y for oiY, ZQ), z.—*zeZ for oiZ, V) and lim supO^, 2¿)

<<y, z), then z e (/ + T.)iy), (y., z¿ —(y. z) and Hyjly — ||y||y.

Proof.   The first two assertions follow from Propositions 2.6 and 2.2, and it

suffices to prove the last assertion for a subnet.   Writing z{ = ui + v{ with u{ e

Jy ■ and vi £ Tt.iy{), we obtain, as in the proof of Proposition 2.2, u{ —» u for

o(Z, V) and lim sup(y¿, a)<(y, u).   It follows, by the argument of the proof of

Proposition 2.6, that ||y(.||y — ||y||y.    Q.E.D.
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3. Abstract existence theorems.  This section contains our main existence

theorems for functional equations involving mappings of monotone type in com-

plementary systems.   In the first theorem the mapping is assumed to be coercive,

an assumption which is progressively weakened in the following theorems.

Theorem 3.1.   Let (Y, YQ; Z, ZQ) be a complementary system and let T:

Y —» 2     be a mapping of type (M) with respect to a dense subspace V of Yn.

Suppose that T is coercive on  V with respect to some y~ e V, i.e., that

inf\(y -y, z)||y||_1; z e Ty\ -, + oo    as  ||y|| -» », y e V.

Then the range R (T) of T contains Z_.

Proof.   Let J be the directed set of all finite-dimensional subspaces F oí

V containing y   ordered by inclusion.   For each  F e S, denote by jp the injec-

tion of F into V, by jp the dual projection of Z onto F* and by Tp = fPTjp:

F —» 2       the Galerkin approximant of T.  Clearly, the mapping TF is upper

semicontinuous, takes values in the nonempty compact convex subsets of F* and

is coercive on  F.   This implies, by a standard argument (cf. e.g. [7, p. 10])

based on the multivalued version of the Brouwer fixed point theorem [6, §6], that

R( Tp) = F*.   In particular, given z e ZQ, there exists y F e F and zp e Typ

such that jpZp = jpz.   It follows from the coercivity of T that yp remains

bounded in  V as F eJ.   Hence, passing to a subnet, we can assume that yF —»

y e Y for o(Y, ZQ).   We have zp —> z for o(Z, V) because (22, zp) = (22, z) as

soon as  F contains zz.   Moreover, since z e ZQ,

'yF- ZP) =(yF- z)-*(y- z)-

Consequently, by the type (M) property of T, z e Ty.    Q.E.D.

If T is sequentially of type (M) with respect to any dense subspace  V of a

dense subspace V    of YQ  and if T is coercive on V    with respect to

y  e V1, then   R(T) D ZQ provided  YQ and  ZQ are separable.   The proof is

similar and is obtained by starting with an increasing sequence of finite-dimen-

sional subspaces of V    containing y~, whose union  V is dense in  V .

Example 3.2.   Let T be a maximal monotone mapping from a Banach space

X into 2       and consider the mapping T.: X** —» 2       whose graph is given by

gr Tj = |(x**, x*); there exists a net {x., x*) e gt T with

x. bounded in X, x. —» x** for ff(X    , X )
Z I

and x* —» x* in normi.
z

X*
Assume that  T.  is maximal monotone from  X** into 2     .   (This is the case for
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instance if T is the subdifferential of a convex function [13], [16], or the mono-

tone operator associated with a saddle function [18].) Then, by an easy general-

ization of the arguments of [16], RiTy) = X* when T is coercive on its domain

DiT) = \x £ X; Tx nonempty!

with respect to a point of its domain.  Under the additional assumptions that D{T)

is a dense subspace of X and T is finitely continuous from DiT) to the

ff(X*, DiT)) topology of X*, this result also follows from Theorem 3.1.   Indeed,

one can then show that in the complementary system (X**, X; X*, X*), Ty is

pseudomonotone with respect to DiT).

Example 3.3.  Let T be a maximal monotone mapping from a Banach space

X into 2X* and define T2: X** — 2X* by

gr T2 = i(x**, x*); there exists a net (x., x*) £ gt T with

x. bounded in X, x._» x** for oiX    , X ),

**-*x* for oiX*, DiT)) and lim sup(x., x*)< (x**, x*)(.

If DiT) is a dense subspace of X and if T is finitely continuous from DiT) to

the   o-(X*, DiT)) topology of X*, then, in the complementary system (X**, X;

X*, X*), T2 is of type (M) with respect to DiT).   Consequently RiT2) = X* when

T is coercive on DiT) with respect to a point of D(T).   This result essentially

contains the existence theorem of Donaldson [12].

Remark 3.4.   It is not known whether the range of a maximal monotone map-

ping T: X*—» 2   , X a Banach space, T coercive on DiT) with respect to a

point of D (T), is all of X.   This is true if DiT) = X* and T is single-valued and

finitely continuous from X* to the ff(X, X*) topology of X (cf. [4]; however it

is not clear whether a mapping satisfying all those conditions exists, unless  X

is reflexive) or more generally (cf. [16, p. 387]), using the arguments of [32, p.

405-406], if the norm closure of RiT) is convex.   By means of the method of

Theorem 3.1, one can give another extension of the result of [4]: RiT) = X if

DiT) is a   0"(X*, X) dense subspace of X* and T is finitely continuous from

DiT) to the oiX, DiT)) topology of X.

Theorem 3.5.   Let iY, YQ; Z, ZQ) be a complementary system and let T:

DiT) C V —► 2     be a pseudomonotone mapping with respect to a dense subspace

V of Yq.   Suppose that for some y  £ V,

M{<y-y. z)h\\~l + Mi* eTy!-^ + 0o      as ||y|| — ~, y £DiT),

and that there exists h: R   —♦ R    continuous such that inf Ky-y", z); z £ Ty\>
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-M||y||) for y £V with ||y|| sufficiently large.  Suppose also that Y admits an

equivalent admissible norm  || ||y.   Then   R(T)DZq.

Proof.  For simplicity we will assume that T is single-valued and that the

restriction of || ||y to YQ is Gateaux differentiable.   The same arguments carry over

immediately to the general case, using the degree theory for multivalued mappings

(cf. [20]).

Since the assumptions and the conclusion are invariant by adding to T a

fixed element of ZQ or by translating T by a fixed element of V, it suffices to

show that 0 e R(T) and we can assume that y = 0.   Endow   Y  with || ||y.

Choose R > 0 so large that

(3-D (y.Ty)\\y\\Y-1 + \\Ty\\z>0

tot all y £ SR(0, Y) O D(T), and that for some H > 0,

(3.2) <y, Ty)>-H

for all y on the sphere SR(0, V).   Let /: Y—»2     be the duality mapping corre-

sponding to  I ||y.  Note that / is single-valued on YQ.   For / e [0, l], define

T  = (1 - t)T + tj.   Let J   be the directed set of all finite-dimensional subspaces

F of V and denote by Tp, J F, T   P the Galerkin approximants of T, J, T

respectively.   Clearly, Ttp = (1 - t)T F + tj p.

If there exists Fn e? such that T( F(y) 4 0 for all F^>FQ, te [0, l] and

y £ SR(0, F), then, by a finite-dimensional degree argument (cf. e.g., [9, Theorem 8]),

we can find for each F D FQ an element yF £ BR(0, F) satisfying TF(yF) = 0.

It is then easy to go to the limit using the pseudomonotonicity of T and to obtain

0 £ R(T).

In the contrary case, there exist a cofinal subset of J, still denoted by \F\

for simplicity, tF £ [0, l] and yp £SR(0, F) such that Tt    p(y p) = 0-  We can

assume that tp —» t £ [0, l] anti y F —» y £ Y for ff (Y, ZQ).   Three cases must be

distinguished: t = 0, 0 < t < 1  and  t = 1.   If / = 0,  then TyF —» 0, for

ff(Z, V) because

(u, TyF) = (1 - tp)~l (u, Ttp(yp)) - tp(l - tF)~ \u, JyF)

(3.3)

= -tF(l-tp)-\u, JyF)

as soon as F contains 22.   Moreover,

(yF, Typ)--tp(\-tp)-1\\yF\\2Y^o.

Consequently, by the pseudomonotonicity of T, Ty = 0, and thus 0 e R(T).  If

0 < t < 1, then T(yF —* 0 for ff (Z, V) because, using (3.3),
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(u, Ttiyp)) = (u, Ttpiyp)) + itp - t)i(u, Typ) - (u, Jyp))

= (tF-t)i-tpil-tp)-1-l)(u,Jyp)

as soon as  F contains a.   Moreover

<yF, Ttiyp)) = (/F - t)(- tpil - tp)-1- l)\\yp\\2 - 0.

Consequently, by the pseudomonotonicity of T{ (cf. Proposition 2.2), 0 e T (y).

In addition, by Lemma 2.7, ||yF||y—> ||y||y, so that y eSRiO, Y). But this con-

tradicts (3.1) because it follows from 0 = (1 - r)Ty + tz with z £ Jy that

(y. Ty) My1 + \\Ty\\z — Hi - *>" !R + Kl - t)'lR . 0.

Finally, if / = 1, then

<yF. TyF) - - ¿f(1 - ^-'llypllv- - - ~.

which contradicts (3.2).    Q.E.D.

Remark 3.6.   The assumption involving b is automatically satisfied if T is

monotone.   It can also be replaced by the assumption that T is strongly quasi-

bounded on  V with respect to y .

In the sequential version of Theorem 3.5, one requires that T be sequentially

pseudomonotone with respect to any dense subspace  V of a dense subspace  V

of YQ, that y £ V', that the inequality inf Ky-y» z)\ z e Ty\>- h (||y||) holds for

y £ V   with  ||y|| sufficiently large, and that YQ and Z0 be separable.

As a specialization of Theorem 3.5, we have

Corollary 3.7.   Let iY, YQ; Z, ZQ) be a complementary system and let T:

DiT) C Y—► 2     be a pseudomonotone mapping with respect to a dense subspace

V of Y0.   Suppose that there exists  k > 0 such that for some y   £ V,

inf|(y-y,2>||y||-1;2e Ty\ > - k

for y £ DiT) with  \\y\\ sufficiently large, and that T~  : Z—» 2Y  is bounded on

RiT).   Suppose also that Y admits an equivalent admissible norm || ||y.   Then

RiT) D Z0.

Theorems 3.1 and 3.5 generalize results of Bre'zis [2], Browder [3], [7], [9]

and Browder-Hess [11].   The very weak coercivity condition in Theorem 3.5 was

introduced in [9] as a weakening of the so-called subcoercivity condition of

Corollary 3.7 considered in [ll].   These asymptotic conditions imply the exis-

tence of a global a priori bound, i.e. that T~  : Z —> 2     is bounded on RiT).

(Note that the example  T: R —» R: x —» x2 shows that a global a priori bound is

not sufficient in general to get surjectivity.) In the next two theorems, only a local
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a priori bound is needed.   However some additional structural condition must be

imposed on the mapping T, either some oddness condition or some stronger mono-

tonicity condition.

Theorem 3.8.   Let (Y, Y0; Z, ZQ) be a complementary system and let

\T(: D(T() C Y —♦ 2   ; t e [0, l]\ be a pseudomonotone homotopy with respect to a

dense subspace V of YQ.   Suppose that Tj  is odd on   V outside some ball of V.

Suppose that each z e ZQ has a (norm) neighbourhood K 272 Z such that

\J\T~l(z);z eTl  and te [0, l]\

is bounded in Y.   Suppose also that Y admits an equivalent admissible norm

|| || y.   Then R(Tt) D ZQ for each t e [0, 1].

Proof. For simplicity we will assume that T is single-valued and that the

restriction of || ||y to YQ is Gateaux differentiable. The same arguments carry

over immediately to the general case, using the Borsuk-Ulam theorem for multi-

valued mappings (cf. [21]).

It suffices to show that R(T0) 3 Zn.   Let z eZQ.   Endow Y with  || ||y.   By a

compactness argument, there exist a neighbourhood Jl in Z of the segment [0, z]

and R > 0 such that T((y) 4 ll tot all t 6 [O, l] and y £ SRiO, Y) O D(Tf).

Taking R larger if necessary, we can assume that Tj(- y) = - Tj(y) for y e V

with y 4 BR(0, V).   Let /: Y —» 2     be the duality mapping corresponding to

|| || y.   Define   T¡( =T( + eJ and choose e0 > 0 such that Tf((y) 4 [0, z] tot all

r e [0, 1], 0 < e < «„ and y 6 SR(0, Y) n D(T().   Let ? be the directed set of all

finite-dimensional subspaces of  V and denote by T   F, JF, T, ( F the Galerkin

approximants of T , J, T  (  respectively.   Clearly, Tt ( p = Tf F + e]F and

T,     - is odd on F outside Bp(0, F).
• ' cr

Suppose first that for each e with 0 < e < eQ and each F ej there exists

F' = F'(e, F) with F'^F such that Tf ( p,(y) 4 tj$A*) tot all t e [O, l], y e

SR(0, F1) and ¿f e [0, 1].   Then, by a finite-dimensional degree argument (cf. e.g.

[9, Theorem 9]) based on the Borsuk-Ulam theorem, we can find ye pi £ BR(0, F ) satis-

fying r0fFi(y(Fi) = jpAz).   Consider now the cofinal subset of J   consisting

of those F'(e, F)'s  as e —» 0 and F e?.  We can assume that yf F» —> y e Y for

ff(Y, Z0).  We have  T^ F<) — z for ff(Z, V) because

(u, T0(yfP,)) = <«, T0/yeP,))-(<*, h(,P>)

= (zz, z)-e(22, /yeF'>

as soon as  F    contains u.   Moreover, since z e ZQ,
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<ye.F » « to^í.f ' )) = (yf#F '. z> -f \\ye,F > Il y — <y« z>-

Consequently, by the pseudomonotonicity of TQ, z = T0iy).  Thus z £ RiT).

In the contrary case, there exist ( with 0 < e < e0, a cofinal subset of ?,

still denoted by {F| for simplicity, tp £ [0, 1], yp e CR(0, F) and £F e [0, l]

such that Tt    (Fiyp) = ^pjFiz).   We can assume that tp —> t £ [0, 1], £F —» £

£ [0, I], and y'F'-*y e Y for ff(Y, Z„).  We have 7",    £(yF) — f z for ff(Z, V)

because

<". rrF.i(yF))=(", fFz>

as soon as F contains a.  Moreover, since z £ Zn,

<yF» T/F,e(yF)> = <yF. £F*> — <y, &>•

Consequently, since \T'  f: Y —» 2   ; r e [0, 1]¡ is a pseudomonotone homotopy

with respect to V (cf. Proposition 2.2), f z = T £(y).   In addition, by Lemma

^•7» llyFlly ~* llylly» so tnat y e^R(0, v).   But this contradicts the definition of

f0.   Q.E.D.

As a specialization of Theorem 3.8, we have

Corollary 3.9.   Lei (Y, Yn; Z, Z0) be a complementary system and let T:

DiT) C Y —♦ 2     ¿>e a pseudomonotone mapping with respect to a dense subspace V

of Yq.   Suppose that T is odd on V outside some ball of V.   Suppose that each

z £ ZQ has a (norm) neighbourhood in Z whose image by T~    is bounded in Y.

Suppose also that Y admits an equivalent admissible norm || ||y.   Tie72 RiT)DZ0.

Theorem 3.10.   Let iY, Yn; Z, Zn) be a complementary system and let T:

Y —♦ 2     be a pseudomonotone mapping with respect to a dense subspace V of Yn.

Suppose that T is monotone and that its graph is closed in the following sense:

if (y., z) £ gr T, y¡—* y e Y for oiY, Zn), y¿ bounded, z{—+z £ ZQ in norm,

then (y, z) £ gtT.   Suppose that each z £Zq has a (norm) neighbourhood in Z

whose image by T~    is bounded in Y.   Suppose also that Y admits an equivalent

admissible norm || ||y.   Finally suppose that T ÍV) meets ZQ.   Then i?(T)3Z0.

Proof.  Since the assumptions and the conclusion are invariant by translating

T by a fixed element of V, we can assume that T(0) meets ZQ.  Let / be the

duality mapping corresponding to || ||y.  Define Tf =T + tj, e > 0.   By Proposi-

tion 2.2, the monotonicity of T and Theorem 3.1, RiTf) D ZQ for each ( > 0.

Moreover, since T~    is bounded on its domain, the relations

(y-y't z-z>) =(y-y ', a-a') +(y-y',v-v')

>e(y-y',v-v')>(i\\y\\Y-\\y'\\Y)2,
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where z = u + v with  u £Ty and v £ Jy and similarly for z , show that the appli-

cation  z H» ||T~ (z)||y is single-valued and continuous on R(T() fot the norm of Z.

Let z eZQ and take yf £T~1(z). We will show that y( remains bounded in Y as

e I 0.  Then, taking a subnet such that y( —» y £ Y tot o(Y, ZQ) and writing z =

u( + ev( with u( £ Ty( and  v( £ Jy(, we obtain af —» z in norm, so that, by the

closedness of the graph of T, z £ Ty.  To show that yf remains bounded in Y as

f 1 0, take zQ e T(0) n ZQ.   By a compactness argument, there exists o > 0 such

that

T-Mzz e Z;dist(z2;[z, z1])<oUT-1Jl

is bounded in  Y, say  ||T~ (iz)||y < K for all k eîl.   Choose eQ with 0 < eQ <

Ö/2K.  We claim that HT^MHy < 2K for all 22 £ [z, Zj] and 0 < í < fQ.   Indeed,

if this is not true, then for some e with 0 < e < eQ and some 22 £ [z, Zj],

\\T;Hu)\\Y>2K. Since  ||T71U1>||V = 0 and I^KOfly is continuous on R(T()

3Z0, there exists z2 £ [z, Zj] with  ||T~ (z2)||y = 2K.  Write z2 = zz2 + ev2 with

"2 e ^2 ani* v2 e /y2" ^e nave lly 2Ü"V = ^* ®n tne otner hand, the distance

from 222 to z2 £ [z, Zj] is less than ||ff2||z = e2K < 8. Thus u2 £% and con-

sequently y2 £ T~ (u2) must satisfy  ||y2||y < K, a contradiction.    Q.E.D.

Remark 3.11.  If T: Y —♦ 2    is strictly monotone (i.e. (y} - y2, zl - z2) > 0

for (yj, Zj) and (y2, z2) in gr T with yj 4 y2), then the equation z £ Ty with

z e Z has at most one solution y £ D(T).

Remark 3.12.   In the reflexive situation Y = YQ, Z = ZQ, if T: Y —» 2    is

monotone and pseudomonotone with respect to a dense subspace  V of Y0, then T

is maximal monotone.  Indeed, endow Y with a strictly convex equivalent norm

(cf. [26]); it follows from Proposition 2.2 and Theorem 3.1 that R(J + T)= Z,

which implies that T is maximal monotone (cf. [33, p. 78]).

When YQ and ZQ are separable, Theorems 3.8 and 3.10 have sequential

versions: one requires in Theorem 3.8 that |Tf: D(T() C Y —♦ 2   ; / £ [O, l]| be

sequentially pseudomonotone with respect to any dense subspace  V of a dense sub-

space V    of Y0 and that Tj be odd on  V    outside some ball of V , and in

Theorem 3.10 that T be sequentially pseudomonotone with respect to any dense

subspace V of a dense subspace V   of YQ, that its graph be sequentially closed,

and that T(V ) meet ZQ.

Theorem 3.8 generalizes and sharpens results of Browder \S], [9] where a

global a priori bound is required.   Theorem 3-10 is a partial extension of

Rockafellar's result [32] that a maximal monotone mapping T from a reflexive

Banach space X into 2      is onto if (and only if) each point of X* has a neigh-

bourhood whose image by T~    is bounded in X.

The weakening of the usual asymptotic condition of coercivity is crucial for

the applications, as is seen from the following example.
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Example 3.13.  Consider the mapping 5: DiS) C LMiÜ) —> L-iü) of Example

2.3, where M and M ate assumed to have continuous first derivatives p and p

respectively.   Then S is coercive on EM(0) if and only if Er;i®) = L-iQ).  The

"if" part follows from the inequality

p(a)a = Miu) + Mipiu)) > M(a),      a £ R,

and Lemma 3-14 below. To verify the "only if" part, note that if S is coercive

on EM(0), then S~ is bounded on the dense subspace of E-(fl) consisting of

all bounded functions with compact support in 0, and thus, by the discussion in

Example 2.3, E-(il) = L-iQ).  Of course, EAQ) ¿ LAQ) and E-(0) ± L-iQ)
Al M mm MM

can happen simultaneously (cf. e.g. Í24, p. 28]), in which case S is not every-

where defined on  L^iQ), nor bounded or coercive on  EMiQ), and S~    is not

bounded on  E-(fi).   We will see in §4 that each point of E-ÁQ) has a neighbourhood in
M m

L-iQ) whose image by 5~    is bounded in L-(fi), so that the assumptions of
M M

Corollary 3.9 and Theorem 3.10 are satisfied by S.   The present discussion also

shows that the range of T in Corollary 3.9 and Theorem 3.10 is not necessarily

all of Z.

Lemma 3.14.   Let Q be an open subset of R" and let M be a N-function.   If

Hi)/,*)*-

L-iQ) = E-(Q), rie«
M M

+ oo

fls ll"ll(M) —>+ °°, u e LMiQ).

Proof.   First assume that Q has infinite measure.   Then M has the A2

property for all values of t: there exists k such that M{2t) < kMit) tot t £ R.

Necessarily, k > 2.   Defining a function /: [l, + °o[ —' [k, + °o[ by

/(r) = K(l - \)kn+l + \k"+2)    if r e [2», 2"+1] and r = (1 - A)2" + A2"
+1

we obtain M(rr) < fir) Mit) fot t £ R and r> 1, i.e. Mifir)r~ lt) > /(r)M(í) for r e R

and r> 1.  Since fi^r'^ strictly increases from ^ to + « as r £ [l, + «[, its

reciprocal function g (s) is well defined and strictly increases from 1 to + °° as

s £ [k + <*>[, and we have

(3.4) Mist) > sg(s)M(r)

for t £ R and s > k.   Now take a £ L^SX) with ||a||(M) > k.   If  e > 0 satisfies

ll«ll(M)- £> k' thetl
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f0Miu)dx > i\\u\\(M) - e)gi\\u\\(M) - e)fo Miui\\u\\(M) - e)~l)dx

>(M(/M)-e¥W(«)-e)

by definition of the Luxemburg norm || ||fM). so that

JQA1(a)a*>H|(M)g(W|(A1)),

which proves the lemma when Í2 has infinite measure.

If Q has finite measure, then M has the A2 property for large values of t,

and thus (3.4) holds only for t > rn and s > k.   For a £ E AQ), denote by Q

the subset of Q where  |a(x)| > tQ.   As above we obtain

(3.5) /0/W^>ll"ll(M).«/ll"ll(M),ßa)

provided ||a|L...      > k, where ||a||(A1> „    denotes the Luxemburg norm of a in

LA)(ßa).   But there exists a constant c such that

WI(M),.ia < NI(M),0 < il"IU,Ou + Í1»IU.0\0B < 2H"ll(M).0„ + C

for all a £ LAQ).   Consequently the conclusion of the lemma follows from

(3.5).    Q.E.D.

We conclude this section with the following result where, simultaneously,

no global a priori bound is required and no additional structural condition is

imposed on the mapping T.

Theorem 3.15.   Let iY, Y0; Z, Z.) be a complementary system and let T:

Y —► 2     be a pseudomonotone mapping with respect to a dense subspace V of

Y«.   Suppose that the graph of T is closed in the following sense: if (y., z.)

£ gr T, y. —> y £ Y for oiY, Z_), y. bounded, z. —» z eZ. in norm, then (y, z)

£ gr T.   Suppose that there exists k > 0 such that, for some y € V,

(3.6) inf i(y-y, 2)||y||-,;ze Ty\ > - k

for y £ DiT) with \\y\\ sufficiently large, and that T~    is strongly quasi-

bounded on Z with respect to any z £ ZQ.   Suppose also that Y admits an

equivalent admissible norm || ||y.   Then RiT)^Z^.

Proof.   Translating T by a fixed element of V, we can assume that y = 0.

Let / be the duality mapping corresponding to  || ||y.  Define T   = T + (J, e>0.

By Proposition 2.2, condition (3.6) and Theorem 3.1, RiT() D ZQ for each í > 0.

Thus, given z e ZQ, we can write z = af + ev( with uf £ Ty   and v( £ Jy(.  We

will show chat y   remains bounded in  Y as  e 1 0, so that the conclusion follows
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as in the proof of Theorem 3.10.  If ||yf||y is large enough, then, by (3.6),

-%elly <<yí.«e>=<ye.*>-«llyílly.

which implies that ey   remains bounded in  Y.  Consequently 2Zf = z -ff   temains

bounded in Z. Since

(ye>"i-z) = -(y(,(vt)<0

and 7       is strongly quasibounded with respect to z, we conclude that yf

remains bounded in Y.    Q.E.D.

Theorem 3.15 is a variant of both Corollary 3.7 and Theorem 3.10.  It will be

seen in §4 that the mapping S of Example 3.13 satisfies the assumptions of

Theorem 3.15.  In the sequential version of Theorem 3.15» one requires that Y.

and Z- be separable, that T be sequentially pseudomonotone with respect to any

dense subspace V of a dense subspace V    of Y-, that y £V    and that the

graph of T be sequentially closed.

It may be of interest to compare in a familiar situation the various asymptotic and

structural conditions considered in this section. Let X be a reflexive Banach space and

let T: X —» X* be a single-valued mapping which is pseudomonotone with respect

to X.  Then T is onto if one of the following conditions is satisfied:

(1) T is coercive on X with respect to some x £ X (Theorem 3.1),

(2) T~  : X* —► 2     is bounded on  X*; moreover for some x~ € X and  i eR ,

(x-x, Tx)>-£||x|| for ||x|| sufficiently large (Corollary 3.7),

(3) for some x eX, (x - x, Tx^x^'1 + ||Tx|| —* + ~ when  ||x|| —» oo, more-

over, for some h: R   —» R   continuous, (x-x, Tx) > - b (\\x\\) fot \\x\\ suffi-

ciently large (Theorem 3.5),

(4) 7       is locally bounded on X*; moreover T is odd outside some ball of

X (Corollary 3.9),

(5) T'1 is locally bounded on X*; moreover T is monotone (Theorem 3.10),

(6) 7"      is strongly quasibounded on X* with respect to any x* eX*; more-

over for some x £ X and ieR, (x-x, Tx) > - k \\x\\ fot \\x\\ sufficiently large

(Theorem 3-15).

Remark 3.16.  In the sequential versions of the theorems of this section, if

the mappings are only sequentially of type (M) or sequentially pseudomonotone with

respect to one V, then the same conclusions hold, with essentially the same

proofs, provided the mappings are assumed to be strongly quasibounded.

Remark 3.17.   All the applications in §§4 and 5 could be treated by con-

sidering only the case V = Yn (cf. Remarks 4.7, 5.2 and 3.16).

4. Applications I.   Under suitable assumptions on the coefficients, systems

of the form
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(4.1) A(«)-   Z   (-l)HßaAa(x, «,..., V»»,,)
|a|<7B

with rapidly (or slowly) increasing coefficients define pseudomonotone mappings,

so that the results of §3 can be applied.   In this section we consider the case

where the A a's satisfy a monotonicity condition with respect to all the deriva-

tives of u.   For simplicity we discuss a single equation instead of a system.

Our results can also easily be extended to  "anisotropic" situations where the

rate of growth of Aa depends on a, as considered in [15] (see Example 4.12).

The following notations will be used.  If £ = {<fa; |a| <m\ £ RSm is an 722-jet,

with a = (ap • • •, an) a multi-index of integers and  |a| = al + ... + a^, then

¿= [<fa; |a| = 772! £ ftsm denotes its top order part and 77 = {zfa, \a] < m\ £ R5"1-1

its lower order part.   For 22 a derivable function, <f (22) denotes {£>   22; |a| < m\.

The nonnegative reciprocal function of a N-function M is denoted by M~ ,

N -K M means that there exists k such that N(t) < M(kt) tot large values of /,

and zV"4\M means that for each e > 0, N(t)/M(et) —» 0 as t —» 00.  One has

N < M if and only if M < Ñ, and N« M if and only if M-«< Ñ.   9(EM,r)

denotes those 22 in L^(ß) whose distance to EM(ß) (with respect to the Orlicz

norm) is strictly less than r and Br(0, LM) the ball in LM(ß) (with respect to

the Orlicz norm) of radius  r and center 0.   The inclusions •'(E^, 1) c£^(ß)

and LM(ß)C EN(ß) for N*KM hold (cf. [24]).

Let ß be an open subset of R".   The basic conditions imposed on the

coefficients A a of (4.1) are

(4.2) Carathéodory condition. Each A a(x, tf ) is a real-valued function

defined on ß x R m which is measurable in x for fixed  ¿f and continuous in  £

for fixed x.

(4.3) Growth condition.  There exists an zV-function M, a (x) e E-(ß) and b,

c £ R+ such that, for all |a| < 772, xeß and <f £ RSm,

|A(x, £)\<aix) + b   Z   M-'AKcÉA
|/3|<m P

(4.4) Monotonicity condition.  For all xeß and «f,<f   £ R "",

Z Ua(x.f)-Aa(x.f'))(fa-^)>0.
|aj<m

Let Y be a ff(II LM, II E-) closed subspace of W"LMiil) such that

where yo = yn »""E^iß); here M is the zV-function involved in (4.3).  Let / £

Yi.   The Variational Boundary Value Problem for Aiu) = / with respect to Y asks
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for an element u £ Y such that A A£iu)) e L-iQ) tot all  \a\ < m and a (a, v)

fiv) for all v £ YQ, where

a(a, v) = J    Z   Aai£iu))Davdx
HS -

is the Dirichlet form associated with A.   The analytical fact which allows the

application of the results of §3 to this problem is contained in

Theorem 4.1.   Let A  be an operator of the form (4.1) satisfying (4.2), (4.3)

and (4.4).   Let Y be a oill LM, U E-) closed subspace of W"LMiQ) satisfying

(4.5) 372«* let iY, Y0; Z, ZQ) be the complementary system generated by  Y in

(IJ LM, II EM; Il L-, Il E-).   Let T be the mapping from
m m M Ai

DiT) = \u £ Y; Aa(£(a)) e L-(fí) /or a// |a| < m\

into Z defined by \v, Tu) = a (a, v) for ail v e YQ.   Then T is pseudomonotone

with respect to any dense subspace V of YQ.

Remark 4.2.   By means of an argument similar to that used at the beginning of

the proof of Theorem 4.1 below, one can see that DiT) = \u £ Y;2iai     Aai£iu))D u

£ LxiQ)\.  Note also that (4.5) implies that (v, Ta) = a(a, v) for all a £ DiT) and

v £Y.

The following lemmas will be needed in the proof of Theorem 4.1.   In relation

with Lemma 4.3, we remark that the continuity result of [24, p. 170] cannot be

applied here to derive the finite continuity of T.   Lemma 4.5 is concerned with

maximal monotonicity; it generalizes a result of Donaldson [12, p. 519].

Lemma 4.3.   Suppose that (4.2) and (4.3) hold (with aix) £ L-iQ)).   Then the

mapping w = iwß)\ ß\<    l—* (^ a(^))| a\<     sends II E^   into U L- and is finitely

continuous from II EM  to the o"(Il L-, Yl E„) topology of II L-.

Proof.   It is immediate that A aiw) £ L-iQ) if w £ II EM.   We will show that

the mapping is continuous from each simplex in II EM to the o(II L-, IJ E^)

topology of u L-.   Let S = conv \w  , • • • , w'\ be a simplex in IJ EM and write

w = 2T  . X.w' £S with A. > 0 and £r  , A. = 1.   We have
7=1      I I  — !=1      I

U-lMicwß) = M-1mÍ¿ \.cwß\ < H-V¿ XMicwÚ,

which implies that each A Aw) remains bounded in  L-iQ) when  w runs over S.

It is then easy to complete the proof by means of the following lemma.    Q.E.D.
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Lemma 4.4 (cf. [24, p. 132]).   // a sequence g    £ L^(ß) converges a.e. to g

and if g    remains bounded in LN(ß), then g £ LNiQ) and g   —» g for o~iLN, E-).

Lemma 4.5.   Suppose that (4.2), (4.3) and (4.4) hold (with a (x) £ L-(ß)).
M

Let g £ Il LM  and h e II L- satisfy

(4.6) Ja   Z   (Aaiw)-ha)iwa-ga)dx>0
\a\<m

for ail w eu L°° ifz'/A compact support in ß.   TAerz Âa(g) = èa /or ail \<x\ <m.

Proof.   Let ß^ = \x e ß; |x| < k and  |f?a(x)| < £ for ail  |a| < m}.   Clearly,

Slk C ß^+j, and for each ball B, meas (ß n (ß\ß )) —> 0 as k —♦ oo.  Denote by

Xi. the characteristic function of ß,.   Fix k and replace zz; in (4.6) by wXí ~

gXk + SX/ = wk -gk + gl, where  / > k:

o< fj]My-gi + gi-i>»-gí+¿-«a)i

+ 1 Z»* - «* + «') - *a)(^ - «£)«**■
•2Q,

The first integral of the right-hand side is zero because  A a(wk - g   + g ) -

Aa(0) = 0 outside ß^  and ga - ga= 0 in ß/; the second integral goes to zero

as  I —» + oo, and the last integral is equal to

¿Zw>*-«*+«*)-*.)<»*-«t>*

because wa - g a = 0 outside ß,.   Hence, letting  / —► oo, we obtain

(4-7> foZ^a("k>-ba)(wÍ-gka)dx>0

tot all tz/ e II L°° with compact support in ß.   Applying Minty's classical

argument [30] to the mapping w e II L^iíl, ) \—*iAaiw)) e II L-(ß,) which is

everywhere defined, monotone and finitely continuous by Lemma 4.3, we deduce

from (4.7) that A aig) = h a a.e. in ßfe for all |a| < m. Since k was arbitrary,

-4a(g) = ba a.e. in ß for all  |a| < 772.    Q.E.D.

Remark 4.6.  Suppose that E-(ß) = L-(ß) and write X = TJ EM, X* = II L-,

X**= TJ LM.   Then, using the method of Lemma 4.5, one can show that the map-
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ping S: X —-♦ X*: w r—»(Aa(a>)) satisfies the assumption of Example 3-2: S. is

maximal monotone (and is given by S,: D (S.) C X** —> X*: w (—» (A aiw)) with

DiSy) = \w £ X**; A a(w) e L-(Q) for all  |a| < ml).   It is not known whether the

analogous result is true for the mapping  T|y  : Y0 —» YJ of Theorem 4.1 (the

answer is yes when T|y    is the gradient of a convex functional on  Y-, cf. [16]).

It is not even known whether the mapping T: DiT) C Y** —> YÎ is always maxi-

mal monotone (cf. [17]).

Proof of Theorem 4.1.   Let V be a dense subspace of Y-.   By Lemma 4.3,

V C DiT) and T is finitely continuous from V to the oiZ, V) topology of Z.   Let

a;. be a net with af £ V, u{ bounded, a. —♦ a £ Y tot oiY, ZQ), Tu. —* f £ Z tot

oiZ, VQ), and

.(4.8) lim sup<a(., Tu.) < (a, />.

We must prove that a £ DiT), Tu - f and (a , Ta .) —♦ (u, f).   As usual, one can

pass to a subnet if necessary.

First we show that for each  |a| < 772, A AC (a.)) remains bounded in L-iQ).

Let w = (wJ e II EM.  We have

(4.9) j ZWa^K-)) - Aaiw))iDaui - wa)dx > 0

i.e.,

(ZAai^ut))wadx
JQ

< fQZAaitiut))Dau.dx + /oI»Kax - ^XXMD*«,. a*x.

The first integral of the right-hand side remains bounded from above by (4.8) (if

i > some ¿0), the second integral is independent of « and the last integral remains

bounded.   Hence, passing to a trivial subnet, each Aa(£(a¿)) remains bounded in

L-iQ) tot oiL-, EM), i.e., remains bounded in L_(ii).
m m      m M

Consequently, we can assume that each Aa(£(a¿)) —* ha £ L-(Q) for

tr(L-, EM).   It follows that the linear form / 6 Z = YÎ can be identified to iha) £
m      m

II L-.   More precisely, the action of / over V is clearly given by

{v,f)={¿ZhaDavdx,       v£V;

since  V is dense in  YQ and  YQ satisfies (4.5), this formula also describes the

action of / over Y, i.e., holds for v £ Y.  Now going to the limit in (4.9) and

using the facts that o-(II LM, U E-) induces oiY, ZA on Y and a (x) £ E-iQ),
m M m

we obtain
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/ Z^a -Aa(w))(Dau - wa)dx > 0

for all w = (wß) e TJ L°° with compact support in ÏÎ.  It then follows from Lemma

4.5 that Aa(<f(i2)) = ha fot all |a| < m, i.e. that 22 eD(T) and Tu = /.

To prove that («¿, Tu¡) —» (22, /), we first deduce from (4.9) that

L s lim inf Jq Y,Aa(Ç(Uj>)Dau.dX

>  f ¿ZAa(w)(Dau-w¿dx+  f ZV^K«"*
JQ Jq

fot all 22z = (wß) £ TJ L°° with compact support in H. Let ß^ = {x e ß; |x| < /« and

\D u(x)\ < k fot all |a| < m\ and denote as above by Xk c^e characteristic func-

tion of ß,.   Then

L > J Z Wa(X^(«)) - ¿J0»^'" - XfcDa22)zfx

+ J ZV°H0a«-XfcDa")rf'* + J"  Z^a^^X^""^,

where the first integral is zero.   Letting k —* + 00, we get

L > f £Aa(cf(„))Daaax.

This inequality and (4.8) imply (22¿, Tu^—*(u, j).    Q.E.D.

Remark 4.7.   The arguments in the above proof show that the graph of T in

Theorem 4.1 is closed with respect to the convergence involved in Theorems

3.10 and 3.15.  They also show that T is strongly quasibounded on Y with

respect to any y £ Y0. Similar remarks apply to Theorem 4.15.

The combination of Theorem 4.1 with the results of §3 leads to several

existence theorems for (4.1).   For instance:

Theorem 4.8.   Let A be an operator of the form (4.1) satisfying (4.2), (4.3)

and(A.A).   Let Y be a o(U LM, U E-) closed subspace of VfmLMiÙ) satisfying

(4.5).  Suppose that a(u, u) ||«|£,{m)-* + °° as H8llm.(Air* + °° in y0"   Then' for

each ff(II EM, TJ E-) continuous linear form f on   YQ,  the V.B.V.P. for  A(u)

= / with respect to Y has at least one solution.

Theorem 4.9.   Let A be an operator of the form (4.1) satisfying (4.2), (4.3)

andiA.A).   Let Y be a ff(II LM, II E-) closed subspace of VfmLM(ü) satisfying

(4.5).   Suppose that for each a(U EM, TJ E-) continuous linear form f on YQ

there exist a constant K and a neighbourhood li of f in YJ such that ¡or any

g eîl and any solution u of the V.B.V.P. for A(u) = g with respect to Y,
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||a||m fAj.< K.   Then, for each oiïl E^, Il E-) continuous linear form f on  Yn, the

V.B.V.P. for A(a) = / with respect to Y has at least one solution.

Remark 4.10.   If condition (4.4) is strenghthened to

X v4au.£)-Aau. £'))(£,-f;)>o
\a\<m

tot all x £ Q and ¿j, ¿j   e R m with £ /= B,  , then the mapping  T is strictly mono-

tone, and the solutions in Theorems 4.8 and 4.9 are unique.

Concrete analytical conditions on the coefficients A a   implying coercivity or

a local a priori bound can be deduced from Lemma 3.14 or from the treatment of

the following example respectively.

Example 4.11.  Consider the Dirichlet problem for the operator

At«)*  £    (- l)\a\DaipiDau))

H<m

on an open subset Q of R" with the segment property.   Here p: R —► R is a non-

decreasing odd continuous function with p(+ <*>) = + °°.   Write Mit) = ft0pis)ds.

Then the assumptions (4.2), (4.3), (4.4) of Theorem 4.9 are easily verified, and

Theorem 1.3 implies that Y = WmLMiQ) satisfies (4.5).   The dual Z of YQ =

WmEM(0) is

W-™L-iQ) . if e I* (Q); /-,£(- l)Woa/a with /a e L-(0)l,
' |a|<m >

and the subspace ZQ of  Vg consisting of those linear forms on  V0 which are

a(II E„, IJ E-) continuous is
m M

W-mE-iQ) = [f£ î'(Q);/=    Z    (-AX   with/a6E5(Q)l.
M ' |a|<m j

To verify the local a priori bound, let / = (/a) £ ZQ.   Choose c such that

jQMi2fa)dx < c tot all  \a\<m, and define

1=4= (*a> e Z; Jq ^(2«a) < c + 1 for all |a| < tt|.

H is a neighbourhood of / in Z since the functional aix) —» JQ M(a(x)) a*x is

continuous on •>(£-, 1) (because it is convex on  L-iQ), finite on X-(fi) 3
M MM

?(£-, 1) and bounded from above on  ß,(0, L-), cf. [24, p. 74]).   We claim that
M i M

the possible solutions of the V.B.V.P. for Aiu) = g with respect to  Y remain

bounded in  Y as g e JI.   Indeed, if a is such a solution, then

fQZpiDau)D%dx= f £gaDavdx
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for all v £ YQ, and thus for all v e Y since (4.5) holds.   In particular,

f'£p(Dau)Daudx=  f ZgaDaudx.
Jq Jq

The left-hand side is greater than /ß2/M(Da22)ax, and the right-hand side is less

than

f LM(2ga)dx+  f TM(ÍDau)dx<c' +- ( TM(Dau)dx.
JQ jq'~'   \2      } 2 Ja

Consequently,

f    Z   M(Dazz)zix<2c',

which implies that u remains bounded in  Y.   Theorem 4.9 can thus be applied: for

each / e W-mE-(ü), the V.B.V.P. for A(u) = / with respect to W^L^ß) has at

least one solution.

Example 4.12.   We indicate briefly a simple anisotropic situation to which the

method of Theorem 4.9 can be applied.   Consider the Dirichlet problem for the

operator

Aiu)=    Z  (- D^DaipaiDau))

\a\<m

on a bounded open subset ß of R" with the segment property.   For each  a, pa:

R —* R is a nondecreasing odd continuous function with pai+ oo) = + oo.   Write

Mait) = jl0pAs)ds and consider the complementary system  (IlLM  , TJ EM  ;

TJ L-  , II E_ ) and the space  Y = ff(II LM   ,11 E- )cl3)(ß).   If Ma > MR for
Ma/Ma m a M a P

a < ß (i.e.  ai < ß. for each  i « 1, • • •, »), then  YQ = Y O II EM    is

ff(TJ LM   , II L- ) dense in  Y.   The proof is similar to that of Theorem 1.3; the
m a. Ma

assumptions  ß bounded and Ma~>- M ß for   a < ß (which can be slightly weakened

using Proposition 4.13 below) are needed in order to apply Leibnitz's formula.   The

arguments of Theorem 4.1 and Example 4.11 carry over with little change, and we

obtain: for each / e3)'(ß) which can be written as

/= Z (-i)HDa/a
|a|<M

with fae E- (ß), there exists 22 e Y such that pa(Dau) e L- (ß) for all  |a| < m
M CL "* o.

and a(u, v) = f(v) fot all v e YQ.   In the case where pa has polynomial growth

for |a| =772, the result of this example is related, although different, to the exis-

tence theorems of Browder [9] and Hess [22], [23] about equations with strongly

nonlinear lower order terms.
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We now turn to the case where  ß is bounded with, say, a locally Lipschitzian

boundary so that the generalized version of the Sobolev imbedding theorem [13] is

valid on Q.  Then the growth condition (4.3) can be weakened and a lower order

perturbation can be introduced.

First we recall the result of [13].  Let CQ be an N-function and suppose first

n > 2.   Changing the values of CQ on a bounded subset of R, one can assume

¡I C-lit)/tln/ndt < + ~.  If j"~ C-lit)/tln/ndt = + oo,define a new N-function

Cj by Cy   is) = fg Cq  it)/t dt.  Repeating this process, one obtains a finite

sequence of /V-functions C0, Cy,---, C , where a = qiC0) < n is such that

J? C;lyit)/tln/ndt = + oo but  /"C"\t)/tl+l'ndt < +00. If „ = 1, write qiCQ) = 0.

Proposition 4.13 (cf. [13]).   Let Q be a bounded open subset of R" with

locally Lipschitzian boundary.   Let M be an N-function and let u £ WmLMiQ).

For m - qiM) < \a\ < m, write Ma = C     \a\ starting with C0 = M.   Then (a) for

m - qiM) < \a\ < m, Dau £ LM (Q) with continuous injection, and D u £ E^iQ)

with compact injection if N *« Ma; (b) for \a\ < m - qiM), Dau £ C(H) with com-

pact injection.  Moreover, if u £ WmE^iQ), then in (a), Dau £ EMJ.Q).

The following lemma completes Proposition 4.13.   It implies that the injec-

tion of WmLMiQ) into Wm'1LMiQ) is compact.

Lemma 4.14.   Let 0 < e < 1   and let CQ be a N-function such that

/J Cñlit)/t1+fdt < + oo and J7 CJ,(t)/i1+f A = + ~.   Then the N-function Cy

defined by C~lis) = /g C-Ht)/t1+€dt satisfies C0<-< Cy.

Proof.   It is easy to verify that, in general, C0"«K Cy if and only if

C71Ís)/Cq1Ís) -* 0 as s —» + ».  We have here

co'
— Çsc-Kt)/tl+idt
lis)Jo   °

= -i— [lc-Kù/t^dt + -±-[sc-0\t)/t^dt.
c-Ks)JO c-Hs)Jl
-o y*' o

The first term on the right-hand side —» 0 as s —» oo.  Writing t = Cn(r), the

second term becomes

cr'u)

co

_L_ f   ° rC¿ir)/C0ir)^dr
ñlis) JCÖ1(D

i       er H»)
- f Til/C0irY)'dr

(C-\s)J c-hi)

= JL_L_ [r/CoMH   ° ,       +-—   f 1/C0(r)^r.
íC-'U) c-^n      íC-1(s)-,C-1(l)
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The first term of the right-hand side —» 0 as s —» oo.  Since CQ(r) > r for f > rn,

the second term is less than

Cñhs)1 Tn 1 0    lS'

_i_   f ° ,       l/C0(r)í¿r + -JL_f i/r*¿r
eC(jHs)JC0-1(l) eC-1(s)J «

which clearly —► 0 as s —♦ oo.    Q.E.D.

With the notations of Proposition 4.13, the new growth condition imposed on

the coefficients of (4.1) is

(4.10) There exist a /V-function M, zV-functions N a satisfying M ■< Na tot

\a\ < m and Na< Mafot m - q(M) < \a\ < m, aa(x) e E- (ß) for |a| < m and
N a

b, c e R+ such that, for all \a\<m, xeß and f 6 RSm,

l¿«<*. f)| < flaW + 6    Z   Ñ^NÁctß).
\ß\<m P      P

(Note that the zV-functions Na fot \<x\ < m - z/(zM) can always be replaced by

greater zV-functions.  Combining this with the fact that any given L    function on

ß belongs to some EN(Ù) (cf. [24, p. 60]), we see that (4.10) holds as soon as

an analogous condition with only aa(x) e L (ß) for |a| < m - q(M) holds.  Similar

remarks apply to (5.1) in the next section.)

On the lower order perturbation

(4.11) B(«)=       Z     (-lP^By(x, u.V—^J,
|r|<m-i

we impose the related conditions

(4.12) Each By(x, r¡) is a real-valued function defined on ß x R m~    which

is measurable on x fot fixed r¡ and continuous in r¡ for fixed x.

(4.13) There exist zV-functions  Py satisfying Py-« M    fot m - q(M) < \y\

< 772-1, dy(x) eE-   (ß), d(x)eLHQ), e e C(Ri"-«(M)-1) and c £ R+ such
' tA y

that for all x eß and 77 6 R*"1"1 with component rf in R*"1-?'«'-1,

if   772-a(M)< |y|  < 772-1,

\By(x,rj)\<e(r,«)\d   (x)+ V P~ZlPs(cr,A
L m—q(M)<\&\<m-l J

if  |y| < 772 - q(M),

\B   (x, jf)\ < e(rf)\d(x) + Z PfaA
L 772-2i(M)<|S|<m_l J

Denote III _i      LN (ß) by TJ LN .  Let Y be a ff(II LN , Il E- ) closed
I **\£m    ¿1 a ' i' a zn a /v a

subspace of W'L^ß) such that

(4.14) v=tf(nLNa,rií-Ña)ciY0
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where Y0 = Y O WmEMiQ) = Y O II E^a. For instance, by a simple generalization

of Theorem  1.3,   Y = WmLMiQ) or   Y = W^LM(ß)   satisfy (4.14).   Let  / e Y*.

The V.B.V.P. /or  A(a) + ß(a) = / with respect to   Y   asks for an element

a  e Y   such that  AQ(£(a))  e L- (ß)   for all   \a\  < m  and   a(a, v) + ¿(a, i/) =

¡iv) for all t/ € Y0, where a(a, i0 and biu, v) ate the Dirichlet forms associated

with A and B respectively.   The following analogue of theorem 4.1 allows the

application of the results of §3 to this problem.

Theorem 415.   Let Q be a bounded open subset of R" with locally

Lipschitzian boundary.   Let A  be in operator of the form (4.1) satisfying (4.2),

(4.10), (4.4) and B an operator of the form (4.11) satisfying (4.12), (4.13).   Let Y

be a o\(n LN  , II E- ) closed subspace of WmLMiQ) satisfying (4.14) and let
™ a

(Y, Yn; Z, Zq) be the complementary system generated by Y in (II LN  ,11 EN  ;

II L—  , II E- ).   Let T be the mapping from
N a N a

DiT) = \u £ Y; AaiÇiu)) e LJja«î) for all \a\<m\

into Z defined by (v, Tu) = aiu, v) + biu, v) for all v £ YQ.   Then T is pseudo-

monotone with respect to any dense subspace V of Yn.

The following lemmas will be needed in the proof of Theorem 4.15 and later.

Lemma 4.16 is a generalized version of the Vitali convergence theorem.   Lemma

4.17 can be proved by standard arguments on Nemytskii operators as in [24, §17]

and by the method of Lemma 4.3.   Q is assumed to be bounded.

Lemma 4.16   (cf. [24, p. 99]).   // the sequence u^x) £ ENiQ) converges a.e.

in Q, then it converges in norm in EAQ) if and only if the norms are uniformly

absolutely continuous, i.e. for each e> 0 there exists 8> 0 such that ||a X llw

< f for all n and Q' C ß with meas(ß') < 8.

Lemma 4.17.   Let gix, u, v) = g(x, Uy, • • •, u¡, Vy, • • •, v.) be a real-valued

function defined on fixR xR' and satisfying the Carathéodory condition.   Sup-

pose that there exist N-functions N and N ,  a(x) e LNiQ), div) eC(R/) and

c. £ R    such that, for all x e Q, u e R' and v £ R/,

l«c:, a, v)\ <div)\aix) + ¿ N~lN.ic.u)\.

Then the mapping (a(x), vix)) -» gix, u(x)vix)) sends n.^E^, , 1/c.) x n.L°°(Q)i       i, j* i j

into L^(ß) and is finitely continuous to the oiL^,, E-) topology of LAQ); it is

uniformly bounded on each II B   (0, LN ) x II Br (0, L°°) when r. < l/c.for all
i   rj ty ¿ j      } l l

i = 1, • • •, /; moreover it is continuous to the norm topology of Ep(ß)  when

P « N.   If we let Nit) » t. N" Ht) = t and LN (ß) = LliQ), then the above mapping sends
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Il.iP(EN , l/c.) x TJ.L^ß) into Ll(Q) and is continuous; it is uniformly bounded
l IS ¿ 2 7

072 each U.B   (0,L    )xU.B   (0, L°°) when r. < l/c. for all i . I,.. ., /.
2   r,- N ¡ 1   sj ' '

Proof of Theorem 4.15.   Clearly T=TX+T2   where Tj is given by D(Tj) =

D(T) and (v. Tjzz) = a(u, v) for all w e Yn, and T2 by D(T2) . Y and (v, T2z/) =

£>(«, 1/) for all i> e YQ.   By a simple generalization of Theorem 4.1, Tj is pseudo-

monotone with respect to any dense subspace V of YQ.   We will show that T2 is

completely continuous (cf. Remark 2.5), and then the conclusion,of Theorem 4.15

will follow from Proposition 2.2.

Let zz. be a bounded net in Y such that 22. —» « e Y for a(Y, ZQ).   By Prop-

position 4.13, Dr22. —» D^zz in Ep   (ß) for ttz - qiM) < \y\ < m - 1 and in C(ß)

for |y| < m - qiM), so that, by Lemmas 4.16 and 4.17, B   (77(22 ¿)) —» B  (77(22)) in

Ejg  (ß) for m - qiM) < |y| < ttz - 1 and in L (ß) for |y| < m - qiM), which implies

T2(a.) — T2(22) in Z.    Q.E.D.

The existence theorems for (4.1) obtained in this section generalize results of

Browder [3], [7],   Theorem 4.8 (with a lower order perturbation as in Theorem 4.15)

also includes the result of Donaldson [12] where the conjugate N-functions are

required to have to A2 property.

5. Applications II. We continue the study of systems of the form (4.1) with

rapidly (or slowly) increasing coefficients and consider now the case where the

Aa's satisfy the monotonicity conditions introduced by Leray-Lions [25].

Let ß be a bounded open subset of R" with locally Lipschitzian boundary.

The basic conditions imposed on the coefficients Aa ate now, in addition to (4.2):

(5.1) There exist a zV-function M, N-functions N a satisfying M •< Na fot

\a\ < m, Na-< M tot \a\ = m and Na«Ma for 772- qiM) < \a\ < m, aa(x) e

E- (ß) for |a| « ttz, a Ax) e L- (ß) for |a| < 772, a /V-function P satisfying
N a N a

P«M, e e citfn-oWl-1) and c e R* such that for all x e ß and £ e R*m

with component t*» in RS7«-<?(M>- lf

if  \a\ = 77Z,

\Aaix,0\<eit«)\aaix)+   Z   N-alNßictß)+ £ P^N Act A;
I \0\=m P      P       m-q(M)<\ß\<m P      PJ

if   |a| < 77Z,

|Aa(x, 0\ < e(t«)\aa(x) +    Z    N^P^ß) + Z  , ^«N-icf j].
L \ß\=m m-<HMf<\ß\<m J

(5.2) For each x in ß, 77 e R5™"1, £ and C in RS'm with C4 C,

Z (Aa(x, C v) -Aa(x, C. vMCa-C ) > o-
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(5.3)  For each x in ß, C  and Ç in R*"2.

S  iAaix, Crj)-t'a)ita-C)^+oo

as  |£| —» + oo in R m, uniformly for bounded r¡ in R m~l

Let V be a or(II LNa, II E- ) closed subspace of WmLMiQ) such that (4.14)

holds.  Let / £ Y*.  The V.B.V.P. for A (a) « / a/i'/A respect to Y asks for an ele-

ment a £ Y such that Aa(£(a)) e L- (ß) for all |a| < m and a(a, v) « /(v) for

all t/ e Y0.

More generally we consider a one-parameter family of operators

(5.4) A lu) =  Z   (- l)lal Da¿a(x. a.V*«, /)

where t £ [0, l].  The coefficients AJx, ¿j, t) ate assumed to satisfy (4.2),  (5.1),

(5.2), (5.3) for each f ; moreover it is assumed that they are continuous in (f, t)

for fixed x, that the functions M, Na, aa(x), P. e and the constant c of (5.1) can

be chosen independently of t, and that the convergence in (5.3) is uniform in t.

Briefly we will say that (4.2), (5.1), (5.2), (5.3) are satisfied uniformly in r.

The following analogue of Theorems 4.1 and 4.15 generalizes results of

Leray-Lions [25] and Browder [7].

Theorem 5.1.   Let Q be a bounded open subset of Rn with locally

Lipschitzian boundary.   Let [Af; t £ [0, l]¡ be a one-parameter family of operators

of the form (5.4) satisfying (4.2), (5.1), (5.2), (5.3) uniformly in t.   Let Y be a

ff(II LN , u E- ) closed subspace of WmLAQ) satisfying (4.14) and let
n a N a

iY, YQ; Z, ZQ) ¿>e the complementary system generated by Y in (II LN  , II EN ;

II L-  , II E- ).   For each t, let T   be the mapping from
N a No *

DiT) = {a e Y; AAÇiu), t) £ Ljy   (ß) for all \a\ < m\
t ** Cl

into Z defined by (u, T(a) = at(a, v) for all v £ YQ, where a iu, v) is the Dirichlet

form associated with A(.   Then \T(: DiT() C Y -» Z; t £ [0, l]( is a sequentially

pseudomonotone homotopy with respect to any dense subspace V of Vg.

Remark 5.2.   By means of an argument similar to that used at the beginning of

the proof of Theorem 5.1 below, one can see that

DiT) = iu £ Y;    E   AAÇiu), t)Dau £ LliQ)\
I |a|<m t

= {ueY;    L Aa(£(a), t)Dau £ lHQ)}.
\ |o|=77l '

Proof of Theorem 5.1.   Let V be a dense subspace of Yn.   By a simple



NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 197

generalization of Lemma 4.3, V C D(T,) for each t and T is finitely continuous

from [0, l] x V to the cAZ, V) topology of Z.   Let (t., u¡) be a sequence with

ui e V- ui ~* u £ Y for °(Y' ZrA *i ""* *" Tt W -*feZ for <AZ, V) and

(5.5) lim sup ( u., Tf (u.)) < (zz, />.
z

We must prove that zz e D(T(), Tt(u) - f and (u¡t T( ,(ut), —» (22, f). As usual, one can pass

to a subsequence if necessary.

First we show that, for each |a| < 772, Aa(^(u^, t.) remains bounded in

L- (ß).  Since C ■« D implies that, for each e *> 0, Cis) < Dies) fot s * s    it
N a

follows from (5.1) that when |a| < ttz, for each e > 0, there exists K   such that

\Aa(x,tt)\<e(t«)\aa(x) + K£+ I Ñ^V*^)]
L m-qW)<\ß\<m J

for all x £ ß, <f e R m and / e [0, 1 ].  Thus, choosing e sufficiently small, say

1/f > supí||D^z2¿|LM y-, i = 1, 2, • • • and ttz - a(M) < \ß\ < m\, we deduce from

Lemma 4.17 that Aa(zf («.), /.), |a| < 772, remains bounded in L— (ß).   To see that
ZV CL

A (ef (22.), i.) also remains bounded in L- (ß) when |a| = m, let t/z = (w^ £
11 N a. "

IIi^i m ENß(ß).   By an argument similar to the preceding one, Aai£(w), rjiu^t^,

\a\ = ttz, remains bounded in L- (ß).  We have, by (5-2),
N a

L  Z   UB(£(22.), 1 ) - Aa(i(B,), 77(22A /.)) (D V -wa)dx>0,
" |a|=772 * •

i.e.

(„Zat,.), t>ad*

</    Z   Aa(Hu),tt)D\dx
la|<772

- /„,?    Aa(Ç(u),t)Dau dx+   f   Z   AaiCM. 77(22.), t)(wa-Dau)dx.
Ja\p\<m Jt.|af=7n 22* 2

The first integral of the right-hand side remains bounded from above by (5.5),

and the preceding discussion shows that the last two integrals remain bounded.

Hence Aa(<f (2z ), f.), |a| « 772, remains bounded in L- (ß) for ff(L- , EN ), i.e.

remains bounded in L— (ß).
Na

Consequently, we can assume that, for each |a| < ttz, Aa(<f («p, 1.) —♦ ba£

L- (Ù) fot a(L- E„ ).  It follows that the linear form f £Z =Y% can be identi-
N a N a  "a "

fied to (ha) eU L— .  More precisely the action of / over V is clearly given by
zv a
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(v, />=  f    E    haDavdx,       v e V.
Ja\a\<m

Since V is dense in YQ and  YQ satisfies (4.14), this formula also describes the

action of / over Y, i.e. holds for v e Y.   On the other hand, by Proposition 4.13,

we can assume that D a. —»Da a.e. in ß when  |a| < m.   We will show that this

almost everywhere convergence also holds (for a subsequence) when  \a\ = m.   It

will then follow from Lemma 4.4 that Aa(f (a), /) » ha for all \a\ <m, i.e., that

u e DiTt) and Ttiu) = /.

Let ß, = ix eß; |Daa(x)| < k tot all |a| = m\ and denote by \^ tne charac-

teristic function of ß,.   Clearly, ß, C ßfe+1 and meas (ß\ß^) —♦ 0 as k —♦ ».

Fix k and let I > k.   We have, by (5.2),

L     E   iAACiu), rriu), t.) - A0(^(B.), t ))iDau - Dau.)dx

< L E    iAaiCiu),rTiuXt.)-Aaiau).t))iDau-Dau)dx
- JQl |a|=m

< f   E   Ua(x,C(a). 77(a.), «P-A.tfUp. í.))(X/DaH-DV)ár
°|a|=77i

= r z Aa(f(«,), t.)Dau.dx- r e Aa(f(«), t)X,Daudx
J Oil a * ! ! •'<?l„l III

+   [,Z   AaiX,Ciu), rriu), t)iXlDau-Dau)dx.
J:t\a\=m

Going to the limit as i —» + «>, we obtain for the first integral of the right-hand

side

(5.6) limsup   f   E   AAÇiu), t)Dau.dx<   f   E   haDaudx

because of (5.5) and

(5.7) f   E   AJ^iilDVÄ-L?   haDaudx
Ja\a.\<m JU\*\<m

(the last convergence holds since Aa(f («.), ¿.)—> ¿a for o"(L- , EN ) and

D a—» D u in norm in E^ (ß) when  |a| < m).   The second integral converges

to - jQ'2\a\mhaxlDaudx.   Since, by Lemmas 4.16 and 4.17, Aa(y^(«), rtiu^,t^)

—* Aa(yZ(a), 77(a), i) in norm in E- (ß) when  |a| = m, the last integral also

converges.   Thus
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lim sup   f      Z  (Aai£iu), 77(22), | ) - A   iÇiu), t))iDau - Dau) dx
z-oo       J"k\a\=m i       i a- i       i i

-/0\Q,,?    tia-Aa«*,rtult))Daudx,

and letting / —» oo,

lim sup J0   Z   (Aa(C(u). 77(22.), i.) -A a(£(« A i(.))(Daz2 - Da«.)«fe < 0.

Since the integrand is nonnegative by (5.2), it converges to 0 in L (ß, ) as z —» 00.

On the other hand, by a previous argument,

Z  iAAtiu), t)-AaiCiu), Au), t))(DaU-Dau)-+0    in Ll(üt)

\a-\=m

as 2 —» 00.   Thus

Z   Ua(f («). <) - Aa(£(zz.), i.))(Da22 - DV) - 0    in L>(flfe).
|a|=nz

This is true for each  k, so that there is a subsequence such that

(5.8) Z   (Aa(t(u), t)-AaiÇiu), t))(Dau-Dau)-+0    a.e. in ß
|a|=m

as 2—»oo.   Now we can argue as in the classical case [25], [7], using the full

force of conditions (5.2) and (5.3).   It first follows from (5.8) and (5.3) that, for

a.e. xeß, £iu )(x) remains bounded in R m.   Taking, for a given x  , a sub-

sequence such that £iu.)ix°) —» £°', we deduce from (5.8) that

Z   iAaiÇiu)ix°), t)-AaiC°, 77(zz)(x0), t))(Dau(x°)-£0a) = 0,
|a|=m

which implies, by (5.2), £° = £(zz)(x°).   Therefore Çiujix0) converges for the

original sequence to £(«)(* ), and the almost everywhere convergence of Da2z¿ to

Du,   |a| = ttz, is proved.

To complete the proof of Theorem 5.1, it remains to show that (u., Ttiu.))

—*(u, f).   Because of (5-7) and (5.6), it suffices to verify that

(5.9) liminf   f   Z   Aa(Ç(u), t )Dau.dx >   f   Z   Aa(^(u), t)Daudx.
Í—    J0|a|=m '      ' l       -  jQ\a\=m

Define Q,   as above and fix k.   We have, by (5.2),

f   Z   iAa(XM, Au). t)-AaiaUl\ t))ixkDau-Dau)dx>0.
J0|a|=m k

Going to the limit as above,
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liminf Ja  E   AjÇiuJ. t)DaUidx

>-   [   T.   iAaixkau),rriu),t)-Aaitiu),t))xtDaudx

+   f     Z AaiX,£iu), rriu), t)Dau dx
J Q \a\=m

=   f    E Aai€iu),t)Daudx
JoH=™

+   L        E   Ua(0, 77(a), t) - Aa(i-(a), i))Daa ax.

Letting k —» t», we obtain (5.9).    Q.E.D.

Remark 5.3.   If the assumptions of Theorem 5-1 are verified and if B is a

perturbation of the form (4.11) satisfying (4.12) and (4.13), then \S : D(5 ) C Y

->Z;t£ [0, 1]¡ defined by D(S() = DiT() and (v, S(u) = af(a, v) + biu, v) fot all

v £ YQ is a sequentially pseudomonotone homotopy with respect to any dense sub-

space V of Y q.   Note also that Theorem 5.1 applies in particular to a single

operator A.   In this case the arguments of the above proof show that the graph of

T is sequentially closed with respect to the convergence involved in Theorem

3.10 and 3.I5.   Finally note that these arguments also show that |T : DiT ) C Y

—»Z; t £ [O, l]( is strongly quasibounded ön  Y with respect to any y £ Y..

The combination of Theorem 5.1 with the results of §3 leads to several

existence theorems for (4.1).   For instance:

Theorem 5.4.   Let Q be a bounded open subset of R" with locally

Lipschitzian boundary.   Let A be an operator of the form (4.1) satisfying (4.2),

(5.1), (5.2) and (5.3).   Let Y be a oiU LM  , II E- ) closed subspace of WmLAQ)
" a. N a ™

satisfying (4.14).   Suppose that a(a, ")||"l|^f1(A1)—» + °° as  INI   it¿\—* + °° in ^o*

Then for each ff(II EM , II E- ) continuous linear form f on Yn, the V.B.V.P.
" a N a "

for A (a) = / with respect to Y has at least one solution.

Theorem 5.5.   Let Q be a bounded open subset of R" with locally

Lipschitzian boundary.   Let [A ; t £ [O, l]\ be a one-parameter family of operators

of the form (5.4) satisfying (4.2), (5.1), (5.2), (5.3) uniformly in t.   Let Y be a

ff(n LN , Il E- ) closed subspace of WmLAQ) satisfying (4.14).   Suppose that
l" a. N a m

A.  is odd and that for each ff(II EN  , II E- ) continuous linear form f on Y0
i i, a. N cl

there exist a constant K and a neighbourhood 71 of f in Yg sacè that, for any

g £71, any t £ [O, l] and any solution a of the V.B.V.P. for A (a) = g with

respect to Y,   \\u\\   ,„,< K.   Then for each I £ [O, l] and each ff(II EN ,T¡ E- )
"m,{m)~ ™ a. N a
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continuous linear form f on YQ, the V.B.V.P. for A (u) = f with respect to Y

has at least one solution.

Concrete analytical conditions on the coefficients A a implying coercivity or

a local a priori bound can be deduced from Lemma 3.14 or from the treatment of

the following example respectively.

Example 5.6.   Consider the Dirichlet problem for the operator Piu) + A(u),

PU)m   Z   (-l)^Da(p(Dau)),
|a|=7B

A(zz)=   Z  (-D|a|DaAa(x, 22, .... V""1«)
|a|=m

+   Z   (-l)WoaAa(x, «, .... V"1«),
|a|<m

on a bounded open subset ß of R" with locally Lipschitzian boundary.   Here

p: R —» R is a strictly increasing odd continuous function with p(+ oo) = + oo.

Write M(t) = [l0p(s)ds.   It is assumed that the A^s  satisfy the growth condition

(5.1) with Na= M fot simplicity and the sign condition

(5.10) Z   Aa(x, £)£a>0
M<77Z

for all <f e R m.  To apply Theorem 5.5, we consider the one-parameter family

At(u) - P(z2) + (1 - z-)A(zz), t e [0, 1 ].   It is easily verified that (4.2), (5.1), (5.2),

(5-3) hold uniformly in t.   Clearly, A t is odd.  As before,  Y = VlmLM(Q) satisfies

(4.5), Y0 = W£EM(ß), Yj| = Z = W-mL-(Û) and the subspace Z„ of Y* consist-

ing of those linear forms on  YQ which are zj(TJE.,, TJEr:)  continuous in

Vf-mE-(Q).  To verify the local a priori bound, let /= (/a) eZQ.   Let r> 1,

choose c such that ^Mrf^dx < c for all |a| < 772, and define

ft={s = tea)eZ;/a^J^-1-1 fora11 M<4-

71 is a norm neighbourhood of / in Z (cf. Example 4.11).  We claim that if r is

taken large enough, then the possible solutions of the V.B.V.P. for A (u) = g

with respect to Y remain bounded in Y as g e 71 and / e [0, l].   Indeed, if 22 is

such a solution, then we obtain as in Example 4.11, using (5.10),

f   Z MiDau)dx<   f   Z   ÄKrgJax+   f   Z   M[-Dau)dx.
J%\=m - }Q\a\<m * JB|a|<«    ▼ /

Now, by Poincare"s inequality (Lemma 5.7 below), the last integral of the right-

hand side is less than
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-  („T   MiDau)dx+c     f    E  MÍ-^Dau)dx.
r   •/°H=™ ™ }%\=m    V    r )

Consequently a bound on /0 2|a|_   Af(D a)ax can be derived provided r > c

and r > 1 + c   c_ n.  It follows that D a,   |a| = m, remains bounded in L„(ß).
777    777, U »II» M

Hence, by Poincare's inequality (Corollary 5.8 below) a remains bounded in

W™LMiQ).  Theorem 5.5 can thus be applied: for each / 6 W~mE-iQ), the V.B.V.P.

for P(a) + A(a) = / with respect to W™LMiQ) has at least one solution.

Lemma 5.7.   Let Q be a bounded open subset of R".   Then there exist con-

Mic_ nDau)dx

slants c    and c    _ such that
771 777,0

f    E   MiDau)dx<cm f    E   .

for all u e WmLMiQ)

Proof.   It suffices to show that

(5.11) Ja M(a)ax < f^hd—Xix

fot all a e WqLmÍQ), where d is the diameter of ß.   First suppose that a e íD(íí).

Then

MM«,. ,,.... »„)) - « (/^ i (f. ...... ,„Wf)

and thus

(5.12) /„MUíGOWx < fQtt(d J2~k)\dx.

Now suppose that a 6 W0L„(ß) has compact support in ß and consider its

regularized function af (cf. Lemma 1.6).   Then (5.12) holds for u(:

fa^(ix))dx<faM(d(^(ix)j dx.

Since a   —► u fot 0"(í-«. E-) as t —» 0 and since the functional a(x) •-♦

/0 Miaix))dx is ffd-^j. E-) lower semicontinuous on  LAQ) (because it is the

convex functional conjugate to è(x)r—» fQMibix))dx on E-(ß), cf. [29, p. 220])," M

f„ M(a(x))ax < lim inf  f   M(a (x))ax.

On the other hand, writing ddu/dxy = v, we have
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Ja Miv(ix))dx = fa M [f ^vix -y)<f>fiy)dy~\dx

- S S „M(v(x-yV<t>e(y)dydx = jQ(M(v)\(x)dx.

If Jjj M(v)dx = + oo, then (5-12) holds trivially for u.   If /D M(v)dx < + oo, then

(M(v))(—» Miv) in L1(Q) as e —» 0, and consequently (5.12) holds for zz.   Finally,

let u be arbitrary in W0LM(Ù) and consider an open set Q  3Û with diameter

less than 2d.   Then the function u obtained by extending 22 by zero outside ß

belongs to WqLm(Q ) and has compact support in ß', so that

SQIM(u)dx<fQiM(2d-^jdx.

which implies (5.11).    Q.E.D.

Corollary 5.8.   Let ß be a bounded open subset of R".   Then the two norms

(X    llD^rf    andfZ   WD-u^f

are equivalent on WmLM(ß).

Proof.   If Dau remains bounded in L„(ß) for each  |a| = ttz, then for some

k>0, fQ MiDau/k)dx < 1 for each  |a| = m.   By Lemma 5-7,

/    Z   MiD«u/kcmQ)dx<cmc>,
|a|<m

which implies that D u remains bounded in  L^iß) for each  |a| < ttz.    Q.E.D.

The existence theorems for (4.1) obtained in this section generalize results

of Leray-Lions [25] and Browder [7], [8].   Theorem 5.4 (and its anisotropic

variant, cf. introduction to §4 and Example 4.12) also includes the result

announced recently by Fougères [15] where the conjugate N-functions are required

to have the A2 property.

BIBLIOGRAPHY

1. S. Agmon,  Lectures on elliptic boundary value problems, Van Nostrand Math.

Studies, no. 2, Van Nostrand, Princeton, N. J., 1965.    MR 31 #2504.
2. H. Brezis, Equations et inequations non linéaires dans les espaces vectoriels

en dualité', Ann. Inst. Fourier (Grenoble) 18 (1968), fase. 1, 115-175.    MR 42 #5113.
3. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math.

Soc. 69 (1963), 862-874.    MR 27 #6048.
4.  -, Nonlinear elliptic functional equations in a nonreflexive Banach space,

Bull. Amer. Math. Soc. 72 (1966), 89-95.    MR 32 #2755.
5.  -, Nonlinear maximal monotone operators in Banach spaces, Math. Ann.

175(1968), 89-113.    MR 36 #6989.
6.  -, Nonlinear operators and nonlinear equations of evolution in Banach

spaces, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc, Providence, R.I.

(to appear).



204 J.-P. GOSSEZ

7. F. E. Browder,  Existence theorems for nonlinear partial differential equations, Proc.

Sympos. Pure Math., vol. 16, Amer. Math. Soc, Providence, R.I., 1970, pp. 1-60.
MR 42 #4855.

8.   -, Nonlinear elliptic boundary value problems and the generalized topo-

logical degree, Bull. Amer. Math. Soc. 76 (1970), 999-1005.    MR 41 #8818.
9.  -, Existence theory for boundary value problems for quasilinear elliptic

systems with strongly nonlinear lower order terms, Proc. Sympos. Pure Math., vol. 23, Amer. Math,

Soc., Providence, R.I., 1973, pp. 269-286.
10.   -, Nonlinear elliptic eigenvalue problems with strong lower order non-

linearities, Rocky Mountain.Math. J. (to appear).

11. F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach

spaces, J. Functional Analysis 11 (1972), 251—294.

12. T. Donaldson,   Nonlinear elliptic boundary value problems in Orlicz-Sobolev

spaces,   J. Differential Equations 10 (1971), 507-528.

13. T. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems,

J. Functional Analysis 8 (1971), 52—75.
14. N. Dunford and J. T. Schwartz,  Linear operators. I: General theory, Pure and

Appl. Math., vol. 7, Interscience, New York, 1958.    MR 22 #8302.
15. A. Fougères, Opérateurs elliptiques du calcul des variations a coefficients tres

fortement non linéaires,  C. R. Acad. Sei. Paris Ser. A—B 274(1972), A763—A766.
16. J.-P. Gossez, Opérateurs monotones non linéaires dans les espaces de Banach

non réflexifs, J. Math. Anal. Appl. 34 (1971), 371-395.
17. -, On the range of a coercive maximal monotone operator in a nonreflexive

Banach space, Proc. Amer. Math. Soc. 35 (1972), 88-92.

18. ———, On the subdifferential of a saddle function, J. Functional Analysis 11

(1972), 220-230.
19.  -, Boundary value problems for quasilinear elliptic equations with rapidly

increasing coefficients, Bull. Amer. Math. Soc. 78 (1972), 753—758.
20. A. Granas, Sur la notion de degré topologique pour une certains classe de trans-

formations multivalentes dans les espaces de Banach, BulL Acad. Polon. Sei. Ser. Sei.

Math. Astronom. Phys. 7 (1959), 191-194.    MR 21 #7457.
21.   -,  Theorem on antipodes and theorems on fixed points for a certain class of

multivalued mappings in Banach spaces,  Bull. Acad. Polon. Sei. Seit. Sei. Math. Astronom.

Phys. 7 (1959), 271-275.    MR 22 #8365.
22. P. Hess, On nonlinear mappings of monotone type with respect to two Banach

spaces, J. Math. Pures Appl. 52 (1973), 13-26.

23. -, A strongly nonlinear elliptic boundary value problem, J. Math. Anal.

Appl. (to appear).

24. M. Krasnosel skii and Ju. V. Rutickii, Convex functions and Orlicz spaces,

GITTL, Moscow, 1958; English transi., Internat. Monographs on Advanced Math. Phys.,

Hindustan, Delhi; Noordhoff, Groningen, 1961.    MR 23 #A4016;    MR 21 #5144.
25. J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes

elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93

(1965), 97-107.    MR 33 #2939.
26. J. Lindenstrauss,    On nonseparable reflexive Banach spaces, Bull. Amer. Math.

Soc. 72(1966), 967-970.    MR 34 #4875.
27. J.-L. Lions,   Quelques méthodes de resolution des problèmes aux limites non

linéaires, Gauthier-Villars, Paris, 1969.    MR 41 #4326.

28. W. Luxemburg,  Banach function spaces, Thesis, Technische Hogeschool te

Delft, 1955.    MR 17, 285.
29. W. Luxemburg and A. Zaanen,  Conjugate spaces of Orlicz spaces, Nederl.

Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 217-228.    MR 17, 1113.
30. G. J. Minty, Monotone (nonlinear) operators in a Hilbert space, Duke Math. J.

29 (1962), 341-346.   MR 29 #6319.
31. R. T. Rockafellar,  On the maximal monotonicity of subdifferential mappings,

Pacific J. Math. 33 (1970), 209-216.    MR 41 #7432.



NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 205

32. R. T. Rockafellar, Local boundedness of nonlinear monotone operators, Michigan Math. J.

16 (1969), 397-407.   MR 40 #6229.
33.  -, 07i the maximality of sums of nonlinear monotone operators, Trans.

Amer. Math. Soc. 149 (1970), 75-88.    MR 43 #7984.
34. M. I. Visik, Quasi linear strongly elliptic systems of differential equations in

divergence form, Trudy Moskov. Mat. Obsc. 12 (1963), 125-184 = Trans. Moscow Math.

Soc. 1963, 140-208.   MR 27 #6017.
35.  -, Solvability of the first boundary value problem for quasilinear equations

with rapidly increasing coefficients in Orlicz classes, Dokl. Akad. Nauk SSSR 151 (1963),

758-761 = Soviet Math. Dokl. 4 (1963), 1060-1064.    MR 27 # 5032.

DEPARTEMENT DE MATHEMATIQUE, UNIVERSITE LIBRE DE BRUXELLES, BRUXELLES,

BELGIUM


