
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 190, 1974

A SIEGEL FORMULA FOR ORTHOGONAL GROUPS

OVER A FUNCTION FIELD

BY

STEPHEN J.HARIS(l)

ABSTRACT.   We obtain a Siegel formula for a quadratic form over a function

field, by establishing the convergence of the corresponding Eisenstein-Siegel

series directly, then via the Hasse principle, that of the associated Poisson

formula.

Introduction.   In this paper, we obtain a Siegel formula, as recast by Weil

u], for a quadratic form over a function field.   The difficulty is that there is no

criterion to guarantee the convergence of the integral

which occurs in the formula (see §1 for the notation), as was the case for k a

number field, cf. Weil [7], Igusa [2].   We establish convergence of the corresponding

Siegel-Eisenstein series, then by the Hasse principle obtain the Siegel formula

and the convergence of the above integral.

The author wishes to acknowledge his thanks to Professor Igusa for numerous

helpful conversations.

1.   Notation and the Siegel formula.   Let & be a function field in one vari-

able over a finite constant field, that is, a finitely generated extension of a finite

prime field F , of degree of transcendence one over F .   We shall assume that

characteristic ik) 4 2.

Let X be a vector space of dimension ttz and qix) a nondegenerate quadratic

form on X, all defined over k.   Take G = SOiq) (a semisimple algebraic group,

defined over k, tot ttz > 3) to be the special orthogonal group of q.   The Siegel

formula is given for the standard representaion p: G —» Aut(X); it reads

JG  /c   (   I  Wg-0)\dg\A=2   £   fx   <¡>ix)Xiqix)i*)\dx\A + 2<!>Í0)
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where GA, Gk are the adelisation, the ¿-rational points (respectively) of G;

0 £ &iXA ) is a Schwartz function on the adelisation of X and X ls a fixed, non-

trivial  character of kA, the adelisation of k, which is 1 on k.

2. Orbits, stablisers.  To analyse the integral /G./G, ^eX   3>(g • ¿OMgl^t

we recall results established by Weil [7, §14—29].  The orbits of G in X which

contain points of Xfc are the sets U(i) = \x £ X\ qix) = i, x ¿ 0} where i £ k,

(/(/')■ j¿ 0, and ¡Ol.  This is precisely Witt's theorem.  Further, two points x, y e

XK, not zero, belong to the same orbit of GK it and only if they belong to the

same orbit of G.  This for any K T) k.

For the nonempty Uii)k, fix £,- e Uii)k and let Hi be the stabiliser of G at

£;, i.e., Hi = \g £ G\ g - £i = f.l, an algebraic group defined over k. Hence

H. = SOim - 1), of rank m-I, for i ¿ 0;

HQ = SOim - l) • unipotent, a semidirect product;

and in all cases, the Tamagawa numbers for G,  //. are 2, Weil 15 ].

Furthermore, the mapping g —» g • ¿¡. of G —» Uii) induces an isomorphism

of G/H. onto Uii).  By Witt's theorem there is a generic section for this map.

Also, as k is an infinite field and G is a reductive group, Gk is Zariski dense

in G (Borel [l]).  Whence, the mapping g —♦ g • f. inducesahe identification

CA/ÍH^A = tKi)^  of the adelisations.

Take $ eS(XA); then for i £ k so that Uii)k ¿ Gf,

where r(//.) is the Tamagawa number of //., \D-\A  is the Tamagawa measure de-

rived from D¿ == dg/dhj, dg, dh{ invariant differential forms of maximal degree

without zeros or poles for G,  /7(., respectively, defined over k.  The convergence

factors may be taken to be 1, from the explicit nature of the stabilisers H..

By the Hasse principle for quadratic forms, Uii)k =0  implies that Uii)A =

0.   Thus we see that (1) is valid for all i £ k.

3. Asymptotic estimates.   Let v be a valuation on k, which is trivial on the

field of constants, with k    as the completion.  Then k    is nonarchimedean and

denote by G , p   and a    the maximal compact subring of k , the ideal of non-

units of 0v and the number of elements of C^/p    (resp.).   Let X^,  Xv be the

k , C    (resp.)-rational points of X and \di\   , \dx\    be autodual measures on k

and X .

For x    a nontrivial character of k , we identify Xv with its dual by (x, x')

—*XV(X'X''> where we write the elements of X^ as row vectors, with respect to

some ¿-basis.   For $ £ S(X ), the Schwartz-Bruhat space, the Fourier transform



A SIEGEL FORMULA FOR ORTHOGONAL GROUPS 225

is defined by <&*(x*) = fx   <Mx)(x, x*)|ax|v, where (x, x*) = x*(x).  We choose

as before |ax|    to be the autodual measure on X .

For $ 6 S(X ), we consider the function  for i* e kv defined by

*>(<•*>=L *<*>xy*)t*)\dx\v.
V

The first sections of Weil [7] are devoted to proving general properties of

such functions, in actually a more general setting. Namely, for X, Y locally

compact abelian groups and /: X —» Y a continuous mapping, the principal re-

sult concerns the decomposition of the measure dx on X, when / satisfies a

"condition (A)".  If A(X) denotes the subspace of $}(X) consisting of those

continuous functions 4> with $* £ *. (X*), then Fourier transformation gives a

bijection of A(X) with A(X*), so that ($*)*(x) = $(- x) tot every x e X.  Among

other things, Weil proves that if / satisfies "condition (A)", i.e.,

F¡(y*)=fx<t>(x)(f(x),y*)dx

is integrable on Y*, uniformly so in 0 when $ is restricted to a compact sub-

set of o(X), then

(i)  F* belongs to A(Y*), and

(ii)  there exists a unique family of measures du    on X, each du    being

the image measure under f~ (y) —»X, of a measure on f~ (y), such that F|

becomes the Fourier transform of F^iy) = fx <t>(x)du (x).

We shall show that in the local and global cases, /= a, the quadratic form

satisfies "condition (A)".

A fact which will play an important role is that if iff: k" —♦ T   is a non-

degenerate second degree character of k", i.e., i/r is continuous and satisfies

i/r(x + y) = ^iV(x) • iff(y) ' (x, yh) for some bicontinuous isomorphism h: k" —» (k")*,

then its Fourier transform is given by

fV^yty^rV***"1)-1,

where y(iff) £ T, a complex number of absolute value 1, and \b\ is the modulus

of b (Weil [6, p. 1611).  Hence

<\\*%\detb\;X.(2) Ii:®izïifiz)\dz\
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For our case, take iffix) - \viqix)), so that (2) reads |F¿(¿*)| < ||**||j|z*|-m/2.

Since, trivially, |F|(z'*)| < ||$||p we have

(3) |f;0'*)| < max (H*«,, I**«,) - maxd, \i\)~^2.

Therefore, we have proved:

Lemma 1.   Let C be a compact subset of S(X ).   Then, there exists a posi-

tive constant c,  such that

|F;(i*)|<cmax(l,|i*|v)-^

for all * £ C.  i* £ k .
• v

It is easy to check that, for t £ kx,

f    max i\t\v,\i\v)-°\di\v = const |i|^.
J*v

This, combined with Lemma 1, shows that q: X   —> k    satisfies "condition (A)".

Therefore, there exists a uniquely determined family of positive measures

lu.I  i £ k Î on X , suchthat
~t< v v'

(i)   support (p()C ¡x 6 Xj a(x)= i\;

(ii)   for any coutinuous function * with compact support on X , the function

F Ai) = ív  *(*) du. ix) defined on k   is continuous and satisfiesV A,. r 1 V

L F#H,-Jx*wi*i.,-
'kv

Moreover,

(iii)  if * 6o(Xv), Fq is continuous, integrable and has as its Fourier trans-

form

F¡U*)=jx   <l>ix)xvWx)i*)\dx\v      ii*£kv).
V

As the sets U ii) » ix £ X \ qix) = i, x /= 0\ ate in fact the fibres, for i /- 0,

these sets carry the measure p..   But the same is true for i ** 0.   To see this,

use *(ix) in place of *(x), for t £ k*.   The uniqueness of the measures implies

that U-Atx) = |r|m_2p0(x), so that no part of the measure p0 is carried by the set

io!.
To identify the measures p¿, consider the gauge form Dy {ix) = idx/dqix))i

on U ii).   As a is submersive on Xv - \0\, this is well defined and satisfies
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r in,Q\dx\ = r \di\ r , *id .1,
JX   -  0}     '      'v       Jfc 'v  •/[/   (f) tz.i't/

where  |D    .1    is the measure on U ii) determined by D   ¿.   This holds for all

continuous functions $ with compact support contained in X   — fOi.   But lOi has

measure zero for |</x|  , so we can extend the above equality to:

f     9\dx\   =   f    \di\     f    ,    *|D    .|  ,
f V V

whence by the uniqueness of the family \u{\, we have p; = \D    .|    (z £ zi ).

It is convenient at this time to mention that the gauge form D .(x) = (dx/dq(x)).

on (/(z), for z € /fe. is also defined and is invariant under G, so it differs from

the earlier dg/dhi by a factor of kx.   Thus the measures given by D{(x) and

dg/dh. ate the same, since the product formula is valid for kx.

Note that in the estimate (3), for <P,q>* the characteristic functions of Xo,

X°* we have |F*(z*)| < max(l, |z'*|v)"m/2.

4.   A dominant series.   We shall now prove the convergence of the Siegel-

Eisenstein series.   The method of proof is based on the following lemma and the

methods used in [3], due to Igusa.

As always k denotes a function field of transcendence degree one over a

finite field kQ.   We may assume that kQ is algebraically closed in k.   Put 27 »

card(ze.) and let g denote the genus of k.   Choose a prime divisor P^ of k such

that d = deg (Px) > 2g + 1,  whence l(Px) = d+1 - g > g + 2.  So, there exists

x £ k with (x)^ = PM.

Denote by C the ¿-normalization of &0[x].   The group of units of G = kx,

hence finite.   Also, every b 4 0 e G has  lèl^^ 1.

Lemma 2.   Let A, a denote real numbers, A > 1, a > 1.   Then

Z max(At|fl|J-a<cA
ate

1-a

where c is independent of A.

Proof.   We have

V max (A, |a|   )-a = V card iLiPe ) - LiP^1)) max (A, qde)-a.

aeQ <?=0

Write A = qd%, so that 0 < [5] < S < [8] + 1.  So
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,A    if[S]>l,

\b  it [s] = o,
ZmaxiX, \a\J-a=\
aeQ (i

where

A = card iLipW ))\-a +     £     (a^+1~«- f*~lMs) q~**,
e=[S]+l

B = q\-a+ iqd+l-e - q)q-da + £  i^S - q^e-W-8)q-dea

So, setting i8) = 8 - [8],

e=2

4-,l-aLl-^ffl,*1-'Ci-f-W)f-^l>*|-W)i

1-,-*-»* I

B-A1-),1^*,-*
|f— + q-^»<S>\iq*«-*-q)q-*+ îî^^L^jj.

Fix this choice of generator x.  The ideal class group of k fot this C is

finite and let r,, • • • , rfc be coset representatives, which may be taken to be inte-

gral ideals.  Set S^ = iP^I.

Proposition 1.   Let n be a given integer > 0, and ( > 0 be fixed.   Suppose

that for each valuation v on k, a   is a given real number, such that o  > n, for

all v, Ov > n + 1 + f, for almost all v.   Then

z   n«""0« I'll».K, y"°*
i<i,,—,i )<*n v

is convergent.

Proof.   The convergence is clear for n = 0, so suppose n > 1 and use induc-

tion.  Let E C [1, 2, • • •, n\ be a subset and

kE = \iekn\ ip4 0   forpeE, ¿p = 0   for p 4 E\.

Then we have the disjoint union k" = \JE kE,  By induction, the partial sums over

kE are convergent for every E / jl, 2, • • •, «}.  So it remains to show that the

partial sum over ikxY is convergent.

By hypothesis, there is a finite set of valuations S on k, S ^S^ such that

ov > n fot all v and o^ > ß = 1 + n + t tot all v 4 S.   We can enlarge S without

changing ß, so suppose 5 contains all the prime factors of r,, • • • , r..  Further,

as a function of o, max(l, l/jl,,» • • •, l'BL)—^ is monotone decreasing, so it suf-

fices to prove convergence when- o  = a> n, v £ S, o  = ß, v 4 S.
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Let i » iiy, "•, in) e ikxy.  Then i G = a Ab for integral ideals b, a}, > > •,

&n.  Choosing them to be relatively prime, this set is uniquely determined by i.

Moreover, there is a unique index / so that br. = Ce, for some b 4 Q eG.  Setting

ap = bip we have apG = br.ip = a^r. C G so a   4 0 eG.  By the choice of S

H maxi!, Iz^l^,..., I/J/ -= H l^maxd^, laj^,..., |ajv)-

xi]  Hfmax(|è|v,|«1lv,...,|aJt;K
vfS

But, as the prime factors of the r. are in 5, taaxv^(\b\v, Wy\v, • • • » lflnl„) = 1«

Hence, applying the product formula for b e G, the above becomes

IlK^^K'^v'-'-'KV'*-
v<r5

For v e S - Sx,

ord„ (b) = ord_ (b) + ord  (r.),      ord  (a.) = ord   (a.) + ord  (r.)
P P P    J Pz pz p    ;

whence ™>*vts_sJ\b\v* \ax\v, •• • , Wn\v) = Np"°r p '' , since b,aj,...,an

are relatively prime.  Here zVp = card(C/p).  Setting c   = max ford   (r.), l<j<h],

c' (RveS_SoaNvCp)a, we find

F] max(l, |i |  ,..., |i | f* < c'(U  |fc|y_/îmax(|6L, 1«^.\a\J~\
v \veS

Therefore, it suffices to show that the sum on the right, for (a,, • • • , a ) e G"

and Ce over the set of principal ideals, 4 0 of C, is convergent.

Since  l^loo^l for b 4 0 eG and a > n, we can apply Lemma 2 repeatedly,

to show

L     ™i\bL'\<lL*---'\<n\J-a<cn\b\n0;a
to,,---,22 )eQn

l 72

where c is a fixed constant, independent of b.  Hence, it suffices to show that

the series 2^ (RveS |6|t;)a~^|è|0V"a is convergent.  By the product formula, this

is

z
06

(_       .     ,-ord„(è)V-72/ -otà Ab)\ß-n

n (M p )   n^p p
peS-S^ )      \pfS I

I      _ -ordn(a)\a-f2/_       -ord  (!l)\/3-72

z
06

8^0, all integral ideals
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But, by the Euler product, this differs by only an elementary factor from

S_,   . j (/V?I)-<T.   But for o = ß - n > 1 ' this is convergent.

5.   The Siegel formula.   The character x of  kA puts it into duality with

kA by ii, z'*) I-» y(z'z'*)» for i, i* £ kA.   Identifying X^ with its dual by (x, y) I-»

Xix ly), for x, y € X^, the autodual measure  \dx\A  on X^  is then the Haar mea-

sure for which XA'/X,   has measure 1.

For every * eS(XA), define

F*(í*)-/X    <¡>ix)xW*)i*)\dx\A,

tot i* £ kA.

For almost all v, the usual Haar measure on k    is autodual, C^ is the ker-

nel of X    and m(X )= 1.   Recall that X^  is the inductive limit of X^ = XQ x X,,

where Xg = IJ  ^ Xo, X, = IJ^ X , for S running over the family of finite sets

of valuations on k.  Therefore, for every compact subset C of o(XA), there

exist an   S  and a compact subset C,  of S(X,), such that every * £ C is of the

form *0 ® *,, where *0 is the characteristic function of XQ, *,  is in C,.

Put o  = m/2 tot all v.   Then, by Lemma 1 and Fubini's theorem, there is a

positive constant c such that

Z  Hiñ\<c  y   u ™ax(l, |z*|/"
i*ek i*ek    v

lot every * 6 C.   By Proposition 1, the right-hand side is convergent for m > 5.

Also, the mapping

(XA)xkA-*"S(XA)

Ul ID

(*,«•*) I-►*,
I

where *¿«(x) = *(x)x(a(x)z*) is continuous. Hence, by Weil's criterion [7, p. 8],

the continuous mapping a: X^ —» kA satisfies "condition (A)" and the following

Poisson formula:

(4) z^o*)=Z(f;)*o).

Here (F|)*(z) = F A- i) tot every i £ kA.

Lemma 3.   F^ii) m fy,^    *|/?fUi for every i £ kA.

Proof.  It suffices to show this for * restricted to a subset of o(X^) which

spans a dense subspace of "(X^ ).   Take * = 11^ $v, where *v e S(X^) for every
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v and $v = the characteristic function of X , for all but finitely many v.   Then

F* decomposes into the product of FA  , defined by FA (i ) = (F2 )*(- i ),
w * „ vv vv   v vv v

whence, by the results of S3, **«,,('',,)- ¡vv(iv) ®v ' \DvJv for every ', e *„•

This implies the desired result.   Therefore, (4) now reads

2' efe       « z'efe A

Combining this with (1) and the exceptional orbit Í0|, we obtain the Siegel for-

mula,

Theorem.

f    lr (   Z   *W)WU = 2Z    fv    *0cViCx)*)|AU+2*(O),
K'ck\e<xh        I £hixA

which is valid for m > 5.   Here G is the special orthogonal group, acting on X,

of dimension m.
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