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ABSTRACT. Let 8 be a semiprime ideal in a right Noetherian ring R and

<f(s?) ={c e R\[c + 8] regular in R/&], We investigate the following two condi-

tions:

(A) 6(2) is a right Ore set in R.

(B)<2(8) is a right Ore set in R and the right ideals of R., the classical

right quotient ring of Ä w.r.t. C(8), are closed in the /(/?4)-adic topology.

The main results show that conditions (A) and (B) can be characterized in

terms of the injective hull of the right /{-module R/&. The 7-adic completion of

a semilocal right Noetherian ring is also considered.

Introduction. The well-known work of Matlis [12] makes a striking use of the

localization and the completion to describe the injective modules over commuta-

tive Noetherian rings. It led us to examine the interaction between the injective

modules and the localization in the context of noncommutative Noetherian rings.

Let 8 be a semiprime ideal in a right Noetherian ring R. Goldie's work in [2]

shows that, in any attempt at defining the localization of R at 8, the set (2(8) =

[c £ R\[c + 8] regular in R/&\ deserves special attention. In this connection, of

particular interest is the condition (A): (2(8) is a right Ore set in R. For, if (A)

is satisfied then the usual procedure of clearing off the zero-divisors works and

the classical right quotient ring Rt of R w.r.t. C(8) can be constructed.

Some preliminary results on the classical right quotient rings occupy §1. The

main result of §2 (Theorem 2.1) shows that if (A) is satisfied then Rf   is a very

tame ring indeed. It is semilocal; its Jacobson radical is the right ideal generated

by the image of 8; further, ERÍR/&) Sé ER ÍRf/JÍRt)). It is rather surprising

that these results were known only under some severe conditions on R.

It is then natural to seek some useful characterizations of the condition (A).

Lambek and Michler have shown (Theorem 5.6 of [l0]) that (A) is satisfied if and
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only if the generalized ring of right quotients of R w.r.t. a certain torsion theory

is well-behaved. (See Remark after Lemma 3-1 •)Taking a completely different

approach, we show in Theorem 3.2 that (A) can be characterized in terms of cer-

tain conditions on ER(R/&). The ramifications of this result will be discussed

elsewhere; see [6].

In §4, we consider the condition (B): c(S) is a right Ore set in R and the

right ideals of R4 ate closed in the j(Rt)-adic topology. The interest in (B) stems

from the well-known Artin-Rees lemma. Assuming that R is left as well as right

Noetherian and & is prime, Goldie [2] gave a criterion for (B) in terms of an Artin-

Rees type condition involving the symbolic powers of 8. In Theorem 4.6, we so

recast Goldie's criterion that it applies to semiprime ideals in right Noetherian

rings. However, the main results of §4 (Theorems 4.5 and 4.7) are in a different

direction. They show that condition(B) can also be characterized in terms of cer-

tain conditions on EÍR/&) and that, in the presence of (B), the behavior of the

jiRt)-adic completion of Rf  is dictated by EÍR/S). These results include some

well-known results of Matlis [12].

The investigations of Goldie [2] and Lambek and Michler [lO] are confined to

prime ideals. It may be worthwhile to note that our emphasis on dealing with semi-

prime ideals is not solely motivated by a desire for generality. Given a prime

ideal  ^ in a Noetherian ring R, our procedure of localization outlined in [6] re-

quires us to examine L(y()3)) where y(p) is a certain semiprime ideal of R con-

structed from  $.  Even in orders over commutative Dedekind domains, one frequent-

ly encounters situations in which &,"$) fails to be Ore from either side, yi\Ù

fails to be a prime ideal but C(y(fc)) is Ore from both sides; see [6].

Some of the main results of this paper were announced in [6], [7].

1. Preliminaries. As usual, all rings, subrings and modules are assumed to

be unitary.

In this section, we shall note some pertinent facts concerning left exact rad-

icals and right Ore sets. Certain left exact radicals (equivalently, hereditary

torsion theories or idempotent kernel functors) for mod-R arising from the multi-

plicatively closed subsets of R play an important role throughout the paper. How-

ever, only a superficial familiarity with left exact radicals is sufficient for our

purpose and can be readily acquired from [4], [15].

Let R be a ring and p be a left exact radical for mod-R. The p-closure of

a right ideal  K of R, denoted as p-cl K, is the unique right ideal of R  containing

K such that (p-cl K)/K= piR/ K).  Once we note that piM) is invariant under the

action of End M, M e mod-R, it becomes clear that the p-closure of a two-sided

ideal of R  is a two-sided ideal of R.  In particular, p(R) = p-cl (O)  is a two-sided

ideal of R. Let <f>: R—>R/piR) - R be the canonical map. The restriction of p



NONCOMMUTATIVE NOETHERIAN RINGS 111

to mod-R defines a left exact radical p tot mod-R. It is straightforward to check

that, for every right ideal K of R, p-cl K = cp" Kp-cl i<piK))).

Let 3) be a multiplicatively closed subset of a ring R. For each M £ mod-R,

let P-ÍM) be the unique largest submodule of M, each element of which is annihi-

lated by some element of 3). Evidently, p_ is a left exact radical for mod-R. The

left exact radical À- for R-mod is defined analogously. If A«-cl te p   -cl t for

all two-sided ideals  t of R then 2) will be called a right balanced subset of R.

A multiplicatively closed subset 3) of R is called a right Ore set it, fot

every id, r) e 2) x R, there exists id', r') e 2) x R such that a>' = rd'. We allow

zero-divisors to occur in the right Ore sets; even then, the useful right common

multiple property holds, cf. p. 234 of [3]. Another useful result is the following

folklore.

1.1. Proposition.  The following conditions on a multiplicatively closed sub-

set j) of a ring R are equivalent:

(1) 2) is a right Ore set in R.

(2) For every M e mod R, pAM) = \x £ M\nRix) n 3) 4 01.

(3) For every d £ 3), R/dR  is p -torsion.

(4) The image of 3) in R/p (R) is a right Ore set.
3)

Proof. Trivially, (2)=» (3) =»(l)~(4). To see that (l)=»(2), use the right

common multiple property.    D

A subset X of a ring   R is a right regular subset if "R(*) = 0 for all x £ R.

The left regular and regular subsets are analogously defined. Clearly, if J) is a

right Ore set in R then its image in R/pAR) is a left regular right Ore set in

R/p   iR). This situation improves in the presence of a mild a.c.c.

1.2. Lemma.   // a ring R  has the a.c.c. on right annihilators then every left

regular right Ore set in R  is regular.

Proof. See p. 229 of [3].    □

1.3. Proposition.  Let 'S) be a right Ore set in a right Noetherian ring R.

Then 3) is right balanced and its image 2) in R/p ÍR) is a regular right Ore set

in R/p^iR).

Proof. That 2) is a regular right Ore set in R/pAR) is immediate from 1.2.

Let t be a two-sided ideal of R. The image £ of -ß in R « R/t is a right Ore

set; so, the image of £ in R/pAR) is a regular set. Thus if x £ R and dx = 0

for some d e 2) then x  e p ^(R). It follows that
£

XAR/t) = X.ÍR) C Vc e H\ijr) n 55 4 0 ! C pjR) = pAR/t).
$ R ~  3) v
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Consequently, Ä.-cl t Ç Pa.-cl t.    G

If D is a right Ore set in a right Noetherian ring R then the classical right

quotient ring of R/pJ.R) w.r.t. the regular right Ore set 3) will be called the

classical right quotient ring of R w.r.t. 3).

1.4. Proposition.  Let S be the classical right quotient ring of a right Noether-

ian ring R w.r.t. a regular right Ore set 2).  Then the following assertions hold:

(1) For every right ideal F of S, the right ideal R t~\ F of R is p -closed

and (R n F)S = F. ®

(2) For every right ideal K of R, p -cl K = R C\ KS. The map K r- KS from

the lattice of p -closed right ideals of R to the lattice of right ideals of S is an

isomorphism whose inverse is defined by F H» R O F.  Consequently, S is a

right Noetherian ring.

(3) // t is a two-sided ideal of R then S tS = tS. A p -closed ideal t of

R is a prime, resp. semiprime, if and only if the ideal tS of S is prime, resp.

semiprime.

Proof. The first two assertions are well known; their routine proofs are omit-

ted, cf. p. 234 of [3]. Since the third one is new, we provide some details.

Let t be a two-sided ideal of R. Given 2/ e 2) and t £ t, choose d' £JJ and

r'  £ R such that dr   = td' £ t. As in the proof of 1.3, we have

p -cl t D {x £ R\dx £ t for some d £ ®}.

In particular, r' £ p.-cl t » R n tí which yields z/_1r = r'r/'_1 e (R D tS)S «

tS. Hence S tS = tS.

Let Cf be a prime ¡deal of S. If t, and t, are ideals of R such that R n <\

2 tjt2 then q=(R n q)S Z> t jt 2S = (t jS)(t 25) since t2S = 5t25. It follows

that R C\  q is a prime ideal of R.

Let £ be a p -closed prime ideal of R. If ctj, 0-2 are ideals of S such that

djCtj Ç )pS then (R n a^(R n a2) Ç R n fcS = )p. It follows that ftS is a prime

ideal of S.

The semiprime ideals are handled in a similar manner.    D

We finish this section with an observation on the right orders in semisimple

rings which we could not locate in the literature.

1.5. Proposition.  Let R be a right order in a semisimple ring Q and let p be

a left exact radical for mod-R such that p(R) 4 R.  Then p(R)Q is a two-sided

ideal of Q, p(R) » R O piR)Q and R/piR) is a right order in the semisimple

ring  Q/piR)Q.

Proof. Let 2/ be a regular element of R and K = \r e R\dr £ piR)\. Clearly,

K is a right ideal of R and dK Ç piR) Ç K; so dKQ Ç piR)Q Ç KQ. Since Q has
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the d.c.c. and  a" is a unit in Q, we obtain dKQ - piR)Q = KQ. Thus d~lpiR)Q =

piR)Q. Since piR) is a two-sided ideal of R, it follows that piR)Q is a two-sided

ideal of Q.

Set t = R  D p(R)Q. Clearly, t is a two-sided ideal of R and contains piR).

Using the right common multiple property, we see that, for every ret, there exists

a regular element c oí R such that re £ piR). Thus piR) is an essential right

R-submodule of t. Choose a right ideal L of R such that t  O L = (0) and

t+ L is essential in R. Then piR) + L is an essential right ideal of R; so, it

contains a regular element of R, say ¿>. Now, t Si b t Ç t n (p(R) + L) = p(R)

shows that t is p-torsion. Hence   t = piR). It is now straightforward to check

that R/piR) is a right order in the semisimple ring Q/piR)Q.    G

2. Classical localization.   It is well known that if R is a right order in a

semisimple ring Q then R has only a finite number of minimal prime ideals, say

fJj, • • •, pm; further, each ^.Q is a maximal ideal of Q, R n p¿Q = p¿ and (0) =

n?=i p,. Seefel.
Let 8 be a semiprime ideal in an arbitrary right Noetherian ring and n:R —»

R/8 be the canonical map. Since R/8 is a right order in a semisimple ring, as

noted above, it has only a finite number of minimal prime ideals, say p,,« • •, p   .

The prime ideals jr(p,),•••, n~ (p.   ) are called the prime ideals associated

with 8. Following Goldie [2], we define the symbolic powers of 8 as the members

of the sequence \H (8): n £ Z  1 where /7¡(8) = 8 and

Wn+l(g) = Xi(«)"cl(^(.)-cl (««„(«)))

for all n £ Z+. It is clear that 8" C H (8) C 8 and that each H (8) is a two-sided
—    n      — 7j

ideal of R-

As usual, /(R) denotes the Jacobson radical of a ring R. Recall that R is

semilocal (resp. quasi-local) if R// (R) is a semisimple (resp. simple Artinian)

ring. The injective hull of a right R-module M is denoted by EAM).

We now describe the classical right quotient ring of R w.r.t. C(8).

2.1. Theorem.  Let 8 be a semiprime ideal of a right Noetherian ring R such

that (_(8) is a right Ore set in R.  Let Rf denote the classical right quotient

ring of R w.r.t. C(8). Set R = R/p..lR) and use bars'to denote images in R.

Then the following assertions hold:

(1) Rt is a semilocal right Noetherian ring with /"(R,) = 8"R for all n £

Z\

If P ,»•••» P     are the prime ideals of R associated with 8 then jp./?.,•••»

p   Rf are precisely the distinct maximal ideals of Rf.  Consequently, R,  is a

quais-local ring if and only if 8 is a prime ideal of R.

(2) For each n £ Z+, Hn(8) = pe(#)-cl 8" and R/HÍZ) is a right order in the

Artinian ring Rt/j"iRt).
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(3) // R  ¿s a semiprime ring then R and Rf are semiprime rings.

(A) The infective hull of R/& in mod-R  is R-isomorphic with the injective

hull of Rt/j(Rt) in mod-R,.

Proof. Since every element of C(8) is a non-zero-divisor on R/8 and every

element of P/f>ft/R) >s annihilated by some element of c(8), we get Ppi.S^ £

ker(R — R/á) = 8; so, 2Ü) = &J). By 1.3, £(8) is a regular right Ore set in R.

Hence Rf exists and is a right Noetherian ring by 1.4.

(1) Let  £.,•••, ftm be the prime ideals of R associated with 8. Since

p«. ,(R) Ç 8, the prime ideals of R associated with 8 are  ft,,-»«, ft   . Let ifi:

R —> R/S be the canonical map, Q  be the semisimple classical right quotient ring

of i/z(R) and D be the right Ore set of the regular elements of R. As noted before,

^(ft¿) = iftiR) O  0(ft2-)Q. We can express tpi^)Q as a finite intersection of cer-

tain maximal right ideals of Q, say zV.j,•••, zVf.fc.. Set N{. = tpiR) n  N¿. and M..

= i//~ (N.). The lattice isomorphism indicated in 1.4 shows that each N.. is max-

imal among the p -closed right ideals of ifAR). Consequently, each M.. is maxi-

mal among the p„. ..-closed right ideals of R. Using the lattice isomorphism of

1.4 again, it follows that each ÍA..R    is a maximal right ideal of R# . The right

common multiple property of c(8) can be used now to see that

m      i

j(RtK n n (m r,)= n ^,= gR.-
z=i ,=i f«i

Let F be an arbitrary maximal right ideal of Rf and K = R OF. Then K

is maximal among the p^.^j.-closed right ideals of R and K O (L(8) = 0. If 8

£ K then R/(K + 8) is PgzT)-torsion; so, x + 5 e C(8) for some x e K and s e 8.

This yields x e K C\ C(8), a contradiction! Thus 8 Ç K; so, 8R# Ç KR, - F. It

follows that

k.
m   _

w=n n on,.,v=n *y*, = 8R,.
2=1   ;=1 z=l

Since j(Rt) has been expressed as a finite intersection of certain maximal

right ideals of Rt, it follows that R# is semilocal. This, along with the fact

that each ft¿R.  is an ideal, shows that ftjRj,-", ftmR4 are precisely the distinct

maximal ideals of Rt. In particular, Rt is quasi-local if and only if 8 is prime.

Since R,8 Rt - 8R, = /(R,), an induction gives Jn(Rt) - 8"R, for all n e Z+.

(2) Let us temporarily denote p«(i) and p.s.j) as  p and p respectively. The

equality Jn(Rf) - 8"Rt along with 1.4 shows that  p-cl 8" = R  D J"(Rf). This

provides the following commutative diagram of ring homomorphisms
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R->Rt

R/p-cl 8"->Rt/jniRt)

in which the vertical arrows are canonical surjections and the horizontal arrows

are canonical injections. We shall identify R/p-cl 8" with the appropriate sub-

ring of Rt/JniRt). The ring R./JniR.) is semiprimary and right Noetherian, so

right Artinian. Each element of it can be written as [r + p-cl 8"] [ç + p-cl 8"]~1

tot some c e(2(8) and r £ R. It follows that R/p-cl 8" is a right order in

Rj/y^R,). It is easily seen that p-cl 8" is the full inverse image of p-cl 8" under

R ->R. Hence  R/p-cl 8" is a right order in R4//n(R#) for every n £ Z+.

We proceed to show that p-cl 8" = H (8) for all n e Z . The equality is clear

for n = 1. Inductively, assume that it holds for n. We have  8* +   C 8/7 (8) which

yields p-cl 8"+I C p-cl (8/7^(8)) C H    .-(8). On the other hand, for every x £

8(p-cl 8"), there exists c e Qi&) such that xc £ S,"*1; by 1.1, x e p-cl 8n+1. In

view of 1.3, this yields Hn+1(2) Ç Ae(í)-cl (p-cl (8"+1))Ç p-cl (p-cl (8" + !)) =

p-cl 8"+ . This completes the induction on n.

(3) Immediate after 1.5.

(4) It is obvious that Rt is the generalized ring of quotients of R w.r.t. Par.y

Let  5-:mod-R —♦ mod-R  be the corresponding localization functor. Since c(8 ) is

right Ore, R, is a flat left R-module and ? = j®R ««• (See §13 of [15].) Apply-

ing Í? to the exact sequence 0 —» 8 —» R —■» R/& —> 0 of right R-modules, we see

that 3:(R/8)= 5ÍR/Í) * R4/8R4. Since ER(R/8) is a p^^-torsionfree R-in-

jective, it has a unique  R4-module structure extending the  R-structure and as a

Rt-module it is injective, cf. §8 of [15]. From the construction of J as in [4], it

is clear diät Rß C'SiR/l) Ç E R(R/¥). So ER(R/i") is also the R4 -injective hull

of 5r(R/8). The assertion follows.    D

Remarks. The salient part of (1), viz. Rt  is semilocal with JiRt) = &R.t iS

new even when 8 is prime. Lambek and Michler (Corollary 5.7 of [10]) obtain it

only when 8 is a maximal ideal in a right Noetherian ring satisfying a proper poly-

nomial identity. It is inherent in Goldie's result [2] if R is left as well as right

Noetherian and  8 is a prime ideal satisfying condition (B).  Part (2), although new,

is inspired by [2]. We have not located any analogue of (3). The last part general-

izes a result of Matlis [12] and is used in §4 to generalize other results from [12],

3. The localizability criterion. A left exact radical p tot mod-R is cogener-

ated by an injective right R-module E if the following condition holds: A right R-

module M is   p-torsionfree if and only if M can be embedded in some direct product

of copies of E.
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3.1. Lemma. // 8 is a semiprime ideal in a right Noetherian ring R then

Pp. . is cogenerated by the injective hull of the right R-module R/&.

Proof. See [8].    D

It may be worthwhile to note that, using 2.1 and 3.1. Theorem 5.6 of [lO] can

be improved and made to hold for semiprime ideals.

We now prove the main result of this section.

3.2. Theorem.  Let 8 be a semiprime ideal in a right Noetherina ring R.

Then the following conditions are equivalent:

(1) C(8) is a right Ore set in R.

(2) // N is a uniform right R-submodule of R/8 and MR  is a cyclic essen-

tial extension of N such that M/N is p „^.-torsion then zM8 = (0).

(3) Each element of C(8) acts as a non-zero-divisor on the injective bull of

the right R-module R/8.

Proof. (1) =»(3) is immediate from 2.1(4). The machinery used in its proof

can be also employed to see that (1)=»(2). Thus, since M/N is p*., .-torsion,

we have (M/N) ®r Rg = (o); so, the canonical map N ®R R# —♦ M ®R R, is

an isomorphism. Since ¿V ®R R, embeds in (R/8) ® R   Rf » Rj 8 Rf , it fol-

lows that (M ®R Rf)8 = (0). But M is a pg(<)-torsionfree module; so, it embeds

in its module of quotients M ® R R . Hence zM8 = (o).

We proceed to show that (2)=»(1) and (3) "» (1). Assume for a moment that

R/dR is not p^.-torsion for some d ec(8). Using the a.c.c. in R, we can

choose a proper right ideal K of R which is maximal among the proper p«. .•

closed right ideals containing dR. Set M = R/K. Using 3.1, we can obtain a

uniform submodule N of M such that there exists a nonzero R-homomorphism

f:N —» R/8. If ker / 4 (O) then  M/ker / contains a copy of the nonzero pp.4)-tor-

sionfree module f(N), contrary to our choice of K. A similar contradiction obtains

unless N is essential in M. After a change up to an isomorphism, we see that

M is a cyclic essential extension of the uniform submodule N of R/8 and M/N

is pp.j.-torsion. So far, neither (2) nor (3) has been used.

Now assume that condition (3) holds. Evidently, d is a zero-divisor on M

and M embeds in the injective hull of the right R-module R/8. Contradiction!

In view of 1.1, we get (3) =» (1).

Assume that condition (2) holds. Then M8 = (0) where M is the module con-

structed above. Treated as a module over R/8, M is an essential extension of

the nonsingular module N. So, M is nonsingular over R/8. But this is obviously

false. Using 1.1 again, we see that c(8) is right Ore.    □

Remark. Condition (2) allows us to decide whether C(8) is right Ore with-
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out forcing us to look very far in ERiR/&). This is quite helpful in the applica-

tions. See [6].

Frequently, it so happens that we do have some right Ore set related with 8

which we would like to use to show that C(8) is right Ore. In such situations,

the following result is of help. It also shows that the emphasis on C(8) in con-

nection with the localization at 8 is not entirely misplaced. However, see [6].

3.3. Proposition.  Let 8 be a semiprime ideal in a right Noetherian ring R.

Then the following conditions are equivalent:

(1) C(8) is a right Ore set in R.

(2) There exists a right Ore set 3) in R with p   = pp,.y

(3) // 2) is any multiplicatively closed subset of R such that 3) C C(8) and

p   = Pa/.\ then 2) is right Ore in R.

Proof. Let 3) be a right Ore set in R with P*¡ = Pp,ty If ra* e 8 with r £ R

and d £ 3) then [r + &]d = [0 + 8]; so, [r + 8] e p^iR/g) = (o). Thus, the image

of 3) in R/S, is a left regular right Ore set in R/&. By 1.2, we have 2) Ç C(8).

Assume fora moment that R/cR is not pp.„-torsion for some c e(E(8). We

can choose a right ideal K of R maximally so that cR Ç K and 2) n K = 0.

Using 3.1, we obtain a right ideal L^K such that L/K is isomorphic with a

right R-submodule of R/^. By our choice of K, R/L has to be p -torsion; so

2) n  L4 0. Choose </j e 3) n L, a"2 £ 3) and r e R such that ¿^ = cdr Since

2) Ç (£(8), [r2 + 8] is right regular in R/8. It follows that r2 £ C(8). Since ele-

ments of c(8) are non-zero-divisors on L/K and [0 + K] = [cd2 + K] = [a\ + K]r

we are forced to conclude that d. e 2) n K. Contradiction! Using 1.1, we obtain

(2) =» (1). The implications (3) «=» (1) =» (2) are trivial.    D

4. The right AR-property. In this section, we shall examine condition (B)

stated in the introduction.

Recall that a two-sided ideal t of a ring R is said to have the right AR-

property if, for every right ideal K of R, there exists n £ Z    such that K n t"

Ç Kt. The right AR-property is evidently a weakened form of the Artin-Rees prop-

erty. Its connection with condition (B) is brought out by the following result

which can be found in [13].

4.1. Theorem. // R is a semilocal right Noetherian ring then the right ideals

of R are closed in the J(R)-adic topology if and only if J(R) has the right AR-

property.

Our immediate objective is to show that the equivalent properties stated

in 4.1 can be characterized in terms of the socle series of E(R/J(R)). Recall

that the socle series of a module M is the ascending sequence {soc   M: n > Ol
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of submodules of M defined inductively as follows:

socnzM = (0) ;       soc     , M - rr~1(sociM/soc M))
0 ' »j + l n n

where n : M —► M/soc M is the canonical map. As usual, if X is a subset of a
n n r

ring   R and M is a right R-module then ann.,X denotes the set \m £ M\mx = 0

Vx e X!. The routine proof of the following lemma is omitted.

4.2. Lemma.  For every submodule N of a right R-module M and for every

n > 0, we have  soc  N - N O  soc  M; further, if R is semilocal then soc  M =
— n n ' n

atmMJ"iR).

4.3. Proposition.   The following conditions on an arbitrary ring R are equiva-

lent:

(1) // M is a cyclic right R-module with essential socle then M = soc M for

some n £ Z .

(2) // E is an injective right R-module with essential socle then  E =

Un20 soc„E-

// R  is a semilocal ring then the above two conditions are equivalent to the

following one:

(3) J(R) has the right AR-property.

Proof. (1) => (2). Let E be an injective right R-module with essential socle.

If M is any cyclic submodule of E then soc M = M D soc E is essential in M;

so, for some n e Z , we have M = soc M C soc E. Hence E = U    „ soc E.
' ' n    —        n »zaO n

(2) =» (1). Let M be a cyclic R-module with essential socle. Since ER(M) =

U     „ soc E „(M), it follows that for some n > 0, M C M D soc E „(M) = soc M
n>\) n   K *   " — — n   Kv   ' n

by 4.2.

We now assume that R is a semilocal ring with Jacobson radical /.

(1) =* (3). Let K be a right ideal of R and 0: R -» ER(K/KJ) be an exten-

sion of the composite map K—*K/KJ —> ER(K/KJ). Evidently, tfAR) is a cyclic

essential extension of its socle K/KJ. By condition (1), i/AR) = soc ifAR) for

some « £ Z+. Thus, by 4.2, ipXR)/" = (0) which yields KnjnCKnketip=KJ.

(3) =» (1). Let M = R/L be a cyclic right R-module with essential socle

K/L, L ÇK ÇR. We have a positive integer n   such that K n Jn Ç KJ. Let it:

R—*R/L be the canonical map. If x is any element of R such that zt(x) e zt(K)

O 27(/n) then x »/+/,« ft + l2 fot some j £ J", k e K and ij, /2 e L; clearly,

f £ K C) Jn Ç KJ Ç L; so, zrU) = 0. Thus, iriK.) n 7r(/n) = (o). The assumed es-

sentiality of niK) in 7r(R) forces 0 = nij") = MJ". By 4.2, M = soc M.    a

A.A. Corollary. The Jacobson radical of a semilocal right Noetherian ring R

has the right AR-property if and only if the infective hull of the right R-module

R/J(R) is the union of its socle series,    a
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We are now in a position to prove our main result concerning condition (B).

4.5. Theorem. Let S be a semiprime ideal in a right Noetherian ring R. Then

the following conditions are equivalent:

(1) C(8) is a right Ore set in R and the Jacobson radical of R., the classi-

cal right quotient ring of R w.r.t. (_(8), has the right AR-property.

(2) // M is a cyclic essential extension of a uniform right R-submodule N of

R/8, then M8" = (o) for some n e Z ; further, ij M/N is p -torsion then MS, =

(0).

(3) Let E be the injective hull of the right R-module R/i and let E   =annB8",

« > 0.  Then E =U     . E    and each E    ,/E    is nonsineular as a module over
— nïO     n 77 + 177. °

R/9>.

If these equivalent conditions are satisfied then E can be canonically treat-

ed as a right Rf-module and, as such, it is the injective bull of Rf/jiRt). Also,

for each n > 0, the following equalities hold:

soc    E     =E  ; annc/c.    8=E     ./ E  ;
77        K. 72 C/C 71+1 72

» 72

ann„ E   = /"(R.);      ann„ E   = H (8).
Kj      H ' » K        72 72

Proof. Assume that the condition (1) holds. We proceed to show that the con-

dition (3)  and the assertions stated after it hold.

Let 0: R —> R = R/p„. ÁR) be the canonical map and R    be the classical

right quotient ring of R w.r.t. c(8). Set 8= cS(8) and / = /(R#). We shall repeat-

edly invoke Theorem 2.1. Thus, we already know that E is the Rf-injective hull

°f Pf/J- Since Rt is semilocal with /" = 8"R|, it follows that socnER - annE/" »

annc8" = E    for all n. Now E = U     - E    is immediate from 4.4. Since R/8 is
C 72 72 > U        72

a right order in R#//, the right (R4//)-module En  AEn has to be nonsingular

over R/S,. Further, E     ,/En = soc(E/En)R   = ann£/E   / = annE/E   8. It remains

to determine the annihilators of E . Using the fact that E   = ann /", it is easily

seen that En is the injective hull of Rf/J in mod-(R4//"). Since Rj]n is a

right Artinian ring, its right socle is essential in it. Consequently, for some n eZ+,

the module E[™' contains a copy of the one-dimensional free right module over

Rt/J". Hence annR   En = /" and annR En = <p~ HannR Ej = <p" HR n annR   Ej

= <p-1(Rn J") = hU). *

We now show that (2) =* (1). It is clear from the latter half of condition (2)

and Theorem 3.2 that c(8) is right Ore in R. Let R, 8, R4 and / be as defined

above. Let M be a minimal right ideal of R.I]. Since R/S is a right order in

R4//, it follows that ÍR/S) O M is a nonzero uniform right ideal of R/&  with

ER (M) as its R-injective hull. Thus, for any nonzero x £ ED ÍM), the cyclic R-

submodule xR is an essential extension of the uniform R-module ÍR/S) O M O xR.
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So, for some  n £ Z+, 0 = x8n = x8n = xj". Now it is clear from 4.4 that / has

the right AR-property.

To complete the proof of the theorem, we show that (3) =» (2). Let M be a

cyclic essential extension of a uniform right R-submodule N of R/8. Since M Ç

E = U    n E , it follows that M8" = 0 for some n £ Z . Now assume that M/N
222U       II

is Pp,.)-torsion and let n be the smallest positive integer such that M8" = 0. For

a moment, let « > 1. Since N CM 0(R/8) Ç M O E     ,, it follows that

(M + E    ,)/E    . S zM/(MnE    ,) is a nonzero p„, .-torsion submodule of E /£     ,.
«—i       n—i zj—i (it 6) rt     n— i

Contradiction!    Ü

The condition (3) and the assertions stated after it in Theorem 45 are related

to Theorem 3.4 of [12].

We now use some of the ideas developed so far to recast Goldie's criterion

for condition (B).

A.6. Theorem. A semiprime ideal 8 in a right Noetherian ring R   satisfies

condition (B) if and only if, for each right ideal K of R, there exists n £ Z    such

that R/Hn(8) is a right order in a right Artinian ring and KC\ Hn(8) Ç Pp(i)-cl (K8).

Proof. Suppose that 8 satisfies condition (B).   Let R, 8, R4, / have their

usual meaning and <f>: R —» R be the canonical map. As seen in 2.1, R/H (8) is

a right order in a right Artinian ring for all n e Z  . Let K be a right ideal of R.

Set K = <f>(K). In view of 4.1, we have n e Z+ such that (KR,) n /" Ç KR,J -

K8Rf. Using 1.4 and 2.1, we get

K n H/«) Ç pe(tycl (K) O Pe(i)-cl(8")

= <¿-1(R nKRt)n çS_1(R n /")

- <p-1(R n KR, n /") Ç «¿"'(R O K8R,) = pe(ê)-cl(K8).

For the converse, we shall show that condition (2) of 4.5 holds.   Let M be

a cyclic essential extension of a uniform R-submodule  Af of R/8. We may assume

that M - R/L and N = K/L where L^K ate right ideals of R. Choose « e Z +

such that R/H (8) is a right order in a right Artinian ring and K n H (8) Ç

Pg(#)-cl(K8). Since N is Op.^.-torsionfree, so also is zM; so, Ppzj)*^ (l) - L. Using

zV8 = 0, we get P^-cl (K8) Ç Pe(6)-cl U) = L. Thus, K n z7n(8) Ç L. This

yields /7 (8) Ç L   since K/L is essential in R/L. Since 8" CH (8), it follows

that M8n = (0).
*N* *\# *\/

Set R « R/Hn(8) and 8 = 8/HJ.8), Then 8 is the prime radical of the right

Noetherian ring R and, by Small's theorem [14], (-(8) is a right Ore set in R. So,

condition (2) of 4.5 holds in R. Now, if M/N is pp.f.-torsion as a R-module, it
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is p^/V.-torsion as a R-module. Consequently, M& = (o) which yields /M8 = (0).

It follows that condition (B ) is satisfied.    □

We note that if 8 is a semiprime ideal in a left as well as right Noetherian

ring R then R/H (8) is always an order in an Artinian ring; this can be readily

seen from §4 of [2]. Thus, in case 8  is prime and R is left-right Noetherian,

Theorem 4.6 reduces to Goldie's criterion, viz. Theorem 2.62 of [3l.

Finally, we look at the /-adic completion of a semilocal right Noetherian ring,

generalizing one more result of Matlis [12].

4. 7. Theorem.  Let R be a semilocal right Noetherian ring whose facobson

radical J has the right AR-property. Let E be the R-injective hull of the right

R-module R/j and R be the J-adic completion of R.  Then R is canonically

isomorphic with the biendomorphism ring of ER.  Further, E can be canonically

considered a right R-module and, as such, it is ^.-infective if and only if R is

right Noetherian.

Proof. Let M be a right R-module such that M = U    n soc M. Let x £ M
, 72 ¿U 72

and r £ R. By 4.2, x]   =0 for some k £ Z .  Choose a Cauchy sequence \r ! in

R which converges to r. Then, for a sufficiently large m, xr   = xr    for all n>m.

Define xr = xr  .  It is immediate that this makes M a right R-module. Further,
772 °

if 6 is a R-endomorphism of M then dixf) = 0ix)rn tot all n > m which yields

dixr) = 6ix)f. Thus 6 is in fact a R-endomorphism of M. It follows that biend MR

= biend Ma.

We now consider the R-module E. For n > 0, set E   = soc E and H   = [6 £-      ' 72 72 72

End ER|0(En) « o!. Evidently, En = ann£/" and, due to 4.3, E = Un¿Q En. So,

as shown above, E has a canonical R-module structure and biend ER = biend E«.

Let « > 0 and let y £ E but y /f E . By 4.2, we have yR O E    , 4 yR n E .— * ^ 72 ' * 72+1-' 72

Clearly, there is a nonzero R-homomorphism of [iyR Pi E    .) + E ]/E     into R/j.

This yields an element h £ H    such that hiy) 4 0. So, E   = annE/7    for all n > 0.' 72 J 72 G      72 —

It follows that E_ is a biend ED-submodule of E.
ft K.

Now, let b £ biend ER. The restriction of b to E    is a biendomorphism of

En as a right module over R/j". It is clear that R/jn is a right Artinian ring

and En is an injective cogenerator in mod-(R//n). It follows that annRE   « /"

and that the restriction of b to E    is the right multiplication by some element

rn of R; see [9]. The sequence [r i is Cauchy in R. For, given k £ Z , we have

E¡irm - rn) = 0 for all m, n> k; this yields rm~ rn e annR^¿ = / • Let r be the

limit of r . Then, for every x £ E, we have xb = xr. So, the canonical map R —»

biend ER is a surjection. Using Nakayama's lemma and the right AR-property of

/, we have  l\„¿0 J" = (0); so, the natural map R—*R is an injection. Since

annR Eß = /" for n > 0, we see that ER is faithful; so Eg is faithful. Consequently,



122 ARUN VINAYAK JATEGAONKAR

the canonical map R —» biend Eg = biend ER is an injection and so an isomor-

phism.

Assume that R is right Noetherian. By Theorem 2.7 of [13], the Jacobson

radical / of R has the right AR-property. So, if F denotes the R-injective hull

of E« then, by 4.3, we have F = Un>0 annF /*. As a right R-module, F splits

into a direct sum of E and a R-submodule C. Let y £ C. Then yj   = 0 for some

k eï . Given r   e R, choose r e R such that r - r e J  . Then yr = yr € C. Thus,

C is in fact a R-submodule of F. So, C = (O); i.e., Eg is an R-injective and so

a S-injective.

Conversely, suppose that Eg  is S-injective. Using 4.2, it is easily seen

that R satisfies condition (2) of 4.3. So, / has the right AR-property. By Theo-

rem 2.7 of [13], R is a right Noetherian ring. Another proof of this part can be ob-

tained from 9.B of [l].    D

The first part of the proof can be easily modified to show that, even when /

fails to have the right AR-property, R is canonically isomorphic with the biendo-

morphism ring of the right R-module U ä0 soc E.

We mention two open questions which are closely related to the matters con-

sidered here.

(1) Let R be a semilocal Noetherian ring. Does J(R) have the right AR-prop-

erty? If R is one-sided Noetherian, the example in [5] provides a negative answer

since the right AR-property of J(R) implies that fig ]"(R) = (O). However, in

the two-sided Noetherian case, the answer is not known even when J(R) is as-

sumed to have the left AR-property.

(2) Let R be a semilocal (right) Noetherian ring whose Jacobson radical /

has the right AR-property. Is the /-adic completion of R right Noetherian?
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