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REGULAR SELF-INJECTIVE RINGS

WITH A POLYNOMIAL IDENTITY
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EFRAIM P. ARMENDARIZ AND STUART A. STEINBERG

ABSTRACT. This paper studies maximal quotient rings of semiprime P. I.-

rings; such rings are regular, self-injective and satisfy a polynomial identity.

We show that the center of a regular self-injective ring is regular self-injective;

this enables us to establish that the center of the maximal quotient ring of a

semiprime P. I.-ring R is the maximal quotient ring of the center of R, as well

as some other relationships. We give two decompositions of a regular self-injec-

tive ring with a polynomial identity which enable us to show that such rings are

biregular and are finitely generated projective modules over their center.

1. Introduction. E. Formanek's recent result [9] on the existence of central

polynomials has been used by L. Rowen to show that in a semiprime ring with a

polynomial identity each nonzero ideal has nonzero intersection with the center of

the ring [17], Earlier J. Fisher had established that both singular ideals of a semi-

prime ring with polynomial identity are zero [7], Subsequently, W. Martindale [13]

used Rowen's result to settle two conjectures of Fisher concerning semiprime P. I.-

rings: (a) the maximal left and right quotient rings coincide; (b) the maximal (left)

quotient ring satisfies the same polynomial identity. Since the maximal quotient

ring of a ring with zero singular ideal is von Neumann regular and self-injective,

this paper investigates the structure of regular self-injective rings with a polynomial

identity.

In §2 we show that the center of a regular self-injective ring is a regular self-

injective ring; hence the maximal quotient ring of the center of a semiprime P. I.-

ring is the center of the maximal quotient ring. While a semiprime P. I.-ring with

regular center need not be regular we do show that it must be an /-ring and contain

an essential regular ideal. §3 contains two structure theorems for regular self-injec-

tive rings with a polynomial identity; as consequences of our structure theorems we

get that such rings are biregular, and, as in the primitive P. I. case, they are

finitely-generated (projective) modules over their center. Hence a semiprime P. I.-

ring can be embedded in a matrix ring over the maximal quotient ring of its center.
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Throughout this paper we assume that rings are algebras over commutative

rings and that the polynomial identities that occur  have at least one invertible coef-

ficient. We denote the maximal left quotient ring of a ring R by Q. For the defini-

tion and basic properties of quotient rings we refer the reader to [21], [6] and [ll].

We note here the following facts:

(a) If q £ Q there is an essential left ideal D of R such that Dq C R.

(b) If R has zero (left) singular ideal then a left ideal D of R is essential

if and only if the left quotient ring of D is Q.

(c) The center of R is contained in the center of Q.

(d) It I is an ideal of a semiprime ring R then the center of / C center of R.

We wish to acknowledge many conversations with Joe Fisher and Harvey Wolff

which helped in the development of this paper. The referee has also provided

many comments which have improved the exposition; we acknowledge his contri-

butions also, especially his observations dealing with Theorem 3.5.

2. The center of a regular injective ring. For the principal result of this sec-

tion we use Baer's criterion for injectivity [6, p. 5]: A unital left R-module M is

injective if and only if for each (essential) left ideal / of R and each R-homomor-

phism /: / —► M there exists x £ M such that f(a) = ax fot all a £ I. The ring R

is (left) self-injective if RR is an injective module.

Theorem 2.1. Let R be a regular left self-injective ring with center A. Then

A  is a regular self-injective ring and R  is an injective left (or right) A-module.

Proof. That A is regular is due to J. von Neumann [24] and is well known.

Suppose that / is an essential ideal of A, and let /: / —► A be an A-homomorphism.

Define /*: Rl -► R by setting /*(£n=1 r«.) = Sn=I r.f(u). Note that /* is well

defined. Indeed, if S" . r.u. = 0, then Au, + Au. + ■ • • + Au   = Ae C / with e' ; = 1    7    7 12 77 —

e £ A as A is regular. Hence u e = u . for all I < / < n and so

2

;' = ! ; = 1

Thus /* is an R-homomorphism; since R is self-injective there exists r £ R for

which /*(/) = tr tot all t £ Rl. We claim that r £ A. To see this first note that for

u £ I, ur = f*(u) = f(u) £ A; hence for all x £ R and u £ I we have u(xr - rx) =

(ux)r — (ur)x = (xu)r — x(ur) = 0, and so xr — rx £ Ann„ /. Since R is regular (and

hence semiprime), the sum Rl + AnnR (/) is direct. Applying Baer's criterion for

injectivity to the map Rl © Ann„ (/) —» R which sends x + y —»y yields an idem-

potent e £ R such that AnnR (/) = Re. But Re is an ideal of R, since / is a cen-

tral subset, and in any semiprime ring R an ideal that is a summand of RR is an

ideal summand. So Re is unital and hence e £ A. Since / was assumed to be
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essential in A, le = 0 yields e = 0. But then xr - rx = 0 for all x £ R so that

r e A as claimed. A similar proof establishes that R is an injective A-module.

Slightly more can be concluded from the hypothesis: R is a torsionless non-

singular A-module and by F. Sandomierski [20, Theorem 2.7] if R is a finitely-

generated A-module then R is projective.

We remark that the proof shows that if R is a unital self-injective ring with

regular center A, then R is an injective A-module. The question arises: Must R

be regular? We have not been able to settle this although it appears unlikely.

Rowen's result mentioned in the introduction shows that the center of a semi-

prime P. I.-ring is quite large. The next two lemmas give a further indication of

the largeness of the center and lead to a generalization of the fact that a semiprime

P. I.-ring is simple (prime) if its center is a field (domain).

Lemma 2.2.  Let R be a semiprime P. I.-ring with center A and let D be a

left ideal of R and C an ideal of A. Then (a) C is essential in A  if and only if

RC is essential in R; (b) D is essential in R if and only if D D A (= center of D)

is essential in A.

Proof, (a) If C is essential in A, let / = AnnR (RC). Then for Cj = / n A we

have CC. =0 so C, = 0. By Rowen's theorem [17, Theorem 2], / = 0 so RC is

essential in R. Conversely, if RC is essential in R then Ann^ (C) = AnnR(C) n

A = AnnR(RC) n A = 0 so C is essential in A.

(b) This is Theorem 6 of Martindale [13].

Lemma 2.3. // R is a semiprime P. I.-ring with center A and maximal quotient

ring Q, then R is an essential A-submodule of Q.

Proof. First note that Q is a nonsingular A-module. For if a £ Q and C is an

essential ideal of A, then Cq = 0 yields RCq = 0, and so a = 0 since RC is an

essential ideal of R. If 0 4 q e Q then there is an essential left ideal D of R lot

which Do C R. By Lemma 2.2(b), D O A is essential in A so 0 4 (D Ci A)q ÇAq n R.

Corollary 2.4. A semiprime P. I.-ring R with center A  is self-injective if and

only if R is an injective A-module.

Proof. If R is A-injective then R = Q by Lemma 2.3. The converse follows

from Theorem 2.1.

We use the preceding results to relate the center of a semiprime P. I.-ring to the

center of its maximal quotient ring.

Theorem 2.5. Let R be a semiprime P. I.-ring with maximal quotient ring Q

and let A = center of R, B = center of Q. Then B is the maximal quotient ring of A.

Proof. We first show that B is an essential extension of A as an A-module.

Note that A Ç B: for if a £ A, q £ Q and / is an essential left ideal of R such that
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lqÇR then x(aq - qa) = (xa)q — (xq)a = (ax)q - a(xq) = 0; so aq - qa = 0 since Q

is a nonsingular R-module. If b £ B then (R : b) = \r £ R\rb £ A] is an ideal of R

which is essential in R. Thus (R : b) O A is an essential ideal of A by Lemma

2.2(b). Now AnnR(i) is not essential in R so by Lemma 2.2(a), AnnA(b) =

AnnR(b) O A is not essential in A. It follows that (R: b) n A 2 Ann^(¿) and so

there exists a £ A with 0 4 ab £ A as desired. Next we show that B is an injec-

tive A-module; so let C be an essential ideal of A, f: C —♦ B an A-homomorphism

and define /*: BC — B by f*&"sl fe;.cy) = S^=1 è./(c;). Ï», b.c. =0 choose

an essential ideal D of A such that Db.CA tot all /' = 1,• • •, ». Then for d £ D

we have

¿(g w) = ¿ tf*ri> - /({4 V/)) ■ °

and it follows that S*?_j b.f(c) = 0, since B is a nonsingular A-module. Thus /*

is well defined. By Theorem 2.1, B is an injective B-raodule so by Baer's criterion,

there exists x £ B such that f(c) = f*(c) = ex tot all c e C, and so B is an injec-

tive A-module. Now by [6, p. 69]  B is the maximal quotient ring of A.

Note that something such as a P. I. is needed in Theorem 2.5; for example let

R be a prime ring with trivial center. On the other hand, we remark that most of the

results'in this section hold for strongly regular rings in place of semiprime P. I.-

rings.

Because the center A of a semiprime P. I.-ring R is so large one might sus-

pect that many properties of A  carry over to R, e.g. injectivity or regularity. How-

ever if R consists of all sequences with entries from a finite-dimensional central

division algebra D which are eventually central, then A is self-injective whereas

R is not because if / is the ideal of sequences which are eventually zero, the homo-

morphism d: I —► R which sends ix i —» \x  d\, where d is a fixed noncentral ele-
x 77 71

ment of D, cannot be extended to a homomorphism from R to R. Also Example 1

of [8] shows that R need not be regular even if A is: there exist nonregular semi-

prime P. I.-rings which are 77-regular and so have regular center. But even 77-regu-

larity does not carry over because if R is the ring of all sequences of 2 x 2 rational

matrices which are eventually of the form (£ °) with a integral, then R has

regular center but is not 27-regular. This example is however a semisimple /-ring,

i.e., each nonzero left ideal contains a nonzero idempotent, and we will show that

this is always the case.

Theorem 2.6. Let R be a semiprime P. l.-ring whose center A is a regular

ring. Then R is an 1-ring and R contains an essential ideal which is a regular ring.

Proof. Let / 4 0 be a left ideal of R and choose a left ideal / of R which is

maximal with respect to / O / = 0. Then U = I + } is an essential left ideal of R
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and by Lemma 2.2(b), C = A H U   is an essential ideal of  A   and   C  is a reg-

ular ring.   If   A  is an idempotent of   C, then  A = x + y   with  x £ I, y £ J.

Hence  Ax = xA = x   + xy  implies  xy e / n / = 0; so xy = 0 and similarly, yx = 0.

Thus   A = A2   = x2  +  y2   so  x = x     £ I.   It remains to show  x  4 0 for some

idempotent 0 4 A e C. If not, then all idempotents of C ate in / and therefore

CÇJ since C is regular. But then by Lemma 2.2(a), / is an essential left ideal

of R and this contradicts / O / = 0 with / 4 0. Thus R is an /-ring. The exis-

tence of an essential regular ideal depends on Proposition 3.4 and so we defer its

proof till then.

We conclude this section by considering finiteness conditions on the center.

The next result has been obtained independently by L. Rowen [18, Appendix ] and

has no doubt been noticed by others.

Theorem 2.7. Let R be a semiprime P. I.-ring with center A, and let Q be the

maximal quotient ring of R with center B. Then R is a (left or right) Goldie ring

if and only if A is a Goldie ring. In this case Q = BR is the classical quotient

ring of R.

Proof. For a ring K, let B(K) be the Boolean algebra of central idempotents

of K and let A(fC) be the Boolean algebra of annihilator ideals of K. Then since

both Q and B are regular self-injective rings, we have A(Q) Si B(Q) = B(B) Si A(B).

Thus if R is Goldie then Q is semisimple Artinian by Goldie's theorem (cf. [6,

p. 76]) so B is semisimple Artinian and hence A is Goldie as B is the maximal

quotient ring of A. Conversely, if A is Goldie then B is semisimple Artinian and

so since A(Q) = A(B) and A(B) is finite, Q is a finite direct sum of prime regu-

lar self-injective rings (e.g. [6, p. 115]).

As g is a P. I.-ring, Posner's theorem [l] ensures that Q is semisimple

Artinian and so R is Goldie. For the final assertion let a £Q and C an essential

ideal of A for which Cq Ç R (Lemma 2.3). Since A is Goldie, C has a regular

element and so q £ BR.

We remark that in general Q 4 BR: Let R consist of all sequences with

entries from a finite-dimensional central division algebra which are eventually

central. Also in Theorem 2.7 Q can be obtained by inverting only central elements,

as also noted by Rowen [18, Appendix].

3. Two decompositions. Our first structure theorem is

Theorem 3.1. // R z's a regular self-injective ring with a polynomial identity,

then R = IIAeA RA where each R\ is a matrix ring over a strongly regular self-

injective ring with a polynomial identity.

Proof. We first use a theorem of Utumi [22, Theorem 3.2] to write R as R =

S © T where 5 is a strongly regular ring and each nonzero ideal of T contains a
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nonzero nilpotent element. We can assume that S = 0; then since R is of bounded

index, by Levitzki's theorem [10, p. 239] each nonzero ideal of R contains a non-

zero ideal which is a matrix ring over a strongly regular ring with unit (such ideals

are called matrix ideals in [12]). Any matrix ideal, having a unit, is a direct Sum-

mand of R and so is itself a regular self-injective ring. In addition, by [23,

Theorem 8.3] the strongly regular rings occurring are self-injective. Thus select a

maximal independent family lRx|A £ A! of matrix ideals and let V = ©^xeA Rx.

Since AnnR (V) = 0, V is an essential ideal of R and hence by [21, 2.1], R = Q =

e(v) = nX6Ae(Rx) = nXeARx.
As noted in Armendariz-Fisher [2, Remark 2] every biregular P. I.-ring is a

regular ring; however Example 4 of Fisher-Snider [8] shows that the converse does

not hold. R. Snider has asked if a self-injective regular P. I.-ring is biregular.

Theorem 3.1 provides an affirmative answer. We state this as

Corollary 3.2. A regular self-injective ring R with a polynomial identity is

biregular.

Proof. Strongly regular rings are biregular and matrix rings over biregular

rings are biregular [12, Lemma 5.2].

Note that the proof of Theorem 3.1 requires only that R is regular left self-

injective and of bounded index for the conclusion to be valid. Since strongly

regular left self-injective rings are right self-injective (this can be shown by using

[22, Theorem 3.3] or by verifying that if R is such a ring then RR is essential in

the maximal right quotient ring of R) we have the following result of Y. Utumi

[21, Theorem 5(1)]:

Corollary 3.3. A regular left self-injective ring of bounded index is right

self-injective.

By choosing a different collection of ideals we can obtain a second decom-

position of a regular self-injective   P. I.-ring.  Following A. W. Chatters [4] we

call a P. I.-ring R stable (of degree n) if R satisfies a polynomial identity of

degree 72 and no nonzero factor of R satisfies a polynomial identity of degree

< 72; an ideal / of R is stable if / is stable as a ring. We can modify a proof of

Fisher-Snider [8, Theorem 2.8] to establish

Proposition 3.4.  Let R be a semiprime ¡-ring satisfying a polynomial identity.

Then each nonzero ideal of R contains a nonzero (unitaT) stable ideal.

Proof. Let K 4 0 be an ideal of R. If 72 is the degree of a P. I. of minimal

degree satisfied by  K set U =C\\P\P is aprime ideal of K and K/P satisfies a

P. I. of degree < 72¡. The choice of n guarantees that U 4 0. Moreover any prime

ideal of K is an ideal of R: let P be a prime ideal of K, then RP Ç K and
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(RP)* Ç P so RP ÇP and similarly PR Ç P. Thus U is an ideal of R. If Q is

a proper prime ideal of U then it is easily checked that P =\a £ K\dU Ç Q\ is a

prime ideal of K and P n [/ = Q. As Í//Q S (1/ + P)/P ¿ 0, K/P satisfies any

identity satisfied by U/Q [l, Theorem 7] and so by its construction U/Q satis-

fies no P. I. of degree < n for any proper prime ideal Q of U. Again using Levitzki's

theorem, U contains a matrix ideal / and as above no prime factor ring satisfies

a P. I. of degree < 72. Since / has a unit, no nonzero factor ring of / satisfies a

P. I. of degree < 72 and so / is stable of degree 72.

Theorem 3.5. Let R be a regular self-injective ring with a polynomial identity.

Then R = R. ©• • ■ © R,  where each R . is either zero or else each R . is a pro-

duct of regular self-injective rings each of which is stable of degree i, 1 < i < k.

Proof.  Proposition 3.4 enables us to select a maximal*independent family of

stable matrix ideals which we can collect according to degree. As in Theorem 3.1

the conclusion now follows.

C. Procesi's version [15] of M. Artin's theorem [3] says that stable unital

semiprime P. I.-rings are Azumaya-algebras and as such there is a 1-1 correspond-

ence between the ideals of such a ring and the ideals of its center [5, Corollary

3.7, p. 54]. Using these facts together withProposition 3.4 enables us to complete

the proof of Theorem 2.6 that a semiprime P. I.-ring R with regular center A has

an essential regular ideal. Since R is an /-ring, by Proposition 3.4, it suffices to

show that each unital stable ideal V of R is a regular ring. Now V O A = center

V is an ideal of A and so is a regular ring. Since V is an Azumaya algebra, there

is a 1-1 correspondence between the ideals of V and the ideals of V n A given in

[5, Corollary 3.7, p. 54]; and since prime ideals of V n A are maximal ideals, each

prime ideal of V is a maximal ideal and hence by [8, Theorem 2.7] V is a regular

ring.

The conclusion of Theorem 3-5 can also be rephrased in terms of Azumaya

algebras. Let R be a P. I.-ring with unit which satisfies the identities of n x n

matrices over Z but not of (n — \) x (n — l) matrices and let F    denote Formanek's
72

central polynomial. If F (R) denotes the set of values taken on by F    then, as

noted by Procesi [16, Theorem 3.7] (also Rowen [19, Lemma 9]), R is stable of

degree 72 if and only if R • F (R) = R. It follows that if ÍRJA e A} is a collection

of semiprime P. I.-rings with 1 and each Rx is stable of degree », with » fixed,

then   riXfA Rx is stable of degree n. Hence Theorem 3-5 can be stated as follows:

// R is a regular self-injective ring with a polynomial identity then R = R.  © • • •

© R,  where each R. is zero or else each R.  is an Azumaya algebra. Thus we

have

Corollary 3.6.  Let R be a regular self-injective ring with a polynomial identity

and center A.  Then there is a 1-1  correspondence between the ideals of R and
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the ideals of A given by I —» / O A, U —» RU for I an ideal of R, U an ideal

of A.

Proof. The correspondence is 1-1 for Azumaya algebras [5, Corollary 3-7,

p. 54] and this is extendible to direct sums.

There is another important consequence of Theorem 3.5 when combined with

the theory of Azumaya algebras.

Theorem 3.7. Let R be a regular self-injective P. I.-ring with center A. Then

R is a finitely-generated projective A-module.

Proof. From Theorem 3.5, R = Rj © • • • © Rk where each R. is an Azumaya

algebra. Now A = A j © • • • © A.  where A . = center (R¿). As each nonzero R.

is an Azumaya algebra, each R. is a finitely-generated projective A . -module [5,

Theorem 3.4, p. 52]. Thus R is a finitely generated projective A-module.

Corollary 3.8.  Ler R be a semiprime P. I.-ring with center A and let B be

the maximal quotient ring of A. Then R can be embedded in B , the n x 72 matrix

ring over B, for some n > 1.

Proof.  R embeds in Homß(f3, Q) where Q is the maximal quotient ring of R.

As Q is a finitely-generated projective B-module we have Homß(Q, Q) Si eB   e

C B    for some idempotent e £ B .
—    n r n

We conclude by mentioning that the referee has pointed out that the rings R.

in the conclusion of Theorem 3-5 can be described as follows:  R.=R' FAR),

where k is the largest integer such that FAR) 4 0; R.. = S,    .F, _ AR), where

Sk_l = Ann(Rfc); Rfc_2 = Sfe_2Fjfe_2(R), where 5fc_2 = Ann(Rfc + R^_j); etc.

Added in proof. A more elementary proof of Corollary 3.6 can be given if one

notes that the conclusion of the corollary is valid for any biregular ring R. Now

use Corollary 3.2.

REFERENCES

1. S. A. Amitsur, Prime rings having polynomial identities with arbitrary coefficients,

Proc. London Math. Soc. (3) 17 (1967), 470-486.    MR 36 #209.

2. E. P. Armendariz and J. W. Fisher, Regular P. ¡.-rings, Proc. Amer. Math. Soc.

39(1973), 247-251.
3. M. Artin, On Azumaya algebras and finite-dimensional representations of rings, J.

Algebra 11 (1969), 532-563.    MR 39 #4217.

4. A. W. Chatters, Localization  in Pl-rings,   J. London Math. Soc. (2) 2 (1970),

763-768.    MR 42 #4588.

5. F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture

Notes in Math., vol. 181, Springer-Verlag, Berlin and New York, 1971.    MR 43 #6199.

6. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math,

no. 49, Springer-Verlag, Berlin and New York, 1967.    MR 37 #2791.



SELF-INJECTIVE RINGS WITH A POLYNOMIAL IDENTITY 425

7. J. W. Fisher, Structure of semiprime P. I.-rings, Proc. Amer. Math. Soc. 39 (1973),

465-467.

8. J. W. Fisher and R. L. Snider, On the von Neumann regularity of rings with regular

prime factor rings, Pacific J. Math, (to appear).

9. E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129—132.

MR 46 #1833.

10. N. Jacobson, Structure of rings, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 37,

Amer. Math. Soc, Providence, R. I., 1964.    MR 36 #5158.

11. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

MR 34 #5857.

12. J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer.

Math. Soc. 74 (1953), 384-409.    MR 14, 720.

13. W. S. Martindale III, On semiprime P.l.-rings, Proc Amer. Math. Soc 40 (1973), 364-369.

14. E. C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc.

11 (1960), 180-183.    MR 22 #2626.

15. C. Procesi, On a theorem ofM. Artin, J. Algebra 22 (1972), 309-315.    MR 46

#1825.

16. ——, Central polynomials and finite-dimensional representations of rings (to

appear).

17. L. H. Rowen, Some results on the center of a ring with polynomial identity, Bull.

Amer. Math. Soc 79 (1973), 219-223.

18.  -, On classical quotients of polynomial identity rings with involution, Proc.

Amer. Math. Soc. 40 (1973), 23-29.

19«  ———, On rings with central polynomials, J. Algebra (to appear).

20. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225—

230.    MR 36 #2648.

21. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18.    MR 18, 7.

22. ———, On rings in which any one-sided quotient rings are two-sided, Proc. Amer.

Math. Soc. 14 (1963), 141-147.  MR 26 #137.

23.  -, On continuous rings and self-injective rings, Trans. Amer. Math. Soc.

118 (1965), 158-173.    MR 30 #4793-

24. J. von Neumann, Regular rings, Proc. Nat. Acad. Sei. U. S. A. 22 (1936), 707—713.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TOLEDO, TOLEDO, OHIO 43606


