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ABSTRACT. Let  C denote the category of compact Hausdorff spaces and H:

C —► HC be the homotopy functor.  Let S: C —» SC be the functor of shape in the

sense of Holsztynski for the projection functor H.  Let A' be a continuum and

H (X) denote zz-dimensional Cech cohomology with integer coefficients.  Let

A   — char H (X) be the character group of H (X) considering H (X) as a dis-

crete group.  In this paper it is shown that there is a shape morphism F e

Mor^-iX, Ay) such that F* : H (AJ) —*H (X) is an isomorphism. It follows

from the results of a previous paper by the author that there is a continuous map-

ping f:X —► A v such that S(f) = F and thus that /*: H (AJ) —» H (X) is an

isomorphism. This result is applied to show that if X is locally connected, then

H (X) has property L.  Examples are given to show that X may be locally con-

nected and Hn(X) not have property L for zz > 1.  The result is also applied to

compact connected topological groups.

In the last section of the paper it is shown that if X is compact and mov-

able, then for every integer zz, //"(X)/Tor Hn(X) has property L. This result

allows us to construct peano continua which are nonmovable. An example is

given to show that Hn(X) itself may not have property L even if X is a finite-

dimensional movable continuum.

Introduction. Let C denote the category of compact Hausdorff spaces and H: C —» HC

be the homotopy functor. Let 5: C —*SC be the functor of shape in the sense of Holsztyrf-

ski [3] for the projection functor H. Let X be a continuum and let H"(X) denote 7Z-dimen-

sional Cech cohomology with integer coefficients. Let Ax be the character group of H (X)

considering H\X) as a discrete group. Note that H\X) is torsion free and thus A„ is a

compact connected abelian topological group. In this paper we show that if B is a compact

connected abelian topological group and h: H (B) —» H (X) is a homomorphism,

then there is a shape morphism F e Uotsc(X, B) such that F* = h. By the results

in [6], there is a continuous function /: X —» B with S(f) = F and thus with f* = h
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also. In particular, there is an f: X —* Ax such that /*: H \Ay) —» H (X) is an

isomorphism. If g: X —» B is any continuous map, then there is a continuous

homomorphism n: A„ —> B such that n of is homotopic to g.

In the second section of the paper we apply the results of the first section to

show that if X is a locally connected continuum, then H (X) must have property L.

We construct examples of peano continua such that H"(X) is torsion free and does

not have property L for n > 1. This construction is used to construct the nonmov-

able peano continua in the last section of the paper.

In the third section of the paper, it is shown that, for G a compact connected

topological group and D the commutator subgroup of G, the map /: G —» G/D

induces an isomorphism /*: H ÍG/D) —» H (G).

In the last section of the paper movability of compact spaces is studied. It

is shown that if X is compact and movable, then H"iX)/Tot HniX) has property L

for all n. This allows us to construct peano continua which are not movable. In

particular we construct 2     nonhomeomorphic nonmovable n-dimensional peano

continua for each n > 1. This generalizes a result of Borsuk [l]. This construction

does not work for n = 1, since a one-dimensional peano continuum is movable [9].

These results show that if X is an 72-dimensional LCn~    peano continuum, then

//*(X)/Tor Hk(X) has property L for all *.

An example is given to show that H"(X) may not have property L even if X is

a finite-dimensional movable continuum.

Notation. We assume the notation of [5] and [6]. It is expected that the reader

is familiar with the approaches to shape theory by Holsztyiiski [3] and Mardesic

and Segal [8].

Some knowledge of topological groups is assumed as contained in [10]. If X

is a compact space, H"iX) denotes «-dimensional Cech cohomology with integer

coefficients.

1.  Homomorphisms of Cech cohomology groups which induce shape mor-

phisms.   Let  B  be a compact connected abelian topological group and

h: H iß) —» H iX)  be a homomorphism where  X  is a continuum.  In this sec-

tion of the paper it is shown that there is a unique shape morphism F from X to B

such that F* = h: H (B) —» H (X). Some immediate corollaries are derived in this

section also. The next two sections of the paper then give further applications of

these results. The basic theorem is the following.

1.1. Theorem. Let X be a continuum and B a compact connected abelian

topological group. Suppose that h: //(B) —*HliX) is a homomorphism. Then there

is a unique shape morphism F £ Morsc(X, B) such that F* = h: //'(ß) —► HliX).

Before we can prove Theorem 1.1, we will need to quote some theorems.
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1.2. Theorem (Huber [4]). Let X be compact. Then H"(X) is naturally iso-

morphic to MorH(-(X, K(Z, n)).

In particular, H (X) is naturally isomorphic to MorHC(X, T) where T is the

circle.

1.3. Theorem (Scheffer [ll]). Let G be a compact connected topological

group and A a compact connected abelian topological group. Then if {: G —* A is

continuous with f(e) = 0, then f is homotopic to a unique continuous homomorphism.

The next theorem follows from Theorems 1.2 and 1.3 and is due to N. Steenrod.

1.4. Theorem (Steenrod [13]). Let A be a compact connected abelian topolog-

ical group. Then chat A  is naturally isomorphic to H (A).

Proof. By Theorem 1.2, H (A) is naturally isomorphic to MorHC(A, T). By

Theorem 1.3, Uot¡,c(A, T) is naturally isomorphic to Horn (A, T) = char A. Thus

H (A) is naturally isomorphic to char A.

Proof of Theorem 1.1. Using the natural isomorphism given by Theorems 1.2

and 1.4, we assume that i is a homomorphism from char B to MorH(-(X, T). Now

B is the inverse limit of tori  \T"a; na/}; a < ß e A\ where iraß(Tßß) ■ T^a is

a continuous homomorphism. Let the projections making B the inverse limit be

?Ta(B) = T"a for a € A. We need to define the morphism F € Morsc(X, B). We

view the shape morphisms as functors from //„ to Hx as described in §4 of [3].

To be a shape morphism F must be the identity on the morphisms of //„ to the

morphisms of Hx. First we define F on objects in H„ of the form H(rr) where

it: B —► Tn is a continuous homomorphism. Then we will use the inverse system

\Taa] to extend the definition of F to all of the objects of f/ß.

Let ir: B —» T" be a continuous homomorphism. Then let T" = T, x- • -x T

be a factorization of T" into circle subgroups and let er. T —» T" and p.: Tn —»

T be the injection and projection homomorphisms for z = 1,•••, h. Now p. ° 77 e

char B and we let / = (/r • • •, Q: X -► T" = T, x • • • x Tn where ff(/.) = h(p. o ir).

Then define F(H(n)) = H(f). Since factorizations of T" ate not unique, we need

to show that F(H(n)) is well defined. So, let T" - T,' x- • -x T'  be another
1 72

factorization of T" into circle subgroups with injection homomorphisms e '. : T —»

Tn and projection homomorphisms p. : Tn —» T. Then there are integers 72.. for

1 < ¿, /' < 72 such that S? . 72..p' = p. fot each ¿. Then if 1       is the identity
—       — /ä1      ly 1        '2 fn '

map on T", then 1     : T{ x• • • x TJ —» Tj x• • • x Tn can be represented as 1      =

2?„1 S"=1 e.n..p'. . Now let /' = (f[.£): X — T¡ x• • .x T¿ where //(/;) =

Mi^i ° 77). Since A: char B —» MorHC(X, T) is a homomorphism, Mp   ° it) =

KS*.i *íy^f »w)-2?., «¿/(p,' °tt). Thus m/P-S?, »,.,/»(/;). Therefore
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2"=1 Sy=l nijH((¡> = S?«l H(/,) = W That is' H(lr„) ° H{f'> = W(/)- Thus ff(/)

= //(/') and FiHin)) is well defined. Similarly one can verify that if rr: B —♦ T"

and rr': B —► Tm ate continuous homomorphisms with rr = q °tt, then FiHin )) =

Hiq) o F(ff(ir)).

Now suppose that p: B —» P is continuous with P an //-object of C. Then

let a e A and pa: T*a — P be such that //(pa) ° Hina) = Hip). Then define

FiHip)) = Hipa) o FiHinJ). We need to show that FiHip)) is well defined. Suppose

that j8 e A and pß: Tßß -» P with //(p^) ° //(ffg) = //(p). Then let y > a and /3,

and let 8>y be such that //(pa ° rig    ° rr   s) = //(pa ° 77       o n   ?) using the

fact that Hipß ° nßy o ny) = Hipa ° war ° ?7r). Then we have

H^Pa°TraS) °PiHins)) = Hipa) oFiHirrJ)

and

ffip^ °«ß$> ° F(H(ir8)) - WÍP^ ° Minß)).

But since the left-hand sides of the above equalities are equal we have

Hipa) o FiHina)) = Hipß) o FiHinß)) and F(/7(p)) is well defined. We define

F(//(/)) = //(/) for //(/) a morphism in //ß and then F will be a shape morphism

from HB to Hx.

Now we need to show that F* = h: chat B —» MorS(-.(X, T). If y e char A,

then M^) = FiHiy)) by the way F was defined. Thus F* = />. Now it F, G £

MorçC(X, B) with F* = G* = h, then for 77: B —> Tn a continuous homomorphism

FiHin)) = GiHin)) by repeating the first part of the proof for G. Thus, FiHin^) =

GiHinJ) tot all a £ A  and thus F = G by Lemma 4.1 of [3, p. 162].

1.5. Corollary. Let X be a continuum and Ay - chat H (X). Then there is a

shape morphism F £ MorS(-.(X, A„) such that F*: H iAy) —» H (X) is aij isomor-

phism.

1.6. Corollary.  Ler X be a continuum and x £ X. Let B be a compact con-

nected abelian topological group and let h: HliB) —» //'(X) be a homomorphism.

Then there is a continuous map /:• X —♦ B with fix) = 0 saci that /* = h: HliB)

—» // (X). In particular, there is a continuous f: X —* Ax such that fix) = 0 and

/*: H iAy) —» H iX) is an isomorphism.

Proof. By Theorem 1.1, there is an F £ Morsc(X, B) with F* = h. By

Theorem 1.1 of [6] there is a continuous /: X —» B with fix) = 0 and Sif) = F.

Thus /* = F* = i. The last part of the theorem follows from Corollary 1.5 and the

fact that H (X) is torsion free and thus that Ax is a compact connected abelian

topological group.
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1.7. Corollary.  Let X be a continuum with x e X and B be a compact con-

nected abelian topological group. Let Av = char// (X). Let f: X—*AX be a

continuous function with f(x) = 0 and /*: H (Ax) —* H (X) a7z isomorphism.  Then

if g: X —» B  is continuous with gix) = 0, then there is a continuous homomorphism

it: Ax —► B such that it ° f is bomotopic to g.

Proof: Let g*: hHb) — hHx) and define h = f*'1 °g*. Then h: hHb) -.

H1iAx) induces a homomorphism rr: Ax —► B such that 77* = h. Then (77 ° /)* =

/* o 7T* = /* o (f*-1 o g*) = g*. Thus Sin o /) = 5(g) by Theorem 1.1. But tt °

fix) = gix) = 0 and by Theorem 1.2 of [6], 77 ° / is homotopic to g.

2. Local connectivity and H (X). In this section of the paper we show that if

X is a locally connected continuum, then H (X) has property L. Property L arises

in the study of compact abelian topological groups A where it is well known [10,

Theorem 48, p. 260] that A  is locally connected if and only if char A has property

L. If A  is connected, then this theorem together with Theorem 1.4 of the previous

section shows that A  is locally connected if and only if H (A) has property L.

2.1. Definition. Let G be an abelian group and H a subgroup of G. Then H

is said to admit division if whenever g e G and 72 is a positive integer, then ng e H

implies that g e H. This is equivalent to saying that G/H is torsion free. The

group G is said to have property L if every finite subset of G is contained in a

finitely generated subgroup that admits division.

2.2. Theorem. Let X be a continuum. Then if X is locally connected, then

Hr(X) has property L.

Before proceeding to the proof of Theorem 2.2 we will make some preliminary

remarks to make the proof clearer. We summarize these remarks in four claims for

easy reference in the proof of Theorem 2.2. First of all, suppose that G is an abel-

ian group that does not have property L. Then there is a finite subset !g.,- • •, g Î

C G such that for every finitely generated subgroup H with jg., • • • , g  }C H C G,

G/H is not torsion free. This implies that if H = ¡g £ G: fot some integer 72, 72g is

in the subgroup generated by Ig,, • • •, g  il, then H cannot be finitely generated

since G/H is torsion free. Note that H has finite rank and that H does not have

property L. That is, if G does not have property L, then there is a subgroup H of G

such that H admits division in G, H is of finite rank, and H does not have prop-

erty L. Thus we have shown the following.

Claim 1. If G is an abelian group which does not have property L, then there

is a subgroup H of G which admits division in G such that H is of finite rank

and H does not have property L.

We now review some properties of Pontryagin duality. If A  is a compact abel-

ian topological group, then dim A = rank char A. Also, if A  is a compact abelian
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topological group, then A is metrizable if and only if char A is countable. In par-

ticular, this last remark implies that if H is an abelian group which is torsion free

and of finite rank, then A = char H must be metrizable since H must be countable

under these circumstances.

Claim 2. It H is a torsion free abelian group which is of finite rank, then

char H = A  is a compact connected abelian topological group with dim A = rank H

and A metrizable.

Another point to be made has to do with the results in [2]. Let G be a compact

connected topological group which is finite-dimensional. Then if G.CC is the

arc component of the identity e in G, then the locally arcwise connected topology

on GQ makes GQ into a Lie group L. Now Gn is dense in G and thus by [2] we

can say that there is a Lie group L and a one-to-one continuous homomorphism 0:

L —» G such tha t (piL) is precisely the arc component of e in G and is dense in

G. If G is abelian, then L must obviously also be abelian and thus be of the form

R   x Tm. The first part of the next claim summarizes this.

Claim 3. Let A be a compact connected abelian topological group which is

finite-dimensional. Then there is a one-to-one continuous homomorphism (f>: R   x

Tm —» A such that <piR x Tm) is precisely the arc component of 0 in A and is

dense in A. If Q C (f>iR   x Tm) is a peano continuum, then (f>~  \Q is continuous.

The last part of Claim 3 comes from [2, Theorem 3.2] and the fact that RkxT™

is just the arc component of 0 in A with the associated locally arcwise connected

topology described in [2].

We will need one other result in the proof of Theorem 2.2 which is proved in a

claim in the proof of Theorem 1.2 in [6].

Claim 4. Let A be a compact connected abelian topological group and let Tm

be a subgroup of A. Then A0* Bx Tm for some compact connected abelian topo-

logical group B.

We also use the fact that H (X) is torsion free for all X.

Proof of Theorem 2.2. Assume that X is a locally connected continuum and

that H (X) does not have property L. Then by Claim 1, there is a subgroup M of

H (X) of finite rank which admits division in H (X) and does not have property L.

Let h: M —» H (X) be the inclusion homomorphism. Let ß = char M and let /: X—» B

be a continuous map given by Corollary 1.6 such that /* = h: //(ß) —♦ H (X) with

0 £ fix) in B. Observe that H (X) is torsion free and thus M is also torsion free.

Thus by Claim 2, B = char M is metrizable. By Claim 3, there is a one-to-one con-

tinuous (f>: Rk x Tm —» B with <£(/<* x Tm) the arc component of 0 in B and dense

in B. Since X is locally connected, so is /(X) C B. Since B is metrizable, so is

/(X). Thus fiX) is a peano continuum and thus /(X) C (f>ÍRk x Tm). By Claim 3,

<p~  |/(X) is continuous and thus there is a continuous g: X —» Rk x Tm such that

g ° (f> = /. Clearly g is homotopic to a map g': X —* \0\ x V". Now (pi\Q\ x V") =* V"
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is a subgroup of B and thus by Claim 4, B — A x Tm fot some compact connected

abelian topological group A. Thus / is homotopic to an / : X —» \0] x Tm C A x

Tm = B. However, this implies that /*: HX(B) —» //Hx) factors through the group

zm m Hl(Tm)t ffl(ß) _ Zm _ Hl(X). This implies that M = /*(//X(B)) is a quo-

tient of a subgroup of Zm and thus a free abelian group Z* of rank p < 772. This

is a contradiction since zM did not have property L and Zp has property L. This

contradiction shows that if X is locally connected, then H (X) has property L.   D

Now we show that there are peano continua X for which Hn(X) does not have

property L for 72 > 1 so that Theorem 2.2 does not generalize to the higher-dimen-

sional groups. In the next section, however, we will show that if X is a movable

compactum, then Hn(X)/Tot H" (X) has property L for every 72.

Let X be a metric compactum and D be the standard Cantor set in the unit

interval / = [0, l]. Then there is a continuous function f(D) = X and we can form

the space X, = / U, X. Then X.  is a peano continuum containing X as a closed

subspace. One can think of X. as being obtained from X by adjoining countably

many arcs to X with their endpoints attached to points of X and with their diameters

going to zero. Let / : / —» X, be the map of / onto X. induced by / and let I — D

= U¿t>l ^1 w^ere ^,È is a disjoint collection of open arcs in /. If V is an open

set in X, containing X, then there are a finite number of the 0 .'s, 0    , • • •, 0    ,

such that f'(0n) <t V. This is because /      (V) is an open set in / containing D.

2.3. Theorem. Lei X be a metric continuum and n > 1. Then Hn(X) =* Hn(X).

Proof. By Theorem 1.2 we may assume that Hn(X) = UotHC(X„ K(Z, n)) and

H"(X) = MorHC(X, K(Z, n)). Since Z is countable, K(Z, n) has the homotopy type

of a locally finite connected polyhedron and thus has the homotopy type of an ANR.

Thus we may assume that it is an ANR. Define h: UotHC(X,, K(Z, n)) —»

MorHC(X, K(Z, n)) by h(H(f)) = H(f\X). Certainly h is well defined and a homo-

morphism. We will now show that it is one-to-one and onto.

Suppose that i(//(/j)) = h(H(f2)). We will show that this implies that //(/j) =

H(f2) and thus that h is one-to-one. By the definition of h, /,|X is homotopic to

f2\X. Let H: X x I -» K(Z, n) be a homotopy from fy\X to f2\X. Let A C Xf x I

be the subset consisting of X x / U X. x \0\ U X. x Í1 j and let //': A —♦ K(Z, n)

be defined by H'\X xI=H, H'\Xf x j0| = /x and H'\Xf x ill = fy Then //' is well

defined and continuous. Since K(Z, 72) is an ANR, there is an extension of //' to

H : U —* K(Z, n) where U is an open set in X.xl containing A. Now U contains

an open set of the form V x / where V is open in X. and contains X. Let 0    ,

'•', O     be the open complementary arcs in / - D such that f'(0   ) </. V. Let /,,

• • •, Ik be closed arcs ¡a 0^.0^, respectively, such that /'(/ - (J-=i ',) C V.

Let V  = V - /(U,_i J,)- Let a; < ¿>¿ be the endpoints of L. Then the complement
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of V' x / in X, x / is just U _, / U ) x I which is a finite collection of disjoint

squares /    and the boundary of V' x I in X. x / is just {J¿_y \a{, b.\xl. Consider

H"\[V' x I uXfx iO, 11] = //'". We will now extend //'" to all of Xf x I. Now //'"

is defined on the boundary of / (/.) x / which is homeomorphic to a circle. Since

n > 1, X(Z, n) is simply connected and thus H   |Bd(/ (/.) x /) can be extended to

all of / (/.) x / for each i. This gives the extension of H    to an H: X. x I —*

KiZ, n). Then H is a homotopy of fy  to f2 and //(/j) = Hif2). Thus we have

shown h to be one-to-one.

To show that h is onto let H(g) eUotHCiX, KiZ, n)). Then there is an

extension g   of g to a neighborhood V of X in X.. Let /,,•••,/,   be a finite

number of closed arcs in / — D having property that /'(/ — (J _i 'p C V. Let

a. < b. be the endpoints of /. in /. Let V' = X, - (J _i /'(/■)• Then the exten-

sion g     of g given above is onto V . Then extend g \V   along the arcs / (/.) in

any manner using the fact that KiZ, n) is arcwise connected. This gives an

extension g" of g to all of X.. Then hiHig")) = Hig"\X) - Hig) and h is onto.

Theorem 2.3 is now proved.

2.4. Corollary. Let H be an arbitrary countable abelian group which is tor-

sion free and n > 1. Then there is a peano continuum X such that HniX) ** //.

Proof.  Let A = char H. Then A  is a compact connected abelian topological

group with H (A) — H. Note that A  is metrizable since the weight of A  is count-

able, wiA) = card H.  Let B = 2"     A, the (n — l)-fold suspension of A. Then

HniB) « //. Let X = Br Then H"iX) « /7 with X a peano continuum.

This construction will be used in a later section of the paper to construct

nonmovable peano continua.

3. Cech  cohomology and topological groups. Let G be a compact connected

topological group. We show here as an easy consequence of the results in §1 that

H (G) is determined by the commutator subgroup of G in a manner made precise

by the next theorem.

3.1. Theorem. Let G be a compact connected topological group and let D be

its commutator subgroup.  Then HliG) » HliG/D).

Proof. Let AG = char H (G) and let /: G —» AG be continuous with fie) = 0

such that /*: H (AG) —♦ //(G) is an isomorphism by Corollary 1.5. By Theorem 1.3,

/ may be taken to be a continuous homomorphism. Note that D C ker /. Now

G/D = B is a compact connected abelian topological group and g: G —* B is con-

tinuous. Thus by Corollary 1.7 there is a continuous homomorphism n: Ac —» B

such that n ° / is homotopic to g. But by Theorem 1.3, n ° f = g. Thus D =

ker g D ker / and D = ker /. Note that since /* is an isomorphism, / must be onto,
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otherwise /(G) would be a proper closed subgroup of AG and /* could not be an

isomorphism. Thus AG — G/ker /= G/D = B.

3.2.Remark.  In this case the map /: G —» AG which induces an isomorphism

/*: H (AG) —♦ H (G) is onto. However, if X is a continuum, then the continuous

map given in Corollary 1.6 may not be onto even in the case that f'.X —► Ax with

/*: H (Ax) —» H (X) an isomorphism. For example let X = T \f T where T is the

circle. Then HHx) =* Z2 and we could let /: X -» T2 = char Hl(X) map X onto

two generating circles in T . Since f(X) may not be all of Ax, one can see the

necessity of using the techniques in the proof of Theorem 2.2.

4. Movability of compacta. In this section we show that if X is movable, then

//"(X)/Tor Hn(X) has property L. This allows us to construct a variety of non-

movable peano continua. For convenience of notation in this section if G is an

abelian group, then we let G = G/Tor G. If h: G —» H is a homomorphism, then

h: G —► H is the naturally induced homomorphism.

4.1. Lemma. Let G be an abelian group which is the direct limit of the direct

system of abelian groups \Ga; naß ; a < ß e A}. Then G is the direct limit of the

direct system \Ga; iraa; a < ß e Ai.

Proof. Let the homomorphisms 77a: G —» Ga make G the direct limit of the

direct system \Ga; irag; a <ß e A\ and let 7?a: G a—* G be the naturally induced

homomorphisms for a e A. We will show that the homomorphisms f7?ai make G

the direct limit of the direct system fGai. Clearly riß  ° ira„ = 7?a for all o.<ß eA.

Also if [b] e G, then there is an a e A and bn e G„ such that ir„ib„) = b. Thus

7?a([èJ) = [b]. Thus  Uae/t ^Ga) = &■ A" tnat needs to be shown is that if

77a([èJ) =  r}ßi[bß]), then there is a y>d,ß such that ir~ay([bj) = nß7i[bß]). To

show this, note that d = 7ra(¿>a) - nßibß) e Tor G. Let 8>a,ß and c = 77aS(èa) -

Hßlibß). Then 77g(c) = d. Since d eTot G, there is an tz > I such that nd = 0.

Then there is a y > 8 such that n$   inc) = nir~ic) = 0. But then 77ay(ba) -

Hßy(bß) = 775r(77aS(èa) - nßAbß)) = rrSyic) e Tor G. Thus 77ay([èJ) = nßy([bß])

fot this y e A.

4.2. Lemma.  Let X be a compact space and X be the inverse limit of the

inverse system |Xa; 77a„; a < ß e A\. Then HniX) is the direct limit of the direct

system \H"iX); ¿r*^; a < ß e A \.

Proof. By the continuity of Cech cohomology, H"(X) is the direct limit of the

direct system \Hn(Xa); n *¿ a < ß e A \. By Lemma 4.1, H"(X) is the direct limit

of the direct system //"(Xa); 77*^; a < ß e A i.

Now we recall the definition of movability as given in [7] and then state and

prove the main theorem of this section. We assume familiarity with the ANR-sys-
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tern approach to shape in [8] and the equivalence of the approaches in [3] and [8]

as shown in [5].

4.3. Definition. An ANR-system X » {Xa; naß; a < ß £ A1 is said to be mov-

able provided that for each a £ A, there is a ß > a such that for every y > ß

there is a map r^'': Xß —» X    such that Hin      °r^) « Hi"an)' A compactum X

is said to be movable if an ANR-system associated with X is movable. As is

shown in [7], if one ANR-system associated with X is movable, then every one is

and movability is a shape invariant.

4.4. Theorem. // X is a movable compactum, then H"iX) bas property L for

every n > 0.

Proof. Let X = ÍXa; naß ; a < ß £ A1 be an ANR-system associated with X

with each Xa a finite polyhedron. Let na: X —► Xa be the projection maps making

X the inverse limit of the system X. Note that //"(Xa) and //"(Xa) are finitely

generated for all a £ A. By Lemma 4.2, HniX) is the direct limit of the direct sys-

tem \HniXa); ii*aß;a<ß£A\. Now we will show that Ä"(X) has property L if X

is movable. Let {a,, • • «, a. ! be an arbitrary finite subset of HniX). There is an

a £A suchthat 7?*(//"(Xa)) contains {a,,.«.,a.l. Since X is movable, let ß>a

be such that for y > ß there is an r^y: Xß —» X     such that Hin      o TPy) -

Hinaß). Now let L be the subgroup of H"iX) defined by g £ L it and only if mg £

7?*(/7"(Xa)) for some positive integer m. We will now show that L C n%iHniXß))

and thus that L is finitely generated. By the definition of L, L will admit division

in HniX) and thus H"iX) will have property L.

Let mg £ñ*ÍHniXa)) tot some m > 1. Then there is a 8 > ß such that g £

¿if (//n(Xs)). Let e £ //"(Xa) be such that tr^e) = mg and let / £ HniXs) be such

that »?*.(/) = g. Then ir*ie) » n*.imf) =mg.   Thus there is a y > 8 such that

n* „(e) = ir* Amf). Let r^y: Xß —* X     be as in the definition of movability and

let h = irßy*)". Then h ° n%y = n^ß. Now himf) = mhif) and thus hif) is an

wzthrootof himf) in  HniXß). However, n*aßie) ~ h o n%yie) - himf). Thus *(/)

is an mth root of i^Ae) in HniXß). Now mn*Àhif)) ■ n*ßimhif)) = rítÍJía^íe)) =

mg. Thus mn*Ahif)) = mg. But HniX) is torsion free. Thus mth roots in /7n(X)

are unique. Thus n*ßihif)) = g. Thus g £ n*ßiHniXß)) atidLCir*ßiHniXß)) as

asserted and HniX) has property L.

4.5. Corollary. // X is movable and H"iX) is torsion free, then H"iX) has

property L.

It may have occurred to the reader to question whether Theorem 4.4 might not

be true for H"iX) rather than HniX) in the statement of the theorem. The following

example shows that this is not the case.
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4.6. Example. It is well known that H2(RP3) = Z2 where RP3 is a 3-dimensional

real projective space. Let Xn = V"_i Rpi aa¿ f°r n<m, define rtnm: Xm —» Xr

to be the map which collapses V* n+l ^      t0 a P°int ana* is the identity on

V" i RP . Let X be the inverse limit of {X i. Then X is a 3-dimensional metric
T l~l 72

continuum which is clearly movable. However, H (X) = ©°1, Z,   and this group

does not have property L.

We are now able to construct a variety of nonmovable peano continua using

these results and the construction described in §2.

4.7. Theorem. For every positive integer n > 1, there are 2       nonhomeomor-

phic n-dimensional peano continua which are nonmovable.

Proof. There are 2      torsion free abelian groups of rank 1 \Ha: a e A] no

two of which are isomorphic and none of which have property L. Let Sa = char Ha

and then let Xa = S"~   Sa be the (» — l)-fold suspension of 2a. Then Xa is a

metric continuum and //"(Xa) = /V"(Xa) = Ha. Clearly Xa is 72-dimensional. Let Za

be the peano continuum (Xa). as described in §2. Then //"(Za) = Ha. Clearly

dim Za= n and in fact Sd(Za) = n since //™(Za) 4 0. Since Hn(Za) does not have

property L, Za cannot be movable. If Za were homeomorphic to Zß, then Ha would

be isomorphic to Hß which would imply that a = ß. Thus jZa: a e AÎ is the

desired collection of peano continua.

In [l] Borsuk constructed a nonmovable peano continuum which was two-dimen-

sional. Note that the construction given in Theorem 4.7 will fail if n = 1, since a

one-dimensional peano continuum is movable. In [9] Overton and Segal give a short

proof of a theorem of Mardesic" that an 72-dimensional LCn~    peano continuum is

movable. That theorem gives us the following corollary to Theorem 4.4.

4.8. Corollary. Let X be an n-dimensional peano continuum. Then if X is

LCn~X, then Hk(X) has property L for all k.
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