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ABSTRACT. If /(x) and g(x)  satisfy the equations

g(x) = -í.f°-f(t)kAxt)dt,        f(x) = -Í.r -gU)k.(xt)dt,
ax    0  t A ax    0   t l

then we call / and g a pair of k j-transforms, where

1    rH+¿°°K(s)    !__
k, =-J -x        ds.

1     2niJy2-io° 1-s

In this paper alternative sets of conditions are established for / and g to be

k j-transform provided K(s) is decomposable in a special way. These condi-

tions involve simpler functions, which replace the kernel  k Ax). Results are

proved for the function spaces  L  .  The necessary and sufficient conditions

are established for the two functions to be self-reciprocal. Conditions are

given for generating pairs of transforms for a given kernel. Two examples are

given at the end to illustrate the methods and the advantage of the results.

1. Introduction.  Iterations of the Laplace transforms [9l are well known and

are of the form,

(1) «(*)-/" *-*'/W*.    f(x),f~e-xthit)dt,    g(x)=J~^La'f.

Charles Fox [3] calls this system a chain transform of order 3. He generalizes

this to the chain transform of order 72  by the equations

and

S„+1W = «1W«

where p and a run through first n integers. He points out that in order to prove

this, all the kernels / and r must be known along with one of g(x) functions,

cf. [7].

We shall consider the iteration of Laplace transforms from a different point

of view. Let us consider the following formal result. Let
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(2) g(x)=f™4>(t)l(xt)dt    and    f(x) = J*~ j cf>(j)m(xt)dt.

If Kis) = L(s)/M(l- s), then gix) = J~ f(t)Hxt) dt. Here Ms), L(s) and Mis)

denote the Mellin transforms of k(x), l(x) and mix) respectively. The system

of equations (1), becomes a special case of this if we put

-<p(~) = h(x),    m{x) = e-x,    /(x)«JL   and    k(x) = e~x.
X     \x/ 1 + X

If we assume further that L(s)L(1- s) = M(s)M(l- s), then it follows that

Kis)Kil- s) = 1  and láx)  is then a Fourier kernel. Thus the system of equations

(2), implies that

g{x) = f™f(t)k(xt)dt   and   f(x)=f" g(t)k(xt)dt.

In other words for a pair of functions fix)  and g(x) to be Fourier transforms of

each other with respect to the kernel k(x),  it is necessary that they satisfy the

equations (2) for some <p\x).  Thus we have an alternative way of expressing the

relationship between f(x) and g(x).   For example, let

(3) g(x)=J~e-**2<V«a-Z   and   f(x) = J"~ e"H*V j <f>(j) dt

for some <pXx).  Then [4],

g(x) = 2tt f°° /(z) cos xZ¿Z    and    f(x) - 2tt f~ g(z) cos xtdt,

since the Mellin transform of cos x is given by L(s)/L(l- s) where Lis)  is the

Mellin transform of e~x ' 2. The advantage of this set of conditions for a pair of

functions, is that the integrals involve simpler and elementary functions, thus

replacing a somewhat unwieldy function k(x).  In most cases the integrals in

these new conditions can simply be read from the tables.  Also, numerous sets

of pairs of transforms for a given kernel can be generated by varying c/>(x)  in

equation (2). For instance putting t/j(x) = xe~* '     in (3), we get a well-known

pair of cosine transforms e~x, 1/(1+ x2) [l, p. 146, (28)].

In this paper we shall establish results dealing with these new conditions

for a pair of Fourier transforms, for the function class L (0, <»).

2. Preliminaries, (i) Notations.  We shall use the following notations:

(1) (l/2T7z')f,,  for l.i.m.T  „-f.,1.- , where l.i.m. stands for limit in the mean.

(2) L^IO, °o) will be the Lebesgue integrable class, p > 1.

(3) ] ,  K ,   Y    ate the usual Bessel functions of order tv.

(ii) Known results.  (A) Let fix) e L2iO, <*>), then Fis) = /£ f(x)xs~ x dx

. exists in the mean square sense and Fis) e L2(%- z'<», l/2 + ¿oo). If Fis) €

L2iV2 - z», Vi + i«), then fix) = il/2m)f¡4 Fis)x~sds, and fix) £ L2(0, <*.).  We

call Fis) the Mellin transform of fix).
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(B) The Parseval theorem.  Lef fix) and gix) £ L2(0, «>); then

r /(x)g(x) dx =^—f H +,'°° F(s)G(l - s) ds,
JO'      ° 2m J H-i'oo

where Fis) and Gis) are the Mellin transforms of fix) and gix), respectively.

(C) Lef K(s) be any function satisfying \K(s)\ = 1, KÍs)KÍl- s) = 1 on s =

y2+ it, all real t.  Let kAx) = il/2ni)fl/,Kis)x1-s/il- s)ds, and fix) e L2Í0, ~),

then

g(x) = j- r° f it)k j (xf) —,    a. e., x > 0

and gix) e L2(0, ~).  Further

We shall call fix) and gix) ^-transforms of each other. These are known

results, and can be obtained as special cases or simple modifications of results

in Titchmarsh [8].

3. Properties in the class L2. We shall now prove two theorems for trans-

forms of L2-class.

Theorem 1.  Let Lis) and Mis) be such that (i) Lis) ¿ 0 and is bounded on

the line s = lA + it, - <*> < f < °°, and (ii) L(s)L(l- s) = M(s)M(1- s).  Let there

exist a function (¡Ax) £ L2(Q, »). Define ¡unctions fix)  and gix)  by the equations

(iii) Gis) = L(s)0(l- s), (iv) Fis) = Mis), $(s), where $(s),  Fis) and Gis) are

the Mellin transforms of cf>{x), fix) and gix) respectively.  Then fix)  and gix) £

L2(0, °o) and

(4) f* git)dt=$°¡\ lAxùtbit)dt,      f¡ fit)dt = J"~-L mAxùcpirl)dt

for all x > 0, where

tK\ 7 t \      !     C    L^     l-s j i \       1    f    Mis)     \-s,
(5) ,U   =TT T- x ds, 772,(x) = —r|-  X ds.
vy 1 2m JX 1-1 1 2?7zJh1-s

Further if (v) K(s) = L(s)/M(1- s), fieTj /(x)  arza" gix) are k.-transforms of each

other as in the result (C).

Proof. Since <f>ix) £ L2(0, oo), therefore its Mellin transform $(s) e

L2(% - zoo, y2 + zoo), due to the result (A). Now from the conditions (i) and (iii),

we deduce that Gis) eL2i]4~ ¿°°, Vi+ *°°)> hence gix), whose Mellin transform is

G(s) must belong to L^O, °o), as required. Note that from (i) and (ii), we con-

clude that Mis) ¿ 0 and is bounded on the line s = x/2 + it, and therefore using

(iv), as before, we can show that Fis) £ L2ilA - z», lA + zoo) and consequently

fix) £L2iO, ~). The Mellin transform of hit) = 1 (f < x) and hit) = 0 (f > x) is

His) = xs/s- On multiplying the equation in (iii) by 77(1- s) and integrating we

obtain
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A-s 1-s

*     f   Gis) ±l-ds=-L C   LisMl -s)LZ- ds.
2m J'A 1-s 2ttz Jh 1-s

Now from (i), we obtain that (L(s)/(l- s)) = Oit~l), therefore L(s)/(l- s) £

L2iy2- zoo, % + zoo) and so from (5), lX[x)/x, whose Mellin transform is

L(s)/(l- s), also £L2(0, oo). Thus using the result (B), we have from above,

¡*0¿tut-f;iil{xtwt)dt,
as required. Similarly starting from the equation in (iv) and multiplying it by

Ml- s), and using the result (B), we obtain

fX0f(t)dt=f^miixt)cßirl)dt.

Now replace s by 1 - s in (iv) and divide into (iii) to eliminate Od- s), to get

(6) Gis) = Fil - s)L(s)/M(l - s) = FiX - s)Kis),

using (v). From (6), we obtain the following equation

<7> èr L G(s) t— ds =4- L F(1 -s)K(s) !— ds-
2m J\i 1-s 2ttz JVi I - s

By using (i) and (v), we have |K(s)/(l- s)\ = (Xz_1), therefore Kis)/il- s) €

L2ilA - z'oo, y2 + ¿oo) and consequently k Ax)/x £ L2(0, oo). And by the result (B),

equation (7) yields

¡¡giùdt-f-lfiù^ixôdt.(8)

Next, replace s by 1 - s in (iii) and divide into (iv) to obtain

Fis) = 6(1 - s)M(s)/L(l - s) = 6(1 - s)Kis).

As before, this equation gives rise to the equation

-L. f   pis) plds = 4- L 6(1 - *W*> T^ dS
2m J'A 1-s 2ttz Jy¡ 1-s

which yields, using the result (B), the equation

oo I
(9) flfiÙdt-fîigiùk^xùdt.

Hence from (8) and (9) we conclude that fix) and gix) ate ¿.-transforms of each

other.

Next we shall consider some special cases of Theorem 1.

A most general solution of the equations L(s)L(1- s) = M(s)M(l- s) and

\UlA + it)\ = \MiV2 - zZ)|  is Mis) = ois)bis) and Lis) = ois)bil- s).

The two extreme cases are when ois) s 1 and bis) m 1.

Case 1. Let ais) m 1. Then Lis) = M(l - s) and Kis) = 1, whence k^ix) =

i2ni)-'lftAx1-s/il- s)ds. Now (9) gives
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^fit)dt = fo\kAxt)git)dt

i i***- (;(1-s)yi-^s=rlg(f-1]
2?7Z JyJ-ioo      1   -   S JO   í   6

Ä,

by Parseval's theorem for Mellin transforms. Hence fix) = x_1g(x-1) a.e. Simil-

arly (8) gives gix) = x~ '/(x- )  a.e., which are clearly consequences of one

another [8, p. 218].

Case 2. Let bis) m 1. Then Lis) = Mis) and K(s) = L(s)/L(l- s).  Thus

Corollary 1. Let /j(x) area7 </>(x) satisfy the conditions of Theorem 1. Define

fix) and gix), both £ L2Í0, °°), by (4). Then fix) and gix) are a pair of k^-trans-

forms, with

t.(x).   1     f   ^dx^'ds    and    Kis) = ~—.
1 2772   J'/S   1 -S L(l  _ s)

If we choose <£(x) to be such that cfAic) = x'^ix"1), the equations (4) give us a

self-reciprocal function with respect to the kernel kAx) [8].

Next we shall prove a converse of Theorem 1.

Theorem 2.  Let fix) and gix) be k ^transforms of each other according to

the result (C). Lef (i) Kis) = M(s)/L(1- s) where (ii) L(l- s)  is bounded on the

line s = ^ + it, - oo < / < oo.  // (iii) $(s) = G(l- s)/L(l- s),  fAe72

Jo /(i)Ä =/o° TmiUf)^(rl)¿í'       Jo «0) A = /r 7 lA*WÙ*>

where c/>(x)   ana" g(x)  are the ¡unctions whose Mellin transforms are í^s)   and

Gis), and ¡Ax),  mAx)  are defined by (5)  above.

Proof. Since fix)  and gix)  are k1 -transforms of each other therefore,

Jo/(f) dt = /g f~ ^j(xi)g(f) dt. Define a function ¿(f) = 1 it < x) and ¿(f) = 0

(f > x); its Mellin transform 77(s) = xVx. Now from above f°? fit)hit) dt =

/" t~lk]ixt)git) dt. We have seen earlier that ¿j(x)/x e L2(0, oo).  Also hix) £

L2iO, oo).   Therefore by the result (B), the last equation yields,

TT L F(s) T—- ds = T- L K^G(l - •) T— «"*.
277Z J'A I - s 2ni JVi 1 - s

where, from the rusult (C), Kis)/H~ s) is the Mellin transform of k j(f)/f and Fis)

denotes the Mellin transform of fix).  Thus

. .     Mis)G{l - s)
Fis)-.-_ = QisMs),    a.e.

L(l - s)

and therefore F(s)T7(l - s) = $(s)M(s)7/(1- s) which yields

<10> ö^- L F^ r— & - 7^ L WsMs) ^—- as.
277Z  J^ 1 - S 2t7Z  J^ 1 - s
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Now Kis) = Mis)/Lil- s) and Kis) Kil- s) = 1, therefore L(s)L(l- s) = M(s)M(1-s).

From (ii) we conclude that Mis) is bounded on s=%+z'z,-oo<z<oo   and so

\Mis)/il- s)\ = Oir l). Thus M(s)/(l- s) £ L\V2 - z'oo, % + zoo) which implies

that mX\x)/x whose Mellin transform is M(s)/(l- s) by (5),  £ L2(0, oo). Also

from (iii) we conclude that í>(s) £ L2i}/i~ i«, H+ z'°°), therefore f/S(x), whose Mel-

lin transform is <t>is),   £ L2(0, oo).  It is an easy matter to deduce that $(l- s) is

the Mellin transform of Z_1</>(z_1).  By the result (B), equation (10) gives

or

J~ fiùhit) dt = J~ r V0~ l)'" ̂ ite) a,

¡T* fit)dt=f" r2cf>irl)mlixt)dt,

as required.

Next from (iii) we deduce that Gis) = í>(l- s)LÍs).  By multiplying the above

equation by Ml- s), integrating along the line l/2+ it, - » < z < ~, and applying

the result (B), we conclude, as before, that f*,git)dt =-f^ t~ 1<fÁt)llixt)dt, and

hence the theorem.

One can obtain results analogous to those proved in Theorems 1 and 2, but

in the nonintegrated form, under suitable conditions. We shall see below a formal

derivation of one such result, from Theorem 1.

Suppose we let /,(x) = fx lit) dt and ttZj(x) = f^mit) dt.  By differentiating the

equations (4) and (5), of Theorem 1, we obtain formally that

(11) g(x) = f~ <f>it)lixt)dt,       fix) = J~ Z"l4>it~l)mixt)dt,

where lix) and mix) would be in some sense of the form

/(x) = -Lf   Lis)x~sds    and    ttz(x) = -L f   Mis)x~sds..
2m J\i 2m •"/$

Further if Kis) = L(s)/M(l- s), then by differentiating equations (8) and (9), we

obtain formally, that

gix)=f~ fit)kixt)dt    and    fix)=f™ git)kixt)dt,

where the kernel kix) is given by kix) = (2ttz')_1/w Kis)x~sds.   That is, fix) and

gix) ate ¿-transforms of each other.

5. Examples, (i) If kix) - tt]Í2nx^), then ¿(x) = 2 cos 2ttx, mix) = sin Vntx.

(ii) If kix) = x*]vix),  v>-lA, then /(*) = x"+V¿*2 = ttXx).
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