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ABSTRACT.   Let  C(X) denote the set of closed operators with dense domain

on a Banach space   X,  and  L(X) the set of all bounded linear operators on  X.

Let *(X) denote the set of all Fredholm operators on   X,  and  °$(-4) the set of

all complex numbers  X such that (X — A) e" t(X).   In this paper we establish

conditions under which   &q(A +fi) C cr^fA) + °^(/3),   o-#(¿M) C c^(A) • °$(B),

and  °"tM/3)C  o^(A)cr¿B).

In this paper we will use the operational calculus developed in [3] to establish

a property of the Fredholm spectrum of the sum and product of two operators.

Definition 1. A closed operator A from a Banach space X to a Banach space

y is called a Fredholm operator if:

(1) the domain of A, D(A), is dense in X.

(2) <x(A) = dim [NiA)] < oo.

(3) RiA), the range of A, is closed in Y.

(4) ß(A), the codimension of RiA) in Y, is finite.

It is shown in [l, Lemma 332] that condition (4) implies condition (3). A dis-

cussion of Fredholm operators can be found in [2].

We denote the set of Fredholm operators from X to Y by $(X).

Definition 2.   A e <bA ¡f and only if (A- A) e f(X).

Definition 3.   A e ct+(A) if and only if A 4 $A.

Definition 4.   A bounded operator B  will be called a quasi-inverse of the

closed operator A  if:

(1) RiB) C DiA) and AB =1 + KX,  K, e K(X).

(2) SA =/ + K2,  K2 e K(X).

K(X) denotes the set of all compact operators on X.
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By [2, Theorem 2.9]> $* is open and is thus the union of a disjoint collection

of connected open sets.   Each such set, ®{A), will be called a component of $^.

Let CÍX) denote the set of closed operators on X with dense domain.

Suppose A e CÍX) with <&A not empty, and let    A £ $^-.   In [3], a quasi-

inverse of A-A, R^ÍA), was constructed in the following way.  In each 4>.(A),

a fixed point, A., is chosen in a prescribed manner.   There exist subspaces, X.

and Y. such that X = ,V(A¿ - A) 0 X., X. is closed, and X = Y. © E(A. - A),

dim y. = /3(A.-A).

Let Fj. be the projection of X onto NÍX.-A) along X¿, and let F2i be the

projection of X onto Y. along R(A.-A).   Fj. and F,. are bounded finite rank

operators.  (\-- ^l/jMjnx- has a bounded inverse, A¿ ; A.: 7?(A. - A) ^-^DiA) <~\ X..

Let the operator T. be defined by: T .x = A .(/ - F, . )x.   T. is a quasi-inverse

of (A. - A).

7?„(A)  is then defined by RÍÍA) = T.[(A - A.)7. + 7]-1 when A e $.(A) and

- 1/ÍX-X) £ piT.).   In [3, Theorems 2 and 5, §2], En(A) is shown to be a quasi-

inverse of (A - A) defined and analytic for all A e <t>A except for at most an iso-

lated set, <£ (A), having no accumulation point in <&A.

Lemma 1.1. Let n be a positive integer and A £ C(X) such that $A z's 720Í

empty. Then for each X £ {$^\$ (A)j, there exists a subspace VÄ, dense in X

and depending on A, such that Vx e VA,  RA(A)x e D(A").

Proof.   Let A e i$A\$°(A)l.   By [2, Theorem 2.5], DÍA") = D[(A- A)"] is

dense in X for all 72.   Therefore, TJ^DÍA")] nRÍA) = DÍA"~ x) n RÍA) is dense

in RÍA).   By T~l{D(An)] we mean }x|T.x e DÍA")].   Let 3Tj be the complement

of RÍA) used in the construction of T..   Since T.: Y. -*0 £ DÍA") and X =

RÍA) + Y., we have TJ^DÍA")] = {TT^U")] n «(A)! © y. is dense in X.

Therefore,  Vx = {iX - X.)T. + l]{TTx{DÍA")]] is dense in X because [(A-A.)T.+ 7]

is invertible.    Q.E.D.

We denote the set of all bounded operators on X by L(X).

Lemma 1.2. Let A e $(X), B e L(X), and K £ K(X). Suppose AB|V= K|v

where V is a dense subspace of X.   Then B £ Jv(X).

Proof.   There exists AQ e L(X) such that AQA = 7 - Kj, Xj e K(X).

Vßlv = Ao*lv      (i-^i)ßlv=K2lv      E|v = (XjB + K2)|l/.

Since g and (KjB + Kj ate bounded, and V is dense, we have B = XjB + X,

by continuity.    Q.E.D.

Lemma 1.3.   Let B £ L(X), A e C(X), p. e i<Pß\<£°(B)i aTza" A e i^WU)!.

Leí there exist a positive integer n and a compact operator K.,  such that
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B: DÍA") —> DÍA) and ABx = BAx + K xx,  Vx e DÍA").   Then there exists a com-

pact operator K,  depending analytically on A and p, such that

R'xiA)R'{[B) = R'(B)R'xiA) + K.

Proof.   By Lemma 1.1 there exists a subspace V., dense in X, such that

Vx e VA, R'kiA)x e DiAn).  Let x e Vy

iX- A)BR'KiA)x = [BiX- A)- KAR'^x

= [B(I- K2)+ KAx

= Bx+ KAx;

(A - A)R'xiA)Bx = il - K2)Bx = Bx - K^x.

Therefore, (A - A)[BR'XÍA) - R'xiA)B]x = K^x.   Since this equality holds for all

x e Vx, we have by Lemma 1.2, that BR'xiA) - R¡ÍA)BX = K1, and BRxiA) =

R'xiA)B + K', K',  K. e K(X) for z = 1, 2, .... 6.

(p - B)[F;(B)FX(A) - R'xiÁ)R'i[B)] = (/ - KAR'xiÁ) -ip- B)R'XÍA)R'¿B)

= R'xiA) + K8 - R'xiA)il - KA + K, = KXQ.

Therefore, R'^R^A) - RxiA)R^B) = K, and R'¿B)R'xiA) = R'xÍA)R^iB) + K,

K, K{ e K(X) for i = 7, 8, 9, 10. The analyticity of K in A and p follows from

the analyticity of R'ÍB) and R'xiA).

Theorem 1.   Let B e L(X) and A e C(X).   Suppose there exist a positive

integer n and a compact operator K such that B: DÍA") —» DÍA) and BAx = ABx

+ Kx for all x e DÍA").   Then a#(A + B) Ç a#(A) + a^iB).   If ff#(A) is empty, we

interpret a^iA) + o~AB) to be the empty set.

Proof.   If o-qÍA) + OqÍB) is the entire complex plane, then the theorem is

trivially ture.  We therefore assume that o~ÁA) + oAB) is not the entire plane.

Let y be a fixed point not contained in oAA) + oAB).   We shall show that

y e Q,A+B).  If A e ex^iB), then (y- A) e $A.  Since a#(A) is closed and a^iB)

is compact, there exists an open set F D cr#(B) such that B(F), the boundary of

U, is bounded, and when A e F,  (y - A) e $A. Let A x = y - A.   (y - A) e $^ if

and only if A e $ .   .   Therefore, <r#(B) C F C $ .   .  There exists a bounded

Cauchy domain D such that a AB) CD CU.   See [4, Theorem 3.3].  Since $°(A j)

does not accumulate in $A    and $ (B) does not accumulate-in $B, D can be

chosen so that F^j) and F^(B) are analytic on BÍD), the boundary of D.

Define the operators S x and S2 by

S, ==i   f F'.(A.)F'.(B)a'A,l     2z7Z J+B(D)    A    1'   Xv
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and

S->=P~-   f R'AB)R'iA,)dX.
2      2m  J+B(D)    A *     V

RA(Aj) is of the form TC(A), where C(A) is bounded operator valued analytic func-

tion of A and T is a fixed bounded operator such that T: X —' DÍA x) = DÍA).

Therefore, Sx: X —DÍA).

We will now show that there exist compact operators Kj and X2 such that

iy-B -A)SX=I + KX and S 2iy - B - A) = (/ + K2)\D{A).

y - 3 - A = (y - A - A) + (A - B) = -(A - Aj) + (A - B).

(y-B-A)5,=-i-. f -ÍX- AAR'AA.)R'.iB)dXv 1      277Z J+B'D) 1     Xv    1      X

= ̂  f ÍX-B)R'ÍA,)R'ÍB)dX.2rti J+B(D) *    V    Xv

Since (A - A x)RS.A x) is of the form / + F(A) where F(A) is a bounded finite rank

operator depending analytically on A and (2?7z')~ f+BtD\ RxiB)dX is of the form

/ + K,, see [3, Theorem 13, S 2], the first integral is of the form / + K4.

Ky K4e K(X).

By Lemma 1.3, there exists a compact operator X(A), depending analytically

on A, such that RXÍA jRfö) = R'XÍB)RXÍA x) + KÍX).   Therefore, the second integral

is equal to

—.   Ç ÍX-B)R'ÍB)R'ÍAAdX-1-.C ÍX-B)KÍX)dX.
2Z7Z   J+B(,D) X *       1 2T7Z   J+B(D)

The first of these two integrals equals f+B(p\ R)[Ax)dX+ Ky K? e a(X).   As in

[3, proof of Theorem 10, §2], f+B,D) R'xiA)dX is compact.   Since

(277z')~'/+B(D) (A - B)KiX)dX is also compact, we have that iy - B - A)Sx = I + Kx,

Kx eK(X).
By a similar argument we have that S2(y - B — A) = I + K2,  K2 e a(X).   There-

fore, by [2, Lemma 2.4], (y - B - A) e $(X) and, thus, y e <!>A+B.  Therefore,

OqÍA + B) C OqÍA) + OqÍB).   This completes the proof of the theorem.

Theorem 2.   Let A e CÍX) and B e LÍX) O $(X).  Let B: DÍA) -> DÍA) and

let there exist a compact operator K such that BAx = ABx + Kx,  Vx e DÍA).   Then

BA is preclosed and

(1) aifÍBA)CaiÍA)a1fÍB), and

(2) o¿AB) Ç <7#(A)o-+(B),

Proof.   Since iAB)\ß,A. is preclosed and K is bounded, we have that BA  is

preclosed.

Let C denote the set of all complex numbers.   Since 0 4 ff#(B) and a^iB)
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is not empty, we have that if ajA) = C then ajB)ajA) = C, and the lemma is

established.   We therefore assume that ajA) 4 C.

Suppose y is a fixed point not in ajB)ajA).  We proceed to show that

y e $(rfJ).

Since ajA) is closed, ajB) is compact, and 0 4 ajB), there exists an

open set U D ajB) such that 0 4 U, BÍU), the boundary of U, is bounded, and

(y - pA) £ $(X) Vit e U.   Let D be a bounded Cauchy domain such that aAB) C

DÇU.   iy-pA) = pyil/p - (1/yM) = (yA)(A - (l/y)A), where A = l/p.

Let D   be the image of D under the map A = l/p.   Let A j = (l/y)A.   Since

Vft e D,   l/p £ Q>A  , and since RjA j) is analytic in A throughout $>A  , except

for at most an isolated set having no accomulation point in $>A , we can assume

that RA(4 j) is analytic in A on BÍD1).   Note.   R'A.A J is of the form TC(A)

where C(A) is an analytic operator valued function of A and T is a bounded oper-

ator such that RÎT) Ç DÍA y) = DÍA).  Let

and

si = hLíD')yjR'¿Ai)R'u¿B)dX

àJ+B(0<)^R'l/A(S)W^2

Since R(Sj)ÇD(A), iy - BA)S l is defined, and (y - SA)Sj = (y - BA)S j.

y- BA = y- ByAj = y(7- BAj)

= yB(A - A j) - yAS + y7 = yß(A - A j) + y(7 - AB).

Therefore,

- à /+B(D»)(lA - B)t/?i/x(S)/?x^i) + K2{A)] ¿A

"¿i/+B(l>',TBRi/X(«rfX+K3

"¿iX.(D')I'+X4W1*i(ilPÄ+,r5
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Since 0 4 D, we have

h L,D,iBR'¿B)-*-Bh L(D)lR'¿B)d» = 1+Ki

by [3, Theorems 14, 9 and 13, §2].

Since 7?n(A j) is analytic in D   except for at most a finite number of points,

we have that (277z')~ 1/+B(D')"„^ P^ = K8 ^y ^' Lemraa 7.4, §2].   Therefore,

(y - B~A~)Sl = 7 + K',  fi', X., X.(A) e K(X) for i = 1, 2,... , 8.

Claim.   D(BA) C DÍAB) and BÄx = ABx + Xx Vx e D(BÄ~).

Proof.   Let x £ DÍBA).   Then there exists a sequence, {x  l°°=1, such that

x    e D(A), x   —» x  as   7Z —» »   and BAx   —» BAx as 72 —» oo.   Therefore
77 77 77

lim ABx   = lim 5Ax    -lim Xx   = BAx - Kx.   Therefore, Bx £ DÍA)
n_ro n 77 —oo 77 n—-oo        n '

and ABx = lim      „ ABx   = BAx - Kx.
»7— » 77

y- BA = yß(A- Aj) + y(/ - Aß) = yiX - Aj)B + y(/ - Aß) + X„.

52(y_ii)__L. J+ß(D,)liR'1/Ä(ß)^(A1)-A[y(A-A1)ß + y(7-AS)+X9]

= _b/+B(D',TRl/X(ß)t/+K10^ß^

-fr:  f -R'(ß)atlß+ X,,|_277Z   J+_(D) /_     M *J 11

+ _b /«com (- Ü W*_/Ä(flKlA - « '* + x12

= 7+X15,

X., X.(A) e K(x) forj_= 9, 10, •••, 14.

Therefore iy - BA) e $(X) by [2, Lemma 2.4].   This completes the proof that

ajB~A)ÇajB)ajA).

To show that ajAB) C ajB)ajA) we proceed to show that iy - AB) £ $(X).

Let S j and S2 be as above.   Since R(Sj) Ç D(A) and ABx = BAx - Xx, Vx e D(A),

we have that iy - AB)S 1 =iy-BA)Sl + Kj, - / + K' + Kj, - / + Klfi.

52(y - Aß) = 52[y(A - A j)B + y(7 - AB)]

= Í+K17>       K15» K16' K17 eK(x)-

Therefore, by [2, Lemma 2.4], (y - AB) £ $(X).   This completes the proof that

o JAB) Ç ajB)ajA).
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Corollary 2.1.   Let A e C(X) and B e L(X).  Assume 0 4 o\B).  Let B: DÍA)

—» DÍA) and let there exist a compact operator,  K,  such that BAx = ABx + Kx,

Vx e DÍA).   Then BA and AB\D,A. are closed and

(1) ^AB\D(A? = o¿PA) Ç o^íBh^ÍA), and

(2)o-#(AB)Ça+(B)a#(A).

Proof.   Since B  is invertible and A is closed, BA is closed.  We proceed to

show that AB\D>A. is closed.

Let x    e DÍA), x   —, x and ABx   —, y.   Since B  is bounded and A is closed,

we have y = ABx.   We have only to show that x e DÍA). BAxn = (Aßxß + Kx)

converges to some vector, z.   Therefore, Axn —* B~ z,  and, since A is closed,

x e DÍA).   This shows that AB|D{/4. is closed.

Since BA = AB|D(/1) + K, we have by [2, Theorem 2.8] that ^(^Idca))" =

OqÍBA).   The remainder of the corollary follows from Theorem 2.
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