THE FREDHOLM SPECTRUM OF THE SUM AND PRODUCT OF TWO OPERATORS

BY

JACK SHAPIRO AND MORRIS SNOW(1)

ABSTRACT. Let C(X) denote the set of closed operators with dense domain on a Banach space X, and L(X) the set of all bounded linear operators on X. Let $\Phi(X)$ denote the set of all Fredholm operators on X, and $\sigma_{\Phi}(A)$ the set of all complex numbers λ such that $(\lambda - A) \notin \Phi(X)$. In this paper we establish conditions under which $\sigma_{\Phi}(A + B) \subseteq \sigma_{\Phi}(A) + \sigma_{\Phi}(B)$, $\sigma_{\Phi}(BA) \subseteq \sigma_{\Phi}(A) \cdot \sigma_{\Phi}(B)$, and $\sigma_{\Phi}(AB) \subseteq \sigma_{\Phi}(A) \sigma_{\Phi}(B)$.

In this paper we will use the operational calculus developed in [3] to establish a property of the Fredholm spectrum of the sum and product of two operators.

Definition 1. A closed operator A from a Banach space X to a Banach space Y is called a Fredholm operator if:

(1) the domain of A, D(A), is dense in X.

(2) $\alpha(A) = \dim [N(A)] < \infty$.

(3) R(A), the range of A, is closed in Y.

(4) $\beta(A)$, the codimension of R(A) in Y, is finite.

It is shown in [1, Lemma 332] that condition (4) implies condition (3). A discussion of Fredholm operators can be found in [2].

We denote the set of Fredholm operators from X to Y by $\Phi(X)$.

Definition 2. $\lambda \in \Phi_A$ if and only if $(\lambda - A) \in \Phi(X)$.

Definition 3. $\lambda \in \sigma_{\phi}(A)$ if and only if $\lambda \notin \Phi_{A}$.

Definition 4. A bounded operator B will be called a quasi-inverse of the closed operator A if:

(1) $R(B) \subset D(A)$ and $AB = I + K_1$, $K_1 \in K(X)$.

(2) $BA = I + K_2, K_2 \in K(X).$

K(X) denotes the set of all compact operators on X.

Presented to the Society, May 5, 1972; received by the editors June 11, 1973 and, in revised form, August 7, 1973.

AMS (MOS) subject classifications (1970). Primary 47B30; Secondary 47A60, 47B05. Key words and phrases. Fredholm operator, Fredholm spectrum, operational calculus.

⁽¹⁾ This research was partially funded by a Faculty Research Award Program grant, from the City University of New York. Copyright © 1974, American Mathematical Society

By [2, Theorem 2.9], Φ_A is open and is thus the union of a disjoint collection of connected open sets. Each such set, $\Phi_i(A)$, will be called a component of Φ_A .

Let C(X) denote the set of closed operators on X with dense domain.

Suppose $A \in C(X)$ with Φ_A not empty, and let $\lambda \in \Phi_A$. In [3], a quasiinverse of $\lambda - A$, $R'_{\lambda}(A)$, was constructed in the following way. In each $\Phi_i(A)$, a fixed point, λ_i , is chosen in a prescribed manner. There exist subspaces, X_i and Y_i such that $X = N(\lambda_i - A) \oplus X_i$, X_i is closed, and $X = Y_i \oplus R(\lambda_i - A)$, dim $Y_i = \beta(\lambda_i - A)$.

Let F_{1i} be the projection of X onto $N(\lambda_i - A)$ along X_i , and let F_{2i} be the projection of X onto Y_i along $R(\lambda_i - A)$. F_{1i} and F_{2i} are bounded finite rank operators. $(\lambda_i - A)|_{D(A) \cap X_i}$ has a bounded inverse, A_i ; $A_i: R(\lambda_i - A) \xrightarrow{onto} D(A) \cap X_i$.

Let the operator T_i be defined by: $T_i x = A_i (I - F_{2i})x$. T_i is a quasi-inverse of $(\lambda_i - A)$.

 $R'_{\lambda}(A)$ is then defined by $R'_{\lambda}(A) = T_i[(\lambda - \lambda_i)T_i + I]^{-1}$ when $\lambda \in \Phi_i(A)$ and - $1/(\lambda - \lambda_i) \in \rho(T_i)$. In [3, Theorems 2 and 5, §2], $R'_{\lambda}(A)$ is shown to be a quasiinverse of $(\lambda - A)$ defined and analytic for all $\lambda \in \Phi_A$ except for at most an isolated set, $\Phi^0(A)$, having no accumulation point in Φ_A .

Lemma 1.1. Let n be a positive integer and $A \in C(X)$ such that Φ_A is not empty. Then for each $\lambda \in {\Phi_A \setminus \Phi^0(A)}$, there exists a subspace V_{λ} , dense in X and depending on λ , such that $\forall x \in V_{\lambda}$, $R'_{\lambda}(A)x \in D(A^n)$.

Proof. Let $\lambda \in \{\Phi_A \setminus \Phi^0(A)\}$. By [2, Theorem 2.5], $D(A^n) = D[(\lambda - A)^n]$ is dense in X for all n. Therefore, $T_i^{-1}[D(A^n)] \cap R(A) = D(A^{n-1}) \cap R(A)$ is dense in R(A). By $T_i^{-1}[D(A^n)]$ we mean $\{x|T_i x \in D(A^n)\}$. Let Y_i be the complement of R(A) used in the construction of T_i . Since $T_i: Y_i \to 0 \in D(A^n)$ and X = $R(A) + Y_i$, we have $T_i^{-1}[D(A^n)] = \{T_i^{-1}[D(A^n)] \cap R(A)\} \oplus Y_i$ is dense in X. Therefore, $V_{\lambda} = [(\lambda - \lambda_i)T_i + I]\{T_i^{-1}[D(A^n)]\}$ is dense in X because $[(\lambda - \lambda_i)T_i + I]$ is invertible. Q.E.D.

We denote the set of all bounded operators on X by L(X).

Lemma 1.2. Let $A \in \Phi(X)$, $B \in L(X)$, and $K \in K(X)$. Suppose $AB|_V = K|_V$ where V is a dense subspace of X. Then $B \in K(X)$.

Proof. There exists $A_0 \in L(X)$ such that $A_0A = I - K_1$, $K_1 \in K(X)$.

 $A_0AB|_V = A_0K|_V, \quad (I - K_1)B|_V = K_2|_V, \quad B|_V = (K_1B + K_2)|_V.$

Since \mathcal{B} and $(K_1B + K_2)$ are bounded, and V is dense, we have $B = K_1B + K_2$ by continuity. Q.E.D.

Lemma 1.3. Let $B \in L(X)$, $A \in C(X)$, $\mu \in \{\Phi_B \setminus \Phi^0(B)\}$ and $\lambda \in \{\Phi_A \setminus \Phi^0(A)\}$. Let there exist a positive integer n and a compact operator K_1 , such that B: $D(A^n) \rightarrow D(A)$ and $ABx = BAx + K_1x$, $\forall x \in D(A^n)$. Then there exists a compact operator K, depending analytically on λ and μ , such that

$$R'_{\lambda}(A)R'_{\mu}(B) = R'_{\mu}(B)R'_{\lambda}(A) + K.$$

Proof. By Lemma 1.1 there exists a subspace V_{λ} , dense in X, such that $\forall x \in V_{\lambda}$, $R'_{\lambda}(A)x \in D(A^n)$. Let $x \in V_{\lambda}$.

$$(\lambda - A)BR'_{\lambda}(A)x = [B(\lambda - A) - K_1]R'_{\lambda}(A)x$$
$$= [B(I - K_2) + K_3]x$$
$$= Bx + K_4x;$$
$$(\lambda - A)R'_{\lambda}(A)Bx = (I - K_2)Bx = Bx - K_5x.$$

Therefore,
$$(\lambda - A)[BR'_{\lambda}(A) - R'_{\lambda}(A)B]x = K_6 x$$
. Since this equality holds for all $x \in V_{\lambda}$, we have by Lemma 1.2, that $BR'_{\lambda}(A) - R'_{\lambda}(A)B_{\lambda} = K'$, and $BR'_{\lambda}(A) = R'_{\lambda}(A)B + K'$, $K'_i \in K(X)$ for $i = 1, 2, \dots, 6$.

$$(\mu - B)[R'_{\mu}(B)R'_{\lambda}(A) - R'_{\lambda}(A)R'_{\mu}(B)] = (I - K_{7})R'_{\lambda}(A) - (\mu - B)R'_{\lambda}(A)R'_{\mu}(B)$$
$$= R'_{\lambda}(A) + K_{8} - R'_{\lambda}(A)(I - K_{7}) + K_{9} = K_{10}$$

Therefore, $R'_{\mu}(B)R'_{\lambda}(A) - R'_{\lambda}(A)R'_{\mu}(B) = K$, and $R'_{\mu}(B)R'_{\lambda}(A) = R'_{\lambda}(A)R'_{\mu}(B) + K$, K, $K_i \in K(X)$ for i = 7, 8, 9, 10. The analyticity of K in λ and μ follows from the analyticity of $R'_{\mu}(B)$ and $R'_{\lambda}(A)$.

Theorem 1. Let $B \in L(X)$ and $A \in C(X)$. Suppose there exist a positive integer n and a compact operator K such that $B: D(A^n) \to D(A)$ and BAx = ABx + Kx for all $x \in D(A^n)$. Then $\sigma_{\Phi}(A + B) \subseteq \sigma_{\Phi}(A) + \sigma_{\Phi}(B)$. If $\sigma_{\Phi}(A)$ is empty, we interpret $\sigma_{\Phi}(A) + \sigma_{\Phi}(B)$ to be the empty set.

Proof. If $\sigma_{\phi}(A) + \sigma_{\phi}(B)$ is the entire complex plane, then the theorem is trivially ture. We therefore assume that $\sigma_{\phi}(A) + \sigma_{\phi}(B)$ is not the entire plane.

Let γ be a fixed point not contained in $\sigma_{\Phi}(A) + \sigma_{\Phi}(B)$. We shall show that $\gamma \in \Phi_{(A+B)}$. If $\lambda \in \sigma_{\Phi}(B)$, then $(\gamma - \lambda) \in \Phi_A$. Since $\sigma_{\Phi}(A)$ is closed and $\sigma_{\Phi}(B)$ is compact, there exists an open set $U \supset \sigma_{\Phi}(B)$ such that B(U), the boundary of U, is bounded, and when $\lambda \in U$, $(\gamma - \lambda) \in \Phi_A$. Let $A_1 = \gamma - A$. $(\gamma - \lambda) \in \Phi_A$ if and only if $\lambda \in \Phi_{A_1}$. Therefore, $\sigma_{\Phi}(B) \subset U \subset \Phi_{A_1}$. There exists a bounded Cauchy domain D such that $\sigma_{\Phi}(B) \subset D \subset U$. See [4, Theorem 3.3]. Since $\Phi^0(A_1)$ does not accumulate in Φ_{A_1} and $\Phi^0(B)$ does not accumulate in Φ_B , D can be chosen so that $R'_{\lambda}(A_1)$ and $R'_{\lambda}(B)$ are analytic on B(D), the boundary of D.

Define the operators S_1 and S_2 by

$$S_1 = \frac{-1}{2\pi i} \int_{+B(D)} R'_{\lambda}(A_1) R'_{\lambda}(B) d\lambda,$$

and

$$S_2 = \frac{-1}{2\pi i} \int_{+B(D)} R'_{\lambda}(B) R'_{\lambda}(A_1) d\lambda.$$

 $R'_{\lambda}(A_1)$ is of the form $TC(\lambda)$, where $C(\lambda)$ is bounded operator valued analytic function of λ and T is a fixed bounded operator such that $T: X \to D(A_1) = D(A)$. Therefore, $S_1: X \to D(A)$.

We will now show that there exist compact operators K_1 and K_2 such that $(\gamma - B - A)S_1 = I + K_1$ and $S_2(\gamma - B - A) = (I + K_2)|_{D(A)}$.

$$\gamma - B - A = (\gamma - \lambda - A) + (\lambda - B) = -(\lambda - A_1) + (\lambda - B).$$

$$(\gamma - B - A)S_1 = \frac{-1}{2\pi i} \int_{+B(D)} - (\lambda - A_1)R'_{\lambda}(A_1)R'_{\lambda}(B) d\lambda$$
$$= \frac{-1}{2\pi i} \int_{+B(D)} (\lambda - B)R'_{\lambda}(A_1)R'_{\lambda}(B) d\lambda.$$

Since $(\lambda - A_1)R'_{\lambda}(A_1)$ is of the form $I + F(\lambda)$ where $F(\lambda)$ is a bounded finite rank operator depending analytically on λ and $(2\pi i)^{-1} \int_{+B(D)} R'_{\lambda}(B) d\lambda$ is of the form $I + K_3$, see [3, Theorem 13, §2], the first integral is of the form $I + K_4$. $K_3, K_4 \in K(X)$.

By Lemma 1.3, there exists a compact operator $K(\lambda)$, depending analytically on λ , such that $R'_{\lambda}(A_1)R'_{\lambda}(B) = R'_{\lambda}(B)R'_{\lambda}(A_1) + K(\lambda)$. Therefore, the second integral is equal to

$$\frac{-1}{2\pi i} \int_{+B(D)} (\lambda - B) R'_{\lambda}(B) R'_{\lambda}(A_1) d\lambda - \frac{1}{2\pi i} \int_{+B(D)} (\lambda - B) K(\lambda) d\lambda.$$

The first of these two integrals equals $\int_{+B(D)} R'_{\lambda}(A_1) d\lambda + K_5$, $K_5 \in K(X)$. As in [3, proof of Theorem 10, §2], $\int_{+B(D)} R'_{\lambda}(A) d\lambda$ is compact. Since $(2\pi i)^{-1} \int_{+B(D)} (\lambda - B) K(\lambda) d\lambda$ is also compact, we have that $(\gamma - B - A) S_1 = I + K_1$, $K_1 \in K(X)$.

By a similar argument we have that $S_2(\gamma - B - A) = I + K_2$, $K_2 \in K(X)$. Therefore, by [2, Lemma 2.4], $(\gamma - B - A) \in \Phi(X)$ and, thus, $\gamma \in \Phi_{A+B}$. Therefore, $\sigma_{\Phi}(A + B) \subseteq \sigma_{\Phi}(A) + \sigma_{\Phi}(B)$. This completes the proof of the theorem.

Theorem 2. Let $A \in C(X)$ and $B \in L(X) \cap \Phi(X)$. Let $B: D(A) \to D(A)$ and let there exist a compact operator K such that BAx = ABx + Kx, $\forall x \in D(A)$. Then BA is preclosed and

- (1) $\sigma_{\Phi}(\overline{BA}) \subseteq \sigma_{\Phi}(A)\sigma_{\Phi}(B)$, and
- (2) $\sigma_{\Phi}(AB) \subseteq \sigma_{\Phi}(A)\sigma_{\Phi}(B)$,

Proof. Since $(AB)|_{D(A)}$ is preclosed and K is bounded, we have that BA is preclosed.

Let C denote the set of all complex numbers. Since $0 \notin \sigma_{\phi}(B)$ and $\sigma_{\phi}(B)$

390

is not empty, we have that if $\sigma_{\Phi}(A) = \mathbb{C}$ then $\sigma_{\Phi}(B)\sigma_{\Phi}(A) = \mathbb{C}$, and the lemma is established. We therefore assume that $\sigma_{\Phi}(A) \neq \mathbb{C}$.

Suppose γ is a fixed point not in $\sigma_{\Phi}(B)\sigma_{\Phi}(A)$. We proceed to show that $\gamma \in \Phi(\overline{BA})$.

Since $\sigma_{\Phi}(A)$ is closed, $\sigma_{\Phi}(B)$ is compact, and $0 \notin \sigma_{\Phi}(B)$, there exists an open set $U \supset \sigma_{\Phi}(B)$ such that $0 \notin U$, B(U), the boundary of U, is bounded, and $(\gamma - \mu A) \in \Phi(X) \ \forall \mu \in U$. Let D be a bounded Cauchy domain such that $\sigma_{\Phi}(B) \subset D \subseteq U$. $(\gamma - \mu A) = \mu \gamma (1/\mu - (1/\gamma)A) = (\gamma/\lambda)(\lambda - (1/\gamma)A)$, where $\lambda = 1/\mu$.

Let D' be the image of D under the map $\lambda = 1/\mu$. Let $A_1 = (1/\gamma)A$. Since $\forall \mu \in \overline{D}$, $1/\mu \in \Phi_{A_1}$, and since $R'_{\lambda}(A_1)$ is analytic in λ throughout Φ_{A_1} , except for at most an isolated set having no accomulation point in Φ_{A_1} , we can assume that $R'_{\lambda}(A_1)$ is analytic in λ on B(D'). Note. $R'_{\lambda}(A_1)$ is of the form $TC(\lambda)$ where $C(\lambda)$ is an analytic operator valued function of λ and T is a bounded operator such that $R(T) \subseteq D(A_1) = D(A)$. Let

$$S_1 = \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\gamma \lambda} R'_{\lambda}(A_1) R'_{1/\lambda}(B) d\lambda$$

and

$$S_2 = \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\gamma \lambda} R'_{1/\lambda}(B) R'_{\lambda}(A_1) d\lambda.$$

Since $R(S_1) \subseteq D(A)$, $(\gamma - \overline{BA})S_1$ is defined, and $(\gamma - \overline{BA})S_1 = (\gamma - BA)S_1$. $\gamma - BA = \gamma - B\gamma A_1 = \gamma(I - BA_1)$ $= \gamma B(\lambda - A_1) - \gamma\lambda B + \gamma I = \gamma B(\lambda - A_1) + \gamma(I - \lambda B).$

Therefore,

$$\begin{aligned} (\gamma - \overline{BA})S_{1} &= \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\lambda} B(\lambda - A_{1})R'_{\lambda}(A_{1})R'_{1/\lambda}(B) d\lambda \\ &- \frac{1}{2\pi i} \int_{+B(D')} (1/\lambda - B)R'_{\lambda}(A_{1})R'_{1/\lambda}(B) d\lambda \\ &= \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\lambda} B[I + K_{1}(\lambda)]R'_{1/\lambda}(B) d\lambda \\ &- \frac{1}{2\pi i} \int_{+B(D')} (1/\lambda - B)[R'_{1/\lambda}(B)R'_{\lambda}(A_{1}) + K_{2}(\lambda)] d\lambda \\ &= \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\lambda} BR'_{1/\lambda}(B) d\lambda + K_{3} \\ &- \frac{1}{2\pi i} \int_{+B(D')} [I + K_{4}(\lambda)]R'_{\lambda}(A_{1}) d\lambda + K_{5} \\ &= \frac{1}{2\pi i} \int_{+B(D)} \frac{1}{\mu} BR'_{\mu}(B) d\mu + K_{3} - \frac{1}{2\pi i} \int_{+B(D')} R'_{\lambda}(A_{1}) d\lambda + K_{6} \end{aligned}$$

Since $0 \notin D$, we have

$$\frac{1}{2\pi i} \int_{+B(D)} \frac{1}{\mu} BR'_{\mu}(B) \, d\mu = B \frac{1}{2\pi i} \int_{+B(D)} \frac{1}{\mu} R'_{\mu}(B) \, d\mu = I + K_{7}$$

by [3, Theorems 14, 9 and 13, §2].

Since $R'_{\lambda}(A_1)$ is analytic in D' except for at most a finite number of points, we have that $(2\pi i)^{-1} \int_{+B(D')} R'_{\lambda}(A_1) d\lambda = K_8$ by [3, Lemma 7.4, §2]. Therefore, $(y - \overline{BA})S_1 = I + K', K', K_i, K_i(\lambda) \in X(X)$ for $i = 1, 2, \dots, 8$.

Claim. $D(\overline{BA}) \subseteq D(AB)$ and $\overline{BAx} = ABx + Kx \quad \forall x \in D(\overline{BA})$.

Proof. Let $x \in D(\overline{BA})$. Then there exists a sequence, $\{x_n\}_{n=1}^{\infty}$, such that $x_n \in D(A), x_n \to x$ as $n \to \infty$, and $BAx_n \to \overline{BAx}$ as $n \to \infty$. Therefore $\lim_{n \to \infty} ABx_n = \lim_{n \to \infty} BAx_n - \lim_{n \to \infty} Kx_n = \overline{BAx} - Kx$. Therefore, $Bx \in D(A)$ and $ABx = \lim_{n \to \infty} ABx_n = \overline{BAx} - Kx$.

$$\begin{split} \gamma - BA &= \gamma B(\lambda - A_1) + \gamma (I - \lambda B) = \gamma (\lambda - A_1) B + \gamma (I - \lambda B) + K_9. \\ S_2(\gamma - \overline{BA}) &= \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\gamma \lambda} R'_{1/\lambda}(B) R'_{\lambda}(A_1) d\lambda [\gamma (\lambda - A_1) B + \gamma (I - \lambda B) + K_9] \\ &= \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\lambda} R'_{1/\lambda}(B) [I + K_{10}(\lambda)] B d\lambda \\ &+ \frac{1}{2\pi i} \int_{+B(D')} \frac{-1}{\gamma \lambda} [R'_{\lambda}(A_1) R'_{1/\lambda}(B) - K_2(\lambda)] [\gamma (I - \lambda B) + K_9] d\lambda \\ &= \left[\frac{1}{2\pi i} \int_{+B(D)} \frac{1}{\mu} R'_{\mu}(B) d\mu \right] B + K_{11} \\ &+ \frac{1}{2\pi i} \int_{+B(D')} (-1) R'_{\lambda}(A_1) R'_{1/\lambda}(B) (1/\lambda - B) d\lambda + K_{12} \\ &= I + K_{13} + \frac{1}{2\pi i} \int_{+B(D')} (-1) R'_{\lambda}(A_1) [I + K_{14}(\lambda)] d\lambda \\ &= I + K_{15}, \end{split}$$

 $K_{i}, K_{i}(\lambda) \in K(x)$ for $i = 9, 10, \dots, 14$.

Therefore $(\gamma - \overline{BA}) \in \Phi(X)$ by [2, Lemma 2.4]. This completes the proof that $\sigma_{\Phi}(\overline{BA}) \subseteq \sigma_{\Phi}(B)\sigma_{\Phi}(A)$.

To show that $\sigma_{\Phi}(AB) \subseteq \sigma_{\Phi}(B)\sigma_{\Phi}(A)$ we proceed to show that $(\gamma - AB) \in \Phi(X)$. Let S_1 and S_2 be as above. Since $R(S_1) \subseteq D(A)$ and ABx = BAx - Kx, $\forall x \in D(A)$, we have that $(\gamma - AB)S_1 = (\gamma - BA)S_1 + K_{15} = I + K' + K_{15} = I + K_{16}$.

$$\begin{split} S_2(\gamma - AB) &= S_2[\gamma(\lambda - A_1)B + \gamma(I - \lambda B)] \\ &= I + K_{17}, \qquad K_{15}, \ K_{16}, \ K_{17} \in \mathbb{K}(X). \end{split}$$

Therefore, by [2, Lemma 2.4], $(y - AB) \in \Phi(X)$. This completes the proof that $\sigma_{\bullet}(AB) \subseteq \sigma_{\bullet}(B)\sigma_{\bullet}(A)$.

392

Corollary 2.1. Let $A \in C(X)$ and $B \in L(X)$. Assume $0 \notin \sigma(B)$. Let $B: D(A) \rightarrow D(A)$ and let there exist a compact operator, K, such that BAx = ABx + Kx, $\forall x \in D(A)$. Then BA and $AB|_{D(A)}$ are closed and

(1) $\sigma_{\bullet}(AB|_{D(A)}) = \sigma_{\bullet}(BA) \subseteq \sigma_{\bullet}(B)\sigma_{\bullet}(A)$, and (2) $\sigma_{\bullet}(AB) \subseteq \sigma_{\bullet}(B)\sigma_{\bullet}(A)$.

Proof. Since B is invertible and A is closed, BA is closed. We proceed to show that $AB|_{D(A)}$ is closed.

Let $x_n \in D(A)$, $x_n \to x$ and $ABx_n \to y$. Since B is bounded and A is closed, we have y = ABx. We have only to show that $x \in D(A)$. $BAx_n = (ABx_n + Kx_n)$ converges to some vector, z. Therefore, $Ax_n \to B^{-1}z$, and, since A is closed, $x \in D(A)$. This shows that $AB|_{D(A)}$ is closed.

Since $BA = AB|_{D(A)} + K$, we have by [2, Theorem 2.8] that $\sigma_{\Phi}(AB|_{D(A)}) = \sigma_{\Phi}(BA)$. The remainder of the corollary follows from Theorem 2.

BIBLIOGRAPHY

1. Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. MR 21 #5541.

2. Martin Schechter, Basic theory of Fredholm operators, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 261-280. MR 36 #6977.

3. Jack Shapiro and Martin Schechter, A generalized operational calculus developed from Fredholm operator theory, Trans. Amer. Math. Soc. 175 (1973), 439-467.

4. A. E. Taylor, Spectral theory of closed distributive operators, Acta Math. 84 (1951), 189-224. MR 12, 717.

DEPARTMENT OF MATHEMATICS, BERNARD M. BARUCH COLLEGE (CUNY), NEW YORK, NEW YORK 10010

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE (CUNY), FLUSHING, NEW YORK 11367