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ABSTRACT. The purpose of this paper is to define a differentiable function F and an

inner product on the space of continuous functions on [0,1] in such a way that the Fourier

expansion of F obtained by orthonormalizing the broken line Franklin functions according

to this inner product is divergent.

I. Introduction. Let zx, z2, ... denote a reversible number sequence such that

{z¡} is a subset of [0,1] and is dense in [0,1]. Define 90, 9X,92, ... to be the

sequence of functions on [0,1] such that 90(x) = 1, and for each positive integer

/', 9¡(x) = 0 if 0 < x < z¡, and 9,(x) = x - z, if z, < x < 1. Let W denote a

continuous strictly increasing function on [0,1]. Define the inner product ((f,g) V

of two continuous functions/and g with domain [0,1] to be So f • gdW. Since no

member of the sequence 9Q,9X,92,... is a finite linear combination of the other

members of the sequence, we can use the Gram-Schmidt process to construct a

sequence fo, fo, fo, ... of functions on [0,1] such that for each positive integer

k, fo is a linear combination of 90, 9X, 92,..., 9k and 9k is a linear combination

of fo, fo, ..., fo and such that fo, fo, fo, ... is orthonormal relative to (( , ))w.
The sequence fo, fo, ... will be referred to as the (z,W) sequence. Let / denote

the function such that I(x) = x.

Franklin [1] showed that if/is a continuous function with domain [0,1], and

zx,z2,... satisfies a certain property and fo, fo,... is the (z,I) sequence, then

the sequence of functions sn = 2f=o ((/fo)) ' fo converges uniformly to/as n

tends to infinity. Wall [3] used (z,W) sequences for arbitrary z and Win the study

of certain moment problems and raised the following question to his students. Is

it true that if F is a continuous function defined on [0,1] and zx, z2,... is a

reversible number sequence such that {z,} is a subset of [0,1] and is dense in [0,1]

and W is a continuous and strictly increasing function defined on [0,1], then

2"=o ((/>fo)V * fo converges uniformly to/as n tends to infinity? Sox [2] showed

that for every such sequence z, the (z,/) Fourier expansion of a continuous

function /converges uniformly to/ It is the purpose of this paper to exhibit a z,

W, and F so that if fo, fo, fo,... is the (z,W) sequence, then 2"=o ((f7>fo))fo is
divergent.
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II. The example. There exists a z sequence, a differentiable function F defined

on [0,1] and a strictly increasing infinitely differentiable function W defined on

[0,1] such that if <>0, <p,, «fo,... is the (z,W) sequence, then the number sequence

2,"=o ((<¡>¡>F)) • <t>M is unbounded.
Let (z,, z2,... ) denote the sequence (0, Vi, '/t, 3/t, V%, V&, %, V%, Vi6,... ); let A

denote the set {Vi, Va, V$,...) and let h denote the function defined by h(x)

= (1 — x)2. Two sequences (/, ,/2,... ) and (w,, w2,... ) of functions will now be

defined inductively so that the desired functions F and W of the example can be

defined by the formulas F = 2" i / and W = 2£i w¡- In order to facilitate this

construction, fourteen additional sequences, (Nx, N2,... ), (M,, M2,... ), (r,, t2,

• ••), (a,&....), (Ä,,Ä2,...), («„«i,...). (ßx,ß2,...), (X,,X2,...), (K,^,
...), (¿,,i/2,...), (j,,52,...), (t/,,M2,...), (c,,c2,...) and (F,,F2,...), will be

defined inductively along with the sequences (/, ,/2,... ) and (w,, w2,... ).

Set A/, = '/2 and set TV, = 1/2. Let i] denote a member of A such that

ii < A¿i/4 and such that the function gx defined by the following formulas lies

below h.

aW=o, uo<x<nu
= 4x/Mi - 4iV,/M,, if TV, < x < TV, + r„

= -4x/A/, + 4(JVj + 2r,)/A/,,       if TV, + r, < x < Nt + 2r„

= 0, if N¡ + 2rj <x < 1.

Notice that & is continuous. Let ft denote a differentiable function such that if

x G [0,1]; then 0 < /,(x) < h(x) and if x G [0,1] - ([JV, - r,/4,7v-, + r,/4]

U [AT, + 3/,/4,,/vi + 5i,/4] U [A, + 7f,/4,.1V1 + 9/,/4]), then/,(x) = gl(x). Let Ä,

denote the class of all straight lines y with the property that y(l) < 1. Set

a, = Nt + r,/3, set /?, = AT, + 2r,/3 and set X, = TV, + 3r,. Let \\ denote the

number set to which the number d belongs if and only if there exists a member

y of Rx with the property that d = f& [y(x) -fi(x)]2dx. Let 5 denote a straight

line such that 1 < 5(1) < 2 and such that Ô intersects/, at a point (a, b) where

ai<a< A- If y is in Rt, then either £ [yW - S(x)]2dx < £ M*) ~/i (x)]2dx

or else//' [y(x) - S(x)]2dx < //' [y(x) -/,(x)]2í¿c. Therefore, the greatest lower

bound of Vi is positive. Let dx denote a positive number less than one and less

than the greatest lower bound of Vx. Set sx = 1. Let t/, denote a function defined

on [0,1] with the following seven properties:

(1) m, is infinitely differentiable over [0,1].

(2)«,(0) = 0.  '
(3) m, is strictly increasing over [0, X, ].

(4) If x and v are in [X,, 1], then ux(x) = m,(v).

(5) The restriction of m, to [a,,/?,] is a straight line with slope s,.

(6) If x G [0,1], then u\(x) < sx.

(1) [«,(«,) - «,(0)] + [«,(1) - «,(/?,)] < sx ■ dx/4.
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There is a positive number c, < 1 such that for each number x in [0,1],

h • «i'(x)l < xà- Let w, = c, • Mr.
Continue this construction inductively for each integer/ > 1 as follows. Let

Mj denote a member of K satisfying the inequalities Xy_i < 1 - 3M¡ and

Mj < (,_i. Let Nj = I — Mj. There is an integer k such that zk = Nj. There exists

& k + \ term number sequence a0, ax,..., ak such that if b0, bx,..., bk is a

k + 1 term number sequence, then

f'   (2/fl-2û„foU2 w„

•")        \<i=l n-0 /       n-\

Let /?_, = 2í=o a«fo- Let /, denote a member of >v such that t} < Ary/4 and such

that the function g,, defined by the following formulas, lies below h.

gj(x)=0, itO<x<Nj,

= 4jx/Mj - 4jNj/Mj, iîNj<x <Nj + tj,

= -Ajx/Mj + 4j(Nj + 2tj)/Mj, iîNj + tj<x<Nj + 2tj,

= 0, ifNj + 2tj<x<l.

Notice that g} is continuous. Let/ denote a differentiable function such that if

x G [0,1], then 0 < fj(x) < h(x) and if x G [0,1] - {[Nj - tj/4,Nj + tjA\ U [ty
+ 3tj/4,Nj + 5/,/4] U [Nj + ltj/4,Nj + 9i/4]}, then fj(x) = gj(x). Let R, denote
the class of all straight lines y with the property that y(l) </. Set a} = N¡ + tj/3,

set ßj = Nj + 2tj/3, and set X, = TV} + 3(,. Let I< denote the number set to which

the number d belongs if and only if there exists a member y of Rj with the

property that d = SS (y(x) — fj(x))2dx. As with Vx, the greatest lower bound of

Vj is positive. Let d¡ denote a positive number less than ^_, and less than the

greatest lower bound of Vj. Set s} = c,_, • s,_i • dj-X/((Aj2).

Let Uj denote a function defined on [0,1] with the following eight properties:

(1) Uj is infinitely differentiable over [0,1].

(2) If x G [0,A,_,], then Uj(x) = 0.

(3) Uj is strictly increasing on [A,.,, X,].

(4) If x and v are in [Xy, 1], then Uj(x) = Uj(y).

(5) The restriction of u} to [a,,/?,] is a straight line with slope Sj.

(6) If x G [0,1], then u'j(x) < Sj.

(7) [My(«y)  -  My(0)]  +  [«,(1)  -  Uj(ßj)]   < Sj • ¿/(M/').

(8) «y(Xy_,  + Mj)  < Sj • i/y/(32/2(|^_l(Xy_1)|   +   l)2).

There is a positive number Cy < 1 such that for each x in [0,1] and each

positive integer k </, \cj • ujk\x)\ < l/2; where ujk) is the kth derivative of «y.

Let Wj = Cj • Uj.
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Notice that if x is a number in [0,1) and there exists a positive integer i such

that/(x) # 0, then there is an open set S containing x such that if j is a positive

integer distinct from / and $ is in S, then/}(uV) = 0. It follows from this fact that

the function F = 2/11/ exists and is differentiable at each number x in [0,1).

But for each x G [0,1], we have that 0 < F(x) < h(x) and therefore F is

differentiable at 1.

If m is a positive integer, and./ is an integer greater than m, and x is a number

in [1 - 2Mj, 1], then IWMOe)! < l/2>. Notice that this fact implies that W and

all of its derivatives exist on [0,1] and W^(l) = 0.

Suppose that there exists an integer./ > 1 such that if k is the integer with the

property thatz* = Np then 2,to ((<?>„ F)V<f>,(l) <j. Let G = 2,to ((</>„ F))w^.
G has the property that if a0, ax, ..., ak is a k + 1 term number sequence, then

SXo(F-G)2dW<fQ(F-Íai<?)2dW.

Since X,., < Nj, < a, < ßp we have that

f ' (F - GfdW > f V' (F - GfdW + f* (F - GfdW.
JO JO Jctj

But the restriction of Fto[a,, /5}]is a subset of/}and the restriction of G to [a,,/?,]

lies on a straight line y such that y(l) </   Therefore,   we   have   that

S§(F-G)2dW=S#(fj - yfdW. But the restriction of W to [apßj] lies on a
straight line with slope c} • Sj and therefore

¡I (fj - yfdW = cj ■ sj-f* (fj - y)2(x)dx.

Since y is in Rp f$ (fj — y)2(x)dx > d¡. Combining these inequalities gives the

inequality

/o' (F - GfdW > £» (F-GfdW+Cj- sj ■ dj.

Let H denote the function with the following four properties:

(1) The restriction of H to [0,X,_,] is £_,.

(2) The restriction of H to [X^X,-, + Mj] lies on the straight line containing

(X,-,,^,^,)) and (X,._, +3<r,,0).

(3) If x G [X;_, + Mj,Nj], then H(x) = 0.
(4) The restriction of H to [Nj, 1] is a straight line such that if x G [a,,/?,], then

H(x) = F(x).

There is a A: + 1 term number sequence a0,ax,...,ak such that H(x)

= aofo + axibx + • • • + ak<pk, and therefore,

£(F-H)2dW>fi(F-G)2dW

>//'(F-G)2^ + c/-S,-ci,.
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Notice that

f ' (F-H)2dW= C'1 (F - HfdW + (Xj-,+Mj (F - H)2dW
JO JO ""y-i

(B) + £+j§ (F - H)2dW + f* (F - H)2dW

+ fßl(F-H)2dW.

For each x G [0,Xy_,], F(x) = 2/-! /to and H(x) = £_,(*). Therefore, from

the definition of P, we obtain:

(C)

<j^(F-G)2dW.

For each x G [Xy_,,Xy_, + Mj], F(x) = 0 and \H(x)\ < |/7_,(Xy_,)|. Moreover,

CJ'SJ- dJ

Therefore, we have that

(D) JVl ^        "^^      (4/^,(Xy_,) +   D2)

CjJJjJJ^
^       4      *

For each x G [X,_, + Mj,a,l (F - H)2(x) < 1. Moreover, W(aj) - W(Xy_,

+ Mj) = Wj(otj) - My(Xy_, + Mj) < Cy • jy • fi^/4. There inequalities imply

For each x G [a,,¿8,], F(x) — H(x) and therefore,

(F) [ßi(F-H)2dW = 0.

For each x G [ßJt 1], (F-H)2(x) < 16/2. Moreover,

IT(1) -   WÍJ%)   =   Wy(l)  -  Wj(ßj)  +  Wy+,(1)  -  Wj+l(ßj)  +  Wy+2(1)  -  Wj+2(ßj) + • • •

< CjSjdj/(64j2) + Cj+XSj+l  • (Xy+,  - Xy) + Cy+2Sy+2 • (Xy+2 - Xy+, ) + • • •

< CjSjdj/(32j2).

Therefore, we have the inequality

(G) j£ (F - HfdW < (l6j2)(SjdjCj/(32j2)) < CjSjdj/2.
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Combining inequalities (B), (C), (D), (E), (F), and (G) yields

JT1 (F - H)2dW < /oVl (F - GfdW + CjSjdj

which contradicts inequality (A) and therefore the proof is completed.

This example gives rise to a number of questions:

(1) Characterize those strictly increasing continuous functions w which have

the property that if / is a continuous function on 0,1 and zx, z2, ... is a z

sequence, then the (z,w) Fourier expansion of/converges uniformly to/.

(2) By a slight modification of the example in this paper, one can construct a

z,f, and w such that the (z,w) Fourier expansion of /converges pointwise to/but

not uniformly to/ However, the following question remains unanswered: Is there

a (z,w) system such that if / is a continuous function on [0,1] then the (z,w)

Fourier expansion of/converges pointwise to/, but there exists a continuous g

on [0,1] such that the (z,w) Fourier expansion of g does not converge uniformly

tog?

(3) Is there a strictly increasing continuous w such that there exist sequences z

and z' such that if /is continuous on [0,1] then the (z,w) Fourier expansion of/

converges uniformly to/, but there exists a continuous function g on [0,1] such

that the (z',w) Fourier expansion of g does not converge to g?

(4) Is the following statement a theorem: If w is a strictly increasing

continuously differentiable function on [0,1] and zx, z2, ... is a z sequence in

[0,1] and/is continuously differentiable on [0,1], then the (z,w) Fourier expansion

of/converges uniformly to/over [0,1].
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