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A GENERALIZATION OF THE cos np THEOREM

BY

ALBERT BAERNSTEIN 11(1)

ABSTRACT. Let / be an entire function, and let ß and X be positive numbers

with ß<n and ß\<7T. Let E(r) = {ft log|/(reI0)| > cos ß\ log M(r)\. It is proved

that either there exist arbitrarily large values of r for which E(r) contains an in-

terval of length at least 2/3, or else lim        r     log M(r, f) exists and is positive

or infinite. For ß= rr this is Kjellberg's refinement of the cos np theorem.

1. Introduction. Let / be an entire function. The classical cos np theorem

(see [4, Chapter 3] for its history) asserts that if / has order p, with 0 < p < 1,

then

(1) lim sup —-—— > cos 77p,
,..00    log zVl(r)

where M(r) and 77z(r) denote sup|/(z)| and inf |/(z)| on |z| = r, respectively.

Kjellberg [ll] proved a striking improvement of this theorem. He showed that,

for any number À e (0, 1), either log 772(7-) > cos 77A log M(r) holds for certain arbi-

trarily large values of r or else lim ^^t-- log M(r) exists and is positive or in-

finite. (The case k = Vi had been proved earlier by Heins [7].) A consequence of

Kjellberg's theorem is that if / has lower order p e (0, 1) then the lim sup in

(1) is > cos 7Tp . We remark that in this theorem it is not necessary to make any

assumption about the order of /.

In this note I shall prove the following result:

Theorem 1. Let f be a nonconstant entire function. Let ß and \ be numbers

with 0 < A < 00, 0 < ß < rr, ß\<7T. Then either

(a) there exist arbitrarily large values of r for which the set of 6 such that

log \fire' )\ > cos ßk log Mir) contains an interval of length at least 2/3, or else

(b) lim -0<¡7-~   log zVI(t-) exists, and is positive or infinite.

For ß = n this is Kjellberg's theorem. For ß = rt/2k the theorem provides

a sharpening of results of Arima [l] and Heins [8, p. 121].

The possibility that there might be a result like the one in Theorem 1 was

suggested to me by A. Weitsman. I would also like to acknowledge some very
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helpful discussions with R. R. Coifman, Guido Weiss, and W. B. Jurkat.

Drasin and Shea [5], [6] have characterized functions extremal for the cos np

theorem, that is, those entire functions / of order p £ (0, 1) for which equality

holds in (1). It would be interesting to determine what sort of functions are ex-

tremal, in a similar sense, for Theorem 1.

Theorem 1 suggests an analogous problem for meromorphic functions. For a

given number a, what can we say about the size of the set

Eair) = Id: log \firei9)\ > aTir, f)\,

where Tir, f) denotes the Nevanlinna characteristic of/? For a= 0 the author has

proved [2], [3] the "spread relation":

lim sup meas EAr) > min{2rr, 4p~   sin" (5/2)      I,

r—oo

where p is the lower order of / and 8 = S(°°, /) is the Nevanlinna deficiency of

/ at oo. It is also known ([12], [13], [14], [15]) that certain hypotheses on a, 8,

and p insure that lim sup _00^a('') = 2n.

The proof of Theorem 1 depends on two key inequalities involving an auxili-

ary function p(r). In §2 we state the inequalities and then show how the conclu-

sion of the theorem follows from them. In §Ç3, 4 we obtain some results about

harmonic functions which are needed to prove the inequalities, and in §§5, 6 we

prove the inequalities themselves.

2. The auxiliary functions and key inequalities. Let / be entire and noncon-

stant. Consider the function u defined by

uir, 6, <p) = f9_& log l/W^ + ̂ l dco

where 0 < r < oo, 0<ö<77, and <p is any real number. This function was intro-

duced by the author in [2], where it was shown (Statements (3-9) and (3-10)) that

for each fixed (p,  uir, 6, (p)  is a subharmonic function of re'     in

(2) 0 < 6 < n and, for each fixed 6 £ [0, 77],  uir, 6, (p)  is a subharmonic

[unction of re''*'  in the whole plane.

We remark that the statements (3.9) and (3.10) of [2] do not cover the cases

when 6 is fixed and has the value zero or Z7. However, for 0 = 0 we have u = 0

and for 6 = n we have

uir, 77, ,p) = 2rr[N(r, 0, /) + k log r+ Iog|cJ]

where AI has its usual meaning and c,   is the first nonvanishing coefficient in

the Maclaurin series of /. The function in the brackets is a convex function of

log r, hence is a subharmonic function of re    . Thus (2) still holds when 0 = 0

and 6 = n.
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Now consider the function viz) defined in the upper half plane by

(3) Areie) = sup iAt, 6, <j>)       (O < 0 < 77).

4>

Alternatively,

(4) Areie) = sup f log\f(rei0i)\ da
I    J'

where the sup is taken over all <u-intervals / of length exactly 26.  This Az) is

the same, except for a factor of 2tt, as the functions mAz) and T Az) considered

by the author in [2],

Proposition 1. (a) For each fixed re'    there exists an interval I of length

20 for which the sup z'rz (3) is attained.

(b) v(z) is subharmonic in Im z > 0 ar2a* continuous on Im z > 0, except per-

haps at z = 0.

(c) For each fixed ß e (0, 77], v(re'P) is a nondecreasing convex function of

log r, 0 < r < 00.

(d) Define

ve(r)=   lim   d-\ÁTei9)-AT)]=   lim   0" xArei9).
(9-0+ (9-0 +

Then veir) = 2 log Mir, f) (0 < r < «).

.a

Proof, (a) For re1   fixed, zz(r, 0, <£) is a continuous periodic function of <f>.

Take a rp for which «(r, 0, r/>) is maximal, and let / be the interval of length 20

centered at <p.

(b) The continuity statement follows from a routine argument. The definition
'ft

(3), together with (2), shows that vire1 ) is the supremum of a family of subhar-
■ ft

monic functions of re1 . Such a function is always subharmonic, provided it is

upper semicontinuous, and this is certainly the case here.

(c) The definition (3), together with (2), allows us to interpret virelP) as the

maximum modulus of a function of re which is subharmonic in the whole plane.

This implies the conclusion (c).

(d) For any interval / of length 20 we have /j log|/(reIÙJ)| a"<y <

20 log Mir). This implies

(5) lim sup 0" lAiei0) < 2 log Mir).
Ö-0 +

On the other hand, let re        be a point such that log \f(re      )\ = log M(r). Then
'ft        ft

v(rel ) > J_glog \f(r exp U(4>0 + <y)i)| du>. Dividing by 0 and letting 0 —» 0 we

obtain

lim inf 0" lAreid) > 2 log Mir),
(9—0 +
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which with (5), proves (d). This completes the proof of Proposition 1.

Fix ß £ (0, 77]. Let ¡ir) be an interval of length 2/3 such that vire'h =

SllT)lof>\fireia)\do>. Define

pir) = ityf\loè\fireiù>)\: o £ KM.

Then conclusion (a) of Theorem 1 will hold if

(6) pit) > (cos ßk) log Mit)

fot arbitrarily large values of t.

In the inequalities below it is assumed that ß and X satisfy the hypotheses

of Theorem 1.

Key inequality I. There exist positive constants Cj, C,, depending only on

ß and À, such that whenever /(0) = 1, we have

rs ¡lit) - (cos ß\) log Mit) log Mir) log MÍ2s)
(7) f-dt>C,—-C,—-      (0<r<s<oo).

Jr tl+» 1        rX 2 SX

Key inequality II. Let

Qir, t) = 2ri7- \r2 - t2)~l log rt~ \       y = ß/n.

Then, if lim sup _oar~   log Mir) < 00, we have

(8) log Miry) < J" [p(/*) + log MitV)]Qir, t) dt      (O < r < 00).

Once we have these inequalities the proof of Theorem 1 is completed by

exactly the same reasoning as that used by Kjellberg in [10] and [ll]. Let

A = lim inf r~Mog Mir),       B = lim sup r-Mog Mir).
T—.00 r—»oo

If A = ß = 00 then conclusion (b) of Theorem 1 holds. If B = 00 and A < 00 we

can find arbitrarily large values of r and s, with r < s, such that the right-hand

side of (7) is positive. So, if /(0) = 1, then (6) holds for some t > r and we are

done. If B = 0 and /(0) = 1 then r~Xlog Mir) > 0 for r > 0. For each fixed r the

right-hand side of (7) is positive for all sufficiently large s, and again we are

done.

The restriction /(0) = 1 can be removed in the usual way. Let g be the en-

tire function with g(0) = 1 and /(z) = czkgiz) (c 4 0). Then

(9) log Mir, g) = log Mir, f) - log |c| - k log r,

and p(r, g) can be chosen so that (9) holds with p in place of log M. Using (7)

with g in place of / we easily deduce
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rs pit, f) - cos ßk log Mit, ()
Jr -^-dt> Cjr-Hlog Mir, f) -\og\c\-k log r)

- epilog Mi2s, f) - log | c| - k log 2s)

-(ArVkl-cos/SXHoglcl"-1       (l<r<s<oo).

Arguing as above, with obvious modifications, we find that if ß = oo and A < oo,

or if 6=0 and / is not a polynomial, then (6) holds for arbitrarily large values

of /. (For / a polynomial (6) holds for all sufficiently large values of i.)

Now consider the case 0 < ß < », so that (8) holds. If (6) is false for all

sufficiently large t then

(10) pit) < (cos ßk) log Mit)       it > tQ).

Dividing / by a large positive constant, if necessary, we can assume that (10)

holds for all t > 0. (See the argument on p. 6 of [11].) Putting (10) in (8) we ob-

tain

log Miry) < f°° (l + cos ßk) log Mity)<Ar, t) dt.

Proceeding as in §4 of [11], with yk in place of k, we arrive at

log Mr?)
lim —-= ß > 0
r— oo       r'

so that (b) of Theorem 1 holds.

3. A class of harmonic functions. In this section Bit) will always stand for

a nondecreasing convex function of log t on (0, oo) satisfying

ß(0) = ß(0+) = 0,       ß(/) = Oitp)      it -> oo)

for some p e (0, 1).

The function Bit) is absolutely continuous. Let B At) denote its logarithmic

derivative, ß At) = tB'it). Then ß.  exists a.e., and is a nonnegative nonde-

creasing function of /.

Since ß(2i) > J2tBAs)s~1ds > BAt) log 2 it follows that

(11) BAÙ^OitP)      (f—oo).

Similarly, B(tÁ) - B(t) > B AÙtiog tA - log /), so

(12) lim (log7jß1(i-) = 0.
í-o\      '/

The Poisson integral
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birei9)^rBit)-12Í
n J 0 ,2 + T2 +

0
-a*i

2/r cos 0

is harmonic in the slit plane  |arg z| < n, is zero on the positive axis and tends to

Bir) as 6 —» 77 - , the convergence being uniform on bounded subsets of (0, oo).

The purpose of this section is to obtain some results about hg = dh/dd. These

results generalize known properties of entire functions. Let

*"-äK)
where 0 < an < an + l and n1/p = OiaJ. Then Bit) = Nit, 0, /) = S log+(//an)

satisfies our hypotheses, and B,(r) = nit, 0, /). In this case the Poisson integral

h has a representation hire' ) = n~   fQ log |F(reI<p)| d(f>, since the right-hand side

is a function harmonic in the upper half plane which has the same boundary values

as h. Thus h gire' ) = n~   log Fire' ). In particular,

heir) = 77- x log Mir, F),       hßirein) = n~ x log mir, F).

The reader might find it helpful to keep this special case in mind in what follows.

Proposition 2.

(13) heirei6) = l J¡° log   1 + I eie  dB¿t)      (|0| < n)

iA .-1..Í0I
This generalizes the well-known formula log |F(rel  )| = f ™ log 11 + ft"   e'  \ dnit).

Proof. We differentiate the Poisson integral with respect to 6; use

.JO0
-£Re

ddy + t2 + 2tr cos 6)        Ot      it+reid)

and integrate by parts. The result is

V^)=77j7ßl(i)H
Àt + reiö)

\dt.

Using

R Tei6 à   1
Re-— =-log

Kt+reiô)       dt
1 +

doing another integration by parts, and observing (11), (12), we obtain (13).

Proposition 3.

(14) lim
B(r) - Krei6)

=   lim    beireiS) = ^j^  logh-^dByit)
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The above integral is always well defined, but it may be - oo ¡or some values of r.

Proof. Fix r e (0, oo). Since log |1 + re1 /t | is a decreasing function of 0 on

(0, 77), and since log |1 + rei6/t\ < log(l + r/t) (0 < 0 < 77) with

J^log(l + r/t) dB At) = be(r) < 00, the monotone convergence theorem shows that

.J8\
lim   - J     log

e-rr-"-*0
1 + a*l(i)=ij7log 1- dBAt).

Because of (13), this proves the second equality in (14).

The proof of the other equality seems to require a slightly more elaborate

argument. Take 0 £ (0, n). From Proposition 2 we deduce

^=si h^*)*t>=ir0äB¿a $i log ~»1+
7-e'

dtp.

Now

^ = j;iog+^ßlo) = ijo^ßl(i);;iog

So, setting A(r, 6) = rr~1 /glog |1 + re'*\ d(p we see that

B(r) - hire9) = J~ Airr \ 0) dB AH

1+ye'" dip.

- log |1 + rei9\ + -Lg JJ log |1 + ré* \ d<f>.

(15)

A calculation shows

,       Ad  A(r, 0)
77(77 - V) —-s-

(90    77-0

The monotonicity of log |1 + re'*| thus implies

±^<0 (O<0<77).
00    77-0

Hence, for r and t fixed, (77 - 0)~ 1A(r/t, 0) \ as 0 / 77. In particular,

Now J~ logMr/zOz/BjO) = B(r) < «, so, when we divide (15) by 77 - 0 and let

0/77 the monotone convergence theorem is again applicable. Since

l'lme~n- ^n ~ ^~ l^Tf't' 0) = 77" ' log |1 - r/t\, the other equality in (14) is thus

established.

From now on we will denote the quantity appearing in (14) by bA-r).

Proposition 4. Let a£ (0, 1). There exist positive constants ky k2, depend-

ing only on a, such that

(16)
rs b0(-t)-(cos my)he(t)              b0(r) ^
I-dt> k.-*

.1+0- 1      T°
(0 < r < s < 00).
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This generalizes the inequality (23) in Kjellberg's paper [10].

Proof.. Let / be the integral in (16). Using Propositions 3 and 2, with 0 = 0,

we deduce

(17) /= f"¿Bj(n) J* r( 1 + CT)[log|l -// u\ - cos ffo-logd + //«)] dt.

Kjellberg has shown [9], [10, p. 192] that

J» r(1 + 0">[log|l - t/u\ - cos na lôg(l + t/u)]dt

> ¿1r-alog(l+ r/u)- ¿^""'logd + s/u)       (0 < zz < oo),

where &,, k    ate positive and depend only on o. Putting this in (17), and using

Proposition 2, with 6 = 0, we obtain (16).

Proposition 5.

(18) heir) = J~ [h9it) + hei- t)]Qir, t) dt.

Here Q is as in the statement of key inequality II.   This generalizes the

identity (15) in Kjellberg's paper [ll].

Proof. The function h g is harmonic in the half plane  |0| < 7r/2 and is con-

tinuous on the closure (we define hgiO) = 0). From (13) it follows easily that 0 <

h gire' ) < hgir) = 0{rp) i\0\ < n/2, r —* oo). Thus h g can be represented in the

half plane by the Poisson integral of its boundary values. Since hgiiy) = hgi - z'y)

for real y, we have

(19) Vr)4riJV'»-Tl       (0<r<oo).
"   »  U f¿ 4-  y¿

Now we show that h g is also the Poisson integral of its boundary values on

the real axis. Take 8 £ (0, %7r) and consider hgirel<-9~ ') as a function of re10

in the upper half plane. It follows easily from (13) that sup^^^Ä^re*' ~  ')| =

Oirp) (r —► oo) for each fixed 8. Since hg(re     ~    ) is continuous in the closed

half plane, we have

hgiiye-iS) = y r [hgite-iS) + hgite^-B)]-^-       (0 < y < oo).
n J 0 t2 + y2

Let 8  1 0. Then ¿e(ie_,'S) T h git) and hgitei(7T-8)) 1 hgi-t), with

h gitei(7T~ S)) < h git). Since h git) is integrable with respect to (f2 +y2)~1dt, we

can apply the monotone convergence theorem and conclude

(20) hgiiy) = y- T [hgit) + hgi-t)]-^~      (0 < y < oo).
77 J 0 ¿2 +     2

Putting (20) in (19) and changing the order of integration, we get (18). (To

see that Fubini's theorem is applicable here, consider, for fixed r,
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Fit,y) = [hAt) + hA-t)]
(r2 + y2)(,2 + y2)

2he^-2—¿i—~-lh0U)-h0i-t)].
ir2 + y2)it2 + y2) ° ° (r2 + y2)it2 + y2)

= Fj(/. y) - Fp, y).

Then Fj > 0, F2 > 0, and it is easy to verify that J^dtj^Fyit, y)dy < «..)

4. More results on harmonic functions.

Proposition 6. Lez" A be harmonic and bounded in \z\ < R. Let ae (0, 1). Then

\z\
\bg(z)\ < ¿(a) — suplbiRe'*)]      (|*| < aR),

R    4>

where k(a) depends only on a.

Proof. We have

«re")-i tfKRé*)   ,      ,   R2-r2-zap.
277 Jo i?2 + r2-2Rrcos(0-rp)

Differentiation with respect to 0 and simple estimates show

\hArei9)\ < sup|/HRe¿*)| . (R2-^2rR      «, < r< R).
0 (R-t)4

If r < aR then (R - r)3 > (1 - a)3R3, so

(R2 - r2)2rR _ (R + r)2rR 4rR2      = ¿( a\ £

(R-z-)4 (R-r)3   "(l-a)3R3 R

and we are done.

The next result is a local version of Proposition 4 in which no assumption

is made about the growth of the boundary function Bit).

Proposition 7. Let Bit) be a nondecreasing convex function of log t on

(0, oo) with BiO) = B(0 + ) = 0. Let g(q>) be bounded and measurable on (0, 77). Let

h be the function which is bounded and harmonic in the half disk \z: \z\ < R,

Im z > Oj and has the following boundary values:

HRe^) = ¿ff>\    b(r) -0,    H-r)=Bir)       (O < r < R).

Let aeiO, 1), ae (0, 1). Suppose 0 < r < s = aR. Then

rs bA- t) -icos na)hAt) h0ir) Bia~ lR) + Ml
(21) f   -dt> k,-kia, o)-

Jr ,1 + a 1    ra sa

where k.  is as in Proposition A, kia, a) is a positive constant depending only

on a and a, and M¡ = sup0<(¿<n. \gi<p)\.
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Proof. Define B%) by

B*(z) = ß(i) (0<í<R)

= ByiR) logit/R) + BiR)      iR<t<oo)

where B yit) = tB'it). Then ß* satisfies the hypotheses of the B in §3. Define

¿.in the slit plane |arg z| <n by

hire'9) = i r B*U)  ,       '**'-dt.
1 trjo t2 + r2 + 2tr cos 6

Define h2 in the half disk by i, = h - by. Then ¿2(x) = 0 for - R < x < R,

so ¿2 has a harmonic extension to the full disk |z| < R.

Let 7 be the integral in (21), and let ]y, J2 be the corresponding integrals

with h replaced by ¿, and h.. Proposition 4 can be used to estimate ] y, so we

have

ihy)eir) ihy)eis)
/ = /i + /2>*i—;—k2—T~ + h

r s
(22)

hgir) ih2)gir) ihy)gis)

= kl~¿~.~ kl        ä k2 X       + h'
r r s

Let M2 = sup0 <(f><n |¿2(Re'*)|.   By Proposition 6 we have

(23) ra\ih2)eir)\ < kia)rR-lr~aM2 < kia)M2R~C7.

Another application of Proposition 6 gives

,        , fs\ih2)gi-t)\+\ih2)git)\

1^1 *ir -JTa-dt

(24)
<2kia)M2R~1 fs radt<2kia)il-o)-lM2R-1s1-a

< 2kia)il-o)-lM2R-a.

Using Proposition 2 with 0 = 0, and integrating by parts twice, we find

iby)As)-± r-±—B*it)dt
18 n}0  it+s)2

= i(R —1— Bit) dt + - r[BiR) + B ÁR) logit/R)] —Î— dt.
nJo  (t+s)2 njR 1 b u+s)2

Since ß(<) < BiR) for 0 < / < R and s = aR, we have
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iby)gis)<±BiR) r-J—dt + -BÂR) r(log(í/R))—î— dt
1 "• Jo it+s)2 n    1      iR it+s)2

= ± BiR) + iBAR) r log /—2L_dt.
"   l      Jl it+a)2

Now (log t) a/it + a)2 < /H/(l + <)2 (1 < t < «>, 0 < a< 1), so the last integral is

< 2. Hence

(25) (i1)ö(5)<^-1(ß(R) + 2ß1(R)).

Using (23), (24), (25) in (22) and remembering s = aR, we obtain

(26) / > ky hgir)/ra - ^(o, o)s~aiBiR) + 2B yiR) + M2)

where ¿j(a, o) is a positive constant depending on a and a.

Now h2 = h - hy, so M2 < Mj + sup06(o ff) |Aj(P.e' )|.

Using the Poisson integral representation of i. and the definition of B ,

one can easily deduce \hyiRei6)\ < ByiR) + BiR) (0 < 0 < 77). Hence

(27) M2<My+ ByiR) + BiR).

Putting (27) in (26), and using

BiR)<Bia-lR),       BAR)<-J—  if'" Byil)^<^®,
(logct-1)jR J     '     (loga"1)

we obtain (21).

5. Proof of key inequality I. We are assuming /(0) = 1. This implies that

viz), defined by (3), is continuous in the closed upper half plane, with f(0) = 0.

Fix R > 0. Define D by D = \z: 0 < \z\ < R, 0 < arg z < ß}. Let H be the

bounded harmonic function in D which has the following boundary values:

Mr) = 0,       Hire*!3) = vire^)       (0 < r < R),

..       Í2nlogMÍR,f)      iO <6<V2ß),
HiRe'9) = {

(477 log MiR, f)      iV2ß<d< ß).

Let y = ß/n, and define ¿(z) in the upper half disk of radius R /y by i(z) =

Hizy) (0 < |z| < Rl/y, 0 < arg z < 77). Then h is the function considered in Prop-

osition 7, with Bit) = vitye'n, the R there replaced by R1/y, and

gi(p) = 277 log MiR,  f) i0<(f>< Î7/2),

= 4/7 log MiR, f)      (77/2 < tp < 77).

The function Bit) satisfies the hypothesis of Proposition 7, by virtue of

Proposition 1.

Let s = 2~VlR and let 0 < r < s. Using (21), with o = y\ ( = ß\/n < 1) and

a = 2~^y, we obtain
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1/7 b0(- t) - cos Ttkh0(t)

f. -dt
(28)

.1/7 ¿l + o-

>k  hArl/7)     k   B&yR^y) + 477 log M(R)

1       r* 2 s*

where ky k2 depend on ß and k. Now h At) = yH0(ty), h0(-t) = yH0ityeiß).

Changing variables in (28), and using ß(2M yR 1/y) = vi\j2 Reiß) = A2seiß), we

obtain

tffl(te,/3) - cos **M'> r»g('> tX2se^) + 4tr logics)

Since v(2seiß) < 2/3 log M(2s), log Miy/Ts) < log zM(2s), we have

(29) (' "9{teiß) - COS "A//g(f) di , c  H'iñ     c log *25)

•" /1+* l   rx .      2      sx

where C y C2 ate positive constants depending on ß and A.

By Proposition 1, v is subharmonic in D. The harmonic function H majorizes

v on the boundary of D (since v(r) = 0 for r > 0 and v(Reze) < 2?7 log M(R)). It

follows that

(30) Az) < Hiz)    fot all zeD.

Since tz(r) = H(r) = 0 for r > 0, it follows from (30) and Proposition 1 that

(31) H0ir) > v0ir) = 2 log Mir)      (0 < r < R).

Here, and in what follows, H0ir) and H0(relß) ate understood to be one-sided

derivatives computed from inside D.

I claim that the following inequality also holds:

(32) H0(teiß) + H0(t) < 2(u(t) + log M(t))      (0 < t < R).

Let us assume (32). Using it together with (31), we find

H0(teiß) - cos ßkH0(t) = [H0(teiß) + H0(t)] - (l + cos ßk)H0it)

(33) < 2(p(z0 + log Mut)) - 2(1 + cos ßk) log Mit)

= Huit) - cos ßk log Mit)).

Using (33) and (31) in (29), we obtain key inequality I.

To prove (32) we introduce another auxiliary function wiz). It is defined in

the angle 0 <0<M/3by

(34) w(rei9) = sup   f   log | fire")| do      (0 < r < oo, 0 < 0 < I4ß)
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where the sup is taken over all sets E of the following form:

(35) E = [ay, by] U [a2, ¿>21 U [ay bj,

with

a, < by < a2 < b2 < a, < b ,

è2-a2 = 20,       (è1-a1) + (è3-a3) = 20,

a2 - bl = a3 - b2 = ß - 2d-

Note that for 0 = j8/2 the sets E are simply intervals of length 2/3. Thus

wire^12) = vWh.

Lemma, (a) w is subharmonic in 0 < arg z < V2ß and continuous on 0 <

arg z < l/2ß.

ib) lim sup "*"'  ^ " fr6'  } < 2(p(r) + log Mir))      iO < r < 00).
0-^/3- ß/2-0

Once the Lemma is proved, we obtain (32) as follows. Let D. = [z: 0 < \z\  <

R, 0 < arg z < ß/2\ and define H j(z) on D j by

H^re10) = Hir exp{iiß/2 + &)])- Hir expiz'(/3/2 - 0)1).

Then //.is harmonic in D    and has the following boundary values:

Hyir) = 0,       HAre^12) = //(re^)       (O < r < R),

HyiRe'9) = 277 log Mir, f)      (O < 0 < V2ß).

A look at the definition of w shows

uire^/2) = virJh = Hire^) = HAre^/2)      (O < r < R),

(36)

u<r) = .0    (0 < r < R),       wiRei6) < 2n log Mir, f).

Thus //. majorizes tz> on the boundary of D., hence it also majorizes w inside

D y. Using this, together with (36), we obtain

lim sup Uirelß/0/\- fe'9) > iHy)gire^2) = Hgire'ß) + Hgir)       (O < r < R),

0-/3/2 p/2-0

which, together with part (b) of the Lemma, proves (32).

Proof of the Lemma. The continuity statement follows from a routine argu-

ment which we leave to the reader.

For r > 0, 0 < p < r, - n < iff < n, define r(ip) > 0 and a(i/r) e (-77/2, tt/2) by

r + pe'^ = ri\fj)e'°*>V'. With this notation, a function 5 defined on an open set D

is subharmonic in D if and only if it is upper semi continuous and, if for each

re'6£D, there exists pQ > 0 suchthat sire'9) <V2n~l flnsiriiff)exp{iie + ai\ff))\)diff

holds whenever 0 < p < pQ.
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'ft
For fixed re1    with 0<r<oo, O<0< ]4ß it is easily shown that there exists

a set E of the form (35) for which the supremum in (34) is attained.  Let a., b. be

the endpoints of the intervals defining one such extremal E and set

crx *= U(bx - flj),       a2 = y2(bi-ai),

^-KUj+t,),      <p2 = !^(a2 + è2),      <p3 = '¿(a3 + è3).

In terms of the function 22 introduced in §2 we have

(37) w(re'9) = At, a y <p ¿ + Ah 0, <p2) + Ar, a2, <p3).

Assume CTj > 0.  Choose pQ e (0, r) such that whenever 0 < P < Pzj we have

0 < 0 + a(iff) <Y2ß, 0 < zjj + a(z>) < V2ß (-7T<iff<n).  Define

z5(i» = Uj - aty), t^+a^)]

U [a2 - a(z/r), ¿2 + aiiff)] u [a} - a(i/r), b^ - aiiff)].

Then £(i/z) satisfies (35), with 0 replaced by 0 + aiiff).   Hence

(38) tz<z(^)expiz(0 + aiiff))\) >   f   „ log|/(A>)expliû>D| da.
JE(<p)

Now

J      log\fiAiff)éa)\ dco = «(>(#, a, + a(W), <?,)

(39)
+ AÁiff), 0 + a(z/z), rp2) + AAiff), o2, cp3- aiiff)).

Substitute (39) in (38), divide by 2t7, and integrate from iff = - 77 to iff = n.

The subharmonicity properties of 22 mentioned in (2) yield

(40) ^-  f77   wiriilf)exp {¿(0 +aiiff))\) dxft > zz(r, ct , <f> ) + Ar, 0, <p2) + Ar, o2, <j>J.
2tt J —tt

(We used here the fact that   (27ruiAiff),a2, rp3 - aS,tjj)) a\fj = j^uiriift), a2, <p3 +

aiiff)) diff).)

Comparing (40) with (37) we see that w satisfies the criterion for subharmoni -

city at re1 .   (We were assuming a j > 0.   If <7j = 0 then 0"2 = 0 - o ^ > 0, and we

repeat the above argument with the roles of [ay by], [a,, b,] interchanged.)  Thus

part (a) of the Lemma is proved.

Recall that I(r) was chosen to be an interval of length 2/3 such that

vireiß) = fHr) log| fireia)\da¡, and p(r)  is the inf of log\f(reiù>)\ over I(r).   Fix

r, and let w0 be a point of I(r) such that u(r) = log| f(re     )|.   (It may happen

that p(r) = - 00, but this does not affect the argument.)

Write I(r) = [a, b].   Note b - a = 2/3.   We have

(41) T^re''^2) =  f* log\f(reiù>)\ dco.
Ja
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Let c = Viia + b).   For the proof of (b) we consider five cases.

Case I. dig = a.

Case II.  a>0 £ (a, c).

Case III.  (úq = c.

Case IV.   <u0 e (c, b).

Case V.   o>0 = ¿>.

Assume Case I.   For 0 < 0 < Viß define E(0) = [a, a] U [a + /3 - 20, a + /3]u

[a + 2/3 - 20, ¿].   Then E(0) has the form (35).   Thus

(42) uirei9)>   f #/)   log |/(rÓ| ab.

Using this and (41) we see that

uire^2) - wirei9) <  f*"2' + f^f "^ l°g|/(rÓ| dco.
~ Ja Ja+ß

Divide by ß - 20 and let  0 — %8.   The result is

lim sup MrC' ^ '?"'  } < log|/(re¿a)| + log Mir).
e-'Aß-        0-20

Since log|/(re!a)| = pir), the inequality above is equivalent to (b).

Now assume Case II.   Let /j(0) be the interval with center coQ and length

ß — 20, and let I Ad) be the interval of length ß - 20 whose left endpoint lies

20 units to the right of the right endpoint of f j.   For 0 sufficiently close to Viß

we have ly U ¡2 C [a, b\.   Let E(0) be the complement of IyU K in [a, b].   Then

E(0) has the form (35).   Thus (42) holds, and we have, for 0 sufficiently close

to Viß,

uireiß/2) _ „<„«■*) < ft  (0) + Jf  (e) log\firen\ dco.

Divide by ß - 20 and let 0 —* Viß. The first term on the right tends to p(r)

and the second one is dominated by log Mir).   This proves (b) for Case II.

For Case III we let E(0) consist of two intervals of length 20 and one degen-

erate interval.   The righr endpoint of the first interval is V2ß - 0 units to the left

of c, and the left endpoint of the second interval is Viß - 0 units of the right of

c.  Then Eid)  has the form (35), and we deduce this time

/    iß/2\        1    i0\ „ rc + (<4ß-9)      ra + Xiß-e)      rb ..    iœ
wire       )- wire    ) < J^^ + ¡g + J^ {ß_ß) log \fire   )\ dco.

Divide by ß - 20 and let 0 —» Viß. The first term on the right tends to pir)

and the sum of the other two is dominated by log Mir). This proves (b) for Case

III.
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Cases IV and V are handled in a fashion similar to II and I, respectively.

This completes the proof of the Lemma.

6. Proof of key inequality II. We established (18) under the hypothesis that

the function Bit) whose Poisson integral is h satisfies B(0) = 0. However, the

formula is still valid if we only assume

(43) B(<) = B*(t)+ Aj log t + A2,

where B    satisfies all the hypotheses of the B in §3, and A., A. ate constants.
'O

To see this, simply observe that in this case, with obvious notation, hire1 ) =

h*(rel ) + jt~ 1A j0 log r + n~ A 2$, and (18) can be established for each of the

harmonic functions on the right.

As in §5 we set B(t) = v(tye'P), where y = ß/rr. We are assuming log M(r) =

0(rX). Since v(teiß) < 2rt log zVl(r), it follows that B(t) = 0(tßXM) (t — oo). Since

ßk/n < 1, Bit) satisfies the growth condition of §3.   We can write

<44> log|/U)| = log|/jU)| + Ajlog|z| + A2

with /j entire and /j(0) = 1. It follows.from this that Bit) can be written in the

form (43). Let h be the Poisson integral of Bit), as in §2, and define Hiz) by

Hiz) = hiz1/y) (0 < arg z < ß).   Using (18), we obtain

hs{t7) = J7 {He{t7) + «»<«y«'A>lfl<i t)dt.

To prove our key inequality (8) all we need to do is show that (31) and (32)

are true for the H being considered in this section. (In this case these inequal-

ities are to hold for 0 < r <oo.)

Consider first (31).   The function H and v are harmonic and subharmonic,

respectively, in the angle 0 < arg z < ß, and they are equal on the boundary, with

the possible exception of z = 0, where well-defined boundary values need not

exist.   However, by considering the decomposition (43) one can easily deduce

that in fact Hire'   ) - vire1   ) tends to zero uniformly in 0 as r —» 0.   Since  v

and H ate both Oir ) in the angle as r —»oo, and since /SA < 77, we once again

can conclude that viz) < Hiz) inside the angle.   This is exactly what we needed

to prove (31).

To prove (32) we define Hj  just as before, except now its domain is the full

angle 0 < arg z < Viß.   Arguing as above, we conclude that Hj majorizes the

function w inside this angle, and the deduction of (32) proceeds as in §5.
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