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ON TOTALLY REAL SUBMANIFOLDS
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BANG-YEN CHEN(l) AND KOICHI OGIUE(2)

ABSTRACT.   Complex analytic submanifolds and totally real submanifolds

are two typical classes among all submanifolds of an almost Hermitian mani-

fold.   In this paper, some characterizations of totally real submanifolds are

given.   Moreover some classifications of totally real submanifolds in complex

space forms are obtained.

1. Introduction.   Among all submanifolds of an almost Hermitian manifold,

there are two typical classes: one is the class of holomorphic submanifolds and

the other is the class of totally real submanifolds.   A submanifold M of an almost

Hermitian manifold M is called holomorphic (resp. totally real) if each tangent

space of M is mapped into itself (resp. the normal space) by the almost complex

structure of M.   There have been many results in the theory of holomorphic sub-

manifolds; on the other hand, there have been only a few results in the theory of

totally real submanifolds.

The purpose of this paper is to study some fundamental properties of totally

real submanifolds.

In §2, we investigate the general properties of totally real submanifolds.

In §§3 and 4 we consider totally real submanifolds of a complex space form.

In the last section, we first give a characterization for totally real surfaces

in a complex space form, later we prove some results for totally real or holomor-

phic surfaces by using analytic function theory.

2. Totally real submanifolds.   Let M be an 72-dimensional Riemannian mani-

fold and M be a Kaehler manifold of dimension 2(72 + p),  p > 0.   Let /   be the

almost complex structure of M and let g (resp.g) be the Riemannian metric of M
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(resp. M).   We call M an totally real submanifold of M if M admits an isometric

immersion into M such that for all x, / (T (M)) C v , where T (zM) denotes the

tangent space of M at x and v    the normal space at x.

By a plane section we mean a 2-dimensional linear subspace of a tangent

space.   A plane section r is called antiholomorphic if /r is perpendicular to r.

Proposition 2.1.   Let M be a submanifold immersed in an almost Hermitian

manifold M.   Then M is a totally real submanifold of M if and only if every plane

section of M is antiholomorphic.

Proof.  Let X be an arbitrary vector in T (M), and let ej = X,  e2, • ■ •, e

be a basis of T (M).   We denote by r.. the plane section spanned by e. and e..

Assume that every plane section is antiholomorphic.   Then Jr.. ate perpen-

dicular to t.. tot j = 2, ..., n.   Therefore / X is perpendicular to e,, e2, ..., en
f\j        -1 r\j

so that / X e v .   This implies that M is a totally real submanifold of M.   The

converse is clear.    Q.E.D.

Assume that M is a totally real submanifold immersed in zM.   We denote by

V (resp. V) the covariant differentiation with respect to g (resp. g ).   Then the

second fundamental form o of the immersion is given by o(X, Y) = "^ XY — ̂ XY.

For a normal vector field £ on M, we write V'x<f = _ A ¿-X + Dx¿;, where

- A ¿X (resp. Dx£) denotes the tangential (resp. normal) component of ^x<f.  Then

we have

gioiX, Y),0 = A.AçX, Y).

A normal vector field f on M is said to be parallel if Dx¿; = 0 for any tangent

vector X.   The mean curvature vector H is defined by H = (1/w) trace a.   A sub-

manifold M is said to be minimal if H = 0 identically.   For the second funda-

mental form a, we define the covariant differentiation V    with respect to the

connection in (tangent bundle) © (normal bundle) by

(S7xa)(Y, Z) = DX(AY, Z)) - o(Vxy, Z)-AY, VxZ)

for all tangent vector fields X, Y,  and Z on M.

Let R denote the curvature tensor field of M.   Then the equation of Codazzi

is given by

(MX, Y)Zf- = iSj'xa) (Y, Z) + (V¿ff) (X. Z),

where (R{X, Y)Z)    denotes the normal component of R{X, Y)Z.

We choose a local field of orthonormal frames

V"*' en- en + V '•• ' en+p- el*=leV '•'* en* = Jenf e(n + l)*

J   rt + 1' *    (n+p)*      J   j' *(n+p)* - J*n+p
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in M in such a way that, restricted to M, e15 ..., e    ate tangent to M.  With

respect to this frame field, /   has the component^ ')

(2.1)

(/Aß)

/      P     Í*    P*

where /        denotes the identity matrix of degree n + p.   If we set Aa = A       i.e.,

oiX, Y) = 2 giAaX, Y)ea, then the Aa's are local fields of symmetric linear

transformations.

With respect to the frame field of M chosen above, let

,.77     ,.77 + 1•   ,   (Ú    ,   0) , ,<on+p,o>1*, 77* (77 + 1)*     .,;„(»+*>)*
,   CÜ        ,   (Ú

be the field of dual frames.   Then the structure equations of M ate given by

(2.2) &>*=-£*)£ A(oB,

<"B + *>A ■ °;

(2.3)

(Ú-   + (Ú <új =(0'jt, 0)j    = «ujÍ-0,

<uj[ + <u*=0,     «a¿-ft>¿*.     <4* .X*.

(2.4) <*4=-5>cA<aB + GB'      «b = ̂ A1cdû>cAû>d.

Restricting these forms to M, we have the structure equations of the immersion:

(2.5)

(2.6)

(2.7)

(2.8)

<ua = 0,

dco{ = - 2>1 A cü\

do) - - J«* A«aj + ß),     0} -HZ RJW«* A «',

Q1. = Q' -J]ö!aA wa (the equation of Gauss).

(3) We use the following convention on the range of indices unless otherwise stated:

A, B, C, D = 1, • • •, n + p, 1 , • • •, (n + p) ; h, i, j, k, l, m = \, • •-, n;  a, /3 = n + 1, • • ■,

n +p, 1 , ...,(n +p) ; A, M * n + 1, •••, n +p.
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From (2.2) and (2.5) we have S oo.  A tu' = 0.   By Cartan's lemma we may write

(2.9) <=2»>,      *•-**.

We can easily see

(2.10) hfj=g(Aae.,ej).

The equation of Gauss is written as

(2.8)' «ÍM-^M+ZtojftW«*;»)-

3.   Totally real submanifolds immersed in a complex space form.   A Kaehler

manifold of constant holomorphic sectional curvature is called a complex space

form.   Let M     (c) be an (tz + p)-dimensional complex space form of constant holo-

morphic sectional curvature c.   Then we have

(3.1)   RBCD = A ciSAC8BD - 8AD8BC + JacJbd - ]adjbc + 2JabJcd'-

Let R be the curvature tensor field of M     Ac) so that RBCD = giRiec, eA)e„, e .).

Then (3.1) is equivalent to

RiX, Y)Z = A7\giY, Z)X - ¡"(X, Z)Y + gij Y, Z)] X

-gijX, Z)]Y + 2giX,]Y)]Z},

where X, V and  Z are vector fields on M   .„(c).

A submanifold M of M       (c ) is called an invariant submanifold if each
72 + 2? 't.

tangent space is invariant under the curvature transformation: (R(X, Y))T iM) C

TxiM) tot all vector fields X and Y on M (cf. [4]).

Proposition 3.1.   Lez" M ¿>e ötz n-dimensional submanifold immersed in

M     Ac) with c 4®.   Then M  is a holomorphic or a totally real submanifold of

M     Ac) if and only if M is an invariant submanifold.
72 + p

Proof.   Let X and Y be two vector fields on M and Z e TX(M).   From

(3.1)   we have

R(X, Y)Z = '4cig(y, Z)X-AX,Z)Y+ gijY, z)Jx - giJx, z)Jy

+ 2g(X, JyYJZ\.

If M is a holomorphic or a totally real submanifold, then RiX, Y)Z e T (M)

is clear.

Conversely, assume that RiX, Y)Z e T (M) for arbitrary X, Y and Z.

Putting Z = X, we have
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RiX, Y)X = Vi cig(y, X)X - g(X, X) Y + 3g(X, / Y)j X|.

Since RiX, Y)X £ TxiM), we have g(X, JyJjX £ T¿M) so that either Jx £ T^M)

or g (X. Jy) = 0.   This implies that either JiT^M)) C TxiM) or 7iTxiM)) C v^,

i.e., either M is holomorphic or totally real.    Q.E.D.

Let M be an «-dimensional totally real submanifold immersed in M   .Ac).

From (2.1), (2.8)' and (3.1) we have

(3.2) R)kl = Já?(Sifc8, - S,^) + B*ä*," - »S*^-

Let R be the curvature tensor field of M so that /?'... = g(R(e,, e,)e., e.).  Then

we have

g(R(X, Y)Z, If) = V4c\giX, W)giY, Z) - giX, Z)giY, W)\

+ gioiX, Vi), oiY, Z)) - gioiX, Z), oiY, W))
(3.2)'

= lA clg(X, W)g(y, Z) - giX, Z)giY, W)\

+ £igUaX, W)g(AaY, Z)-giAaX, Z)giAaY, W)\.

This implies that the sectional curvature K oí M determined by orthonormal

vectors X and Y is given by

K(X, Y) = Me + g MX, X), oiY, Y)) - \\oiX, Y)\\2
(3.3)

= !4c + E¡gUaX, X)giAaY, Y)-giAaX, Y)2\.

Therefore we have

Proposition 3.2.   Let M be an n-dimensional totally real submanifold immersed

in M       (c ).   // M is totally geodesic in M       (c ), then M is a space of con-
77 + Í» ' •%.       7   6 7! + i> r '

slant curvature (X = Vac).

Let S be the Ricci tensor of M.   Then we have

(3.4) SiX, Y) = VAn - l)cgiX, Y) + Zitt Aa)giAaX, Y) - £gUaX, AaY).

Let p be the scalar curvature of M.   Then we have

(3.5) p = V4nin-l)7 + E(trAa)2-||a||2,

where  \\o\\ is the length of the second fundamental form o of the immersion so that

(3.6) lkl|2 = LtrA2   =2>X
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If M is a minimal submanifold so that tr Aa - 0 for all a, then we have

(3.4)w S(X, Y) = yAn - l)cg(X. Y) - £gUaX, AaY),

(3.5)m p=^72(72-l)c-|M|2.

As an immediate consequence of (3.4)     and (3-5)     we have
772 772

Proposition 3.3.   Let M be an n-dimensional totally real minimal submanifold

immersed in M   , Ac ).   Then
" + P   ¿

(a) S - lA(n - l)cg is negative semidefinite,

(b) p < AAn - l)c.

The following is also clear.

Proposition 3.4« Let M be an n-dimensional totally real minimal submanifold

immersed in M .Ac). Then M is totally geodesic if and only if M satisfies one

of the following conditions:

(a) K = Ac,

(b) S = A(n - l)cg,

(c) p = ^72(72 - 1)7.

The second fundamental form a of the immersion satisfies a differential

equation:

Proposition 3.5. Let M be an n-dimensional totally real minimal submanifold

immersed in M     Ac )•   Then
71 + p

AA\\o\\2= ||V'a||2+ ZtrU^- AßAaV -£(trAaAß)* + Anc\\o\\2 + Ac£tt A¿.

= \\Sf'o\\2 + 2Ztr(AaAß)2-2tt(ZK)2

- Btr AaAß)2 + Î4«c|k|| 2 + Ac ¿> A2,.

Proof.   Since M is a minimal submanifold of zW       (c), the following holds [l]:

1^A|H|2=||V'a||2+Ztr(AaA/3-AySAa)2-L(trAaA/S)2

~       /v.
Since M     Ac) is a complex space form of constant holomorphic sectional curva-

^   72+p ~A .
ture c   so that PßrD is given by (3.1), the last term of the right-hand side of the

above equation is equal to Anc \\o\\   + Ac 2 tr A _ * .    Q. E. D.
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Corollary 3.6.   Let M be an n-dimensional totally real minimal submanifold

immersed in M ic).' Then
77

V2A\\o\\ 2 = || V a|| 2 + 2> (Ai*Aj* - A^A2- D« A.tAjt)2 + Ji(«+ l)c>»2

= IIV'a||2 + 2^tr U¿.A..)2 - 3 tr (£¿2*)2 + «■+ &M2

= IIV'o||2 + 2£tr (A.,A;.,)2 - 3£(tr ¿>V' + V*in + l)e||a||2.

Proof.   The first equality is an immediate consequence  of Proposition 3-5.

The second and the third equalities follow from Proposition 3-5 and Lemma 3.7

(1).    Q.E.D.

Lemma 3.7.   Let M be an n-dimensional totally real minimal submanifold

immersed in M ic ).   Then

(1) tr (2 Á"2*)2 = 2 (tr A »A *)2.
Z* 7 *'        /

(2) tr A.*A * = ||o"|| S../n provided that M is Einstein.
i     j '

. *       .*
Proof.   (1) From (2.3) we obtain h\,  = h1,.  Therefore we have

(2) Since M is Einstein so that S = pg/n from (3.4)     we have

£A2, = {Hin - De - p/n)l = HI 2l/n, or    £*£ *<* = ||a|| %/n.

By the same argument as in (1), this is equivalent to

4.   Some results on totally real minimal submanifolds in a complex space form.

Theorem 4.1,   Let M be an n-dimensional compact totally real minimal sub-

manifold immersed in M ic), c > 0.   //

n  n 2 ^  nin + l)   ~ .    ,    .; ^   « (n-2) ^,
M^'    or ea«z,a/eWi/y    p>-(_TC)

¿ie« M z's totally geodesic.

Proof.   An algebraic lemma of Chern, do Carmo and Kobayashi (Lemma 1 in

[l]) implies tr (A * A „, - A „, A „, )2 > - 2 tr A2* tr A. «.   Therefore, from Corollary

i r        u i    i        i    i i i3.6, we have
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AA\\o\\ 2 > - 2 Z tr 4* tr A2» _ £(tr A¿,A;.,)2 + A(n + De ||ct|| 2
i*i

= 72-1Z(trA2t-trA2J2-(2-72-I)(ZtrA2i)2 + ^(«+l)c||a||2

>-(2-72-l)!|a¡|4 + M(72 + l)c||a||2

Hence, by a well-known theorem of E. Hopf, A||ct||2 = 0 so that \\o\\ = 0.   This

implies that M is totally geodesic.    Q.E.D.

As a special case of Theorem 4.1, we have [5]

Corollary 4.2.   Let M be a compact totally real minimal surface immersed in

M2(c), c > 0.   If the Gauss curvature of M is positive, then M is totally geodisic.

The following theorem is a generalization of Houh's result [3l.

Theorem 4.3.   Let M be an n-dimensional totally real minimal submanifold

immersed in M (c ).   // the sectional curvature of M is constant, say c, then

either c = Ac   ii.e.,   M is totally geodesic) or c < 0.

Proof.   Since fi = c so that p = tz(t2 - l)c, from (3.5)     we have c <Ac.' 771 —

Moreover, since R'kl - <r(5¡jfe<5.; - <5 ,<5..), from (3.2), we have

£(*?;# - #lg> - (c - J£) (8ik8jt - 8a8jk).
*    *

Multiplying S hm. hm.   on both sides of this equation and summing with respect

to i, j, k and /, we have

ZttiAhtAmA2-Z(trAhtAmt)2 = ic-.A?)\\o\\2.

This, together with Corollary 3.6 and Lemma 3.7, implies ||V'<7||2 •-. n(n2 - l)c(c - Ac")

from which we deduce that either c = Ac  or c < 0.   Q.E.D.

The following result is an immediate consequence of Theorem 4.3.

Theorem 4.4.   Let M be an n-dimensional totally real minimal submanifold

immersed in M (c ).   //
7Z '

(1) the sectional curvature  K of M is constant,

(2) the second fundamental form of the immersion is parallel,

then M is either totally geodesic (K = Ac), or flat.

5.   Totally real surfaces.   Let M be a surface (i.e., 2-dimensional Rieman-

~       z~\nian manifold) immersed in a (1 + p)-dimensional complex space form zVI j     (c ).
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By considering the two-fold covering if necessary, we can assume that M is

orientable.   It is well known that M can be covered by a family of local isothermal

coordinate systems.   Let (x1# x2) be a local isothermal coordinate system such

that g = Eidx] + ax2).  Put X. = d/dx. and a.. - ct(X., X.) for i, j = 1, 2.   Then

the equation of Codazzi gives

IiRiXy, X2)X/ = Dxioyy -o22)/2 - Dxol2 + EDXH,

iRiXy, X2)X2)X = Dxioyy -o22)/2 + Dxol2 - EDXH.

This, combined with Proposition 3.1, implies the following.

Proposition 5.1.   Let M be a surface immersed in My  Ac) with c ^ 0.   Then

M is a holomorphic or a totally real surface in My+  ic) if and only if the second

fundamental form of the immersion satisfies the differential equations

Dx¿°n - °-22>/2 - »xfu + EDx2H - °.

DX1^ll-^22V2 + DX/l2-EDX1i/ = 0-

A unit normal vector field £ is called

(1) isoperimetric if tr A* is constant,

(2) umbilical it Ac is proportional to /,

(3) umbilic-free it Ac is not proportional to / everywhere,

(4) geodesic if Ac = 0.

Proposition 5.2.   Let M be a holomorphic or totally real surface immersed in

M, + Ac).   If ¿; is parallel and isoperimetric, then the function

(f>£     =V2gÍ0yy-022,    £)-\f^TgiOy2,    £)

is analytic in z = x , +■ sj— lx,,  where (x,, xA is a local isothermal coordinate

system.

Proof.   Taking the scalar product of the both sides of (5.1) with f, we can

see that (pc satisfies the Cauchy-Riemann equation so that rp^ is analytic.

Proposition 5.3.   Let M be a topological sphere which is a totally real

surface immersed in My+ Ac).   If a unit normal vector field ¿j is parallel and iso-

perimetric, then ¿j is umbilical.

Proof.   Using the holomorphic function q>c given in Proposition 5.2, we can

define a (global) quadratic differential $ on M which is given locally by

0 = <£ cdz .   By Riemann-Roch theorem, we have $ = 0.   This implies that £ is

umbilical.
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Remark.   Let M' be a totally umbilical (resp. totally geodesic) real hypersur-

face of M. .Ac) and M be a surface in M .   Then a unit normal vector field of

M   in zMj + Ac), restricted to M, is parallel and umbilical as a normal vector

field of M in M1+ Ac).

Theorem 5.4.   Let M be a compact totally real surface immersed in Mj .Ac).

¡f
(i) the Gauss curvature does not change sign,

(ii) there exists a parallel umbilic-free isoperimetric unit normal vector field,

then M is flat.

Proof.   Proposition 5.2 implies that the function cp* is analytic.   Therefore

log \<f>A    is harmonic, i.e., Alog \cf>c\   = 0, where A denotes the Laplacian

formed with g.   Since \cf>c\   = E \A(tt A A   - det A A and <f is umbilic-free,

we have

A log E2 = - A log \A (tr Ai )2 - det Aç |.

Since the Gauss curvature K of M is given by K = - (A log E )/AE, we have

K = (1/4E) A log \A(tt Ac)2 - det A^ |.

Therefore a theorem of E. Hopf, together with the assumption that K > 0 or

K < 0, implies K = 0.
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