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SOMEWHERE LOCALLY FLAT CODIMENSION ONE MANIFOLDS

WITH 1-ULC COMPLEMENTS ARE LOCALLY FLAT

BY

T. M. PRICE AND C. L. SEEBECK III 0), (2)

ABSTRACT. The purpose of this paper is to prove a taming theorem for a co-

dimension one manifold that is locally flat at some point and has 1-ULC comple-

ment. We also prove that any two sufficiently close locally flat embeddings of a

codimension one manifold are ambient isotopic. Since this paper was first sub-

mitted, R. Daverman has shown that, given any point on a codimension one mani-

fold with 1-ULC complement, some neighborhood of that point lies on a codimen-

sion one sphere that is locally flat at some points and has 1-ULC complement.

Hence the two papers combined prove that a codimension one manifold is locally

flat if and only if its complement is 1-ULC.

Suppose M is a topological (n - l)-manifold, Q is a topo logical iJ-manifold,

and b: M —» Int Q is an embedding. We say that b can be locally approximated by

locally flat embeddings if for each x £ M there is a neighborhood U oí x in M

such that for each e > 0 there is a locally flat embedding / : U —» Q such that

d(f, h | U) < e. We shall show first that h can be locally approximated by locally

flat embeddings if Q — h(M) is 1-ULC, n > 5, and there is some open set U CM

such that h \ U can be apptoximated by locally flat embeddings. Then we show

that h(M) is locally flat. Daverman has used this fact to show that h(M) is lo-

cally flat if its complement is 1-ULC.(3) We also obtain that two close locally

flat approximations of a fixed embedding are ambient isotopic by an e-push.
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Throughout this paper we will assume that M and Q ate topological (n — 1)-

and «-manifolds which are separable metric with metric d. We allow our manifolds

to be possibly noncompact and with or without boundary. Throughout we assume

that « > 5. Let A U B C Q and e: Q —» (O, oo) be a map. Denote by N(A, e) the

set ly £ Q\ fot some x £ A, d\x, y) <e(x)i. A homeomorphism H of Q is an í-push

of (Q, A) fixed on B if there is an isotopy H   of Q such that H. = Identity, for

each / e[0, l], H = Identity on B and outside N(A, e), d(Ht(x), x) < t(x) for each

t £ [0, l] and each x e Q, and Hl = H. Denote by Dk the ¿-cell [-1, l]* and by

aDk the ¿-cell [-a, a]k fot any a > 0. Let U C Q be an open set and x eClU.

U is 1-LC at x if for each f > 0 there is a 8 > 0 such that each map f:dD2 —»

Mx, S)nU extends to a map F: D2 —» fV(x, f) n U.

For Theorem 1 we use essentially the same notation as in Bryant [l]. Let

h: D* x [—1, l] —» E" be an embedding. We use the following notation:

D(a, b) = h(Dk x [a, b]),

D(a) = h(Dk x la!),

D(x, a, b) = h(x x [a, £>]), and

N(a, b; e) = N(h(Dk x [a, fc]), c) = N(D(a, b), e).

Theorem 1. Let f: Dn~2 x [-1, l] —* B" (« > 5) be a topological embedding

with En - D(-l, l) 1-ULC at each point of D(-l, l). Let e > 0. Then there is a

PL homeomorphism h: En —» En such that h ° f° n: Dn~2 x [-1, l] -» E" is an

(-approximation of f (where n: Dn~2 x [-1, l] —» Dn~2 x [-1, 0]  is defined by

n(x, t) = (x, (r - l)/2)).

Proof. Choose real numbers aQ, a^, •. •, a    such that -1 = a. < a, < a, < •« •

<a   = 1, such that diameter D(x, «;_j. af) < e/3 for each x £Dn~2 and each i

(0 < z < q) and such that a._ l > (a¿ - l)/2. Let b{ = (a¿ - l)/2. Then we have

b._ l<bi< ai_ j < a¿ for each i (0 < i < q).

Choose £ '  (O <(' <f/3) so that for any x and x' e D"-2 we have

distance (D(x, -1, l), D(x', -1, l)) < 3f' implies that distance (D(x, t), D(x', t)) <

f/3 for all t £ [-1, l]. Choose r/0 (0 < r/g <f') so that for any x, x' e D"~2 we

have distance (D(x, -1, l), D(x', -1, l)) < tjq implies that D(x', -1, l) Ç

MDd,-1, 1), f').

Choose Tjj (0 < t/j <^tj0) so that N(bv a¿ 27/j) n [D(-l) uD(«2, l)] = 0

and so that for any x, x' e D«-2 distance(D(x, -1, l), D(x', -1, l)) < 2-n^ implies

that D(x', -1, l) Ç N(D(x, -1, l), jfQ). Choose r{l (O < t^j < rjj) so that

N(by av- r/ j) n A/(ajf 1; r/ j) Ç N(a^ rj). By Bryant's Theorem 4.4, there exists a

neighborhood W    of D(a,, 1) and a PL homeomorphism A.: E" —* En satisfying

(a) h. = identity except on N(b., a ; r¡ .),

(b) h, = identity on W.,
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(c) D(bv 1) Ç hl(N(av 1; Î}¡),    and

(d) for each y £ E" either h^y) = y or there exists an x e D"~2 such that

both y and hA\y) lie in NiDix, by «j), r/ j).

Furthermore it follows that D(by ay) Ç h^N(ay a2\ r^)). To prove this, see

Figure 1 or note that D(by ay) Ç D(b,, l) Ç hl(N(al, 1; ̂ )) and that 0(6,, a^ n

[Map 1; t7,) - Mi»!, a,; ^j)] = 0. Since ^ = identity except on

Figure 1

N(by *,!?,) it follows that D(èj, «j) Ç hl(N(av l; r¡) n N(by ay 7^)) Ç

b¿N(ay, T/jWcAjíMaj, «2; n^). Also D(ay a2) CWlC\N(ay a2; r/j) =

b1(W1r\N(ay a2; r¡y)) Ç h^N(ay a2; -ny)). Together we have D(by a2)=D(by aj

VDiay a2) Ç h]ÍNÍay ay t/j)) as claimed.

Now choose rj2 (0 < r¡2<1An1) so that N(b2, ay, 2t?2) H [Z)(-l, èj) u

D(a}, l)] = 0, so that N(b2, a2; -qy) Ç hy(N(ay ay, r¡y)) and so that for any x, x' e

D"-2 distance (D(x, -1, l), Dix, -1, l)) < 2n2  implies that D(x', -1, l) Ç

N(D(x, -l, 1), 14.7/j). Then choose r/^ (O < r¡2 < r¡2) so that N(b2, ay y y) n

N(a2, l; r¡ 2) Ç N(ay r¡2). Then by Bryant's Theorem 4.4 there exists a neighbor-

hood W2 oí Dia2, l) and a PL homeomorphism ¿2: En —* E" satisfying

(a) ¿2 = identity except on Nib2, ay r>2),

(b) h2 = identity on W'

(c) D(b2, l)Ch2(N(a2> 1; 7j2), and

(d) for each y £ En either ¿2(y) = y or there exists an x e D"~2 such that

both y and ¿2(y) lie in NiDix, hv a2), r¡2).

Furthermore, just as for hv we can prove that D(b2, a ) Ç b2(N(a , a ; n )),

In general, for 2 < k < q we choose rjk analogous to r¡2 above and get W

and hk from Theorem 4.4. More specifically, choose r¡k (0 < rjk <lÁVk   i^ so tnat

Mèt. aA; 2nfe) n [Z>(-1, ifc_1) U%+1; l)] = 0, so that iV(*4. afe; nfc) Ç

*<!- i^N^ak- v ak' ^k-1^ and so tnac f°r any *• x'e D"~2

distance(D(x, -1, l), Dix'- 1, l)) < 2^
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implies that D(x', -1, l) Ç N(D(x, -1, l), lÄrik_i). Finally we choose 77k

(O < r¡k < rjk) so that N(bk, afe; 77^) O N(ak, 1; íf^) Ç /V(afc; 77^). Then by Bryant's

Theorem 4.4 there exists a neighborhood V.   of ^(a¿, l) and a PL homeomorphism

hk: E" -* En satisfying

(a) hk = identity except on M¿>fe, «¿; 77,),

(b) ¿fe = identity on W¿,

(c) 0(6^, 1) Ç hk(N(ak, 1; ^fe)), and

(d) for each y £ En either h Ay) = y or there exists x e D"-2 such that

both y and ¿>fe(v) lie in N(D(x, bk, afc), 77 ̂).

Furthermore the same reasoning as for h. proves that D(b., «1+,) Ç

hk(N(ak, ak+x; V)))' Hence 7/^+1 can be chosen, as claimed, to satisfy

A/(fcjfe+1, tffe+1; 77¿+1) Ç h,(ak, a,+.; 77fc). This property is also used in the next

paragraph.

The homeomorphism h: E" —► En required by the theorem is just h =

h.    ° h~l ° • • • o h~ . We now show that h has the required properties. First

note that hq1\D(-l,bq   x) = identity, that D(bg_ v bq) Ç D(bq   y aq) Ç

Vi(N(Vi' V VrV*Ar VViÄ'so V(D(Vi> V>£
A     ,(N(s     ., a ; 77     .)) and finally h~ x(D(b )) Ç zVd , 77 ). Continuing we get

*S ̂  » tf ^ 1 (f íf ^ i ff y tf tf

¿"^j0 ¿~M D(-l, ^o_2^ = identity. From the furthermore property of i     j we

get

*>(*,-2' &S_,)C D(bq_2, aq_x) Ç è9_2(N(a9_2, «,_,; r,q_2))

so

*;Li ° *;1W*«-2- ̂ -iW-^ii^Va- ^-i))c-'V2Wa?-2. Vi: %-a»-

From the above statement about h~    it follows immediately that b~_. °

*i1(D(*«-r V^^K-i« v Vi*- Finally Ci° V^V^V^V*
Ç N(a , 77 ). In general, for each & (l < k < q) we have h~ x ° • • • ° ¿"^DÍ-l, ¿¿.^

= identity, i"1 o ... o ¿"Kod^, 6fc)) = h¿1(D(bk_v b¿¡) Ç

h-M'k-V ak> 1*-i». i;1 « — ° ^HM6fe, 6fe + 1))ÇN(afe, «àn; 7,fe) and

for each i (k + 1 < i < q) we have h~l o . ..o ¿"H/X^., ¿>¿+1)) = h~k\x o ... o

A-1(Ddf, 6-+1)) Ç N(a¿, ßI+,; 77¿). Thus i has the property that for each k

(0<k<q) h(D(bk, bk + l)) Ç N(ak, afe+1; 77^) Ç /V(afe, ak+l; e 0. In other words, i has

moved points about the correct distance lengthwise along D.

We now establish that h has not moved points too far sideways. Let y £ En.

Then either h~ (y) = y or else there exists an x   £ Dn~2 such that both h~ (y)
111

and y lie in N(D(x , -1, l), 77 ). Similarly either h~_l ° b~l(y) = h~Ky) or
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else there exists an x     l £ D"~2 suchthat both lie in N(D(x¡j_y -1, l), r¡q_y).

By our choice of n     l it follows that either h'q_, ° b~ (y) = y or else both lie in

N(D(x      , -1, l), n _2) for some *_   j £ Dn~2. Continuing we get that for each

k (l<k<q) either h~l ° ••• ° h~x(y) = y or else both lie in N(D(x¿,-l, l),r¡k_y)

for some x, e Dn~2. Hence h has the property that for each y £ E" either

h(y) = y or else both lie in NiDix', -1, l), r¡0) for some x' £Dn~2. In particular,

if y = f° n(x, t) (with ak < t < ak+y), then h(y) £ NiDix, -1, l), 2(). From the

last paragraph we know that there exists an ix", t") such that a^ < t" < «fe + 1 the

distance from h(y) to fix", t") <('. Hence from our choice of e   we have distance

from fix" , t") to fix, t") is less than e/3 and since distance from fix, t' ) to

f(x, t) is less than e/3 we have that distance from hiy) = i° /° tt(x, t) to

f(x, t) is less than e .    D

The following is an immediate corollary, but states the result in the form we

wish to use later.

Corollary.  Let M be a connected topological (n — l)-manifold and let Q be a

topological n-manifold in > 5). Let g: M —» Int Q be a topological embedding with

Q - g(M) l-LC at each point of g(M). Suppose that g can be locally approximated

by locally flat embeddings at some point of M ifor example, if g is locally flat at

some point of M), then g can be locally approximated by locally flat embeddings

at each point of M.

Proof. For each x £ M there exists an open 77-cell 0 Ç Q and an embedding

/:D"-2x[-l, 1]-»M suchthat x £ Int f(Dn~2 x [-1, l]), g °/(D"_2x[-1, l])

Ç 0 and g ° f\ Dn~2 x [-1, 0] can be e-approximated by locally flat embeddings

for every e > 0. This provides us with a close locally flat approximation G of

g ° f ° ít:D"x[-1, l] —» 0 and hence Theorem 1 gives us a homeomorphism

b: 0 -* 0 so that h ° G is a close locally flat approximation of h ° g° f ° n

which is in turn close to g ° /.

Lemma 1. Suppose h: Dn~l —» En is an embedding, 0 <a< b < 1, N is a

neighborhood of h(bDn~ ), and e > 0. Then there is a 8 > 0 and neighborhoods

U' C V' oí hiaDn-x) such that if g: (D* - Int aDk) x Dn"fe- • -» En is an em-

bedding such that dig, h\ (Dk - Int aDk) x D"~k~ *) < 8 then there is a neighbor-

hood W of g(lnt bDk - aDk x Int D"-*-1) such that if f: D"-1 -» En is an em-

bedding such that d(f, h)<8 and f\ (Dk - Int aDk) x £)"-*-l . g then U =

(/' u W is a neighborhood of /(int bDk x aDn~k~l) in N that is separated by

/(D"_1) into two sides U   and U2 and V = V' U W is a neighborhood of

/(Int bDk x flD"-*-1) that is separated by /(£>""x) into two sides Vl and Vy

(/jCVj, U2CV2, V HN(h(Dk - hDn-k-l),e) CW, V D /(D* - bDk) x ¿D"-*"1

= 0, and there are homotopies f{: Cl Ul U Cl V"2 —» Cl V and gt : Cl l/2 U Cl Vj
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—» Cl V satisfying the following conditions:

1. /0 = Identity and gQ = Identity,

2. f | Cl V2 = Identity and gt | Cl Vx = Identity for all t £ [O, l].

3. a\ft, Id) < f and d(g(, Id) < e for all t £ [O, l],

4. f1(Ul)ZClV2 and gl(U2) CCI V,, and

5. ft(Ul)nV2 = 0=gt(U2) nV1 /ora// / £ [0, 1].

Proof. First choose a < m. <m2< m, <m.< b.  Let N. be a neighborhood

of h(bDn~l) in N and S be so small that zVj f/2-retracts onto f(bDn~l) tot any

5-approximation / of h. Let zV, C N ^ be a neighborhood of h(M.Dn~ ) so small

that /V2 Cif(D"~l) QfibD"'1) for any S-approximation / of h. Next we claim that

there is a neighborhood V' C N2  of him^"' ') and S > 0 so small that f(Dn~l)

separates V' for any embedding / such that d(f, h) < 8.  Let V' C N2 and 8 be

chosen so that the inclusion z: V' —» F* -/(<9D"~ ) is homotopic to a retraction

onto /(zzZjD"-1) for any embedding /: D"-1 -» F" such that 4/, h) < 8. Now

pick points x and y in V' — h(Dn~ ) which can be joined by an arc a from x to

y that pierces him Dn~ ) once. Let ß be an arc in E" — h(Dn~l) such that

cl U ß is a simple closed curve and suppose 8 is less than

minUÍAtóD"-1), a[0, l]), d(h(Dn~x), /3[0, ]J)|.

Now suppose that /: D"~   —» F" is an embedding such that d(f, h) < 8 and such

that there is an arc, say y, from x to y in V' — f(Dn~ 1). Then y Uß, we can

assume, is a simple closed curve in E" — f(D"~ ) so yu|3 does not link

fidD"-1). But yuß is homotopic to au/8 in Fn-/((9Dn_1) so a u j8 does

not link f(dDn-1). Also f\dDn~l is homotopic to h\dDn~l in En-auß so

a U/3 does not link hidD"'1). But a U/3 pierces ¿(o"-1) once so a U/S does

link hidD"~ ). Therefore we have a contradiction and so V' is separated by

fiD"-1). Furthermore no simple closed curve in V' -/(D"_1) links fidDn~l) so

no simple closed curve in V  — f(Dn~ ) can pierce fiD"~ ) once. Thus V' —

f(Dn~ l) can be written as the union of V'. and V' and each set approaches

/(D""1) from one side, i.e. there is a neighborhood V" of film Dn_1) that is

separated by /(int Dn_1) onto components Vj and V2 and V'. nl7" = 0 =

V'2 n V". Now let zV3 C V' be a neighborhood of i(z722 Dn_ J) and let 5 be so

small that N, deforms by an f/2-homotopy in V' to a retraction onto fimJ)n~ )

for any embedding / such that a*(/, h) < 8. Suppose further that N., a neighbor-

hood of AUjD"-1), N4 C /V3, and 8 ate such that /V4 n/(Dn-1) Cfim^"'1) fot

any S-approximation / of h.  Last we choose U  C N.,  U   a neighborhood of

hiaDn~ l), and 8 > 0 so that t/' is separated by f(Dn~ !) for any embedding /

such that dif, h) < 8.
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Now let g: (Dk - aDk) x D"~k~ l —> E" be an embedding such that

dig, h\ (Dk - aDk) x Dn~k~l) < 8 and we pick a small neighborhood W of

g((lnt bDk - aDk) x Int bD"~k~l) that is separated by the image of g into two

components W. and W'    and suppose that

W n Image of g = g((lnt bDk - aDk) x Int bDn~k- l).

Suppose that /: Dn_1 —» E" is an embedding such that / extends g and dif, h)

< 8. Then V' and U' are separated by f(Dn~l) into sides U\ C V\ and  (/!, C V\.

Suppose that Wx and W2 are indexed so that W x n V'2 = 0= W2 n Vj. Then (7 =

fj'u W and V = V'n W are separated by hiD"'1) into components  t/j = l/'jUWj,

(72= Í72UW2,  Vj = V'jUWj, and K2 = V'2uW2 and t/j CU, and (72 CV2 and

Cl VjD Cl V2 Cf(Dn-l). Therefore it follows from the fact that V' C N2 C /Vj

that there are e/2-retractions r\, r'2 : Cl V—» Cl V'v Cl V'2, respectively. If W

is chosen sufficiently close to the image of g then r^   and r2  can be extended

to f/2-retractions ry ry. Cl V —» Cl V,, Cl V2, respectively. Similarly it is pos-

sible to define homotopies /' : Cl U, —» Cl V and gt : Cl U2 —» Cl V satisfying

the conditions  l\ /'„ = Id, g'Q = Id; 2'. f[ \ Cl UyC\ Cl V2 = Id = g[\ Cl U2 n Vy

3'. d(f[, Id) <e/2 and ¿(gj, Id) <e/2; 4'. f[(Cl ü,) C/U^""1) and g'jíClí/j)

C/ímjD"-1). Now define /, J a UyUCl V3 -» Cl V, by /4 - r, o ^  on Cl t/j

and /t = Id on Cl V2. Analogously set gt = r2° gt on Cl (72 and gt = Id on

CIV.. Then conditions 1—4 follow in turn from conditions 1 —4  and condition 5

follows from the definitions of r, and r2.

Lemma 2. Suppose h: Dn~   —» En is a topological embedding, 0 < a < 1,

and e > 0. Tie??, there is a  8> 0 saci //W ?'/ in, i,: Dn_1 —♦ E" are locally

flat embeddings such that d(h., h) < 8 and hQ \ (Dk - aDk) x Dn~k~ l =

by\(Dk-aDk)xDn-k-1 then for any neighborhood N of by(Dk x cD"-*- l)

there is an e-push H of (En, b(aD"-1)) such that HhQ(Dk x aD"-k~1) C N.

Proof.  Pick a' and b so that a < a' < b and hibDn~ l) C N(h(aDn~ l), e).

Then apply Lemma 1 with e replaced by e/3 and a replaced by a'.  Thus we

obtain neighborhoods  U C V C NihiaD"-1), e) such that the conclusions of Lemma

1 are satisfied. Let U 1(ÄQ) and U2ihQ) be the two sides of h(Dn~l) in U. Simi-

larly define U.(h.) and V{(h.) so that U^h^) and l/j(ij) are on the "same

side". Since V2(hQ) is 1-LC at each point of hQ(Dn-1) nV2(hQ) and V^hy) is

1-LC at each point of h^.Dn~l) O V¿by) it is possible to modify the homotopies

ft and g( given in Lemma 1 which retract Cl U ̂ bj uCl V2(hQ) onto Cl V2(hQ)

and Cl U2(hy) UCl Vjièj) onto Cl V¿by), respectively, and to use radial en-

gulfing (see Proposition 7 and Lemma 2 of [6]). The result is that for any closed

set Cj of Cl V2(hQ) and C2 of Cl V^by) suchthat C ,n V n hQ(Dn-1) =0=
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C2 nVnh^D"-1) there are f/2-pushes F and G of (En, idD"-1)) fixed on Cj

and C2, respectively such that F(vAhQ)) u G(V ¡ihA) 3 U. However, we can

choose Cj and C2 so that V C Cj U C2 U 17 U NihiDk x (D""*-! - a'D"-*"1)),^

CF(V2d0))uG(V1d1))uN(è(Dfex(Dn-*-1-a'Dn-*-1)),e). Since F and G

can be chosen to be fixed outside V, e can be chosen so small that

G~ 1FhQilnt bDk x aDn~k- ')CV jdj). Thus without loss of generality we may

assume that hQ\ iDk - aDk) x Dn~k-l = hl \ iDk - aDk) x D"-*-1,

¿>0(lnt bDk x èD"-*-1) CVjíij), and dih., h) < 8. It is possible now to modify

the homotopies constructed in Lemma 1 and use radial engulfing to construct f/2-

pushes F' and G' of iEn, hiaDn~1)) fixed on hAiDk - bDk) x aDn~k-1) and on

V2(it) such that F'(V2dj) UN)U G'(V//&„)) U NihiDk x U>""*~» - a,Dn-k-l),())

3 V. Thus F'-lG'hAbDk x aD""*" !) C N if f is sufficiently small. But F'-xG'

is fixed on bAiDk - èD*) x aDn-k~l) so F'~lG'bA.Dk x aD"'*-1) C AT.

Addendum to Lemma 2. In the case that hADk x èD"~*-1) fl V2(i.) =0 the

f-push // can be constructed to be fixed on Cl V2ih^j.

Theorem 2. Suppose h: D""*1 —» F" z's an embedding and e > 0. Teen r/berc

is a 5 > 0 such that if ¿0, b¿ D"~ l —» En are locally flat embeddings such that

dihv h)<8 and hQ agrees with hx on (D* -lADk) x D"-*-1 then there is an

(■push H of iEn, hilADn~1)) suchthat HbQ \ Dk x HD""*"1 = h A Dk x ^D""*-1

Proof. The proof is a slight modification of [7] or Lemma 5 of [6]. Let A-,

i : Dn_1 —» E" be close locally flat approximations of h and M < a < 1. Then

¿0 and èj can be extended to embeddings of Dn = Dn~l x [-1, l] into En such

that h    and i, agree on iDk - aDk) x D"~ . By first applying Lemma 2 and then

modifying   A. by squeezing toward the set hADk x Dn~k~l) it follows that we

can assume that hADk x MDn~k) C h^iD"). Let -1 = rn < ij < • • • < t2nl = 1. We

can use Lemma 2 and the Addendum to Lemma 2 to modify &Q by an e -push so

that for 0 < i < (m - 1), A-1i0(D*xaDn-fe-1xf2¿+1)C Dexter, 2z + 2). Thus

for e   small enough and the /. chosen sufficiently dense

a'(¿-1¿0|/)*xaDn-*-1x[-l, l], Id)

is small. Thus it follows from the Main Lemma of [4] that there is an e'-push //'

of iDn, aDn) fixed on dDn such that rfb~ lhQ | Dk x l/2Dn-k = Id| D* x lADn~k.

Thus we can define H to be fixed outside h^D") and equal h.H1b~l on ¿.(Dn).

Then Hb01 Dfe x MD"-*- ' = ̂ //"'¿j ^ | Dk x JaD""*"» = bADkx lADn~k-l.

For í   sufficiently small and a chosen close enough to A, H will be an «-push of

hiAD"-1).
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Theorem 3. Suppose M is a topological (n - l)-manifold, Q is a topological

n-manifold, h: M —» Int Q is an embedding and e: Q —» R    is a map.  Then there

is a positive function 8 on M such that if hQ, h y. M —» Q are locally flat embed-

dings such that d(h.ix), h(x))<8(x) for all x £ M then there is an (-push H of

(Q, h(M)) suchthat Hh0 = hy

Proof. The proof is virtually identical to the proof of Theorem 5.1 of [4] using

our Theorem 2 instead of their Main Lemma to get hQ and h. to agree on a closed

subset in Int M.  Then a little push-pull near the boundary does the rest.

Theorem 4. Suppose M and Q are topological in — l)- and n-manifolds,

h: M —> Int Q is an embedding that can be locally approximated (see introduction)

by locally flat embeddings, and e is a nonnegative map on M.  Then there is an

embedding f:M—*Q such that dif(x), b(x)) <t(x) for all x £ M and f is locally

flat at any point x for which t(x) > 0.

Proof. It is sufficient to prove the following statement. Suppose A. is closed

in M, A2 is compact, U. and U\ are open sets such that U. D A,,  U2 D A2 and

hi= h\ (/. can be approximated by locally flat embeddings for i = 1, 2. Then there

is an open set U CM such that A j U A   C U and h | U can be approximated by

locally flat embeddings. Let Py P2 and P, be polyhedral neighborhoods of A ,

A2, and AyT\A2 suchthat Pj n P2 C Pj C í/j n Uy PlCUv and P2 C U r

Choose e < lAd\QiP2 - Py), Pj). Let 8 be given by Theorem 3 depending on e for

h\ P . Then there is an e-push H of (Q, P,) such that Hh2 = h    on P,. Now

define / to be ^ on P, and Hh2 on Pr It is clear from e < d(Q(P2 - P ), Pj)

that / is an embedding.

Theorem 5. Suppose h: Dn~l —» Int Q is a topological embedding, h can be

locally approximated by locally flat embeddings, U is a connected open subset of

Q such that Mint D"-1) C U and U is separated by hiDn~l) into components U.

and U2, and l/j is 1-LC at each point of h ¿Int D""1). Then ¿(int Dn~l) has a

collar in Cl U,.

Proof. Suppose e : Int aD"~    —» R    is a map. It follows from Theorem 4 that

there is a locally flat e(x)-approximation / of h\ Int aDn~l. But from the proof of

Lemma 2 we can push /(int aD"~ ) into Uy Thus it suffices to show that there

is a 8: Int aDn~l -» R+ such that if /„, fy Int aDn~ l — U j are disjoint locally

flat S(x)-approximations of h \ Int aDn~ *, then there is an embedding F: Int aDn~ l

x [O, l] -» t/j such that F(x, /) = f.(x) for i = 0, 1 and diam(F(x x [O, l])) < e(x)

for all x £ Int aDn~ 1. Choose e' : Int aDn~l —» R+ so small that if x, y e

Int aD"-\ d(x, y) <t'(x), and d(fQ, b) <e', then d(fQ(x), fQ(y))<e(x). Now we

can extend such an fQ to Jy. Int aDn~l x [0, l] so that d(fQ(x), T0(y)) <«(*)
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wherever x, y £ M x [0, l] and dix, y) <e'(x). From Lemma 2 it follows that we

can engulf /j(lnt aD"~ x) and so we assume that /j(lnt aDn~ l) C f Q(M x [tQ, l])

for some <0 >0 and that d(f ~ fv incl. | M x O) < Six) where 8(x) is chosen from

Theorem 5 depending on min{%, f !• Thus there is an e -push H oí (M x [—1, l],

M x 0) such that H(x, ty) = /g VjOO for ail x e M and for some fixed f, > t*n. Let

S2: [-1, l] —» [-1, l] be defined by setting

-1,       » —1.

0, x = -l/2,

<n, X = <q,

1, X=l

and extending linearly. Set S = Id x S : Int aDn~ l x t-1, l] —♦ Int aD"~1 x

[-1, 1]. Then set F = /"n^-1: « x [0, ty] — l/r F(x, 0) = /"„(x, 0) = fix),

F(x, t,) = /gS/ qVjW = /j(x). But /j can be chosen so small that

diam SHS- Kx x [0, ty]) < e'W for all x e Int aD"~l so diam F(x x [0, f j]) < e(x)

for all x. Using a sequence of such F's it can be shown that h(aDn~ ) U

/0(lnt aDn~x) is the boundary of an 72-cell; so ¿(int Dn~x) is locally flat in U.

at each point.

Corollary 6. Suppose M and Q are topological (n — l)- and n-manifolds,

respectively, and h: M —> Int Q is an embedding such that Q — h(M) is 1-LC at

each point of h(M) and for some open set U C M there are locally flat approxima-

tions of h\U.  Then h(M) is locally flat.

Proof. It follows from Corollary to Theorem 1 that b can be locally approxi-

mated by locally flat embeddings and thus we can apply Theorem 5 on a neighbor-

hood of any point of M. Thus h(M) is locally flat at each point of ¿(Int M). How-

ever, from [3] we then obtain that h(M) is locally flat.

Theorem 7. Suppose h: D"~l —» En is an embedding such that h\Dn~2 x

j-l! is locally flat and En-h(Dn-x) is l-ULC.  Then ¿(Z)"-1) is locally flat.

Proof. We adapt a covering argument due to Cernavskil [Theorems 1, 2].

Let D+= Dn~2 x [0, l] and D_ = Dn~2 x [-1, 0]. First we may assume that

h: D+ —► E" and h\ Dn~2 x Í0¡ - Identity. Extend h to dD_ u D+, then restrict

h to dD-union a small enough neighborhood of Int Dn~   x {o! in D+ that the

restriction is an embedding. Thus we can find an embedding h : dD_u D+ —> E"

C Sn such that h'iDj C hiD"~l) and h'\ dD_ = Identity. Let p: En — Sn-dD_

be a covering projection such that p(E"      x iOi) = Int Dn_~ . There is a lifting

¿': D+-(D"-2-¡0!) — En suchthat ä'((0,««», 0, l)) £ En - p~ '(int £»_). Let

S2ix) =
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H: En —* En be an embedding that moves points vertically, is fixed near

h'iiO,..., 0, 1)), and satisfies Hh '(D+ - (Dn~ 2xO))Cf" Kf" - D_). Define

/: D+ —» En by /= pHh . Then / can be extended by the identity to an embedding

J. Dn-\^En^ Also r7«_7"(£)"-l) ¡s l-LC at such point of /"(D+ - (Dn"2x0))

and so Fn-7"(D"_1) is 1-ULC. Thus JiD"'1) is locally flat by Corollary 6. But

H was fixed near h '((0, • • •, 0, l)) thus / (£>"" *) has an (» - l)-cell in common

with hiDn~ l) and so again by Corollary 7 ¿(Dn_1) is locally flat.

Corollary 8. Suppose M is a compact PL in — \)-manifold, Q is a PL n-mani-

fold, and h: M —♦ Int Q is an embedding that can be locally approximated by lo-

cally flat embeddings.  Then there is an obstruction in // (M, Z-) which vanishes

if and only if h can be approximated by PL locally flat embeddings.

Proof. It follows from Theorem 5 that h can be approximated by locally flat

embeddings-and that, for some S > 0, and two locally flat approximations that are

5-close to h ate ambient isotopic by a 1-push of (Q, h(M)). Let h.  be a locally

flat ¿-approximation of h and let f. be a topological tubular neighborhood of

b,(M) (i.e., an open bicollar). Then v,  has two PL structures, namely the struc-

ture induced by the PL structure on Q and the product structure induced by

M x F1. Let O.J £ Hi(M, Z2) ~ /73(M x F1, Z2) be the obstruction to isotoping the

product structure on v.  to the induced structure on v.. If h2 is another locally

flat S-approximation of h and a2 e//3(M, Z2) is defined analogous to a^ then,

using the fact that ij and ¿2 are ambient isotopic, it is easy to prove that

C7.J = a2> Hence we have a well-defined element a of hHm, Z ). If a = 0, then

any such h.  can be isotoped slightly to be made PL and hence h can be ap-

proximated by PL  locally flat homeomorphisms. On the other hand, if h can be

S-approximated by a PL locally flat homeomorphism h , then we can use h   fot

determining a and since h   is PL locally flat the two structures on the tubular

neighborhood of h (M) ate the same and hence a = 0.
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