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SOMEWHERE LOCALLY FLAT CODIMENSION ONE MANIFOLDS
WITH 1-ULC COMPLEMENTS ARE LOCALLY FLAT
BY
T. M. PRICE AND C. L. SEEBECK III (1), (2)

ABSTRACT. The purpose of this paper is to prove a taming theorem for a co-
dimension one manifold that is locally flat at some point and has 1-ULC comple-
ment. We also prove that any two sufficiently close locally flat embeddings of a
codimension one manifold are ambient isotopic. Since this paper was first sub»
mitted, R. Daverman has shown that, given any point on a codimension one mani«
fold with 1.-ULC complement, some neighborhood of that point lies on a codimen-
sion one sphere that is locally flat at some points and has 1-ULC complement.
Hence the two papers combined prove that a codimension one manifold is locally
flat if and only if its complement is 1.ULC,

Suppose M is a topological (» — 1)-manifold, Q is a topological n-manifold,
and b: M — Int Q is an embedding. We say that b can be locally approximated by
locally flat embeddings if for each x € M there is a neighborhood U of x in M
such that for each ¢> 0 there is a locally flat embedding f: U — Q such that
d(f, b| U) < e. We shall show first that b can be locally approximated by locally
flat embeddings if Q — h(M) is 1-ULC, n > 5, and there is some open set U CM
such that h| U can be approximated by locally flat embeddings. Then we show
that A(M) is locally flat. Daverman has used this fact to show that h(M) is lo-
cally flat if its complement is 1-ULC.(3) We also obtain that two close locally
flat approximations of a fixed embedding are ambient isotopic by an e-push.
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Throughout this paper we will assume that M and Q are topological (n — 1)-
and n-manifolds which are separable metric with metric d. We allow our manifolds
to be possibly noncompact and with or without boundary. Throughout we assume
that n>5. Let AUBCQ and €: Q — (0, ) be a map. Denote by N(4, ¢) the
set {y € 0| for some x € A, dlx, y) <e(x)}. A homeomorphism H of Q is an e-push
of (0, A) fixed on B if there is an isotopy H , of Q such that H = Identity, for
each t €0, 1], H . = Identity on B and outside N(4, ¢), dH‘(x), x) < é(x) for each
t € [0, 1] and each x €Q, and H = H. Denote by D* the k-cell [-1, 11* and by
aD* the k-cell [-4, a]* for any a> 0. Let U CQ be an open set and x €Cl U.

U is 1-LC at x if for each €> 0 there is a 8> 0 such that each map : dD? —»
N(x, 8) N U extends to a map F: D2 — N(x, ¢) N U.

For Theorem 1 we use essentially the same notation as in Bryant [1]. Let
b: D* x [-1, 1] — E” be an embedding. We use the following notation:

D(a, b) = KD* x [a, b)),

D(a) = H(D* x {a}),

D(x, a, b) = x x [a, b]), and

N(a, b; €) = N(K(D* x [a, b), €) = N(D(a, b), ¢).

Theorem 1. Let f: D"2 x[~1, 1] = E” (n>5) be a topological embedding
with E® = D(-1, 1) 1-ULC at each point of D(~1, 1). Let ¢> 0. Then there is a
PL bomeomorphism b: E® — E™ such that ho fo n: D"~2 x[-1, 1] = E™ is an
e-approximation of [ (where w: D"~2 x[-1, 1] = D"~2 x [~1, 0] is defined by
a(x, 1) = (x, (¢ - 1)/2)).

Proof. Choose real numbers a;, @;,+++, a_ suchthat-1=a,<a, <a,<«es
<a_ =1, such that diameter D(x, a;_,, ) <e/3 for each x € D"~? and each i
(0<i<q) and such that @;_, >(a; - 1)/2. Let b; = (a; - 1)/2. Then we have
b, ,<b,<a, ,<a, foreach i (0<i<q).

Choose €' (0 <€’ <¢/3) so that for any x and x’' € D"~ 2 we have
distance (D(x, -1, 1), D(x", =1, 1)) < 3¢’ implies that distance (D(x, ), D(x’, 1)) <
¢/3 forall ¢ € [-1, 11. Choose n, (0 <7, <€’) so that for any , ' € D*~2 we
have distance (D(x, -1, 1), D(x’, -1, 1)) <7, implies that D(x', -1, 1) C
N(D(x, -1, 1), €").

Choose 7, (o< m <%1,0) so that N(bl, a; 2171) nb(-1) uD(a,, 1] =g
and so that for any x, x' € Dn-2 distance (D(x, -1, 1), D(x’, -1, 1)) < 279, implies
thae D(+', -1, 1) C N(D(x, -1, 1), 7). Choose 7, (0 <7, <7,) so that
N v % ’171) NN(a r L ";1) c N(al; 7). By Bryant’s Theorem 4.4, there exists a
neighborhood W, of D(a,, 1) and a PL homeomorphism b : E” — E" satisfying

(a) bl = identity except on N(b T '1\)'1),

(b) bl = identity on Wl’
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(c) D(b;, D Ch (Nay, 1; 7)), and

(d) for each y € E™” either bl(y) =y or there exists an ¥ € D"~ 2 such that
both y and b,(y) lie in N(D(x, b, a ), 7). ‘

Furthermore it follows that D(b,, @,) C b (N(a,, ay; 7,)). To prove this, see
Figure 1 or note that D(b,, @) CD(b,, 1) C b (Na , 1; '1\7'1)) and that D(b,, a,) N
Na,, 1; '171) -N@,, a; 'r\fl)] = @. Since h = identity except on

S N(al; 7]1)

~n
Mby, ag; 7)) Na,, 1, 1y)

Figure 1

N(bl, a; '171) it follows that D(bl' al) C bl(N(al, 1; '7;') a N(bl, a; '1\)'1)) c
b,(N(a,; 9,)) Ch(Na, ay; 7). Also D(a,, a,) W, n Na, ay; ) =
bW, Na,, a,; 1) C b (Na,, ay; 7)), Together we have D(b p @) =D, a))
uD(a,, a,) C b (N(a,, a,; 1,)) as claimed.

Now choose 7, (0 <5, <%7,) so that Nb,, a,; 29,) n[D(~1, b)u
D(as, D] = &, so that N5, @y 1) C bl(N(al, @y; 1,)) and so that for any x, x' €
D=2 distance (D(x, -1, 1), D(x', -1, 1)) < 27, implies that D(x', -1, 1) C
N(D(x, -1, 1), % 1]1). Then choose '7\]'2 (o< ;2 < 1]2) so that N(bz' ay; '172) n
N(a,, 1; '1;'2) C N(ay; n,). Then by Bryant’s Theorem 4.4 there exists a neighbor-
hood W, of D(a,, 1) and a PL homeomorphism b,: E® — E" satisfying

(a) b, = identity except on N(b,, ay; '1;'2),

(b) b, = identity on Wz,

() D(b,, 1) C b,(N(a,, 15 F,), and

(d) for each y € E” either b(y) =y or there exists an x € D"~2 sych that
both y and b,(y) lie in N(D(, by, a,), )

Furthermore, just as for b, we can prove that D(b,, a,) C b,(N(a,, ag; 1))

In general, for 2 <k < g we choose 7, analogous to 7, above and get LA
and b, from Theorem 4.4. More specifically, choose 7, (0 < M <K%, _ l) so that
N(bk, a,; 2n,) N [D(-1, b, ) UD(akﬂ; )] = &, so that N(p,, @y ) C
by_(Nla,_,, a,; M, 1)) and so that for any x, x' € D?~2

distance (D(x, -1, 1), D(x' - 1, 1)) < 2n,
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implies that D(x', -1, 1) CN(D(x, -1, 1), %7, _,). Finally we choose ;"k
(0 <7, <my) sothat N(b,, a,; 7,) NNla,, 1; %) C Na; n,). Then by Bryant’s
Theorem 4.4 there exists a neighborhood W, of D(a;, 1) and a PL homeomorphism
b,: E® — E" satisfying

(a) h, = identity except on N(b,, a,; 7 A2

(b) b = identity on Wk’

(c) D(bk, 1 ¢ b, (N(a,, 1; 7)), and

(d) for each y € E™ either b,(y) = y or there exists x € D™=2? such that
both y and b,(y) lie in N(D(x, b,, a,), 7).

Furthermore the same reasoning as for b, proves that D(bk. a, ﬂ) C
b, (N(a,, @, 413 M) Hence 7, canbe chosen, as claimed, to satisfy
Ny 41 @ ags sy C 2(a,, @415 M) This property is also used in the next
paragraph.

The homeomorphism h: E” — E™ required by the theorem is just b=
b;l o b;l ©+ss0 b=l We now show that b has the required properties. First
note that b7 | D(-1, b, _,) = identity, that D(b,_,, b)) CD(b,_,, ) C

by Na _y,asn,_N=hob, _(Na,_ .a;n, ) so b UDb

q- 1 bq)) «

q-1

(N(aq % Mg 1) and finally b7 (Db &) S N(a, ). Continuing we get
b"l 1° b4 1 D(-1,b - ,) = identity. From the furthermore property of b a-1 V€
get

D(bq_29 bq_ 1) S D(bq-z’ aq_ 1) Q hq_ z(N(aq-zn aq-l; ﬂq_ 2))
= bq-l ° bq- Z(N(aq- 2’ aq- 1’ ’7q-2))
so

From the above statement about b;l it follows immediately that b"_l-l °
b7 UD(b,_ 1, b)) CNa,_y, a5 m, ). Finally b7t o b= MD(@ ) = 571 (D (6 )
C Na, 7). Ingeneral for each k (1 <k < gq) we bave by l° ces °b'1|D( L,b,_)
- identity, hploeio b'l(D(bk p 0 =B DG, _,, iy W) S
by_(N(a,_y, ap;mp_ ) bploseo b“l(D(bk, b)) € N(ak, a3 M) and
foreach i (k+1<i<gq) we have byl ovseo by 1D(s,, b)) = beh ST
b7 WD(,, b, ) CNGa;, a5 9,) Thus b has the property that for each k
(0 <k< q) b(D(bk, bk+l)) C N(ak, @1 ﬂk) C Na,, @1 ; €"). In other words, b has
moved points about the correct distance lengthwise along D.

We now establish that b has not moved points too far sideways. Let y € E®,
Then either h l(y) y or else there exists an x_ € D™=2 such that both 5~ !(y)
and y lie in N(D(xq, -1, 1), 1, ). Similarly either b, ! 1° by 1(5) = by 1y or
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else there exists an X1 € D"=?% such that both lie in N(D(x r-L 1), Ng- ‘)
By our choice of 7 a-1 it follows that either b 1 o b" 1(y) y or else both lie in
N(D(x,_;» =1, 1), n,_,) for some x,_, € D"~ Contmumg we get that for each
k(1<k<q) either bylo.io by (») = y or else both lie in N(D(x,,~1,1),7,_,)
for some x, € D"-2, Hence b has the property that for each y € E™ either
b(y) = y or else both lie in N(D(x', -1, 1), 1) for some x'€ D"~ 2, In particular,
if y=fon(x, 1) (with ¢, <t <a,,)), then My) € N(D(x, =1, 1), 2¢'). From the
last paragraph we know that there exists an (x, ¢") such that a4, <t"<a,,, the
distance from b(y) to f(x", t") <¢'. Hence from our choice of ¢’ we have distance
from f(x", t") to f(x, t") is less than ¢/3 and since distance from f(x, t") to
{(x, 1) is less than ¢/3 we have that distance from h(y) = b o / o n(x, t) to
f(x, t) is less than ¢. O

The following is an immediate corollary, but states the result in the form we
wish to use later.

Corollary. Let M be a connected topological (n — 1)-manifold and let Q be a
topological n-manifold (n>5). Let g: M — Int Q be a topological embedding with
0 - g(M) 1-LC at each point of g(M). Suppose that g can be locally approximated
by locally flat embeddings at some point of M (for example, if g is locally flat at
some point of M), then g can be locally approximated by locally flat embeddings
at each point of M.

Proof. For each x € M there exists an open n-cell V) CQ and an embedding
f: D"~ 2 x[-1, 1] = M such that x € Int f(D"~2 x [-1, 1]), g © /(D*~%x[-1,1])
€ O and go /| D"~ 2x[-1, 0] can be e-approximated by locally flat embeddings
for every €> 0. This provides us with a close locally flat approximation G of
gofom: D" 2x[-1, 1] = O and hence Theorem 1 gives us a homeomorphism
b: O — 0 so that ho G is a close locally flat approximation of b0 go forn
which is in turn close to g © /.

Lemma 1. Suppose b: D"~! — E™ is an embedding, 0 <a<b<1,N isa
neighborbood of HbD™~ 1), and ¢ > 0. Then there is @ 8> 0 and neighborhoods
U' CV' of KaD™ ') such that if g: (D* - Int aD¥) x D"*~%k=1 — E" is an em-
bedding such that d(g, b| (D* - Int aD*) x D"~*~1) < § then there is a neighbor-
bood W of g(Int bD* - aD* x Int D"~*=1) such that if f: D"~1 — E™ is an em-
bedding such that d(f, b) < & and [|(D* - Int aD*) x D*~*=1 = g then U=
U' UW is a neighborbood of f(Int bD* x aD"=*~1) in N that is separated by
{(D*1) into two sides U, and U, and V =V'U W is a neighborhood of
f(Int bD* x aD"~k-1) tbat is separated by [(D""1) into two sides V,yand V,,
U, CV, UyCV,, VONKDE - 6D"%=1), ) W, v n f(DF - 5D*) x bpn-k-1
=¢, ami tbere are homotopies f: CLU,UCIV,— ClV and g,: CLU,UCl V,



116 T. M. PRICE AND C. L. SEEBECK III

— Cl1V satisfying the following conditions:
1. f, = Identity and g = Identity,
2, /tICl V, = Identity and gt|Cl V, = Identity for all t € lo, 11.
3. d(/‘, Id) <e and d(g,, 1d) <¢ forall t € lo, 11,
4. fu)cclv, and g(U) CCLV,, and
5. [,U)NV,=g=g,(U,) NV, forall t €0, 1].

Proof. First choose @ <m  <m,<my<m,<b. Let N, be a neighborhood
of H(bD""!) in N and & be so small that N, €/2-retracts onto {(6D"~1) for any
8-approximation / of b Let N, CN, be a neighborhood of (M D™~ 1) so small
that N, n/(D"~ ) /(D™ 1) for any S-approximation [ of h. Next we claim that
there is a neighborhood V' CN, of h(m;D"~!) and 8> 0 so small that /(D™=
separates V' for any embedding [ such that d(f, b)) <8 Let V' CN, and & be
chosen so that the inclusion i: V' — E” - f(3D""!) is homotopic to a retraction
onto [(mSD""l) for any embedding f: D"~ ! — E™ such that d(f, b) < 8. Now
pick points x and y in V' - b(D®~1) which can be joined by an arc a from x to
y that pierces b(m,D"~!) once. Let B be anarc in E™ - A(D"~1) such that
a U B is a simple closed curve and suppose & is less than

min {d(4(@D™" 1), alo0, 11), d(K(D™~1), Blo, 1)}

Now suppose that f: D"~! — E” is an embedding such that d(f, b) <& and such
that there is an arc, say y, from x to y in V' = f(D®~1), Then y UB, we can
assume, is a simple closed curve in E” - f(D"~!) s0 y UB does not link
f@D™=1), But y U B is homotopic to @ UB in E” - (D"~ !) so a U B does
not link f(9D™~1). Also f|0D™~! is homotopic to b|dD"~! in E"-a U B so
a U does not link KdD™~1). But a U B pierces KD""!) once so a UB does
link A(D™"!). Therefore we have a contradiction and so V' is separated by
f(D™=1). Furthermore no simple closed curve in V' = /(D"~)) links f(3D""!) so
no simple closed curve in V' = f(D®"1) can pierce f(D""!) once. Thus V' -
fAD™=1) can be written as the union of V', and V, and each set approaches
f(D™ 1) from one side, i.e. there is a neighborhood V" of f(Int D*~!) that is
separated by {(Int D"~ 1) onto components V] and V; and Vinv,=g=

V3, NV Now let N, C V' be a neighborhood of h(m,D"~ 1) and let & be so
small that N, deforms by an €¢/2-homotopy in V' to a retraction onto f (sz"’l)
for any embedding f such that d(f, b) < 8. Suppose further that N 4 @ neighbor-
hood of A(m lD""l), N, CN,, and 8 are such that N, nf("-1) C/(sz"' 1) for
any 8-approximation f of . Last we choose U'CN & U' a neighborhood of
B(aD™"1), and 8> 0 so that U' is separated by f(D"~1) for any embedding f
such that d(f, b) < &.
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Now let g: (D* - aD*) x D"~%=1 — E” be an embedding such that
d(g, b|(D* - aD*) x D"~*-1) < § and we pick a small neighborhood W of
&((Ine bD* - aD*®) x Int bD"~%-1) that is separated by the image of g into two
components W, and W, and suppose that

Wn Image of 8= g((Int ka - aDk) x Int bD"-k"l).

Suppose that f: D"~ ! — E™ is an embedding such that f extends g and d(f, b)
< 5. Then V' and U’ are separated by f(D"”~1) into sides U'l CV'x and U; C V'z.
Suppose that W, and W, are indexed so that W N V'2 =g=W,n V}. Then U=
U'UW and V=V'NW are separated by D"~ !) into components u,= U'IUWI,
Up,=UyUW, V =ViUW and V,=V,UW, and U CV, and U,CV, and
ClV,NClV, Cf(Dn=1), Therefore it follows from the fact that V' CN, CN,
that there are ¢/2-retractions r}, 7,: CL V' — C1 V], C1 V), respecnvely If W
is chosen sufficiently close to the image of g then rl and r can be extended
to ¢/2-tetractions r), 7,: CLV — Cl V|, C1 V,, respectively. Sirnilarly it is pos-
sible to define homotopies f :: ClU,— ClV and g't: Cl U, — Cl1V satisfying
the conditions 1'. f{=1d, gy =1d; 2. f/|C1U NClV,=Id=¢g}|CLU,NV ;
3. d(f], 1d) <e/2 and d(g;, Id) <e/2; 4'. {{(C1U,) C{(m,D""") and g}(C1U,)
C[(sz"'l). Now define f,: ClU,UCIV, —=ClV, by f,=r ° ['; on ClU,
and f,=1d on Cl V,. Analogously set g, =r, ° g; on ClU, and g,=1d on
CLV,. Then conditions 1-4 follow in turn from conditions 1'~4’ and condition 5
follows from the definitions of 7, and r,.

Lemma 2. Suppose b: D"~! — E" is a topological embedding, 0<a<l,
and € > 0. Then there is a 8> 0 such that if by, b : : D"~ 1 — E™ are locally
flat embeddings such that db;, b) <& and b | (D" - aDk) x pn=k-1 _
b,| (D* - aD*) x D"~k~1 tben for any nengborbood Nof b (Dk x aD"~k-1)
lbere is an e-push H of (E", WaD"" ")) such that Hb (D" x aD""‘ Hen.

Proof. Pick @' and b so that a <a' <b and HbD""!) C N(h(aD™" 1), ¢).
Then apply Lemma 1 with ¢ replaced by ¢/3 and a replaced by a’. Thus we
obtain neighborhoods U CV C N(KaD"~ 1), €) such that the conclusions of Lemma
1 are satisfied. Let U (b)) and U,(h ) be the two sides of AD"~!) in U. Simi-
larly define U, (b) and V (b ) so that U,(h) and U (b)) are on the “'same
side”. Since Vz(bo) is l-LC at each point of b (D"'l) nv (IJ ) and V (b ) is

1-LC at each point of b, (D"~ NV (b)) it is pOSSIble to modxfy the homotopxes
f, and g, given in Lemma 1 which retract C1 U (b)) UCL V(b)) onto CLV (b))
and C1 U,(h,) UCL V(b)) onto Cl V (b)), respectively, and to use radial en-
gulfing (see Proposition 7 and Lemma 2 of [6]). The result is that for any closed
set C, of Cl V(b)) and C, of C1V (b)) suchthat C, NV N5 (D"~ ) =Z=
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c,NnvNnh (D"'l) there are ¢/2-pushes F and G of (E®, h(aD""1)) fixed on c,
and C, respecuvely such that F(V (b)) UG(V (5,)) > U. However, we can
choose C, and C, sothat V CC, uc U U UN(KD* x (D7=k=1 _ g'pn=k= D)%)
CF(V (b )) UGV (b D) U N((D* x (D" k=1 g'Dn=k=1)), ) Siace F and G
can be chosen to be flxed outside V, € can be chosen so small that

G~ 'Fh(Int bD* x aD"%-1) Ccy (k). Thus without loss of generality we may
assume that b |(Dk-aDk) X D""e 1o |(Dk - aD*) x D7-k-1,

h(Ine 5D* x bD""‘ " cv (b)), and d(b,, b) <8. It is possible now to modify
the homotopies constructed in Lemma 1 and use radial engulfing to construct ¢/2-
pushes F' and G' of (E", HaD"" 1) fixed on b ((D* - 5D*) x aD"~*#-1) and on
V,(h,) such that F'(V,(5,) UN) UGV (5)) U N(KD* x (D"~*=1 _ a'pm=k=1), ¢))
D V. Thus F'~1G' (ka x aD"*=1) C N if € is sufficiently small. But F'~1G'
is fixed on b ((D" - ka) x aD"~k=1) 5o F'=1G'p (Dk x aD"=k=1) C N,

Addendum to Lemma 2. In the case that bo(D"' x bD"=k=1) Vz(b ) =42 the
e-push H can be constructed to be fixed on Cl V(b ).

Theorem 2. Suppose b: D*~! — E™ is an embedding and € > 0. Then there
isa 8> 0 such that if by, b,: : D"~ — E™ are locally flat embeddings such that
d(b;, b) <8 and b agrees wztb b, on (D* ~%D¥) x D"=k=1 then there is an
-pusb H of (E™, b(%D"“‘)) such that Hh,|D* x }%D"~*=14 p | Dk xYpm-k-1

Proof. The proof is a slight modification of [7] or Lemma 5 of [6]. Let b,
h,: D"=! — E™ be close locally flat approximations of b and % < a < 1. Then
b and h, can be extended to embeddings of D" = D"=1!x[-1, 1] into E™ such
that b, and b, agree on (D* - aD*) x D™%, By first applying Lemma 2 and then
modxfymg b, by squeezing toward the set 5 (D* x D"=%=1) jt follows that we
can assume that b (Dk uDp"=®) C b (D") Let =1=1t,<t;<eee<t, =1.Ve
can use Lemma 2 and the Addendum to Lemma 2 to modlfy b by an € -push so
that for 0 < i <(m=1), b7 b (D* x aD™=*=1x¢,., ) C D1 (24, 2i + 2). Thus
for €' small enough and the t; chosen sufficiently dense

d(b7'h | D* x aD"~k=1 x[-1, 1], 1d)

is small. Thus it follows from the Main Lemma of [4] that there is an ¢'-push H’
of (D", aD") fixed on 3D such that H'b]'h,| D* x 44D"~* = 1d| D* x Y4D"~*,
Thus we can define H to be fixed outsxde b (D") and equal b H by Yon b 0™,
Then Hby| D* x %4D"=*=1= b H'b7'h | DR x Yyp"-*-1 - b1|D" %D”"“' .
For €' sufficiently small and @ chosen close enough to %, H will be an e-push of
b(4D""1),
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Theorem 3. Suppose M is a topological (n — 1)-manifold, Q is a topological
n-manifold, b: M — Int Q is an embedding and e: Q — Rt isa map. Then there
is a positive function & on M such that if by, b;: M — Q are locally flat embed-
dings such that d(b(x), b(x)) <8(x) for all x € M then there is an e-push H of
(Q, K(M)) such that Hbo = bl'

Proof. The proof is virtually identical to the proof of Theorem 5.1 of [4] using
our Theorem 2 instead of their Main Lemma to get b and b, to agree on a closed
subset in Int M. Then a little push-pull near the boundary does the rest.

Theorem 4. Suppose M and Q are topological (n - 1)- and n-manifolds,
b: M — Int Q is an embedding that can be locally approximated (see introduction)
by locally flat embeddings, and € is a nonnegative map on M. Then there is an
embedding f: M — Q such that d({(x), Kx)) <e(x) for all x € M and [ is locally
flat at any point x for which e(x) > 0.

Proof. It is sufficient to prove the following statement. Suppose A, is closed
in M, Az is compact, U, and U, are open sets such that u,> Al' u,> A2 and
b; = hlU ; can be approximated by locally flat embeddings for i =1, 2. Then there
is an open set UCM such that A\ UA, CU and | U can be approximated by
locally flat embeddings. Let P, P, and P 3 be polyhedral neighborhoods of A v
A,, and AlﬂAz such that P, N P, cp,CUNU, P,CU,,and P,CU,.
Choose € <} dQ(P, - P,), P)). Let & be given by Theorem 3 depending on ¢ for
b| P,. Then there is an e-push H of (Q, P,) such that Hb,= b, on P,. Now
define f tobe b, on P, and Hbh, on P,. It is clear from € < d(Q(P2 - P3)’ Pl)
that { is an embedding.

Theorem 5. Suppose h: D=1 — Int Q is a topological embedding, b can be
locally approximated by locally flat embeddings, U is a connected open subset of
Q such that h(Int D"~ 1) C U and U is separated by KD""!) into components U,
and U,, and U, is 1-LC at each point of b (Int D"~ '), Then b(Int D"~ ) has a
collar in C1 U .

Proof. Suppose €: Int aD”"~! — R* is a map. It follows from Theorem 4 that
there is a locally flat e(x)-approximation f of 4|Int @D”~!. But from the proof of
Lemma 2 we can push f(Int aD"~ 1) into U 1+ Thus it suffices to show that there
isa & Int aD"~! — R* such that if f,, f : Int aD"~! — U, are disjoint locally
flac &x)-approximations of b|Int aD"~ 1, then there is an embedding F: Int aD™~!
x [0, 1] — U, such that F(x, i) = f,(x) for i =0, 1 and diam(F(x x [0, 1])) < e(x)
for all x €Int 2D®~ 1, Choose ¢': Int aD"~! — R* so small that if x, y €
Int aD™-1, d(x, y) <€ (%), and d(fy, b) <€, then d({o(x), /() < e(x). Now we
can extend such an f; to [ ;: Int aD"~ ! x [0, 1] so that d(7(x), T () <elx)
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wherever x, y € Mx [0, 1] and d(x, y) <e'(x). From Lemma 2 it follows that we
can engulf f (Int aD™~ 1) and so we assume that f ,{nt aD™= Hc fo(M x [t, 1)
for some ¢, >0 and that d(/—o' ly 1» incl.| M x 0) < 8(x) where 8(x) is chosen from
Theorem 5 depending on min{}, ¢'}. Thus there is an ¢’-push H of (M x [-1, 1],
Mx 0) such that H(x, ¢,) = /7 lfl(x) for all x € M and for some fixed £, > ¢, Let
§,:[-1, 11 = [-1, 1] be defined by setting

—1’ x=—l,

0 x=-1/2
Sz(x)= ’ ’

to, x=to,

l, x=1

and extending linearly. Set §=1d x §: Int aD" ! x [-1, 1] — Int aD™~ ! x

[-1, 1]. Then set F =7 SHS"': Mx [0, ¢,] = U,. Flx, 0) =7 (x, 0) = f(x),

F(x, 1)) = j_OS/_“')l/ ,(0) = /,(x). But ¢, can be chosen so small that

diam SHS~Yx x [0, ¢,1) <€'(x) for all x €Int aD"~! so diam F(x x [0, t,]) <elx)
for all x. Using a sequence of such F’s it can be shown that baD"" 1) U

f(Iat aD™" 1) is the boundary of an n-cell; so b(Int D®~!) is locally flat in U 1
at each point.

Corollary 6. Suppose M and Q are topological (n - 1)- and n-manifolds,
respectively, and b: M — Int Q is an embedding such that Q — b(M) is 1-LC at
each point of HM) and for some open set UC M there are locally flat approxima-
tions of b| U. Then b(M) is locally flat.

Proof. It follows from Corollary to Theorem 1 that b can be locally approxi~
mated by locally flat embeddings and thus we can apply Theorem 5 on a neighbor-
hood of any point of M. Thus h(M) is locally flat at each point of A(Int M). How-
ever, from [3] we then obtain that b(M) is locally flat.

Theorem 7. Suppose b: D"~ ! — E™ is an embedding such that b|D"~?% x
{=1} is locally flat and E" = KD"~Y) is 1-ULC. Then KD""Y) is locally flat.

Proof. We adapt a covering argument due to Cernavskii [Theorems 1, 2.
Let D, = D"-2x[0, 1] and D_=D""2x[-1, 0]. First we may assume that
b: D, — E” and b|D""? x {0} = Identity. Extend b to dD_u D, then restrict
b to dD-union a small enough neighborhood of Int D*~2 x {0} in D + that the
restriction is an embedding. Thus we can find an embedding 4': D_u D, — E"
CS, such that 5'(D) CA(D"" 1) and b'|D_ = Identity. Let p: E® — S" = dD_
be a covering projection such that p(E ”':l x {0}) = Int D” =1, There is a lifting
h':D,-(D""2 ~1{0}) — E™ such that 5'((0,+++, 0, 1)) € E” = p~ It D_). Let
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H: E® — E™ be an embedding that moves points vertically, is fixed near
5*(0,+++, 0, 1)), and satisfies Hb'(D, - (D"~2x 0)) C p~(E™ = D_). Define
[:D,—E"” by [= pH'l;'. Then f can be extended by the identity to an embedding
f: D"~ ! — E™ Also E” - (D"~ 1) is 1-LC at such point of 7 (D, -(D"=2x0))
and so E"-[(D""1) is 1-ULC. Thus f(D""!) is locally flat by Corollary 6. But
H was fixed near ;'((0, ¢++,0,1) thus /(D" 1) has an (n - 1)-cell in common
with A(D"~!) and so again by Corollary 7 5(D"~1) is locally flat.

Corollary 8. Suppose M is a compact PL (n - 1)-manifold, Q is a PL n-mani-
fold, and b: M — Int Q is an embedding that can be locally approximated by lo-
cally flat embeddings. Then there is an obstruction in H3(M, Zz) which vanishes
if and only if b can be approximated by PL locally flat embeddings.

Proof. It follows from Theorem 5 that b can be approximated by locally flat
embeddings-and that, for some &> 0, and two locally flat approximations that are
8-close to b are ambient isotopic by a 1-push of (Q, A(M)). Let bl be a locally
flat S-approximation of b and let v, be a topological tubular neighborhood of
bl(M) (i.e., an open bicollar). Then v, has two PL structures, namely the struc-
ture induced by the PL structure on Q and the product structure induced by
MxE! Let a, € H3(M, Zz) X H3MxE!, 22) be the obstruction to isotoping the
product structure on v, to the induced structure on v,. If b, is another locally
flat 3-approximation of b and a, € H M, Zz ,) is defined analogous to a,, then,
using the fact that b, and b, are ambient isotopic, it is easy to prove that
a,=a,. Hence we have a well-defined element a of H3(M, Z ;) If @ =0, then
any such b, can be isotoped slightly to be made PL and hence 5 can be ap-
proximated by PL locally flat homeomorphisms. On the other hand, if » can be
S-approximated by a PL locally flat homeomorphism &', then we can use 5’ for
determining @ and since b’ is PL locally flat the two structures on the tubular
neighborhood of b'(M) are the same and hence a = 0.
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