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ABSTRACT. In characterizing and determining the number of conjugate sets

of irreducible congruences of degree m belonging to GF(p) relative to the group

G(p) of linear fractional transformations with coefficients belonging to the same

field, the case p = 2 has been consistently excluded from considerations. In this

paper we consider the special case p = 2 and determine the number of conjugate

sets of zzz-ic congruences belonging to GF(2) relative to G(2).

1. Introduction.  The conjugate sets of irreducible ttz-íc congruences

(1.1) cm(x) = xm + alxm-1+ .•• + z2m_jX + am = 0 (modp)

belonging to the modular field defined by the prime p under the group of linear

fractional transformations

(1.2) T: x = (ax'+ b)/(cx'+ d),      a, b, c, d e GF(p),

have been classified in terms of the irreducible factors of an absolute invariant

nm(]> K) [2], In this classification and in the various studies of conjugate sets

that have followed, the most recent being that for which the degree 772 is a power

of an odd prime [3], the case p = 2 has been excluded as a possible characteris-

tic for the base field GF(p) because of the special considerations and treatments

that would have been required. In   this paper we consider this special case and

therefore determine the number of conjugate sets of ttz-íc congruences over GF(2)

relative to G(2) = G.

For convenience we shall henceforth use p rather than 2 for the characteristic

2 of our fields and we shall use the standard notation IQ[m, pk] foi an irreduc-

ible monic congruence of degree m over GF(pk). GF'(pk) will denote the subset

of marks of GF(pk) which do not belong to any proper subfield and an 772-ic over

GF'(pk) will be regarded as a monic congruence of degree 772 over GF(pk) with at
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least one coefficient belonging to GF'ipk). We shall use \lQ[m, pk]\pl  or \f(x)\p'

to denote the congruence of degree m whose coefficients are respectively the

p'th powers of those of lQ[m, pk] = fix). \lQ[m, pk]\p' + p   w¡it mean tne product

of \fix)\pi and \fix)Vw.

For p = 2 the group G = GÍ2) is of order pip   - l) = 6 and may be easily

recognized as the substitution group on three letters. If T £ G is given by (1.2)

then we shall say that T is identified by the matrix (" ^) and that this matrix

defines T. We will find it convenient to identify the transformations of G by the

six nonsingular 2x2 matrices over GFÍ2) given as follows:

-(JÏ)- -CO-

e.(\\). E- c ?)-«■-
Clearly the order of K, o(K) - 3; oiL) = oiL) = oiD = 2 and the generators   K and

L of G satisfy the condition KLK = L.

Finally, if fix) is an IQ[m, pk] and J £ G then /(x)T = /'(x) will be called

the transform of fix) by T and is the monic polynomial congruence in x obtained

from fiiax + b)/icx + d)). The set |/(x)T: T £ G) is called a conjugate set rela-

tive to G and the members of the set are said to be conjugate. If fix)T = fix)

then fix) is said to be self-conjugate under T. If r] is a root of a congruence

/(x) over GF(p*) and if T = (£ *) then r/T = ian + b)/icr¡ + d) is called the trans-

form of »7 by T. Clearly r¡piT = ir¡T)pi tot all i > 0.

Since oiG) = 6 then the orders of conjugate sets of m-ics are of the form 6/d

where d\m. Thus, conjugate sets may be of order 6, 3, 2 or 1. To determine the

number of conjugate sets of each possible order we consider separately the num-

ber of order 1, 2 and   3. In §2 we show that there can be no set of order 1 if m> 2

and the numbers   C2   and    C,  of sets of order 2 and  3 are considered in §3 and

§4, respectively.    The number Cfi of order 6 is the easily determined from the

total number of irreducible m-ics over GFip).

2. Conjugate sets of order 1. If m = 2 then x2 + x + 1 = IQ[2, p] is the only

irreducible congruence and necessarily belongs to a set of order 1. It is, there-

fore, invariant under G.

If m > 2 and if fix) = ¡Q[m, p] belongs to a conjugate set of order 1, then

fix)T = fix) for every T £ G and it follows that m = 6k for some k>l. Thus,

fix) is the product of k distinct ¡Q[6, p ], each of which is self-conjugate under

every transformation T £ G [l, p. 33]. If six) denotes one of these factors, then
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/oo- n M*)?';
2=0

and, if p is a root of s(x), then its roots are

* 2k ik 4k 5*

p,    pF  ,    pp    ,    pp    ,    pp    ,    pp    .

Since s(x) is irreducible over GF(p ), these roots are all distinct and belong to

GF'(p6k).

Now this irreducible sextic s(x) over GF(p ) is the product of two cubics

Cj(x) and c2(x) = {cj(x)|* , each irreducible over GF(p2k) and self-conjugate

under K, the transformation of G of order 3 given by (1.3). The roots of these two

cubics are

2k 4k k ik ok
p,    pp    ,    pp        and    pp ,    pp    ,    pp    ,

respectively. Now, since s(x) is self-conjugate under G, six)L = six) implies

that cAx)L = cAx) and we conclude that pL = pp      since oiD = 2. We may
1 le —

assume that pK = pp    . Then, since L = LT, we have

pL = piLT) = ipT) L = pp    L=pp

and, since oiD = 2, it follows that

5fe _       „10/i       „4/t
P       _ ..Pp = pL2 = ipL)L = ipp    )L = pr       - p

since pp     = p. Thus p = pp    , which implies that p e GFip    ) and hence that

s(x) is reducible. Since s(x) is irreducible we conclude that there exist no irreduc-

ible sextic over GFip ) that is self-conjugate under G and hence no conjugate

set of order 1. We state these results in

Theorem 2.1. For p = 2 there exist no conjugate sets of irreducible m-ic

congruences over GFip) of order 1 relative to G if m > 2 and only one set of

order 1 if m = 2.

3. Conjugate sets of order 2. Since there exist no IQ[m, p] invariant under

G then any /2[ttz, p] = fix) that is self-conjugate   under K must necessarily be-

long to a set of order 2 and fix)L = / (x) will be the other rrz-ic belonging to the

set. That / (x) is also self-conjugate under K is given by

Theorem 3.1. Any ¡Q[m, p] = fix) that is self-conjugate under K belongs to

a set of order 2 and ¡ix)L  is likewise self-conjugate under K.

Proof. Suppose ¡Q[m, p]= fix) is self-conjugate under K and let fix) =/(x)L.

Then fix) 4 f (x), for otherwise f(x) would belong to a set of order 1. Now f(x)K

= f(x) implies that
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/(x)KL = (/(x)K)L = /(x)L = /'(*)

and, since KLK = L,

f'ix)K = ifix)KL)K = fix)iKLK) = fix)L = fix).

Thus / (x) is self-conjugate under K. Since

fix)L = fix)iLK) = ifix)L)K = f'ix)K = fix)

and

/(x)L = /(x)(LK2) = /'(x)K2 = if'ix)K)K = f'ix)K = /'(x),

we conclude that fix) belongs to a set of order 2.

Now suppose that fix) = /Q[m, p] is s elf-con jugate under K. Then, since

3\m, we have m = 3'¿, (3, &) = 1, / > 1 and fix) is the product of s = 3'-1& dis-

tinct irreducible cubics over GFips) [l, p. 33]

/eup] = /(x) = iiicW!<>\
z=0

each cubic IcU)!^   of which is se If-conjugate under K. It follows therefore that

there exist an  lQ[m, p] that is self-conjugate under K and hence a conjugate

set of order 2, provided there exist an irreducible cubic c(x) over GFips) that

is self-conjugate under K. The number of such cubics may then be used to deter-

mine the number of ¡Q[m, p]'s that are self-con jugate under K and, hence, the

number of conjugate sets of order 2.

Suppose therefore that c(x) is any cubic over GFips) (reducible or irreducible)

that is self-conjugate under K. Then if p is a root of c(x) its roots are p, pK,

pK2 ; and if we set o. = p + pK + pK2  then

u+1        1 p3 + u+l

(3-D *=«+v%— ■i7fr"
Hence p3 + ap2 + (a + l)p + 1 = 0, and we conclude that p, pK, and pK2 ate

roots of

(3.2) c(x) = x3 + ax2 + (a + l)x+l.

Thus we have the following

Theorem 3.1. Any cubic c(x) over GFips) that is self-conjugate under K =

(: 0) is of the form (3.2) where a £ GFips). Conversely, any cubic over GFips)

of the form (3.2) is self-conjugate under K.

If a £ GF'ips) then the roots p, pK = (p + l)/p, and pK2 = l/(p + l) of c(x)

necessarily belong to GF'ips) or GF'ipis), according as c(x) is reducible or
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irreducible. If these roots are not distinct then p = pK, p = pK , or pK = pK

each implies that p   + p + 1 = 0, from which we conclude that p e GF (p ) since

x2 + x + 1 is the only irreducible quadratic over GFip). Thus, s = 2 = 3Í_ k and

hence 772 = 3-s = 6. This gives

Theorem 3.2. The roots p, ¡iK and pK2 of the cubic cix) over GF ips) are

all distinct if and only if s 4 2.

All 772-ics whose degree 772 = 3s is a multiple of 3 may now be considered by

taking separately the three cases for s, namely, s = 1, s =2, or s > 2.

Case s = 3l~ k = 1.   In this case we have 772 = 3s = 3, and the roots of the

cubic cix) = x3 + ax2 + (a. + l)x + 1 over GFip) ate distinct. Since oiGFip)) =

2 it follows that cix) is irreducible. Moreover, since there are exactly (p   - p)/3

= (8 - 2)/3 = 2 irreducible cubics over GFip) in all, they are  identified by the

choices a = 0 and a = 1 of GFip). Therefore we have

Theorem 3.3.  For p - 2 there exists one conjugate set of irreducible cubics

over GFip) of order 2, and this set represents the only conjugate set of cubics

over GFip).

Case s = 3t'1k = 2. In this case ttz = 35 = 6 and we have p = pK = pK2 €

GF ip2). This implies that a = p + p + p = p and identifies the reducible cubic

cix) = x3 +■ px2 + (p + l)x + 1 over GF'ip2). Moreover, pp = p + 1, the only other

mark of GF ip ), likewise determines a reducible cubic, namely,

c'ix) = \cix)}p = x3 + ppx2 + ipp + l)x + 1

which is also self-conjugate under K. Since oiGF'ip2)) = 2, there are no irredu-

cible cubics over GF'ip2) that are self-con jugate under K and hence no irredu-

cible sextics over GFip) that are self-conjugate under K. Thus,

Theorem 3.4 For p = 2 there exist no conjugate sets of irreducible sextics

over GFip) of order 2 relative to G = Gip).

Case s = 3'~ k > 2. For any choice of a. e GF'ips) the cubic cix) given by

(3- 2) may or may not be irreducible. If S = oiGF ips)) then there are" 5 distinct

choices for a and hence this many cubics cix) over GF ips) that are self-con-

jugate under K. The number of irreducible ones may be obtained by deciding the

number of choices for a £ GF'ips) that determine reducible ones.

Since a e GF'ips), the roots p, pK, pK2 each belong to GF'ips) or GF'ipis).

Suppose p £ GF'ips). Then p, pK, pK2 ate distinct and, since each belongs to

G F ips), they are roots of irreducible s-ics over GFip). Now their sum o. = p +

pK + pK2 is clearly a mark of GFips) and may or may not belong to GF ips). U

a 4 GF'ips) then a e GF'ipT) where GFipT) is a proper subfield of GFips). Then
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the cubic c(x) defined by o. is a cubic over GF'ipr) whose roots p, pK, pK2 be-

long to GF'ips). Therefore, cix) is an irreducible cubic over GF ipr) and, since

p £ GF'ips), we have r = s/3. Thus, the marks of GF ips) that are roots of ir-

reducible cubics over Gp'ips  ^) that are self-conjugate under K determine a mark

a. of GF ipT) where r = s/3. Now if L   is the number of irreducible cubics over

GF'ipr) that are self-conjugate under K then the roots p, pK, pK2 of any such

cubic each belong to GF'ips) and their sum a £ GF ipr). It follows that there

are 3L   distinct marks p £ GF ips) that identify an O, in GF ipr). Then the other

marks p of GF ips) determine an o belonging to GF ips). Since 5 = oiGF ips))

there are ÍS - 3L )/3 distinct choices for a in GF'ips) each determined by the

set \p, pK, pK \. These <x's determine cubics cix) over GF ips) whose roots

belong to GF ips) and therefore are reducible cubics. Now any mark a oí GF ips)

not among this collection of iS - 3L )/3 distinct marks will determine a cubic

cix) over GF ips) of the form (3-2) that is irreducible. There are therefore

L3r = Ls = 5 - [iS - 3Lr)/3] = Lr + 25/3

distinct irreducible cubics over GF ips) that are self-conjugate under K fot each

r > 1. Thus we have

Theorem 3.5. For p = 2, if L   is the number of irreducible cubics over

GF ipr) of the form (3-2), r= 1, 2, 3, • • •, then there are

(3.3)1 L3r=Lr+2.o(GF'(p3'')/3

distinct irreducible cubics over GF (p3r) of the form (3.2).

The numbers L^ and hence Ls, s = 3r = 3Í-1¿ > 2, (3, ¿) = 1, may now be

determined by using the recursion formula (3.3) of the above theorem. First, we

consider Lk where k = 1 and k = 2. Clearly, L. = 2 = p since each irreducible

cubic over GF(p) is of the form (3-2). Then by (3-3) we have L, . = L   +

2(p3 - p)/3 = 2(p3 + l)/3. Hence

L ,     = L,., + 2 - o(GF'(p32))/3 = 2(p?2 + l)/3.
32-l        i *

In general, we have

Lemma 3.1. For p = 2 and s = 3'"1, ** > 1, the number L    of irreducible

cubics over GF ips) of the form (3-2) (i.e. self-conjugate under K) is given by

(3.4) Ls = 2ips + l)/3.

Now for k = 2 we have Lfc = L2 = 0 since there exist no irreducible cubics

over GF'ip2) of the form (3 . 2). Thus

L3.2 = L2 + 2 • o(GFV2))/3 - 2(p3*2 -Pi-P2 + D/3

from which it follows that
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L  ,     =L,.7 + 2.o(GF'(p32-2))/3
3   '2        i l

= L3.2+2(p32'2-p32-p3-2 + p3)/3

= 2[p32-2_?32_p2 + lV3>

In general, we have

Lemma 3.2. For p = 2 z77zcf s = 31'1 .2, t > I, the number Ls of irreducible

cubics over GF'ips) of the form (3.2) is given by

(3-5) Ls = 2[ps-p*/2-p2 + l]/3.

Finally, we determine the number L,   of irreducible cubics over GF (p ) that

are self-conjugate under K where k > 2 and (3, k) - I. Any such cubic is of the

form (3-2) where a. e GF'ip ), and its roots p, pK, pK2 ate distinct and belong to

GF'ipSk). If we choose p e GF'ipk) and set a = p + pK + pK2 then a e GF'ipk)

or a belongs to a proper subfield of GFipk), say GFipk ). If  a e GF'ipk ) then

& |&, and the cubic defined by a would be an irreducible cubic over GF'ip   ),

from which it follows that 3k  = k and hence that 3\k. Since (3, k) = 1 we con-

clude that d cannot belong to a proper subfield of GFipk), and hence that a 6

GF'ipk). Now, if we set /<0 = oiGF'ip )) then there are KQ/3 distinct values for

a e GF'ipk) corresponding to the  /CQ/3 distinct subsets Ip, pK, pK2\ oí GF'ipk)

each of which identifies a reducible cubic over GF'ipk) of the form (3.2). There-

fore, there are KQ - KQ/3 = 2KQ/3 choices for a that determine irreducible ones.

Thus we have

Lemma 3.3. // k > 2, (3, k) = 1 and KQ= oiGF'ipk)) then Lk = 2/eQ/3.

This lemma along with the recursion formula (3-3) gives

Lemma 3.4. // k > 2, (3, k) = 1 and K, = o(GF'(p3*)) /¿eT2 LJfe =

2(K0 + K,)/3.

In general, we have

Lemma 3.5. For p = 2, if s = 3t~1k where k > 2, / > 1, (3, k) = 1, zzttz/

z/ K. = oiGF'ipiik)) then

(3.6) -2I><]/3
Lemmas 3-1, 3.2 and 3.5 now give us the following important



298 C. B. HANNEKEN

Theorem 3.6. If p = 2 and s = 3Í-1¿ > 2 where t > 1 and (3, k) = 1, then the

number L    of distinct irreducible cubics over GF ips) that are self-conjugate

under K is given by:

(a) Ls = 2(ps + 0/3,

(b) Ls = 2(ps - ps/2 - p2 + l)/3, or

ic) Ls = 2(2/;01 K.)/3, where K. = oiGF'ipiik)\

according as (a) k= 1, (b) ¿ = 2, or (c) k > 2.

We may now determine the number of conjugate sets of irreducible m-ics of

order 2 for m = 3lk, where / > 1, (3, k) - 1 and s = 3t~1k. First let us note that

ii a £ GF'ips) and determines the irreducible cubic cix) = x3 + ax2 + (a + l)x+ 1,

then   a + 1 £ GF'ips)  and determines the cubic c'ix) = x3 + (a + l)x2 + ax + 1

which is likewise irreducible over GF ips) and self-conjugate under K. Moreover,

these two cubics are conjugate since one may easily show that cix)L = c (x),

where L = (Q  j). Now if p is a root of cix) then its roots are p, pK = pp , pK2 =

pp2s  and p + 1,  (p + 1)K = pps + 1, (p + 1)K2 = pp2s + 1 ate the roots of c'ix).

We conclude from this that no p'th power of cix) can give us c ix). Hence it fol-

lows that

lQ[m, p] = ÏÎ l^WI"'    and    IQ '[m, p] = 'f[ \c 'ix)\p' = ¡Q[m, p]L
1*0 7=0

are distinct and constitute the irreducible m-ics over GFip) belonging to a set

of order 2.

Since the s cubic factors of both ¡Q[m, p] and IQ [m, p] ate each irreducible

cubics over GF ips) and of the form (3.2) it follows that there exist Eg/2s dis-

tinct conjugate sets of m-ics of order 2 where m = 3lk,  t > 0, s = 3l~ lk, (3, k) =

1. Thus, since m = 3s we have the following

Theorem 3.7. // p = 2 and m = 3lk, where / > 0 and (3, k) = 1, /¿en /Ae nzzm-

ber C2 of conjugate sets of m-ic congruences over GFip) of order 2 is given by:

(a) C2 = ipm/i + l)/m,

(b) C2 = (pm/3 - pm/6 -p2 + l)/m, or

ic) C2 =(S;.:01 K.)/m, K. = o(GF'(p3!'*)),

according as (a) k = 1, (b) & = 2 ana7 m 4 6, or ic) k > 2. If m = 6 /¿en C, = 0.

4. Conjugate sets of order 3- Any conjugate set of order 3 must contain an

¡Q[m, p] that is self-conjugate under L = (J  j). Moreover, 2|m, and hence m must

be of the form m = 2'n where (2, n) = 1 and / > 1. In such a case the IQ[m, p]

is the product of 2/_1n distinct irreducible quadratics \qix)]p', i = 0, 1, 2,•••,

(2'~ n - l), each of which is self-conjugate under L and hence of the form

(4.1) a(x) = x2 + x+-a,    a e GF'ip2     ").
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Now let y be a root of an ¡Q[2, p2      ] = Qix) and without loss of generality

suppose Qix) is of the form

.    A-1
(4.2) Q(x) = x2 + x + ß,      ßeGF(p2     ).

Then the roots of Q(x) ate y and yp and we have y + yp =1 and

y . yp = ß. Since (2, 72) = 1 then any mark 77 of GF'(p   n) is uniquely ex-

pressible in the form

(4.3) 77=cp1+çS2y,      fp1,«p2eGF'(p2/"S,

and if 77 e GF'(p2 ") then 77 may be regarded as a root of an irreducible quadratic

over GF'(p2t~l").

Since (2, 72) = 1 implies that 72 = 2tzz + 1 for some w and hence that 2'     72 =

2tw+2t~1 then

,2-1 ,2        -2-1 ,2 ,2-1 ,2-1

/  n = yP2w+2   =t/2V   ./

and we have

A-1 A-1* 2t~1n 21'1

/    " = (<Pj + 0/        =<p1+^2yi'        -0,+^y"

since 0j,(p2 eGF(p2'~ln).

Now if, in particular, 77 = eSj +■ cf>2y is a root of an irreducible quadratic q(x)

of the form (4.1) then

■7'-1

2> "
77+77" =1

2«-L i.2'-k
implies that (cpj + <p2 y) + (cfo j + «p^        ) = ç52(y + yí        ) = çS2 • 1 = 1   and

hence that  v = rAj + y.   Conversely, if  y  is any mark of GF'ip   ") of the form

2<—1
77 = <f> + y then 77 and hence rf are roots of an irreducible quadratic q(x)

over GF'(p2 ~ ") and, since

2t~1n 2t~1n

r¡+rf = (cfo + y) + (cfo + yp ) = 1,

then q(x) is of the form (4.1) and hence self-conjugate under L. Thus we have

Theorem 4.1. If p = 2 then a necessary and sufficient condition that 77 =

çij + rp"2y be a root of an irreducible quadratic   qix) over GF'ip2 ~ ") that is self-

conjugate under L is that 77 e GF'ip2 ") and be of the form tj = cfo + y where cfo e

GFip2''1»).
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Now if 7j = rp + y e GF'ip2 ") is a root of a(x) = x2 + x + ß then qix)L = a(x)

implies that the roots of a(x) are

,z-l

7/ = rp + y    and    7/p = rçL = 77 + 1 = (rp +• l) + y.

Thus, if <p £ GFip2''1") defines the root 77 of the /Q[2, p2'"1"] = a(x) and hence

£/(x) itself then (p + 1 will likewise define a(x).

The number of conjugate sets of order 3 may now be obtained by determining

the number of irreducible quadratics over GF (p        ") that are self-conjugate

under L. To do this we must therefore determine the number of distinct marks

<p £ GFip2''1") such that 77 = rp + y belongs to GP'ip2t"). Since y £ GF'ip2')

and since GFip2''1") n GFip2') = GFip2''1) and (2, n) = 1 it readily follows

that T¡ = (ß + y £ GF (p   n) if and only if 0 is a root of any irreducible n-ic over

GF'ip2      ). i2) Thus, if n = ajl • q22 • • • qrhh is the standard form for n, then

there are

(4.4) n/V      2t-i-P       "-2> '+I? ' '-
77,0

distinct choices for çS such that r¡ = (f> + y £ GF (p   "), where the sums 2 are

taken for all combinations of the distinct prime factors of n in the numbers indi-

cated [l, p. 18]. [Note that if n = 1 then this number given by (4.4) is p2 " .]

Now, since two distinct choices of <£ identify one quadratic and since 2l~ n

of these go together to determine one irreducible m-ic (m = 2'n) over GFip) that

is self-conjugate under L and hence one set of order 3 then the number of sets

of order 3 is easily determined. We state this result in the following

Theorem 4.2. If p = 2 and m = 2ln, where / > 1, (2, n) = 1 and if n = a^l •

qr22.qT,h > 2 then there exist

C3=   [f "2> +2> '-••• l/m

distinct conjugate sets of irreducible m-ic congruences over GFip) of order 3-

If n = 1 then the number of conjugate sets of order 3 is C, = [p2 " ]/m = 22      -t.

The number of conjugate sets of order 6, say C., is now easily determined

and is given by the following

(2) In fact, if 4> is a root of an irreducible n-ic over GF(p) then since y e GF (p2'")

it is clear that -n = <f> + y belongs to GF (p2'n).
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Theorem 4.3. If p = 2 then the number of conjugate sets of order 6 is given

by C, =[N    _ - 2C, — 3C,]/6 where C, and C, are the numbers of sets of or-' O 772,p ¿ O ¿ 0 ' '

der 2 and 3 respectively and N        is the total number of irreducible m-ics over

GFip)isee [l, p. 18]).
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