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PRODUCT OF RING VARIETIES AND ATTAINABILITY

BY

AWAD A. ISKANDER

ABSTRACT.   The class of all rings that are Everett extensions of a ring in a

variety U by a ring in a variety Si is a variety U • SB.  With respect to this opera-

tion the set of all ring varieties is a partially ordered groupoid (under inclusion),

that is not associative.   A variety is idempotent iff it is the variety of all rings,

or generated by a finite number of finite fields.   No families of polynomial

identities other than those equivalent to x = x or x = y aie attainable on the

class of all rings or on the class of all commutative rings.

Hanna Neumann [12] introduced the notion of variety product for groups.   This

product turns the set of all group varieties into a free monoid with zero as shown

independently by B. H. Neumann, Hanna Neumann and P. M. Neumann [ll], and

A. L. Smilkin [16].   By analogue of groups, A. I. Mal'cev [9] defined the product

for classes of algebraic systems and gave several applications.   V. A. Parfenov

[14] proved that the set of all Lie algebra varieties over a field of characteristic

0 is a free monoid with 0.   However, in rings, the product of varieties is not

associative.   In the present paper we determine all the idempotent varieties of

associative rings.   We also apply the results to show that there are no nontrivial

sets of identities attainable on the varieties of all associative rings or of all

associative and commutative rings; this answers a question of T. Tamura [17].

For an account of the variety theory the reader may consult [l], [2], [6], [10],

[13].

In this paper we will be concerned only with associative rings not necessarily

with 1; the word "ring" will mean "associative ring". German letters will always

denote classes or varieties of rings.

The methods of this paper could be modified for the variety of all commuta-

tive and associative rings, and the analogue of Theorem 5 holds for the variety

of all commutative rings.

1.   Definition 1.   Let A and B be rings.   The ring C is called an extension

of A by B if C possesses an ideal isomorphic to A whose factor ring is isomorphic to ß.
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232 A. A. ISKANDER

This notion is due to Everett [4] and is the analogue of Schreier extension

of groups [15].

Definition 2.   If 21 and S are classes of rings 21 • 8 is the class of all rings

that are extensions of a ring in 21 by a ring in 8.

This notion is due to Mai cev [9] where he proved (for more general systems):

Theorem 1 (Mai cev [9]).   The product of two ring varieties is a ring variety.

Denote the set of all ring varieties by G, the variety of all rings by S and

the variety of all zero (degenerate) rings by S.   In [9], it is shown:

D.2I = D = 2I.O,     5.21 = 21=21.5,

21 < E, S < 3 =* 21. S < S . %     (21. B). S > 2Í. (S . S);

inclusion can be strict.

I.e., (G; ., < ) isa partially ordered nonassociative groupiod with zero (£))

and a unit (5).

2. Every ring variety is determined by a set of identities of the type

pixy, ••., x ) = 0.   Let F be the free ring over the set of free generators ¡Xj,

x2, ... ! (cf. e.g. [3], [13]).   If U Ç F and A is a ring, let

UiA).= ¡p(a1,...,ajj):p £ U, a,,...,an £ A\.

It is well known that A  belongs to the variety determined by   U   iff UiA) =

UiA) = 0 where  U is the T-ideal of F generated by U (the smallest ideal of F

closed under all endormorphisms of F and containing U).

Proposition 2.   // U is a T-ideal of F and A  is a ring, then UiA) is the

smallest ideal of A  whose factor belongs to U  the variety determined by  U.

auia,,-" , a ) ± vib.,•••, b   )A = xzz(x ..,•••, x .,.,)
1 71 1 771 1 ¿ 77+1

± ^*„ + 2.*7i+m + 2)xn+m+3(a' *1»# ' * » V kV " ' kV b)'

Proposition 3 (Mal'cev [9]).   Let U, V be two T-ideals of F and let U, 55

Ae iAe ring varieties determined by U and V respectively.   Then A £ U • 53 iff

ViA) £ U.

Thus the variety U . S3 is determined by the set of identities UÍV).

3. For any variety Tl denote by (5(12) the least degree [3] of polynomial

identities satisfied by H; 5(0) = oo.

It is implicit in [5], [13] that the minimal degrees are achieved by homogeneous

identities, since if p,  is a homogeneous component of p, and p is an identity

in U, then kp, is an identity in U for some  k £ Z,  k>0.
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For any variety II denote by  c(U)  the characteristic of the free U-ring on

one generator.   Then

Proposition 4.  U < 8 =* 5(H) < 5(8), c(U) = 1 iff 11 = 6, c(U) = 0 z// 8(11) > 1.

Denote by GFip, n) the Galois field of order p" and by Q    the ring

(¡0, a, 2a, 3a, • ■ •, (p - l)a|; a   = 0), where p is a prime.   The variety generated

by GFip, n) is denoted by $(p, tz), it is the variety of all rings satisfying:

px = 0, x - xp   =0.   The variety generated by Q    is denoted by Q(p), it is the

variety of all rings satisfying: px = 0,   xy = 0 [19].

4.   We now formulate the basic theorem:

Theorem 5.   // the variety 11 / D, the following conditions are equivalent:

(i) U tíoes 720Í contain any Q .

(ii) 11  zs generated by a finite number of finite fields.

(iii) 11 z's idempotent in (G, •), i.e., U • V. = U.

The proof will depend on some lemmas.

Lemma 6.   77>e variety Sß    defined by pn~TXy%2 .. • x    , r = 0, 1, 2, — ,72,

z's contained in the variety

Q(p) • (Q(/?) • ( • • • (Q(p) • 0(p))...))- Q(p)n.

Let

A eSn+1.       ß = £p"-rA ..-A (2'A's) is an ideal in A.

A.'B eSS  .
71

b £ B ~ b = Y,\pn~Ta-,--°a     : 0<r<n, j £ K\.
' 7 2 T

„72+l-r„
pr7 = £ipn+1-ra.j".a  r:0<r<», ; € Kri = 0.

7 7'2r

If c e B then

6.C- (Lip""r";i"-«   r: !<»■<«. /'eKrl)

•(£íí"~*cfl-«'C  s:0<5<7z, ieLsU

-rKi---Ä.,«c<i",c.,»:/eK»' ¿eL«!
72 22

y¡   2n-r-sa a ...c     :0<r+s<2n, j £ K, i £ L  \
¿*'r 7I .2r   zl ¿2S        - '   ' r' s

= 0,

i.e. ß e Q(p).
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Hence S3     . < Q(p) • S3 , and by induction, the lemma is proved.

Lemma 7.   // U contains Q    for some p,  then U . 11 > U.

If U contains Q , then as Q(p) is a minimal variety [19], we have U > 0(p).

If U . tt = U, then U = 11 • U > D(p) . Q(p), and by induction H > D(p)".  Hence

by Lemma 6, U > 33^ for all n > 1.

Claim 1.   c(U) = 0.   As  c(S3n) . pn,  c(tt) is divisible by p" for all n > 1,

i.e., c(U) = 0, and ¿3(11) > 1.

Claim 2.   For any varieties S3, 1, ¿5(S3 . ») = ¿5(33) . ¿3(52).   33 . 58 is determined

by ViW), where V and W ate the T-ideals of all identities satisfied by S3 and 8

respectively.   Claim 2 is immediate by using the comments after Proposition 3.

From Claims 1 and 2 we get a contradiction, and 11 • 11 > U.

5. Lemma 8.   // U does not contain Q    for any prime p,  then ¿5(11) = 1 (i.e.,

c(U) > 0).

If c(U) = 0, the free 11-ring on one generator contains ¡0, x, 2x, • • • | which

is infinite.   The factor of this ring by the ideal generated by x    is proper, other-

wise x = x a(x) would be an identity in 11,  and hence kx = 0 would be an iden-

tity in 11 for some k > 0.   The factor ring satisfies xy = 0, and hence has a

factor isomorph ic to Q    tot some p.

Lemma 9.   // U /= S, 11 satisfies px = 0, x + x g(x) = 0, where g(x) £ ZAx],

then 11 is generated by a finite number of finite fields of characteristic p.

By a theorem of Herstein [7], every ring satisfying x + x g(x) is commutative.

Also the identity x + x g(x) = 0 tells that the ring does not have any nonzero

nilpotent elements.    Hence [8] every such ring is a subdirect product of fields.

Since rings of U also satisfy px = 0, then all fields involved are of characteristic

p.   As degree (x + x qix)) is fixed for all elements these fields involved must be

finite in number, and each of which is of finite order, since if » y < «2 <«,<•• •

niGF(p, n.): f > 1} does not satisfy any identity of the type x + x gix) = 0 for

any g(x) e Zp[x].

6. Lemma 10.   // U / S, S3 4 (§, U satisfies px, x + x gix), and S3 satisfies

px = 0, x + x2A(x) where g(x), A(x) e Zp[x], then U.S = HVS = S.U.

Substituting identities of S3 in identities of U, we get identities of U • S3

(Proposition 3).   Hence

p2x = 0,       (x + x2A(x)) + (x + x2A(x))2g(x + x2A(x)) = x + x2/(x) = 0
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and

px + p2x2g(px)=0

are identities in U • S3, hence 11 . 33 ̂  S satisfies px = 0 and x +x f(x) = 0.

Hence by Lemma 9, every ring in U • 55 is the subdirect sum of finite fields,

and every finitely generated ring is finite and hence the direct product of finite

fields of characteristic p, i.e. every finitely generated ring has 1. If C e U • S3

is finitely generated, its ideal belonging to 11 is finite, and hence has a unit

that is a central idempotent (since C is commutative). Hence C ^ A y. B where

A e H, B e 33. As every variety is generated by its finitely generated members,

the lemma is proved.

Lemma 11.   // c(U) = p , U ^ S and U does not contain Q , then k = 1 and

U satisfies px = 0 aTza" x + x g(x) = 0 for some g(x) e Z [x].

Let 33 be the variety of all rings in U satisfying px = 0.   As H does not

contain Q , 33 does not contain Q .   S3 satisfies px = 0 and x + x g(x) = 0 for

some g(x) e Z Ax], g(x) 4 0.   Indeed, the free ring of S3 in one generator is

xZ [x]/xq(x)Z [x], degree a(x) e Z [x] is > 1, otherwise the free 33-ring on one

generator is either 0 or xZ [x] contradicting U 4 ® and 11 does not contain
P

Qt.   Hence xqix) = 0 is an identity in S3, i.e., ax + x gix) = 0 is an identity in

S3, a 4 0, otherwise xZp[x]/x2Zp[x] e 33, that is Q   e S3.

If A e U then pTA is an ideal of A, r = 0, 1, 2, . • •, k, and prA/pr+1A e S3,

r = 0, 1, ..., k - 1.   Thus S3 < U < 33* = S3 by Lemma 10.

Lemma 12.   // c(ttj) = pk,  c(U2) = pl,  c(SSj) = qm,  c(S32) = qn,  where p. q

are distinct primes, then

(U,.S3j).(tl2.332) = (U1.ll2).(S3j.S32).

Let C e (Uj . S3j) . (H2 . 332).   There is A, an ideal of C, such that

A e Uj . S3j and ß = C/A e U2 . 332.

Thus

ch A = p V,       ch B = p V,       ch C = z> V.

A=AjxA2,      AjCEj,      ^e^i«

B = BjXB2,      ß,elI2.      ß2e5ß2»      C=CjXC2.

Cj contains all elements of C whose order is a power of p.   Thus Cj 3 Ay

C2 2^2' as  ^2 contains all elements of C of order a power of q.
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iCy/Ay)xiC2/A2) ^iCyXC2)/iAlXA2) Sß^ßj

as every element of C J A y or of B j is of order a power of p and every element

of C2/A2 or B2 is of order a power of a.   Hence Cj/AjSBj,  C2/A2  = B 2,

i.e., Ce(Uj.U2).(Sj .SS2).

Conversely if C £ (11, . UA • (S3. . S32), there is an ideal A of C such that

A £ Uj . 112 whose factor C/A £ SSj . S32.   But ch A = pa,  ch C/A = qß, hence

C S A x (C/A), there are ideals Ay oí A  and A2 of B = C/A such that A/Ay £

U2, Aj £ Uj,  B/A2 e 82, A2 e Sj.   Hence AjX A2 is an ideal of C, belonging

to Uj . 8j and C/iAyxA2) s (A x B)/iAyX A2) S (A/Aj) x (B/A2) e U2 . 82.

Lemma 13.   // 11 does not contain Q    for any prime p and V. ¿ S, then

U = U1xll2x...x U,, where 11. ^ S satisfies p.x = 0, x + x g .(x) = 0 for some

g.(x) £ Z   ix), where p., • • •, p.   are k distinct primes, k > 1, c(U) = pyp2 • - • pk.

If 11 does not contain Q    tot any p,  c(U) = n > 0 (by Lemma 8).   Let

n = p y . • • p. * be the prime decomposition of 12, r j, • • •, r. > 0.  Hence, tl = It j

x 112 x • • • x U., where U . is the family of rings of 11 satisfying p .'x = 0.   Thus

11. does not contain Qp., and hence (by Lemma 11) r. = 1 and tL satisfies

x + *2g:M for some g¿(x) e Z [x], g¿(x) / 0.

7. By the previous lemmas, if U does not contain Q    tot any prime p, U is

the join of a finite number of varieties of the type px = 0, x + x g(x) = 0,

gix) /: 0, gix) £ Z [x].  Hence, 11 does not contain any Q    implies that U is

generated by a finite number of finite fields, i.e., 11 = V 193(p, n): p £ K, n £ L\,

where K is a finite set of primes and L  is a finiré set of positive integers.

If 11 = V \$ip, n): p £ K, n £ L\, then U = 1lj . (112 . (.. .(Ufe)), where U.

is the variety of all rings of 11   of characteristic  p  ;   they satisfy also

x + x2g .(x) = 0,  and hence U. . U. = U. V U. = 11. ('by Lemma 10),   By Lemma 12

and induction on k, we get U . U = 11.

If U /■ 0 and U . 11 = 11, then U does not contain Q    tot any p (by Lemma 7).

This concludes the proof of Theorem 5.

Theorem 14.   Let H be the set of all idempotent varieties distinct from £).

H is a subalgebra of (C; •, A, V), and on H,  the product coincides with the join.

H is an ideal of the lattice (G; A, V),  isomorphic to the lattice of all finite ideals

of the poset \ip, n): p is prime, n > 1|, (p, 12) < iq, m) <=> p = a a/Tr/ n\m.   The

complement of H in G  is an ideal of the groupoid (G, ■).   (G, .) is an ideal

extension of the complement of H by the lattice H.

8. As an application of Theorem 5, we will determine all attainable identities

on D.
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Let U C F, and let U be the T-ideal of F generated by U,

Definition 3 [17], [18].   A ring R is said to be (/-decomposable if W(R) 4 R

and (/-indecomposable if U(R) = R.   If S is a class of rings such that every Reñ.

is [/-decomposable and U(R) is (i-indecomposable, U is said to be attainable on Ä.

In [18] it is shown that ixy = yx\, \x = xp,  px = 0\ ate not attainable on 0.

Theorem 15.   No family of identities is attainable on D unless it is equivalent

ta x = x or x = y.

If U is attainable on £), then 11  is idempotent [9], and if U does not imply

x = y, H 4 0, then tt is the product of a finite number of 33(p, 72), i.e.,

U = U j . (U2( ... (1lfc) •••)), where 11 ¿ ¡s the product of 33(p., 77.. ) for a fixed

Pi> Pit m"t Pi are distinct primes.

u(z M) = uAuA...(uAz  [x]))...)) = u,(z [x]),
p I      ¿ k     pl pl

since U2i...illAZp[x])) ...) ¡)p2 ••• pkZp [x] = Zp [x], and the same is true

for any ring of characteristic pj.  Thus

uiuiz [x])) = uAuA--AuAuAzAx]))...)))= uAuAz W))
p Li kip lip

i.e., the proof is reduced to the case 11 = 33(p, 72 j) • ityip, n2)i-. • OJKp, 72,)) •••)).

(/(Z [x]) is principal, and hence generated by qix), where qix) is divisible

by all x-x*"1',  1 < 2 < k, i.e., deg qix) > 1, i.e., K = UiZp[x]) = rjGOZ^M.   í/(/C)

is the ideal of K generated by the values of polynomials of U in K.   UiK) C

Pip, 72j)(/0 = L.   f e L iff

f = Z i [<?«/>) - Wx)fix))N]qixYgJx) :

/„W. z?n W e Z^fx], r > 0, r = 0 - gnr = lj,       N = p"l.

Thus / = /j +/2+/3;

/i = a0(?(x) - q(*)%

f2-L ian[qix)xn - qix)NxnN] : 72 > l!,

/3=Zl*     [?W1+V+s-?(x)A'+VA'+a72>0,r>0,s>0|,      an,a,/3     eZ.■7 72 rs — 0'    72     72« p

/2 = a(x)xag(x), g(x) is not divisible by qix), /3 = qix)ßxyhix), ¿(x) is not

divisible by qix), a > 0, ß > 1, y > 0.   If zj(x) e L then

tf(x) = aAqix) - qix)N) + qix)xagix) + aM^Mx);
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hence  aQ = 1 and a(x)xag(x) = a(x)N - a(x)^xrA(x) i.e., gix) is divisible by

qix), i.e., L¿K.

This proves that K is not [/-indecomposable, and hence 11 is not attainable

on 0 which concludes the proof of Theorem 15.   The methods of this paper can

be modified to get the same attainability result for commutative rings.
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