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ON A WEDDERBURN PRINCIPAL THEOREM

FOR THE FLEXIBLE ALGEBRAS(i)

BY

ROBERT A. CHAFFER

ABSTRACT. A strictly power-associative algebra A over a field K is said

to have a Wedderburn decomposition if there is a subalgebra S of A such that

A = S + N, where N is the nil radical of A, and S = A — N. A Wedderburn prin-

cipal theorem for a class of algebras is a theorem which asserts that the alge-

bras A, in the class, with A — N separable have Wedderburn decompositions.

It is known that there is no such theorem for the class of noncommutative Jor-

dan algebras. A partial result in this direction is the following theorem.

Theorem. Let A  be a strictly power-associative, flexible algebra over a

field F with characteristic not 2 or 3, with A — N separable and such that

A =/l,©/4-©...©/4    where each A . has A . — N. simple and has more than12 71 i i i        r

two pairwise orthogonal idempotents.  Then A =S +N where S is a subalgebra

of A.

It is known from several examples [11, p. 147] and [14, p. 179] that the non-

commutative Jordan algebras, as a class, do not satisfy the Wedderburn principal

theorem. That is, there exist noncommutative Jordan algebras A with A — N

separable (where N is the nil radical of A) fot which there is no subalgebra S

such that S = A — N and that this is the case even if only algebras over fields  K

of characteristic not 2 are considered. However there are important subclasses

of the class of noncommutative Jordan algebras for which the result does hold.

Early work was done for the cases of the Jordan and the alternative algebras [4],

[9], [13], motivated by the corresponding result for the associative algebras [2].

More recently, some activity has been directed towards obtaining as large as pos-

sible a class of noncommutative Jordan algebras for which this structure theorem

holds [12], [14].

A possible direction of investigation stems from the observation that in the
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known counterexamples, A — N is simple and of degree not exceeding 2. For example, it

follows readily from the work of McCrimmon [6] that the conclusion of the structure theorem

holds whenever A—N has its simple summands each of degree exceeding 2. Similar results

have been obtained by Hemminger for the case of the commutative algebras [5]. It is the

result of the present paper that this type of result also holds for the case of the strictly

power-associative flexible algebras. The results of this paper generalize much of [5].

In what follows, all algebras are assumed to be finite dimensional.

In [lO], Rodabaugh has identified sufficient conditions on a class of algebras

for each member of the class to have a Wedderburn decomposition. We will take

advantage of these results in order to obtain our basic working lemma.

Definition 1. A class P of algebras will be called a decomposable class if

for each algebra A  in the class P:

(a) A is strictly power-associative over a field of characteristic not 2 or 3.

(b) A - N is in P.

(c) If B is a subalgebra of A whose image in A —» A — N is a nonnil ideal

in A — N, then B is in P.

(d) A semisimple implies A =Aj © A2&- • •(& A   where each A . is simple

with an identity element.

(e) A(e, t)A(e, t) C A(e, t) (t = 0, l) if e is an idempotent and where A(e, t)

is the usual Peirce subspace corresponding to e and r.

It has been pointed out that the restriction away from characteristic 3 in [lO]

can be removed. The class 3 resp. j   of noncommutative Jordan algebras resp.

strictly power-associative, flexible algebras over a field of characteristic not 2 or

3 and such that, A — N is separable and the simple summands of A — N have at

least 3 pairwise orthogonal idempotents each, is a decomposable class.

Here, an algebra is flexible if it satisfies the identity

(1) (x, y, x) = 0

or equivalently when char K 4 2

(2) F(xt y» z) = (x, y, 2) + (z, y, x) = 0.

A flexible algebra is a noncommutative Jordan algebra if it satisfies the additional

identity

(3) (x2,y,x)=0.

If char K 4 2, 3 this is equivalent to the linearized form

(4) J(x, y, z, w) = (x, y, z . w) + (z, y, w • x) + (w, y, x • z) = 0.

Here a • b = (ab + ba)/2. The algebra obtained from A by redefining multiplication
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in this manner is called A  . An algebra is strictly power-associative if every

scalar extension satisfies the identity x x   = x +    for all positive integers  1 and

k. One consequence of power-associativity when char K 4 2 is

E(x, y, z, w) = fix, y, z, w) + /(y, z, w, x)

(5) ^       ,
+ Jiz, w, x, y) + Jiw, x, y, z) = 0.

The necessary results needed to show that the classes 3 and J are decomposable

classes are contained in [l], [8] and [10].

A power-associative algebra A will be called nearly-simple if it has no ideals

distinct from  0, N, and A.

Lemma 1. // P is a decomposable class of algebras such that, if A  is in P

and if MCN is an ideal of A  then A - M is in P, then every member of P has

a Wedderburn decomposition provided that every nearly-simple algebra with iden-

tity element and contained in P has a Wedderburn decomposition.

Proof. By Theorem 2.1 of [10] it is sufficient to demonstrate the result for

each member A of P such that A — N is simple and A has an identity element.

An algebra of minimum dimension in a decomposable class must be semisimple

and hence have a Wedderburn decomposition. This provides the initial step for an

induction argument on the dimension of the algebra with Lemma 2.2 of [10] provid-

ing the induction step.

It is noted that both the classes Î and J have the property that if M C N is

an ideal of an algebra A in the class then A — M is in the class. Because of

this it is then fruitful to consider the nearly-simple algebras in these classes.

Basic results on flexible algebras are found in [l] and [8]. Below are recalled

a few of these which are used most heavily here.

If A is a nonnil power-associative algebra then A has an ¡dempotent e and

relative to e, the Peirce decomposition A = Aie, 0) + Aie, Vi) + Aie, l) where

Aie, i) = \x in A: xe + ex = 2z'xi. For x in A, x = x, + x,. + x. where x. is in
1       n       0 i

Aie, î). For S a subspace of A, we shall write Sie, i) = \x.: x is in S\. Occasion-

ally Sie, i) will be denoted by S{. For convenience here, if S and T ate sub-

spaces then S O T will denote ST + TS. If A is a flexible algebra then Aie, 0)

and Aie, l) ate subalgebras and A has the multiplication properties Aie, 0) ©

Aie, 1) = 0, Aie, i) O Aie, Vi) C Aie, Vi) + Aie, 1 - i) where i is 0 or 1. If x is

in Aie, Vi) then ex and xe are in Aie, Vi).

When a flexible algebra A has n pairwise orthogonal idempotents such that

1 = 2"_j ei then A has a decomposition A = X A .. where 1 < i, j < n, A .. =

A(e¿, 1) and A{. = A.. = Aie., Vi) O Aie., Vi). The subspaces A¡.  ate subalgebras

and if i, /', k and m denote pairwise distinct subscripts then



220 R. A. CHAFFER

A..A..= 0,      A.. 0 A..C A.. +A..,      A.. O A     = 0,    A.2 C A .. + A.. + A
22   ;;        ' 22 il-     2/ ;; 12 jk        '       27 -     22 2; T njf

A.. ©A..CA.,,      A..A.    =0,    and    A .. • A .. C A    + A ,
27 7* -     z/ä 27    km ' 27 27 -     22 77

When A  is decomposed relative to 72 pairwise orthogonal idempotents then

the component of x in the subspace A ..  will be denoted by x..  and the notation

B..  ={x..: x is in B\ will be adopted for subspaces ß of A.

For a noncommutative Jordan algebra with identity 1 = £"_i e. where the c.

are pairwise orthogonal idempotents and 72 > 2, the corresponding Peirce decom-

position is said to be interconnected if [A .. • A ..]..  = A ..  for all i 4 j [6, p. 12].

McCrimmon has shown that any Peirce decomposition of an arbitrary simple non-

commutative Jordan algebra is interconnected [6, p. 14]. This result holds also

for nearly-simple noncommutative Jordan algebras and essentially the same proof

can be used. The ideal [A^L + A,. + U„].  cannot be zV when e 4 1 since then

A,, Ç N and A — N is the direct sum of two nonzero ideals contrary to fact. Thus

this ideal is either 0 or A which is the same conclusion obtained if A is simple.

It is then a corollary to Lemma 7 of [6] that a nearly-simple algebra with 1 =

S"_j e. for 72 > 3 has a regular indicator and by Theorem 4 of [6] is then either a

commutative Jordan algebra of characteristic not 2 or is a quasiassociative alge-

bra. For these two classes of algebras, a Wedderburn principal theorem is known.

The first class is considered in [4] and [9] while the quasiassociative algebras

are a special case of the algebras considered in [14, Satz 11].

The following sequence of lemmas will show that in the case of the class J

of strictly power-associative flexible algebras that the nearly-simple algebras

with identity either have a Wedderburn decomposition or are noncommutative Jor-

dan or have degree less than 3. It will be assumed in the following that A  is a

strictly power-associative flexible algebra over a field of characteristic not 2 or

3 with A — N separable and with at least 3 pairwise orthogonal idempotents.

Relative to an idempotent e there are subspaces C(e) = jx in A(e, l): x-

A(e, H) = 01 and B(e) = \x in A(e, l): x. A(e, l/2) Ç A(e, 0)}. Clearly C(e) Ç B(e)

tot any idempotent e. Oehmke has shown [8] that if e is an idempotent of A dis-

tinct from 1, then C(e) is an ideal of A, B(e) is an ideal of A(e, 1) and that

C(e)A(e, l/2) = A(e, V2)C(e) = 0. It is also known from [8] that the simple, strictly

power-associative, flexible algebras over a field of characteristic not 2 or 3 are

either Jordan or quasiassociative.   It is this consideration which motivates the first

of the following results.

Lemma 2. If A - N is commutative and N Ç A(e, 0) + A(e, l) for an idempo-

tent e in A  then xy = yx for every x and y in A(e, l/Ç).

Proof. When x is in A(e, V2) then ex - xe is in A(e, V2). Since A - zV is
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commutative, ex — xe is also in N and hence ex = xe. This with ex + xe = x

implies ex = xe = iVi)x for every x in A(e, Vi). Now if x and y are in Aie, Vii

then for A = 0 or 1, 0 = [Fiy, x, e)]^ = (A - Vi)[yx - xy]^ and hence [yx - xy]^ = 0.

Since A — N is commutative, [yx - xy],, is in N and is hence 0. Thus yx = xy.

Lemma 3. If A — N is associative and N Ç Aie, 0) + Aie, 1) for an idempo-

tent e in A, then [Aie, Vi)\ Ç [Aie, Vi) • Aie, Vi)\ for A = 0 or 1.

Proof. Let x be an element of Aie, Vi). Then ie, e, x) = (e, x, e) = (x, e, e)

= 0 since these associators are in both Aie, Vi) and in N. Let L = jex: x is in

A(e, Vi)} and P. = Ixe: x is in A(e, H)i. Since x = ex + xe tot x in Aie, Vi) then

Aie, Vi) = L + R. From (e, e, x) = 0 comes the fact e(ex) = ex. Similarly ixe)e =

xe. Then (ex)e = e(xe) = e(ex) + e(xe) - ex = e(ex + xe - x) = 0. Hence ex = 0

and xe = x for each x in R while ex = x and xe = 0 for each x in L. If x is

in R O L then x = ex = 0 so A(e, Vi) is a vector space direct sum of R and L.

Now if x is in A then [x],, = 4x- e - 4(x- e). e is known from [l]. Now let

a and A be in A(e, %). Then if x denotes the image of x in A - N then we have [äb]^

= Ö~. Thus 0 = 4iäb)• e~ - 4((â~A)• ë)• F = [aA],, so that [aA],, is in N and is

hence 0. Therefore Aie, Vi)2 Ç Aie, 0) + Aie, 1).

Let x be in R and y be in L. Then.for i = 0 or 1,0 = [Fix, y, e)]¿ = z'[xy]j.

+ (l - i)[yx].. Hence xy is in Aie, 0) and yx is in Aie, l). That is RL C

Aie, 0) and LR C Aie, 1). However if x and y are both in R then for i - 0 or

1, 0 = [F(x, y, e)]. = (z - l)[xy]. - z[yx] . which implies R2 = 0. Similarly L2 = 0.

Now let  x = a + b and y = c + d where a and c are in R and A and a" are

in L. Then [xy]. = [ac + ad + be + bd\. = (l - i)[ad\i + z'[Ac](. = (l - i)[a-d\. +

z'tè-c].  so that [Aie, Vi)2]- is contained in [Aie, Vi)-Aie, Vi)]-  tot i = 0 or 1

which is the claim of the lemma.

If A has pairwise orthogonal idempotents e and / then Cié) and C(/) are

ideals of A  such that C(e) n C(/) = 0. When A  is nearly-simple this implies

that either C(e) or C(f) is 0. Also if 1 = ej + e2 + e, and z, /, and & are

pairwise distinct then C(e .) C C(e. + e.) since x• Aie. + e ., Vi) C x« A ., + x-A .,

= 0 where x is in C(e.). These facts together imply that there is no loss of gen-

erality in assuming that C(e,) = 0 when  A is nearly-simple and also that

C(e. + e2) is either N or 0.

The role of the sequence of Lemmas 4—12 is to reduce the problem to the

case in which C(e, + ei) = 0. The procedure is to assume that C(ej + e_) = N

which after intervening results will yield N = 0.

Let A be a strictly power-associative, flexible algebra with A — N separ-

able, A nearly-simple over a field of characteristic not 2 or 3 and 1 = e, + e.

+ e,. Since A — N is then simple it is either commutative or quasiassociative.
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An algebra is quasiassociative if there is an extension field K oí F so that the

algebra AK(k) is associative for some choice of A in K, A ^ V2, by redefining

multiplication as x * y = Axy + (l - A)yx.

The algebras A and A(A) are identical with respect to subspaces, subalge-

bras, and ideals. Further, since powers in A and A(A) coincide, zV(A) is the nil

radical of A(A). Also the algebras A    and A(A)    coincide so that A(e, i) =

[A(A)](e, i) for i = 0, V2, 1 and x-y = (xy + yx)/2 = (x * y + y * x)/2.

In what follows, K will denote the algebraic closure of F. This is a suffi-

ciently large field so that when A — N is quasiassociative then there is an ele-

ment A in K such that (A - N)(k) is associative. Since A — N is separable, NK

is the nil radical of A „. Reference to A and to N will now be as algebras over

K except where otherwise noted. As an algebra over K, A has all the properties

mentioned above that it has as an algebra over F, except that A is perhaps not

nearly-simple as an algebra over K.

If e is an idempotent of A such that N Ç A(e, 0) + A(e, l) then since A — N

is either commutative or quasiassociative it follows from Lemmas 2, 3 that either

[A(e, H)2]x Ç [A(e, V2). A(e,l$\ for A = 0 and 1 or else [A(e, Vi) * A(e, V2)\ Ç

[A(e,1A).A(e, \Ç)\. But Aie, V2)2 CA(e, H) * Aie, l/Ç) since for algebras A, A(p)

= B if and only if ß(p ) = A for some p   whenever p 4 Vi. Thus in any case

[Aie, Y2)\ Ç [Aie, Vi) • Aie, Vi)\ for A = 0 and 1.

The next two lemmas establish identities which shall be major tools in the

development.

Lemma 4. For any idempotent e, if a is in A(e, 1) a72a" b and c are in

A(e,V2) then (cb)a= ce(b.a)+ beia.c)+ ecib.a)+ eb(c • a) - i}/2)Aab) -

(V2)b(ac).

Proof. Applying the facts (e, a, b • c) = a(b • c)l + a(b • c)Q - e[a(b • c)j] -

e[a(b • c)A = a(b • c)l - e[aib • c) j] = 0, (a, e, b • c) = 0, and that xe + ex = x for

each x in Aie, V2) to Eia, b, c, e) - i}/2)Fia, c, b) - iy2)Fia, b, c) - iV2)Fib, a, c)

= 0 yields this identity.

Lemma 5. // a is in Aie, 0) and b and c are in Aie, l/Ç) then aib.c) =

(V2)(ab)c + (l/2)(ac)b + b(c • a) + c(a ■ b) - b[e(c • a)] - c[e(a ■ b)] - e[b(c • a)] -

e[Ab-a)].

Proof. This follows as in the previous lemmas by expanding E(a, b, c, e) —

(Vi)F(b, a, c) = 0 and using the facts that (a, e, b'c) = (e, a, b • c) = 0 and that

ex + xe = x tot each x in A(e, lA).

Lemma 6. // N Ç A(ek + e., 1) + A(efe + e., 0) then [A2ik]kk Ç [Aik-A.^kk.

If N Ç A jj + A„ + A„ í¿t772 [A Jit Ç [^ i • A .,],, for all choices of i and k

distinct.
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Proof. Let e = e¿ + e.. Then [Aie, Vi)\ Ç [Aie, Vi)-Aie, Vi)]y where the 1

denotes the component in A(e, 1). The properties of subspace multiplication along

with Aie, Vi) = A .k + A¿;. give [A2k + A.kA.. + A.jA.k + A2.]j contained in

t^ife ' Aik + \k ' \'■: + ^11 ' ^í r^r ^len taking tne components of each of these in Akk

gives U42lL t Ç [Aik-Aik\kk. It N is in Ayy + A22 + A,   then the above hypothe-

sis is satisfied for all choices of z and k.

Lemma 7. // [A2,]^ Ç [A.fc .A.fc]fcft ràe« [A2fe]^ O Ay/kÇA.fc /or i, j and k

pairwise distinct.

Proof.  Let a be in A ..  and A and c in A ... It e = e. + e,  then a is in
ift i* ; ft

A(e, 1) and A and c are in A(e, Vi) so by Lemma 4 and the fact A   A fc C A¡fe it

follows that (cA)a is in A/fc. Then [A2ft]^Ajk Ç[A^-A .¿kkAjkC(A .fe.A.¿AyA

C A ... By the flexibility of A, aie • b) = (c • A)a + (ac)A + (aA)c - A(ca) - dba)

which is in A .,  and hence A ,[A .,], , C A ...

A flexible algebra A  is called stable relative to an idempotent e if Aie, A)

0 Aie, Vi) Ç A(e, %) for A = 0 and 1. U A — N is stable then aA and Aa are in

Aie, Vi) + N whenever a is in Aie, A) and A is in  A(e, Vi) where A is 0 or 1.

For an idempotent e the subspace //(e) of A is defined by Hie) = A(e, %) +

[A(e,^2]0 + [A(e,M)2],.

Lemma 8. TAe subspace Hie) + N z's an z'a"ea/ of A for any idempotent e of

A. This holds in both Ap and A„.

Proof.  The algebra A — N is noncommutative Jordan since it is either com-

mutative Jordan or quas¡associative.   Under the natural homomorphism from A to

A — N the preimage of the subspace H(e~) is //(e) + N. It is known [7] that Hie")

is an ideal oí A — N so //(e) + N is an ideal of A.

Since Ap is nearly-simple, we are concerned with the consequences in Ap

of the supposition N = Cif) where / = et + e2. The property N O A(/, Vi) = 0

holds, even in AK, since the products involved depend only on the multiplication

of basis elements for these subspaces.

Lemma 9. // N O A(/, Vi) = 0 where /= e, + e, fee« /Ae subspace /(/) =

[A(/, 0) O A(/, H)]j  z-s a nil ideal of A and is contained in A(e., l) + A(e,, 1).

This holds in both A„ and Ap.

Proof. Let x be in A(/, 0), y in A(/, l), and w in A(/, Vi). Then

0 - [EU, y, w, e) - Q&Fiy, x, »)],

= [(%)(ii'x)y - iVi)xiyw) + ixw)y - xiwy) - x(e(y • w)) - xiy • w)]y.

Thus [(^(zí'xíy + ixw)y]y is in /(/). The identities (2) and (5) hold in A    so the

above argument can also be used to obtain [i3,'2)iw • x) -y]y  in /(/). In light of
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our restrictions on characteristic this gives [(wx).y]j  in /(/). Then

[(xzzz)y]j = 2[iV2)iwx)y + (jcw)y]l - A[iw . x) . yl,

- [Fiw, x, y) + Fix, w, y)]j + [xiwy) - iyw)x]^

is in /(/). Then [(zzzx)y]j = 2[iV2)iwx)y + ixw)y]t is in /(/) as are [y(xz2/)]j =

[(ti'x)y]j - [Fiw, x, y)]j  and [yiwx)]l = [(xzzz)y]j - [Fix, w, y)]y Thus /(/) is an

ideal of A(f, l).

When x is in A(f, 0) and y is in  A(f, l/2) then ixy).  is in zV since A — N

is noncommutative Jordan and hence stable. Similarly, (yx).  is in N so that 1(f) ÇN.

Since N Q A(f, H) = 0 and A(f, 0) O A(f, l) = 0 then /(/) is a nil ideal of A.
Finally,

/(/) = [A33  0 (A 13 + A2J)](/, 1) Ç [A 13 + An + A2J + A22](f, l)

= A11+A22.

Lemma 10.  ¡f f = el + e2  satisfies N = C(f), then the algebras Ap and AK

are both stable relative to f.

Proof. First consider A p. Again by the stability of A — N, A(f, 1) O

A(f, lA) is contained in A(f, l/2) + N. But since A is a flexible algebra, A(/, l) O

Aif, y2)CAif, y2) + Aif, 0). But N is contained in A(f, 1) so A(f, 1) O A(f, l/Ç)

is in A(f, y2). Now /(/) is a nil ideal contained in A n + A22 and if /(/) = 0 then

A is stable relative to / so assume that /(/) = N. Let g = e, + e, where k = 1

or 2. Then //(g) + N is an ideal of A. Now //(g) + N is not 0 or  zV for if //(g) +

N C N then A(g, 0) + N and A(g, l) + zV are distinct proper ¡deals of A  contrary

to the near-simplicity of A. Thus //(g) + N = A. It /(/) = N and //(g) + N = A

when A  is considered as an algebra over F then they hold when A is considered

as an algebra over K.

Now consider A as an algebra over K. It follows that if ; = 3 - k then A?3 =

ttf(g) + W]33 Ç [A(g, H)2]33 = [(Ajk + ¿/3)2]33 = [A23]33. Since /(/) = N is in A„ +

A— the Lemmas 5 and 6 hold for any choice of 2, /, and k. Then

A(/, 0) © Aif, H) = A33 O [A13+A23]ÇA33  0 A13+AJ3 O A2J

ÇU23]33  O ¿l3 + CAÎ3]j3  © A23ÇA13+A23 = A(/,M)

and AK is stable relative to /.  Then Ap is stable relative to /.

Lemma 11.  // A  z's stable relative to an idempotent e then Hie) is an ideal

of A.

Proof. By virtue of the stability of A  it is sufficient to show that Aie, A)  O
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[Aie, Vi)2}\ Ç Hie) for A = 0 and 1. Let a be an element of A(e, 1) and let b and

c be in A(e, Vi). Then by flexibility and Lemma 4, aic-b) = icb)a - dba) - bica)

+ iab)c + (ac)A = c[e(A • a)] + A[e(a ■ c)] + e[c(A • a)] + e[A(c • a)] - (^)c(aA) -

iVi)biac) - c(Aa) - A(ca) + (aA)c + (ac)A. The component of the right member in

Aie, l) is in [Aie, Vi)2]y  since A  is stable relative to e. Then since [Aie, Vi) ]j

Ç [Aie, Vi)-Aie, Viï\x it follows that

Aie, l)[Aie, Vi)2]y Ç Me, l)[A(e, Vi) • Aie, Viiy Ç [Aie, Vi)\ Ç Hie).

Similar work with flexibility and Lemmas 4, 5, and 6 yields the remaining three

necessary containments.

Lemma 12.  TAe subspace C(f) in Ap with f=ey + e- is the zero subspace.

Proof. As remarked earlier, C(f) is either N or 0 so assume C(f) = N. Then

the algebra AK is stable relative to / so //(/) is an ideal of AK. Then //(/) O

Ap is an ideal of Ap. The ideal //(/) CiAp contains A p(f, Vi) and hence by the

near-simplicity of Ap, cannot be 0 or Np since then Apif, 0) + N and A pif, l) +

N ate distinct proper ideals of A p. Thus //(/) n Ap = Ap and hence Hif) » A.  This

places / in the subspace [Aif, ^)2]j Ç [Aif, Vi)-Aif, Vi)]y. Let 72 be in N and

/= [X?_t flr" & Ji  where ar and è    are in A(/, Vi) for s » 1, > « «, ». Then for

each 5,

k« ' *JlB = ^s ' bs^n = as^"bs* + M^a   ' "^ + ^a ^   ' "^

+ /[A (a   .7i)]-(^)a inb ) - iVi)b ina )'        S      S SS SS

by Lemma 5. The right member is 0 since N  © Aie, Vi) = 0. Then since n is

in Aif, 1), n = /72 = [l™sl ias - A^tz = 0 and hence Cif) = N = 0.

It follows from the preceding series of lemmas and relabeling that in A p,

Cif) = C(g) = Cih) = 0 where / = e, + e,, g = e, + e,, and A = e, + e,. In [8,

p. 224] Oehmke uses this result (the result follows there from an assumption of

simplicity which we have avoided here) to show that B = ß(e.) + Biei) + BieA

is an ideal of A. He also establishes that if B = 0 then A  is a noncommutative

Jordan algebra. These algebras were discussed in the first portion of this paper.

Assume then that B 4=0. Also, B 4 A  since if B = A then A ÇA,, + A-, + A,,

and A  is a direct sum of three proper ideals contrary to its near-simplicity. With

this in mind we assume B = N and thus that N CAyy + A„ + A„. This condition

holds in AK as well as in Ap. As a result of this N C Aie, l) + Aie, 0) where

e is /, g, or A and the results of Lemmas 2, 3, 6, 7, and 8 hold. These condi-

tions are now sufficient to show that Hif) + N is a Wedderburn decomposition of

A. When A is decomposed relative to a set of n pairwise orthogonal idempotents,

B ° C shall denote £.. [B  O C]..   where z and / range between and include 1
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and 72. By B(2) we shall mean ß ° ß. In the following lemma, /shall denote

e. + e..
2 1

Lemma 13. // », /', aTza" k are pairwise distinct then [A .].. = [Aik]¿i.

Proof. As before, A = //(/) + N and A(f, lA) = Aik + A;V Since N O Al;- - 0,

A*£tAÄ+V1>SA8, + A» O Ay4 + Ag>. But A .. nA^ = A ..O A<f- 0
so  A .. C A ..   0 A ... Now let a be in A .,, è in A, ., and c be in A ... By

27  —     zfe 7* z* «7 'J

Lemma 5,

(a . b)c = a[f(b ■ c)] + b[f(a . c)] + f[a(b • c)] + f[bia . c)] - (lA)Acb) - VMca).

The left member is contained in A(f, 1) and hence equals the component of the

right member in A(f, 1); that is,

(a . b)c = \a[f(b . c)] + b[f(a . c)] + (xA)a(bc) + (lA)b(ac)\y

The components in A ..  of the members of this equation are then equal which yields

[(a.b)c].. = \a[fib' c)] + iV2)aibc)\.. which is contained in [A .,]... Therefore
it t * IA   ZZ

[A2.]..= [(A     0 A,.)A..]..C[(A     .A.M. .]..C [A2 ]...
«/   22 2* kj        27   22  - tk ]k        l]   11  - ik   H

Here the containment A ., A, . ÇA ... A ..    follows from  [A(f, \Ç)2]. C

[A(f, y2).A(f, '^)]j and [(Aik + Ajk)2].}:- [A.¿ O A;.fe].y. By relabeling this also

proves the reverse inclusion.

Lemma 14.  The subspaces A ..  and A ., A ..  are identical.r 27 2Ä      7«

Proof. Since A is flexible, zl.. Dzl..   0 A ., = A ., ° A, .. The reverse inclu-
'      27   —       ik ]k ik k]

sion was shown in the first part of Lemma 13.

Lemma 15.  The subspace [A .,   © A ¡}kk is contained in the subspace

lAik + Aj¿kk'

Proof. Let x and y be in A .,  and let z and 227 be in A ... By power-associa-

tivity E(x, y, z, w) = 0. Expanding and collecting terms yields

4(x . y) . (z . w) = x[y(z . w)] + y[x(z • w)] + z[w(x • y)] + whAx • y)] - (z,y,w • x)

- (w, y, x . z) - (y, z, tzz . x) - (x, z, y . w)

— (x, w, y . z) - (y, w, z . x) - (w, x, y • z) - (2, x, w • y).

It was shown in the proof of Lemma 7 that A .,[A ., • A .,] C A .,  for i, 7, and &

pairwise distinct and hence the right member of the above equality is contained in

A .. + A .,+ A ... The component of (x • y) • (2 • w) in the subspace A ,,   is thus

contained in [A2jk + A2^. Then (*y)M• (*•«)„ ¡s in (A(V AfJk)Aik ■ iAjk • Ayfc)w

(by Lemma 6) and hence in [A ,  + A ..]... By applying the flexible law,
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(*y\iSzw\k ~ ^zw\iSyx\k= ^xy^ ̂ zw^ ~ ^zw^ ̂yx^\k= ' x[ybsw'1 - K^Vl*! ¿t

= {x[y(zu/)ti] - fku/^ylxj^

which is in \A.k[A.kiA.k - A.JJ + [(A.fc • ̂ AAAAft this in turn is con-

tained in [A2ik\kk and hence in [A2   + A2fc]fejfe. Subtracting (jiry)^^^^)^^ —

k^*ft(yx)ftft from twice ixy)kk-izw)kk gives («»^(y ■ *)M ^ ^Jk+^y**

and hence [A2jkA2Jkk Ç \A?k\h\Aih -A.^ Ç [A2jk + A2fe]^. A completely similar

argument shows that \.A2ikA2k ]fcfc is contained in [A .^ + ^IÄ]ÄÄ«

'¿ft*

Lemma 16. TAe subspace A kA\,' + A^j/A ..   is contained in the subspace

A.. + A.

Proof. By Lemmas 14 and 7, A jAA «> = A^.A.. + A .¿A2,]., + A .¿A2fc]fe,

CA.. + A ... Similarly A\2L'A ..  is contained in A .. + A .,.
—       1} lk ' ]k       lk l] lk

Lemma 17.  The subspace A? A.,' is contained in the subspace A ..+ A.,'.

Proof. Lemmas 7, 13, 14, and 15 yield

A<?><2) = ([A21   +[A21    +[A21    )2
i«    zft i« ii ¡fe ik        ik kk

\2

C[A2UA21.+ [A2].. © A..+A\ + A    © [A2.\i + [A2XM2Xt— ik n   ik u        ik n ik      ik      ik ik kk       ik kk   i« kk

C[A2.]..[AJ..+ [A2].. © A..+A2+A., © [A2..]..+\A2..].M}.lL
— ik ii   lj ii        i] n ik      ik      ik ik kk       ik kk   ik kk

C [A2 ].. + [A2.].. + A.. + A2   + [A2 1     + [A2 ]
— lk   11 1}   11 7ft 1ft ¡k   kk lk  kk

~      ik ii ik ik ik kk —     ik ik'

Lemma 18.  TAe subspace A ., • A .A is contained in the subspace A .,+ A ...

Proof. By Lemmas 7 and 13, Aiki[A2A .. + [A2,],.fe + [A2,]^) = A JA2^ .. +

^y«+A,-*^y w s *j^y«+*«+A.ft^*]ftft çAik+A,k- simiiariv

A ■- A -,  is contained in A , + A ,.
1ft        tft 1ft lk

Lemma 19. TAe subspace A .,    © A.,' is contained in the subspace A .. +r ik ik * u

Aik + Aik + ^Aik + Aik\k-

Proof. By Lemmas 7 and 15,

«' = WJJAJA** Witfklk + ̂ kk^k\k * «it

£ v*+v^a*+K\kAik+* -, ̂ ;Aft
CA.. + A    +A..+ [A2, + A ?.]...
-    z;        i*       ;ft z«       ¡k kk

Interchanging z and / gives the containment for A(.?'a(.?\
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Lemma 20.  The subspace //(/) is a subalgebra of AK where /= Cj + e2.

Proof. The subspace //(/) = A(f, l/2) = A(f, l/2)(2) can be written in terms of

the subspaces A .. as

a13 + a23 + [a13 + a23P) = a13 + a23 + a;23) + a12 + a223)

(by Lemma 14). Now (A13 + A^>(A n + A2J) Ç A(f, %)(2). By Lemmas 16 and 18,

(A13 + A23) 0 [A(j23)+A12 + A223)]ÇAj3+A23 + A23 + Aj2 + A23.

Finally

[A\2: + Ay2 + A%>][AÍ¡KAl2 + A¡i]

ÇAU+Ail) + Al2 + A2> + [Alihl + [Ali\i+Al2 + Ali

^lí^23 + ¿412+Aí23> + A23) + A12

by Lemmas 16,17, 18, and 19. But A\2 Ç A(j2) = [A22]jt + [A2.,]j2 + [A2^ Ç [A2^

+ A12 + U 23I22 - HV'' Thus HVJ 1S a subalgebra of AR.

Lemma 21.  The algebra Ap is a vector space direct sum of its nil radical N

and the subalgebra H(f) O Ap.

Proof. By Lemma 10, //(/) + N is an ideal of AK and hence [//(/) + N] riAp

is an ideal of Ap. Since Ap is nearly-simple, Apif, 14) Ç //(/) is not contained

in N and thus Ap = [//(/) + N] n Ap. Therefore //(/) + N = AR and Ap m

[Hif)nAp] + Np.

Now let x be in /Vp n [//(/) D Ap]. Then since in Ap, zV Ç A jj + A22 + A„,

then x = Xj + x2 + x? where x. is in A ... Each x¿ is also contained in the corre-

sponding subspace of A„. Now in A „ it follows from Lemmas 13 and 14 that

[Hif)]ü = [Aif, y2)% = [A23 + Aj2 + A\A.. = [A23 + A23]¿; Ç [A2.]., for each

i 4 /'. Since x. is in [//(/)].., then by Lemma 7, x. • A(e, l/2) = x. • [A .. + A .,] =

x. • A .. + x. . A ..  is contained in A .. + A ... Also since x. is in zVcC/V„ then
i 11 i IK ii iK I r —     Is.

xi . Aie, y2) is contained in A jj + A22 + A„. Hence x¿ • A(e, H) = 0 for i = 1,

2, and 3. Therefore in Ap, x. is in C(e.) = 0 for i = 1, 2, and 3 and thus

[//(/) n Ap] nzVp = 0.

The results of the sequence of Lemmas 2—21 may be condensed into the fol-

lowing theorem.

Theorem 1. Let A be a nearly-simple, strictly power-associative, flexible

algebra with unity over a field of characteristic not 2 or 3, with 1 = t?j + e, + e,,

and with A - N separable. Then A =S + N where S is a subalgebra of A.
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Then in light of Lemma 1 we have the following Wedderburn principal theorem

for flexible algebras.

Theorem 2.  Let A  be a strictly power-associative, flexible algebra overa

field F with characteristic not 2 or 3, with A — N separable and such that A =

A, © A ,©•••© A    where each A . has A . — N. simple and has more than two
12 71 Z 2 2

pairwise orthogonal idempotents.  Then A = S + N where S is a subalgebra of A.
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