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ABSTRACT.   Let K be a compact set, % a prescribed family of (possibly

signed) Borel measures of total mass one supported by K, and / a continuous

real-valued function on Kx K.   We study the problem of determining for which /x

e% (if any) the energy integral 1(K, fi) = Siefi(ßx' y)df4.x)df/.y) is maximal, and

what this maximum is.   The more symmetry  K has, the more we can say;   our re-

sults are best when K is a sphere.   In particular, when % is atomic we obtain

good upper bounds for the sums of powers of all (?) distances determined by n

points on the surface of a sphere.   We make use of results from Schoenberg's

theory of metric embedding, and of techniques devised by Polya and Szegö for

the calculation of transfinite diameters.

1.   Background and summary of results.   In this paper we will investigate a

number of extremal problems in distance geometry.   Our work is in many ways

analogous to the study of energy integrals in classical potential theory.

Let K be a compact set in a Euclidean space and !m be a prescribed family

of Borel measures (possibly signed) of total mass one supported by  K.   Suppose

/ is a continuous real-valued function on  Kx K.   We consider the family of inte-

grals having the form

(1-1) ¡(K, ,i) = ff f(x, y) d¡i(x) d^y),       p e X

A number of interesting questions naturally arise concerning ¡(K), the supre-

mum of the numbers ¡(K, ¡i) with ¡m in 3IÎ:

(i) What is the numerical value of I(K)?

(ii)  Does there exist a ¡iQ in 31Ï such that l(K, /iQ) = ¡(K)?

(iii) If n0 exists, is this measure unique?

(iv)  Can an extremal measure HQ be explicitly produced?
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Let us give an example.  Suppose K is a unit Euclidean m-sphere and   5IÎ is

the collection of all atomic measures on K consisting of n atoms of weight 1/«.

Let f(x, y) = |x - y\.   It is easily seen that n l(K) is the supremum of all sums

^f j I $i ~ Pj I» wnere P\ »' ' ' ' P„ are variable points on the sphere.   We remark

that if m > 1 and n > m + 2, no methods exist for answering completely questions

(i), (iii), and (iv).   If in this example f(x, y) is changed to be the great circle dis-

tance from x to y, Kelly [17], Nielson [23] and Sperling [31 ] have shown that I(K)

= ff/4 (n even).

When (as above) 3li consists of the positive measures containing n atoms of

weight l/n, we call 5H the n-discrete family.

G. Bjó'rck [2], by using the elegant methods of potential theory, has investi-

gated the case where K is a compact set in a Euclidean space, m consists of the

positive Borel measures of mass one supported by K, and f(x, y) = | x— y \

where 0 < A.   He showed that if 0 < À < 2, then ¡iQ exists and is unique.  His

paper also contains a nice discussion of the cases A = 2 and A > 2.

The classical paper of I. Schur \30i treats the case where  K is an interval,

f(x, y) = log I x — y I, and M is the «-discrete family.  It brilliantly answers all

four of our questions.

L. Fejes Tóth [7] points out that if K is a circle and if / has strong con-

vexity properties, one can employ a winding number argument to produce an ex-

tremal w-discrete measure pn.  Since we are very interested in Euclidean spheres,

we wish to know as much as possible about the circle.  However, even here, there

are unanswered questions.

One must also mention the important work of Polya and Szegö [24].   By ex-

panding I x — y I     in spherical harmonics they were able to obtain much informa-

tion about the case where  K is a 2-sphere.  We find their technique extremely in-

teresting and worthy of further investigation.

We now give a brief summary of our present work.

In §2 we take a close look at Fejes Toth's method for the circle and identify

a rather general class of functions for which the method is effective.  As a non-

trivial example, we prove that any elementary symmetric function of the (") dis-

tances determined by » points on a circle is uniquely maximized when the points

are the distinct vertices of a regular «-gon.  Analogous results for non-Euclidean

circles are indicated.

In §3 we show that the results of I. J. Schoenberg ([25J-[28]) on metric em-

bedding are powerful tools for investigating our problems.   For example, if K is

a finite set in a Euclidean space, f(x, y) = \ x - y |* with 0 < A < 2, and 311 con-

sists of all signed Borel measures of mass one supported by K, we show that p0

is unique and can be computed directly.  In this case we show that I(K) has a
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nice geometrical interpretation in terms of the radius of a certain sphere.   This al-

lows application of our results to certain problems which, by their statements, do

not seem closely related to extremal problems.

For example, Grünbaum and Kelly 191 call a set of points \pl,- • • , pn\ in Em

strictly metrically homogeneous if the set (counting multiplicities) of distances

l\P-~ Pl\'"' '\p-~ P   II Is independent of i.   (The vertex sets of regular poly-

gons and Platonic solids give examples of such sets.)  Their characterization of

such planar sets shows that when m = 2, the points pl ,• • • , p    lie on a circle

centered at their centroid.   We generalize this to arbitrary m by showing that the

set must lie on a sphere centered at the centroid.

Also in § 3, it is shown that if K is a compact set in Em, /(x, y) = | x - y \

with 0 < X < 1, and 5li is the family of signed Borel measures of total mass one

supported by K, then 1(K) < c • Diameter K where c depends only on m.   The

number ¡(K) is interpreted in terms of the radius of a certain Hubert sphere asso-

ciated with a metric embedding.

In §4 we assume that K is a Euclidean sphere, / satisfies a certain definite-

ness condition, and 3H is the «-discrete family.  We show that c(l - l/n)< l(K)<

c where the constant c depends only on /.  We also show that the great circle

metric, as well as the Euclidean metric, satisfies the definiteness condition.

This generalizes the previously cited work of Nielson and Sperling.

In §5 we expand upon the method of Pólya and Szegö in the situation where

K is a Euclidean wz-sphere, f(x, y) = | x - y |   with 0 < X < 2, and M is the n-

discrete family.  We show for m > 2 that n2l(K)< c(m,X)n2 - b(m,X)n~y(m'X\

Here c(m, X) is the "constant of uniform distribution," b(m, X) > 0, and y(m, X) =

(2A + l)/m.   The previously cited work of Björck shows that ¡(K) < dm, X).   To

obtain our inequality, the method of Pólya and Szegö is extended to ultraspherical

harmonics, and further refined.   For X = 1 very good estimates of I(K) are avail-

able ([l], [33]);  for 0 < A < 1 see also [32].

In §6 various constants (which do not seem to appear in the literature) re-

lated to transfinite diameter and curvature are computed.  Hille [l2] shows that

the transfinite diameter of the Hubert sphere is V2;  we show by explicit formulae

that the transfinite diameter of the w-sphere is v2 + 0(1/m).  Also, a new metric

curvature is introduced.  We remark that Hille's recent book [13] contains a wealth

of material on transfinite diameters.

Throughout the paper we often use notations of convenience, rather than /, K,

and 5H.  For example, in §4 the expression n I(K) becomes S(f, «).

2.   Extensions of Fejes Tóth's work on the circle.  In this section we extend

Fejes Toth's results for the unit circle to a more general class of functions.  In

order to reserve the letters z, ;', k for integers we write exp (6) instead of
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exp(z'0).   To obtain an appropriate level of generality, we shall study functions

defined on angle tuples (0Q, 0j,- ••, 0 ) rather than on point tuples (exp(0n),« • • ,

exp(0r));   angle tuples determine unique point tuples, but not vice versa.   Thus

we define star polygons in terms of angle tuples.   This causes a certain amount

of difficulty in defining the natural family of star polygons associated with a

given finite set of points on the unit circle;   we believe that our definition is

about as simple as one can expect.

An ordered (r + l)-tuple of real numbers (0O, 0p» • • , 0 ) will be called a

star polygon provided 0n < 0j < • • ■ < 0   and 9 — 9Q = 2nd where d is a non-

negative integer.  We call d the winding number.   If 9 i - 0., = 2nd/r for each i,

the polygon is called regular.   The r points (not necessarily distinct) on the unit

circle given by exp (0.), where i = 0, • • • , r — 1, are called the vertices of the

polygon, and the r undirected chords q.q.  ., where i = O,- • • , r— 1 and q. =

exp(0¿) for /' = 0," • , r, are called the edges of the polygon.

We now show that n points pQ,» • • , p _ j on the unit circle determine a

natural family of star polygons.  There is a unique angle 0. in  [0, 2n) such that

exp(0.) = p..   By reindexing the p. we may assume that 0Q < 0j < • • • < 9     .. It

is convenient to think of the indices as least nonnegative residues modulo n.  If

k is an integer which satisfies  1 < k < [n/2] (actually the construction of this

paragraph only requires 1 < k < n - 1), each cycle of the permutation i —► i + k

(mod n) determines a star polygon as follows.   Let o^ be the least residue oc-

curring in the cycle.   Form the ordered tuple  (0a , 9    ,. • • ) = (0     , 0       , ,. • • ,

0 _i+an> ^an)'   This set is not a star polygon;   however, if we replace 0a. by

9'a, = 9a + 2/3.77 where ß. counts the number of z < / such that a.  . < a., we

obtain a star polygon.

For example, if k = 1 we obtain the single polygon (0Q, 0j,• • • , 0 _i»0o +

2?r).   If k = 2 and n is odd we obtain a single polygon  (0Q, 02,- • • , 0 _,,9.  +

277,.. • , 0Q + An).   If n = 10 and k = 4 we obtain the two polygons (0Q, 9^,. • • ,

02 + 2nv • • , 0O + 4n) and (0j, 0j,-" , 0j + 2n,... , 0j + 4n).  In general there

will be s = (k, n) polygons, each having winding number k/s.

If Pq,- • • i p _, are points on the unit circle, generate the star polygons

corresponding to all integers k with 1 < k < [n/2].   Then there is a one-to-one

correspondence between the edges of the star polygons they determine and the

(") chords p¿p-.   For example, if n - 10 the chord P2Pa  iS an e^ge of the poly-

gon determined by the single cycle of the permutation i—*i + 3.   By studying cer-

tain functions defined on star polygons (the sum or product of edge lengths, for

example) we obtain information about related functions defined on all (X) chords.

The proof of our first lemma is straightforward;   we omit it.  We remark that
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if a star polygon obtained from a cycle of the permutation /' —» i + k   (mod n) has

r vertices, then (r, d)=l.

Lemma 2.1.   Suppose 2d. = 0¿_j + 9.  . for i = 1,- • • , r - 1 and 6 — 0Q =

2nd.   Then the star polygon (9Q, 0j,- • • , 9 ) is regular and its vertices lie on the

vertices of a regular r/s-gon where s = (r, d).

Let / = f(9Q,- ' • ,9r) be a real function defined on all star polygons with r

vertices. Let h(r, d) be the value assumed by / on the regular star polygon for

which 9, = 2nkd/r where k «■ 0,« •• , r.

Definition 2.1.   Let J   be the class of all those /, described above, which

satisfy the following three conditions :

(i) f(90 + c0,-'-,9r+cr)= f(9Q, - ..,$r) if et = c.  (mod 2n) for all i, j,

and both arguments are star polygons.

(ii)  h(r, 0) < Mr, 1)< • • • < Mr, [r/2]).

(iii) If / is restricted to polygons with fixed winding number then / achieves

a maximum, and this maximum can occur only if 9. m lA{9._. + 9.  .)  (mod it) for

0 < i < r.

We obtain the class j     by reversing the inequalities in (ii) and replacing

"maximum" by "minimum" in (iii).

In practice, (i) and (ii) are usually simple to verify.  The functions

IFal | exp(0¿)- exp(0(._ j)| and   2'al |exp(0.)-exp(0._ j)| are quickly seen to

satisfy them.   Easy compactness and convexity arguments show that (iii) is also

satisfied by these functions.

Theorem 2.1.  Suppose j belongs to j  (j' ), and is restricted to those poly-

gons with winding number d < lr/2l   Then h(r, d) is the maximum (minimum)

value of f on this class;  f assumes the value h(r, d) only if the polygon is

regular.

Proof.  Suppose d= 0.  Condition (i) implies that f(9Q, 9¡,- • • , 9r) =

/(0, 0," • , 0) = h(r, 0).   Since any star polygon of winding number 0 is trivially

regular, the theorem is true when d = 0.  Suppose the theorem is true for all d' <

d< [r/2].   Let (0n,- • •, 0 ) be a polygon of winding number d on which / e J

achieves its maximum.   For each i with 1 < i < r, condition (iii) gives

0.+1-0. = e.-6._x + 2l.n

where /. is an integer.  If /. ¡¿ 0, one of the differences, say 0.  . - 0., is at

least 2z7.   By (i),

/(0O, ..., 9., 0.+1 - 2v, ..., er - 2>r)- f(90, ...,9r)<h(r, d - l).
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This contradicts the fact that /(0Q,» ••, 0r) > h(r, d) > h(r, d - 1).   Thus L = 0

for each i, and 0.  j - 0. = 2nd/V for each z by Lemma 2.1.   This completes the

proof.

The importance of condition (ii) on the members of J  should not be over-

looked.   Suppose / is the real function defined on all star polygons with r ver-

tices by f(9Q,' ' • , 6r) = 1 if 0¿ = 0. (mod 2rr) for each i, j and /(0O»» • • , 0f) = 0

otherwise.  Conditions (i) and (iii) are satisfied, but the conclusion of Theorem

2.1 does not hold.

It follows by way of the cyclic decomposition described earlier that if n

points lie on the circumference of the unit circle, then both the product and sum

of the lengths of the (") chords they determine are maximal when the points are

the vertices of a regular n-gon.   To prove this, apply Theorem 2.1 to the two dis-

tance functions mentioned earlier.

To put this result in the language of the introduction, let K be the unit

circle, /(x, y) = | x - y \ or log | x - y \, and let Î1Î be the «-discrete measures on

K.   Then ¡(K) = n" cot(n/2n) or (2n)~ log n respectively (see Fejes Tóth [7]

and Schur [30] respectively).

The following corollary generalizes the results on the sum and product of

chord lengths.  Since there are no new ideas involved, aside from elementary

technical details, we omit the proof.

Corollary 2.1.   Let g(x) = e~axxb(\og xf, and

(-l)c    for a > 0, b < 0, c a positive integer,

t(a,b,c)=    1 for a>0, h <0, c = 0, a2 + b2¿0,

-1 for a = 0, 0 <b < 1, c = 0.

Let s.. = | exp (0.) - exp (0.) |.   Then 2¿< .gOis..) is maximal (minimal) if and

only if the points p. = exp(0) are the distinct vertices of a regular n-gon, pro-

vided r = -l (+1).

We remark that the result on the product of chord lengths comes by setting

a = h = 0, and c = 1.   Also, if 0 < A < 1, we may set a = c = 0, è = A to see that

2. .s\ maximizes for the regular n-gon.  If A > 1, the methods of this section

fail because we no longer have the requited convexity.  Condition (iii) is not

satisfied.   Later on, we will deal with 1 < A < 2.  The case A = 2 is easily

treated as follows. ,

Suppose   p., p2,' • • , p    are unit vectors in an inner product space.  We note

the identity

(2.1) El^-Pyl2-»2-
»<;

Ï.P,
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The identity shows that if « points lie on a unit sphere, the sum of the squares of

the various distances they determine is at most n , and will be «    if and only if

the centroid of the points is the origin.   Thus a regular n-gon represents a maxi-

mal configuration which will not be unique for n > 3.  For X > 2, the sum 2sV

does not generally maximize on a regular n-gon.   The paper of Björck [2] gives a

nice treatment of this problem when X > 2.

In the final theorem of this section we give another generalization of the re-

sults about sums and products of chord lengths.

Theorem 2.2.   Let o be an elementary symmetric function on (?) real vari"

ables.   Let \s..\ be the lengths of the chords determined by n points on the cir-

cumference of the unit circle.   Then   ffCs-) is maximal if and only if the n points

are the distinct vertices of a regular n-gon.

We will need the following lemma.

Lemma 2.2. Let [i be an elementary symmetric function on r real variables.

Let s.,'" ,s denote the lengths of the edges of a star polygon T= (9Q,---,9\

Then Ji(90, • • •, 6 ) » p(s j, • • •, s ) belongs to the class 'S.

Proof.   It is clear that ~ß satisfies conditions (i) and (ii).  Suppose T has

winding number d< \r/2\.  A standard compactness argument shows that a con-

figuration exists for which /2(6*0, - •- ,9f) is maximal.  Let s. be the length of the

edge p._ jp..   We may write

/Z(0O, • • ■, 9) = s s .+ lA + (s. + s.+l)B + C

where A, B and C are numbers which are independent of s. and s.  j.  If 0. £

%^i_l + ^v+i^ (mod it), then the point p. may be moved to increase both ss...

and s. + s. ,, while leaving the winding number unchanged.  This shows that /Z satisfies

condition (iii).

From Lemma 2.1 and Theorem 2.1 it follows that JZ, when restricted to star

polygons with winding number d, is maximal when 0.  . - 0. = 2nd/r.

Proof of Theorem 2.2.  Suppose o is the /th symmetric function;   °is-) will

be the sum of all /-fold products of chord lengths determined by the points pn,

" ' » P„ _ i •  Let T j, • • • , T   be all of the star polygons obtained by the decompo-

sition described at the beginning of this section.   Each /-fold product j8 can be

written uniquely as ß = q^q2 • • • qt where q{ is a product of lengths of edges oc-

curring in T;.  (If there are no edges from T2-, set q. = 1.) Associated with each

product j8 is a set of occupancy numbers Aj, A2>" * • ^f w*tn 2.A. = /, where k.

is the number of edge lengths from T. which occur in the product q..

We group together all /-fold products which have exactly the same set of
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occupancy numbers ijt«< •, k(.  The sum of this collection of products can be

written as

IIUj, • • •, kt) = u^kju^kj ... ut(kt)

where p¿U¿) is the kxh symmetric function on the set of edge lengths determined

by T;.  We define u.(0) = 1.

Since each p;(&;) is maximal when T". is a regular star polygon, we imme-

diately deduce that IlUp» • • , kt) is maximal when the points Ip.} are the dis-

tinct vertices of a regular n-gon.   If Tj is the star polygon with n sides and

winding number 1, ftjU) is maximal only when the \p{\ determine a regular n-gon.

It follows that o(s...) is maximal only for this configuration by summing over all

the various sets of occupancy numbers.   This completes the proof.

We can now sketch results for the non-Euclidean case.  Say two points p., p.

on a non-Euclidean circle C   of radius p determine a central angle of 0, 0 < 0

< it.   Let 0 < r < R.  Then the distance between them is

Ij, (sin y29)
« (l - 2r^ cos 0+ .-<*-<)"  ]'       '=RarCtanWR'

\(2rsiuV29)(R2-r2COs2xA9)^] arc taflh f/R
= arc tanh-,       p =-'     ,

I (R2-r2 cos 0) J arc tanh l/R

= 2rsialA9,        p = r,

= 2R arc sin(rR~ ' sin Vi9),       p= R arc sin r/R.

depending upon whether the circle is Lobatchevskian (in the conformai model),

Lobatchevskian with curvature arc tanh l/R, Euclidean, or Riemannian with

curvature l/R.

In each case elementary calculus shows that f(9) = d(p., p.) is positive,

strictly increasing for 0 < 0 < n, and concave in 0.  It follows that dx(p., p.) and

log d(p{, p.) are also concave in 0.   Thus the same ideas as before yield

Theorem 2.2 .   Let pQ,- • •, pn_ j he n points on a non-Euclidean circle and

let d(p^ p.) he the non-Euclidean distance between p. and p..   Let o he an ele-

mentary symmetric function on (") real variables.   Then for 0 < A < 1,

o(d (p¿, p.)) is maximal only on a regular n-gon.

Handy references for distance formulas in non-Euclidean spaces are [4,

pp. 16-21] and [ll, pp. 237-241],

It is a consequence of Theorem 2.2' that for points p0,» • • , p _ , on C
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lim   — max ¿_,        d(p{, p)
n-<* n2 0s!s;sn-l

m2p      1    panMPK) arc sin * =        tanh   /R

= 2p/zr, K = 0,

2p      1     r*sin(/K) arc tanh t   . . .„

for the last three geometries, where k is the curvature of the corresponding

space.  Since the maximum occurs at the regular n-gon, we simply use the fact

that the Riemann sums of a continuous function tend to its integral.  The details

are omitted.

If (pay is negligible then the values are respectively

In fact these expressions are the same aside from + signs, since

— i arc sin (z tan x) = arc tanh (sin x).   The integrals can be expressed in terms of

Lobatchevsky's function L(x) = -fx0 log cos t dt.

We close this section with two unanswered questions.   Let K be the unit

circle, f(x, y)= \ x - y |    with 1 < À < 2, and M the «-discrete measures.   Is the

extremal measure fiQ given by the vertices of the regular n-gon, as is the case

for 0 < X < 1?   Let K be the unit circle, /(x, y) = | x - y |, and 3IÎ those measures

consisting of n positive atoms a.»««« , a. .   Is the «-discrete measure deter-

mined by the vertices of a regular n-gon extremal?

3.   Application of metric embedding theory.   Let K consist of « distinct

points p. ,• • •, p    in a Euclidean space and ÎIÎ consist of all signed measures of

total mass one supported by K.   In this section we will investigate and interpret

the number l(K) when the kernel function /(x, y ) is | x - y |*, and 0 < X < 2. We

will apply our results to several related problems.

For each v. in 3TÏ, we have l(K, ¡i) = 2.. | p. - p. |*x.x. where 2.x. = 1 and

(i(p.) = x.. The following two theorems of I. J. Schoenberg [26] give us the in-

formation we need.

Theorem 3.1 (Schoenberg).   Let plt,,t if    be « distinct points in a Eu-

clidean space.   Let s¡- be the distance between p. and p..   The quadratic form
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2..s\xjf,  is nonsingular, and is negative definite on the hyperplane 2.x. = 0,

provided 0 < A < 2.

The following corollary follows at once from simple considerations of con-

tinuity.

Corollary 3.1.   Let p.,.. • ,p    be n points, not necessarily distinct, in a

Euclidean space.   Then the quadratic form 2...s\x.x. is negative semidefinite on

the hyperplane 1x. = 0, provided 0 < A < 2.

Theorem 3.2 (Schoenberg).   The symmetric (n + l) x (n + l) matrix

M"G 4
is nonsingular for 0 < A < 2 provided that p.,> • • , p    are distinct points in a

Euclidean space.

We can now easily prove the following theorem.

Theorem 3.3.   Let pp* • • » p    be distinct points in a Euclidean space.   The

quadratic form 1..s..x.x. achieves a unique absolute maximum on the hyperplane

2x. = 1, provided 0 < A < 2.   The maximum point will be determined by the unique

solution of the following system of (n + 1) equations in (n + 1) unknowns:

n n

(3-D £*|-li      *o + £ *«*,•-°.      /-It 2.n.
¿=1 ¿=l

The unknown xn is a Lagrange multiplier.

Proof. By Theorem 3.1 the form is negative definite on the hyperplane 2x. =

0, and hence will achieve a maximum on any parallel hyperplane such as 2x,- = 1.

We apply the method of Lagrange to

f(x0,...,xn) = xJJt *i] +Çs-,Vy

We see that at a maximum, the system of equations (3.1) must be satisfied.  The

matrix of the system is precisely the M of Theorem 3.2. Since M is nonsingular,

the system possesses a unique solution.  This completes the proof.

Corollary 3.2.   If x. = m./m, where m. is a nonnegative integer for i = 1, 2,

• • •, n, is a solution of the system (3.1), then x¿ = mjm must give the solution to

the problem of finding an extremal m-discrete measure on K.
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Lemma 3.1.   Let  K be a compact convex polytope in Euclidean space.   Let

n variable points p^,' • • , p    lie in K.   Then if X > 1, 5Ls\ will achieve a maxi-

mal value ¡or a configuration in which each p. is a vertex of K.   Thus an extremal

n-discrete measure on K is supported by the vertices*

Proof.   The proof is a straightforward application of standard compactness

and convexity arguments.   We remark that except when X = 1, and K is a line seg-

ment, the maximal value can occur only if each p. is a vertex of K.

Definition 3.1.   A set of points pj,- • • , p    in a Euclidean space will be

called A-homogeneous if for each /', the sum 2?   , sA. is a constant independent of

/'.  A convex polytope will be called A-homogeneous if its vertices form a A-homo-

geneous set.

Regular polygons, the Platonic solids, rectangles of all dimensions, etc., are

A-homogeneous for all A.   The term "strictly metrically homogeneous" has been

used by Gru'nbaum and Kelly Í9Í to denote a set of points for which the set (count-

ing multiplicities) of distances |sj .,• • • , s   .\ is independent of /.   Clearly,

"strictly homogeneous" is equivalent to  "A-homogeneous for all A".  However,

it is easy to find   1-homogeneous sets which are not strictly homogeneous, etc.

Theorem 3.4.   Suppose 1 < A < 2.   Let K be a convex X-homogeneous poly-

tope with n vertices and let f(x, y)= \x-y |\   jhen the unique extremal n-

discrete measure is obtained by placing an atom at each vertex.

Proof.   By Lemma 3.1 an extremal measure will occur only when each atom is

at some vertex of K.   We observe that x. = 1/«, z = 1,. • •, », and x   =

- »     (2?  ,s\) is a solution of the system (3.1).  Hence this must be the unique

solution.   If the atoms are constrained to lie on vertices of K, then the result is

true for A in the range   0 < A < 2.

For example, if twelve points are placed in an icosahedron, the sum of the

sixty-six distances they determine will be uniquely maximal when each point is a

distinct vertex. Moreover, if K is any polytope with a nontrivial symmetry group, it is

clear that whenever two vertices belong to the same orbit, then the corresponding

x. in the solution vector of (3.1) are equal.

If  K is a regular «-gon, /(x, y) = | x - y |* with 1 < A < 2, and Jlï consists of

measures made of « nonnegative atoms, then the method of Theorem 3.4 shows

that the extremal measure is obtained by placing an atom of weight 1/« at each

vertex.   (Compare with the second question at the end of §2.)

If K is not A-homogeneous, it generally happens that the solution vector of

(3.1) contains x. which are negative.  We now give a geometrical interpretation of

the solution vector of (3.1) which sheds considerable light.  The following theorem
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follows from the paper of Schoenberg [26],   We let R denote the set of real num-

bers.

Theorem 3.5   (Schoenberg).   // d is the Euclidean metric, then the metric

space (Rm, d   ), 0 < o < 1, can be isometrically embedded in the sequence space

/,.   Moreover, if o< I and pQ, pj,. • • , p    are distinct points in Em = (Rm, d),

their images p0' ,• • • , p'n in (Rm , d  ) considered as a subset of ¡2 form the ver-

tices of a nondegenerate n-simplex.

Lemma 3.2. Let p0,- • • , p form the vertices of a nondegenerate n-simplex

in E". Then the maximum value assumed on the hyperplane 2.x. = 1 by the form

2.  . sr.x.x. is p  , where p is the radius of the circumsphere of p0>"* >?_•

Proof.   Let the origin be the center of the circumsphere.  Now

S 5 }XX \  =   Z [(p. - Pj)  -  (Pi - p )]X X .
Kl

= Z(\Pl\2+\P]\2-2Prp)\*j

2

Thus

C3.2) !>•/•,•*,• = P2 Z v.

There will be a unique choice of xQ,. • • , xn for which 2^-p^ = 0.

We also see that the x. are all nonnegative only if the center of the circum-

sphere lies in the convex hull of the p.. In general, the solution vector is given

by the affine (barycentric) coordinates of the center of the circumsphere.

Theorem 3.6.   Let p0,- • • , p    be points in Em which form a  \-homogeneous

set.   Then the points p'0,"-,p'   in (Rm, dX/2)C l2 have their centroid at the

center of their circumsphere.   Moreover, if the set is strictly homogeneous, then

pQ,. • • , p    lie on a sphere in Em with their centroid as its center.

Proof. Introduce variables x. as in Lemma 3.2. The equations correspond-

ing to (3.1) are

n n

£x. = l,      x_j+£ sí;-x¿ = °»      ;' = 0, 1, ...,n,

i=0 ¿=0
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where x_j is the Lagrange multiplier.   If p0,»" , pn are A-homogeneous, where

0 < A < 2, then the solution to this system, of equations is

1        •   n                                  l      V   Xx. = ;-:, z = 0, • • •, n;      x  . = - ■-   ¿. s■ ■•
«   (» + i) -1      Oi + l) U   "

Formula (3.2) implies that if pg'" ' ' P'  are tne images ía Bn *- ¡2 g*ven by Theo-

rem 3.5, then their centroid is the center of their circumsphere.   If the set is

strictly homogeneous, we may use a continuity argument as A —> 2.   Let us as-

sume that Em is the Euclidean space of least dimension containing pQ,- • • ,p ;

thus   Em C E".   Let p'Q,- • • , p'   lie on a sphere of radius p    centered at the ori-

gin of   En.   As A —► 2, these spheres converge to a sphere of radius   p =

(n + l)~   (2. .s..)        which (by continuity) will contain an isometric copy of

P0''"'K-
When m = 2, this result on strictly homogeneous sets follows from their char-

acterization by Grünbaum and Kelly [$)].   Perhaps Theorem 3.6 is a step towards

deciding whether or not a strictly homogeneous set does possess a nontrivial

symmetry group.

The question has a negative answer if there exists a Latin square with the

following properties:  the square is constant down the main diagonal, is symmetric

with respect to this main diagonal, and has a trivial group of automorphisms.   By

"automorphism" we mean a symmetric row and column permutation which gives a

square identical with the original.   If the square is (n + 1) x (n + 1), replace the

diagonal letter by zero and the other letters by 1,« • • , n to obtain a matrix (a..).

For A > 0 sufficiently small, the work of Schoenberg assures us that (a..) represents

the distance matrix for a ser of points in  En.   The symmetry group would be

trivial.

Next let K be a compact set in a Euclidean space, and let ft be a signed

Borel measure on  K with total mass one.   As usual let  l(K, /x) =

//I P - 11 d¡i(p)dvXq) and l(K) = sup,,/(K, v.).   Bjorck [2] has made a thorough study

of l(K,u) in the case where v. is a positive Borel measure.   Let / (K) be the

supremum of l(K, v.) taken over positive p..

Theorem 3.7 (Björck).   Let K be a compact set in Em.   Then there is a

unique positive Borel measure ¡i such that ¡(K, u) = I (K).

We will prove the following result about ¡{K).

Theorem 3.8.   Let K be a compact set in Em.   The metric space (K, d '   )

may be isometrically embedded on the surface of a Hilbert sphere of radius p <

a(m) • Diameter (K).   Moreover, ¡(K) = 2p   < oc  where p is the least such p.

The proof will use Lemmas 3.3—3.5;   we abbreviate Diameter (K) by D(K).
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Lemma 3.3.   We have I(K)= sup l(K, ¡i) where p is concentrated on finitely

many atoms.

Proof.   The kernel function | p— q \ is uniformly continuous on Kx K.   De-

compose  K into disjoint Borel sets  Kp- • • , K    such that for all i,j the products

K. x K. have diameters so small that the variation of | p - q \ is less than e on

K. x K..   Let p{ be in K; and define p(p¿)= p(K¿). Since /(K,p) =

Hg(p' q)dp.(p)du(q) where gip, q) = \ pi - p. | for (p, q) in /Ç x K., we see that

\I(K, u)- ¡(K,]i)\ < e \ u x n\(K x K).

Lemma 3.4 (Menger).   A separable metric space (M,8) can be isometrically

embedded on the surface of a Hubert sphere of radius p if each finite collection

of points in  (M, 8) can be embedded on a Euclidean sphere of radius not exceed-

ing p.

We suppress the standard argument.   Chapters IV and V of Blumenthal's book

[4] thoroughly discuss results of this nature.

Let K   be a finite collection of points in  K.   Theorem 3.5 and Lemma 3.2

tell us that ¡(K') = 2p     where p' is the radius of the circumsphere of (k', d '   )

C /,.   Thus if l(K')< 2p    for all such K', Lemma 3.4 allows us to say that

(K1, d      ) lies on a sphere of radius p in /2.  Since l(K)> ¡(K1), the least such

p is te(K)]I/2.

The results of the above paragraph would be of little interest if l(K) = + °°.

We show this is not the situation.

Lemma 3.5.   The metric space ([0, l], d '   ) can be embedded on the Hilbert

sphere of radius 1/2.   Since this radius is clearly minimal, /([0, l])= 1/2.

Proof.   Let 0 = pn < p j < • • • < p   = 1.   Consider the mapping given by p¿ =

(Vpt> y[(p2 - P.)'"' » \Ap¿- P,_i^' °'"' )•   Tne Points P'i lie on a sphere of

radius  1/2 in lv   The center of the sphere is xA(ypx » yip2 - pj)»" • >

V(p   - P _ 1)» 0»' • * )•  Hence the result follows from Lemma 3.4.   By a dilation

we also obtain l([a, b]) = lA(b - a).   Placing atoms of weight 1/2 at a and b

gives the extremal measure.  A direct proof can be given, but we know of no neat

one.

To complete the proof of Theorem 3.8 let K' = {pp- • • , pn\ be a finite set of

points in K.   Then

L \Pi - Pylxx. = Z km) / \(p¿ - p) • t\doit))xx.

(3.3) W Lf\/ ,'

= b(m)j( Z |(pf - p) • t\xx\ doit).



EXTREMAL PROBLEMS OF DISTANCE GEOMETRY 15

The right side of (3.3) comes from noting that if p, q are points in Em, then

I P * 11 = b(m)f\ (p - q) • t\ do(t) where the integral is over the surface of the

unit m-ball.   The sum inside the integral may be viewed as the one dimensional

case by projecting the points onto a line having the direction t.  Hence by Lemma

3.5, the inner sum is at most ViD(K) if 2¿x¿ = 1; thus the left side of (3.3) is at

most l/2b(m)oD(K) on this hyperplane.   Hence l(K)< a(m)D(K).

Several interesting questions remain. First, does there always exist a (i

such that ¡(K) = l(K, v.)? The method used here can be extended to the kernel

| p - q |x if 0 < A < 1.  What about 1< A < 2?

We remark that we can give a geometric interpretation to / ;  we have / (K) =

2(p2 - s2) where l(K) = 2p2 and s is the distance to the convex hull of (K, d1'2)

from the center of the Hubert sphere of radius p on which it is embedded by

Theorem 3.8.

4.   Definite semimetrics on Euclidean spheres.   To define semimetric one

drops the requirement that the triangle inequality be satisfied.  We will be con-

cerned only with continuous semimetrics which are invariant under Euclidean mo-

tions.

Definition 4.1.   A semimetric h will be called definite if the quadratic form

2.  ./>(p¿, p.)x(.x. is negative definite on the hyperplane 2x¿= 0 whenever pj, p2»

• • • , p    are distinct points.   (If the form is allowed to be negative semidefinite,

we call h semidefinite.)

Lemma 4.1.   Let h be definite, and suppose p. ,• • • , p    and ?,»•••>?    are

two sets of points.   We have

(4.1) Z Hf, P,) + £ biqe q) < Z blP, <?,).
i'<7 i<j i.j

Equality can occur only if the sets are identical.

Proof.   We consider the form

£ h(pt, p)x.x. + £ h(qit q)yiyj + ^h(p., q)x.y.
i<j i<) '-J

which is negative semidefinite if 2x. + 2y. = 0. If we set each x¿ = 1 and each

y. = -1, the inequality is immediate.   Let 0j,- • • , 0^ be the distinct points

among the p. and q¡.   Let 0. occur with multiplicity  z^z". among the p., q.,

respectively.   If z. = z'. - z"., then 2.  .¿(0¿, 0.)z.z. is negative unless z'. = z*.

fot each i.

If h is a definite semimetric on a unit w-sphere, put S(h, n) =

max!2¿   e(p¿, p)i as pj,"- » pn vary over the sphere.
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Lemma 4.2.   We have S(h, 2n) > 4S(h, n).

Proof.   Let pv• ■ •, pn be such that2    .¿(pf » p.) » S(h, n).   Let </p• • •, qn be

a nonidentical isometric copy of pp- • • , p .  We have

S(h, 2n) >  X hip, p) + Z Kff, q) + Z *>(p., y.).
»'«; '<;' i./

By Lemma 4.1 the third sum exceeds the sum of the first and second.  The result

follows.

Theorem 4.1.   Let pQ be a fixed point on the m-sphere and define c(h) to he

(2o)~1fh(p0, p)do(p) where o is the surface content of the m-sphere.   Then

(4.2) c(h)n(n - I) < S(h, n) < c(h)n2.

Proof.   Let pl,...,p    be n points such that 2¿   .h(p., p.)= S(h, n).   Let

q.,' •• , q.     be kn variable points.   We always have

(4.3) k2S(h, ") + Z *(?,* l) < * Z b(pe pt).
i<i i.j

The inequality (4.3) is obtained by setting x. = k and y¿ = -1 in the proof of

Lemma 4.1.   For convenience write (4.3) in the form 2j + 22 < 2,.  We note that

(i)   ff"*"/... jlldo(ql).--d(T(qkn)=k2S(h,n),

(ii)  o~kn /•.. fI2do(qi) ... do(qkn) = knikn -l)c(h), and

(iii)  o~knf... /23¿a(9l) .. - do(qkn)=2k2n2c(h).

The inequality (4.3) implies that k2S{h, n) + knikn - l)c(h) < 2k2n2c(h); thus

(4.4) S(h, n) < (n2 + n/k)c(h).

Letting k tend to infinity gives S(h, n) < n c(h).   If equality were to hold, Lemma

3.2 would give S(h, 2n) > c(h)(2n) , a contradiction.

If p.,".,p    are variable points on the m-sphere, then

(4.5) S(b, n) > o~n j- • • j Z h(Pi> P¡>dc^Px^ ' • • àoip).

The left inequality in (4.2) follows.

Fejes Tóth [7] conjectured that if n points pp« • • » p    are distributed on the

2-sphere then 2.  .d(p., p.)< 2« /3.   The previously cited work of Schoenberg

assures us that d is definite, and an easy computation shows c(d)= 2/3 for the

2-sphere.   Actually, this result is implicit in the paper of Björck [2], and the po-

tential theoretic methods he uses can certainly be developed to obtain the right

inequality in (4.2).  However, refinements of the methods used here are proving
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useful in obtaining error estimates for the interesting n-discrete situation;   see

[l], [32], and [33].

Next we wish to show that the great circle metric d   is semidefinite.   Let

Pp P2i" ' ■> P   . i'* • • » P2    be points on a unit circle, indexed in counterclock-

wise order, such that p. and p.     are antipodal.   On the hyperplane 2.x. = 0 we

have

- Z ¿(pf P,Vy = Sl(x2 + - - . + Xn+1)2
(4.6) i<f

+ s2(x3 + ... + xn+2)2 + ... + sn(xn+1 + ... + x2n)2.

Here s. = d'(p., p.^) = d'(pi+n, PI+n+1).  To verify (4.6), set  x. = 1, x. = -1,

and the other variables equal to zero.   Professor Richard Bishop has pointed out

the following "differentiable" analogue of (4.6);   if / has period 2zr then

(4.6')        - ¡ln J£ |x - y\r(X)fXy)áxáy-fln [/(y) - /(y - n)]2 dy.

The mass distribution is given by /'.   Equations (4.6) and (4.6 ) are special

cases of a general Stieltjes integral formula.

We note that the right side of (4.6) is zero if and only if x; = x.      for each z*.

Any finite collection of points on the circle may be treated by first adding all

antipodal points, and then diagonalizing as in (4.6).   The additional points may

be suppressed by setting the corresponding x. equal to zero.  We have proved the

following lemma.

Lemma 4.3.   Let p.,'" , p    be points on a unit circle.   Then the quadratic

form 2.   .¿'(p., p.)x.x. is negative semidefinite on the hyperplane 2.x. = 0.

Theorem 4.2.   The great circle metric is semidefinite.   The form

2.  .d'(p., p.)x.x. will be negative definite on 2.x. = 0 unless there are two pairs

of antipodal points among the p..

Proof (for the 2-sphere).   Let V be an arc of a great circle on the sphere,

and let p be a point which is neither an endpoint of T nor antipodal to an end-

point.   Let r\  be the projection of T via great circles onto the equator of p. We

note that | T | = Mn~  /| I\ \do(p).  The integral is clearly invariant.  To see that

l/4z7 is the correct constant, choose T to be a great circle.

Let p■,■>••• 1 p    be distinct points on the sphere and let T'1 be a minimal

great arc joining p. and p..  We note that

(4.7) Z d'(p., p)x.x. - 1 f £ \rJ\xx.doip).
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The right side of (4.7) is nonpositive by Lemma 4.3.  It is clear from an examina-

tion of (4.6) that the form can be zero in a nontrivial way if and only if two pairs

of antipodal points are among the p..

If in Theorem 4.1 we allow h to be semidefinite, the right inequality of (4.2)

can become equality.   Two important examples are given by d   and d'.  See (2.1)

for d ;  if pl,-..,p2    are such that p. and p.      are antipodal, then 2. .d'(p.,p)

= ]4n(2n)  and c(d') = %n.  The papers of Sperling [3l] and Nielson [23Í concern d'. The

latter paper uses the integral formula for arc length and is closely related to our work.

Kelly obtains results of the same type inter alia in [17]; see also his papers [15] and

[16] for results concerning the quadratic form l(K, p.) oí §3 and the Schoenberg

embedding theorems.

We remark that if h is semidefinite, then hy is definite for 0< y < 1.

5.  A proof using spherical harmonics.   In this section we give a proof (which

uses the ideas of [24]) of the upper bound of Theorem 4.1 in the special case

where h(p, q) is the Euclidean distance from p to q.   In fact, we ultimately ob-

tain the stronger inequalities (5.33) and (5.34).

The notation in this section is changed to conform to that of Chapters X and

XI of [6].   We let ?p» • • , qN denote points on the unit sphere in E^* , p > 0,

and set t = lAp.   For 0 < A < 2 we define

S(N, p, A) = max    Z di¡
i<i

where d.. = \ q. - q. |.   The upper bound of Theorem 4.1 now becomes

(5. i)    s(n, p, x)/n2 < 2í'-1+Ani+Hp)rxH(p +1 + A))A*r(p +1 + ha).

For the moment we assume p > 1;   the modifications required when p = 0 will be

given later.

The ultraspherical (or Gegenbauer) polynomials are defined by the generating

function

(l-2xr+r2)-'=   Z   C^xV".       t ¿ 0.
m=0

For example C'0(x)=l, C\(x) = 2tx, etc.;  they are orthogonal on  [-1, l] with

weight w(x) = (1 - x2Y~l'2.  We shall write (a)m = T(a+ m)/V(a), and frequently

make use of

(5.2) Ha* w)/r(fn) ~ ma,       m —♦ °°,

and

(5.3) s/n~r(2Z) = 22z-lr(z)r(z + 1A).
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Lemma 5.1.  For 0 < A < 2, 0 < r < 1, and - 1 < x < 1 let

00

(5.4) f(x) = (1 + r2 - 2rx)X/2 *.   £  «  «C< (x), a (r) - a  (r, A),* ^^ TO TO TO TO

m=0

6e rie formal expansion of f(x) in terms of ultraspherical polynomials. Then (i)

the series converges to f(x) in [-1, l], and (ii) for r< 1 we have aAr)> 0 but

am(r)< O, »i > 1.   tfewce fl0(l)> 0 and «m(l)< 0, m> 1.

Proof.   If r^ 1, then /(x) is analytic on [-1, l] and hence by Theorem 9.1.1,

p. 243 of 134] the series converges to /(x) in the interior of the ellipse | x - 11 +

I x + 1 I = (l + r )/r (consider x as a complex variable).   For r = 1, /(x) is con-

tinuous and (1 - x2Y~l/2 I /(x) | is integrable, so by [18, p. 7791 and [19, p. 168]

the series on the right of (5.4) is Cesaro (C, k) summable to f(x) in the closed

interval [-1, l] for k sufficiently large.  Hence to show (i) it suffices to show

that the series converges.  We do this directly for any r, 0 < r < 1.

By [6, p. 175 (iii) (11)] we have the Rodrigues' formula

2mm\(t + V2)   (l-x2Y-i'iCt(x)^(-l)m(2t)  Dm[(l-x2)m+'-H].
Toto m

We obtain from orthogonality and repeated integration by parts,

ha ,(r) = £   (1 + r2 - 2rx)X/2(l - x2)'"* C^dx

(5.5)
(-1) m(2t)

=-ÜL  f1    (l_x2)m+i-^Dm(l + r2-2rx)
2mm\(t + V2)    J-1

*2dx

where h is the orthonormalization constant (see [6, p. 236 (26)] or [34, p. 82])

(5.6)       *- f, (l-x2)'-,^(C'(x))2^ = 21-2'zrrW-2 ,  nm + 2t)    v.
•'-» m u + r)ru + i)

Since

(5<7) Dm(l + r2-2rx)*-2 = (2r)V2 E^_I_AAVL±l! _ >/2"m
n-A/2)    \  2r J

(ii) is immediate.   By [6, p. 207 (7)]

(5.8) max     \CHx)\ = CM = (2t)/ml,      / > 0.

So for nz > 1 the facts that (1 - x) < ((1 + r2)/2r - x) and
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(5.9) fi j (1 + *)*" Kl - x)«~ 1dx = 2p+'¡- 1TXp)r(q)/T(p + q)

yield

(2t) j2r)X/2ïXm - A/2)22/+X/2+mr(t + A/2 + H)IX« + t + Ji)

(5.10) K,W<
m

2mnz!(i + H)  r(-A/2)rU + 2/ + A/2 + l)

with equality only when r = 1.  Now by (5.2) h » mp~  , so by (5.2), (5.8), and

(5.10),

\a   (r)C (x)| « exp[(log m)(2 - p + p - I + p - I . t-]/2-\/2 + t + lA-p-\/2 - l)]
m m

.»-i-A= 777 ,

■1-A
and 2t7!~ converges, so the proof is complete.

Lemma 5.2.

0.1D    -..ü)-££4n*. + i)   n77z-Y2)r(t + A/2^)
OT v^   2 Hi - A/2)r(772 + 2/ + A/2 + 1)

Proof.  This follows from (5.10) and (5.3).

Definition. Let 0¿ (0 < 0. < n, i = 1,. • • , p) and 0p+1 (0 < 0()+1 < 2tt) be

called the generalized latitudes and longitude of a point qg on the unit sphere in

Ep+2 where

qg = (cos 0p sin 0, cos 02, sin 0, sin 02 cos 0},

• • •, sin 0j sin 92 ••• sin 0   cos 0p+i»

sin 0j sin 02 • • • sin 9p sin 0^ +1).

Define [9,<p]= [(0p- ■ • , 9k), (tbv- ••, <bk)] inductively by

[(91),(<bl)] = COs(9ï-(f>l),

[(0p • ••, 9k), Gpp •••, tpk)] = cos 0j cos <pj + (sin 0j sin <pj)

. [(ö2, • ••.0A),t¿1.¿A)].

Let ^,  be the angle made by qg and q¿ at the center of the sphere.   Then

cos ^j = [(0p-" , 0p+1)> (<Pp"- '^p+i^'  In general, set

(5.13) cos ^r " [(<9r' * * " ' 0p+l^' (<¿V ' * *' $P+\^'

the right side of (5.13) is clearly in [-1, l] since it equals

[Gr/2, • • •, tt/2, 9r, -. -, 0p+1), (77/2, - • -, 77/2, <pr, • • •, <Pp+1)].

In what follows we often write ;(z) for /..   Recall the addition formulae for
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Legendre polynomials   P„(x) = Cn 2(x) [6, p. 183] and for ultraspherical poly-

nomials ClAx) [6, p. 178 (the 2m should be 22m)]:

P(cos 9 cos <f> + sin 0 sin <f> cos ift)

(5.14) „
= P (cos 0)P (cos <?!>) + 2    £  ,       W " P™(cos 0)Pm(cos 0) cos «V>.

" " to = 1  (« + m)\     " "

C'(cos 0 cos <f> + sin 0 sin <f> cos ^)
n

[(/)_]
2

(5.15) = ¿ 22m(2/ + 2m - lXn - m)\
m=0 ^2/-1,„+to+1

. (sin 0)mC'+m(cos 0)(sin <f>)mCt+m (cos 0)C'-M(cos tfr).
n-m r        n-m r     m

In (5.14) the  Pm are the associated Legendre polynomials of order m.  Note that

all coefficients in (5.14) and (5.15) are nonnegative.   By (5.12) and repeated ap-

plications of (5.15),

« ,*s 7(0) i(p-2)
(5-l6)  =   Z  •••     Z   ¿(/(o),/(i),i)

/(l)=0 ;(p-l)=t)

• • - b(j(n - 3), /(« - 2), t - VAp - 2))f(9)f(cf>) • g

where è(/(z), j(i + 1), í - Y2(i - l)) > 0,

/(0) = (sin f?,)«1' - - - (sin 0í)_1)y(í'- »Cj+^i^/cos 0j)

j(P-?)-;(P-l) P-1

and (by (5.14))

S = Ck~p-l)~1){cos tp* - PHP-D{cos °P cos *P + Sin Ö/> Sin ¿P COs{dP+l -tp*!^

= ^(P-l)(cosV^-l)(cOS<V
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where a.(9p,9p^)= P'^^cos 9p)cos j(p - l)9p+l and b{(9p,9p^^

p)(p- d(cos dP)sin i^-1)ep*v Hence

f

(5.17) C;.(o)([(0p .... 9p+1), («p,.<pp+1)]) = Z c.h.(9)h.(tp)
i=l

for appropriate è., with e. > 0.

Lemma 5.3.   Let qv = (0(1v) ,• • •, 0^), v » 1." •, N, be N points on the

unit p + 2 sphere and let y      be the smallest angle between q„ and q^.   Then

(5.18) Z CMcos y   ) > - y2N(2t)m/m\.
fl<V

Proof.   This follows from (5.8) and

t r-    M -l

Z   Z   C'jcoB yßV) = Z cj Z*/^)
/i=i v=i £=i    Lm=i J

>o.

Lemma 5.4.   // the real part of c — a — b is positive,

„ r   ,     ,i   ,     He)    v-> ri??! + ö)r(77z + ¿)   r(c)rXc - a - b)
,F.La, b; c; 1J = 1 h->-=-.
21 n-OHfc)   ~i       mirU + c) iXc-aîTXc-*)

Proof.  See [35, pp. 281-282].

We can now begin the proof of the theorem.   By Lemmas (5.1) and (5.3),

£-(?)-'El.,-«/-ff)"' E»-r-lw

(5.19)

= öo(l)+(?r   Z   KÜ)l-(-l)   ZcMcosyMV)

WMT)"1   Z (-«m(D)HN(2/)>!

< a (i) _ _L   £ «Jl)(2i)m/«I = i/.

By Lemma 5.2,

22«+*A nt)rXt + A/2 -i- 1/2) i"  -tlX-A/2)      , V       "I

U = Vi    2        m-A/2) LT(2i + A/2 + X)    (N - l)r(2i)J

where
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(m + /)rU + 2i)rU-A/2)

= z

S TU + DIX« + 2/ + A/2 + 1)

IXw - 1 + 1 + 2/)r(nz - 1 + 1 - A/2)

1 r(m)r(m - 1 + 2/ + A/2 + 2)

f    r(2t)r(-X/2)    lX2t)n-\/2)       ~   IXm + 2/HX« - A/2) "I

+ I   n2I + A/2 + l)+ IX2Í + A/2 + 1)+ ~i mir(m + 2t + X/2 + l)\

IXl + 2t)lXl - A/2)HA)    tT(2t)r(-X/2)    F(2t)r(-X/2)tT(X + l)

IXA/2 + 1)1X2/+ A+1) " IX2/+A/2 + D + IXA/2 + l)IX2i + A + l)

ilX2/)IX-A/2) ..f ., .    ^      „    tT(2t)r(-X/2)
[2(-A/2)HA) + IXA + D] - .

IXA/2 + 1)1X2/ + A + 1) 1X2/ + A/2 + l)

Hence by (5.3)

22<+A /IX/)IX/ + A/2 + 1/2)      IXl - A/2) N

V = ~^ß      ""Hl - A/2) 1X2/ + A/2 + 1) N - 1

2 P +X IXp/2 + 1 )Hp/2 + A/2 + 1/2)      N

= "yÇ r(p + 1 + A/2) N - 1 *

Now (5.1) will follow as soon as we show that the inequality in (5.19) is strict.

Equality holds only if for every m > 1

(5.20) Z Cm(cos y   ) = - MNÍ2t)Jm\.
fí<V

Think of f/j,... , qN as defining a linear operator L;  i.e.,

L(/(x)) = Z /(cos y   ).

Lemma 5.5.   Let k > 1 6e an integer.   Then

(5.2D y (_d-i r(2fe-"LlJ_-     n2^f)_
~1 fBllX*-m+l)r(*-iB + l + /)     IX* + DIX* + 1 +/)

/or a// complex t.

Proof.   Both sides are polynomials in / of degree k - 1, so it suffices to

show the inequality for k distinct integral values of /.   But for / a positive in-

teger, (5.21) is a special case of the well-known formula



24 RALPH ALEXANDER AND K. B. STOLARSKY

.4 ̂QCr) -(■.:>
see for example [22, p. 252 (27)].

Lemma 5.6.   Let the linear operator L be defined by L(l)= (N) and L(d (x))

= -ViN(2t)n/n\. Then for integers k>0,

(5.22)        L(x2k) = {r(2*)ra + /)/22¿ra)ru +1 + ù\n2 - an-,

the right side of (5.22) is to be replaced by its limit (= XA) when 4=0.

Proof.   The lemma is clearly true for k = 0;   assume it is true for all integers

k' with 0 < k' < k.   By [6, p. 175 (18)]

T(2k - m + t)
(5.23)        C^(x)- £ (.1)» ÏW_Î^___) (2x) 2k-2m

Thus

r(2¿ + /)

r(t)(2k)\

7í   /  Ok-,      ¿   /     xmJ.i T(2k-m + t)
2    L(x *) =  V^   (-l)m+    _

¿I r(t)r(m + 1)1X2* - 2m + 1)

r(2i + 2k)

22k-2mL(x2lk-m))

-AN
r(2t)(2Ï)\

By the induction hypothesis, (5.8), and Lemma 5.5 the result is established.

It follows from Lemma 5.6 that limk_taaL(x2k) = -AN < 0 if (5.20) is valid

for 777 > 1.   But

(5.24) L(x2*)=  Zcos2*y     >0
fl<V

Thus the theorem is proved when p > 1.   For p = 0 the details are quite similar.
im .4

Let ?M=e'V  Then

2 sin

00

= «0 + 2     Z   ( 2 )        «„     I   COS 777(cp     - tpv)
m=l  x    ' V-<v

M

Z « =t/

¿M'*.

<ö„-

AÍ-1 m=i
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since [24, p. 32, Lemma iv]

(5.25) Z cos m(cf>-(f>v)>-y2N.
ft<V

Also by [24], a0 = 1X1 + A)/r2(l + A/2) and

a    = - sin 4 Hi + A)IXib - A/2)MXl + A/2 + m)
m 2

= (-l)T(l + A)/T(l + A/2 - ib)IX1 + A/2 + m).

The sum U is again evaluated by Lemma 5.4 and by the aid of (5.3) we find that

(5.1) is also valid for p = 0, provided strict inequality holds for some m > 1 in

(5.25).   But unless this is the case, we can use the identity

M

X   cos mx - - M + H [sin (2M + DMxl /[sin %x1 - - Jí + B(M, x)

to show

(5.26) _^M=Z[-^ + B(M, (¿„ - 4>JM
(1<V

which is false for M sufficiently large.  This completes the proof of the theorem.

The proof of this section appears more complicated than the earlier proof,

but a more careful estimation of the hyperspherical sum 2 of (5.19) will now

yield a stronger result than (5.1).

First assume p > 1.   Let L be a linear operator on polynomials with L(l) =

(2 ) and write

L(C'(x)) = {-^N(2/) /»!{ + «.
n n n

We shall show that if L is the operator defined by ql,- • • , qN then

(5.27) k„l<c0(p)N(2*'-1>/<í>+l)j I<8<c,(A)/V2/(i+I),

is false.   Here the c .(p) will denote certain positive constants depending only on

p which can be written down explicitly;  similarly for  c¿(p, A) and c(.(A).

Assume (5.27) is true and write

(5.28) L(x2k) = R(N, k, t) + 92k

where R(N, k, t) is the expression on the right of (5.22). Recall that / = Vip.

Then
* ,     , 1X2*+ 1)

(5.29) 92k = Z (-Dm+12-2%m02U_m) + 2-2*lX/) ^^—^ <2k

where
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_ IX2A + 1) 1X2* - 777 + t)

Ckm " IX2A + t) ' r(2k+l-2m)V(m + l)'

Lemma 5.7.  If 8Q = 0 and

then

where

0

^í^V^-2VcnVan_v,2-2"8n

s-*-*" E ».A
v=l

T(2n + 1) 1X21/ + / + 1)
b
»v    TXn-v+ l)IX2i/ +1)     IXn + v + í + 1)

Proof.   This is clear for n = 0.   Assume true for all integers less than n.

Then

= -Z12-2«5.Z,(-irCnA.V(. + 2-2«sn

= Z 2-2»bnj8r  Z 2-2"5,. Z ^Vcnvbn_v..

The vanishing of the sum on v is proved in the same way as in Lemma 5.5, and

by the same identity.

It follows immediately from Lemma 5.7 that

,      *    1X2»/ + 1)
(5.30) I^^W—..^.

From (5.22) and estimates of the Stirling type,

(5.31) R(N, k, t)<-V4N

whenever

(5.32) ¿>c3(p)/V2/(*+1)=K0.

Now if k = [Kq] + 1 and Cj(p) > 4c3(p),
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L(x2k) <-V4N + cip)c0(p)N(2p-l)/^1)(N2/{p*1))1-t

<-%N + cip)cAp)N

and we have L(x2k) < 0 for cAp)c^(p)< %.   But this is a contradiction.  Hence

(5.27) is false for an appropriate cQ(p) and the estimate in (5.19) holds with U

decreased by

(J)"Wl|«Jl)|c0(*)N«»-,>><»*1>

for some m satisfying 1 < m < cAp)N      p*   .   Since by (5.10)

|am(l)|>c6(p,A)A(2-A)zzz-x-i'

we have

(5.33) S(N, p, A) < c(p + 1; A)N2 - cAp, A)A(2 - A)N-(2a+1)/<*+1).

When p = 0 we use a different technique.

Lemma 5.8.   Given real numbers 0j,> • • ,0, and an integer T > 0, there is

an integer m with 1 < m < 2J   such that

\mdiX\<T"1.       i-l,-..,/,

where || x ||  denotes the distance from x to the nearest integer.

Proof.   This is an easy consequence of the pigeonhole principle.  A proof is

given, e.g., in Volume 2 of [20, p. 133].

Lemma 5.9.   Under the above hypothesis there is an integer m satisfying

l<m<2-81 such that

]T cos m9i>2-l/2l.

Proof.   Choose m so that || m9./2n || < 1/8 for i = 1,- • • , /.

Now let / = (2 ) and let 0j,.> ■ , 0¿ be the / numbers $„- 0„ where ¡i<v.

Choose m as in Lemma 5.8.  Then  U can be decreased by

where m < 2 • 8'. It follows that

(5.34) S(N, 0, A) < c(l, A)N2 - cg(A)A(2 - A) exp(-cAX)N2).
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6.   Calculation of transfinite diameters and curvature.   Let the points p„ lie

in a compact set K.   If for A > 0 we define d^x)(K) = d^x) by

(6.1) ^-(î)'1 —£IVV

then it is well known [24] that d\x) > d^x) > • • • > 0. Hence d™ = lim^^^ exists,

and by letting A — 0 we get d(20) > d^ > • • • > 0.  Hence dx = lim^^05 also

exists.  We write dN = dj\ ' and call d^ , d^  the Ath transfinite diameter of K

and the (usual) transfinite diameter of K respectively.

Theorem 6.1.   If S   CE" is the surface of the n-dimensional unit sphere,

n = p + 2 > 2, then

<w
(6.2)

n  even,= exp[l + í + I+... + -L-I(l+I + I+...+TlI)],

= 2exp[l + I+...+7iT-l(l+I + I+...+^1)], «  odd,

with the convention that an empty sum is  0.

Proof.   It is not hard to use the "uniform distribution technique" of [24] to

show that the expressions of (6.2) are lower bounds for d^S ).   The real problem

is to show that they are upper bounds.   Let cr(A) be the expression on the right of

(5.1).  Then

(6 3) diS ) =   lim  dN(S ) < lim oi\)1/x

where

¿N(S )= lim [S(N, p, \)/N2]l/x.
"       A—0

Now expansion of the T functions yields  cr(A) =

(n - 3 + A)(n - 5 + A) ... (l + A)lXl + A)'0Wt
(n - 2 + A/2)(» - 3 + A/2) ••.(!+ A/2)r2(l + A/2)

or

2M("-1)«/» (n-3 + A)(„_5+A)...(2+A) 2K
r(«/2)

yfi (n - 2 + A/2)(n - 3 + A/2) ...(? + A/2)     (l + A/2)

depending upon whether n is even or odd.   We can use the factors independent

of A to put every factor involving A in the form (1 + aA).   Then (6.3) can be

easily computed since
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lim  (1 + oA)1/x = ea   and   lim [IXl + A)/T2(l + A/2)]1/x = 1.
x-o x-o

The result follows.

Theorem 6.2.  dx(Sn)= yJ2 + 0(!/n)  and (as this suggests) doa(u)= y/2

where U is the surface of the unit sphere in Hilbert space.

Proof.   The first statement follows readily from Theorem 6.1.  For the second,

v2 < dN(U) is a consequence of the existence of N unit orthonormal vectors in

U for any N.   On the other hand, if we use (6.2) and (6.3) to calculate lim„

in (5.1) (note that the left side is nondecreasing in p) we find that for A > 0

s(n, ~, A)/yv2<2A/2-1,

so

(6.4) dx < <4A) < d^Xu) < V2 [N/(N - 1)]1A.

By taking A = N~        and letting N —> oo , the result follows.

A related fact (proof omitted) is that the side of the regular simplex inscribed

in Sn tends to y2 as «—»<».  That dga(u)= \2 has already been proved by

Hille [12].

Next, we propose a new purely metric definition of curvature (see [4, pp. 74—

89], [21, pp. 124—125] for a discussion of various such definitions).   Let M be a

metric space with metric d(x, y) and S. the sphere of radius p about some P €.

M.   Let 0 < A < 2 and set

¿¿\P; P) = #> = \(N7Yl sup     Z    dHPi, p.)l
L    ' l<i<i<N J

l/X

where the supremum is over all p. e S ., 1 < i < N.   Then dj\,' is nonincreasing,

so limN_i00a'^'= ¿(x) exists.

Definition.   If for some n > 2

6(2« - 2 + A)   /     </A)(p; P)
+ K2 =   lim   -_    1 _

P-o      („ _ i)p2    \        py(X, «)

where

TU + n- l)r(«/2)        "ll/A

y{x,n) = [r(y2(x + n))r(n-i+'x72~)\   '

we sa.y that as a space of dimension «, M has a A-curvature of k at P, the cur-

vature being positive or negative according to the + sign.
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We conjecture that k = k(P) lies between the minimal and maximal values of

VK where K = K(P; (£, r])) is the Riemannian curvature of M at  P in the two

dimensional direction (£, r/) [21, pp. 125—127;  pp. 136—137];   here it is assumed

that M is a sufficiently smooth manifold of dimension « > 2.   This can be shown

for « > 2, M Euclidean (i.e., k = 0) by the methods of this section and for M oí

constant curvature, « = 2, and 0 < A < 1 by the methods of §2.
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