A RELATION BETWEEN K-THEORY AND COHOMOLOGY

ΒY

ALAN THOMAS

ABSTRACT. It is well known that for X a CW-complex, K(X) and $H^{ev}(X)$ are isomorphic modulo finite groups, although the "isomorphism" is not natural. The purpose of this paper is to improve this result for X a finite CW-complex.

1. Preliminaries. For the basic definitions and theory (1) of λ -rings, we refer to [2], [12]. The ring Z of integers has a λ -ring structure with $\lambda^m: Z \to Z$ the function

$$\lambda^m(n) = \binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m!}.$$

Definition. An augmented λ -ring is a λ -ring R together with λ -ring homomorphisms $i: Z \to R$ and $\epsilon: R \to Z$ such that $\epsilon i = 1$.

Since the Definition implies that $i: \mathbb{Z} \to \mathbb{R}$ is a monomorphism, we think of $\mathbb{Z} \subset \mathbb{R}$ as the multiples of the identity. Let \mathfrak{B} denote the category of augmented λ -rings and λ -ring homomorphisms which commute with the augmentation. If $B \in Ob \mathfrak{B}$, we write B_n^{γ} for the *n*th term of the γ -filtration on B, and $\Gamma(B)$ for the associated graded ring. We note that $\Gamma(B)_0 = \mathbb{Z}$. Let \mathfrak{A} be the category of commutative graded rings A with $A_0 = \mathbb{Z}$. We define $\widetilde{\Lambda}: \mathfrak{A} \to \mathfrak{B}$ as follows: If $A \in Ob \mathfrak{A}$, then as a set $\widetilde{\Lambda}(A) = \prod_{n>0} A_n$. If $a \in \widetilde{\Lambda}(A)$, we denote the component in A_n by a_n and for convenience of notation define $a_0 = 1 \in A_0$ and write a as either of the formal expressions

$$1 + a_1 + a_2 + \dots + a_n + \dots$$
 or $\sum_{i \ge 0} a_i$.

If a, $b \in \widetilde{\Lambda}(A)$, we define their sum, $a \oplus b$, componentwise:

$$(a \oplus b)_n = \sum_{i+j=n} a_i b_j$$

so that ' Θ ' is analogous with multiplication of formal power series. This operation makes $\widetilde{\Lambda}(A)$ into an Abelian group, and we denote the inverse of a by $\bigcirc a$. In particular if a is an element with $a_n = 0$ for $n \ge 2$, then

Received by the editors December 13, 1972 and, in revised form, July 9, 1973.

AMS (MOS) subject classications (1970). Primary 55B15; Secondary 55B40, 55F40.

⁽¹⁾ We are indebted to Atiyah and Tall [2] for explicit proofs, in particular those based on 'formal algebra'.

Copyright © 1974, American Mathematical Society

$$\bigcirc a = 1 - a_1 + a_1^2 - a_1^3 + \dots + (-a_1)^n + \dots$$

A map $f: A \to B$ in \mathfrak{A} induces a function $\widetilde{\Lambda}(f): \widetilde{\Lambda}(A) \to \widetilde{\Lambda}(B)$ componentwise:

$$(\widetilde{\Lambda}(f)(a))_n = f(a_n).$$

Since ' Θ ' is defined in terms of the ring structure and f preserves the ring structure, clearly $\widetilde{\Lambda}(f)$ is a homorphism.

Define $\Lambda(A) = Z \oplus \widetilde{\Lambda}(A)$ as a abelian group, and write [m, a] for the element $m \oplus a$.

Proposition 1 (Grothendieck). (a) There is a unique multiplication on $\widetilde{\Lambda}(A)$, denoted by \otimes , which is associative, commutative and distributive over addition such that

(i) for each integer n there is a polynomial $P_n(X_1, \dots, X_n, Y_1, \dots, Y_n)$ with integer coefficients such that

$$(a \otimes b)_n = P_n(a_1, \cdots, a_n, b_1, \cdots, b_n);$$

(ii) if $a_1, b_1 \in A_1$, then $(1 + a_1) \otimes (1 + b_1) = (1 + a_1 + b_1) \ominus (1 + a_1) \ominus (1 + b_1)$.

(b) If we give $\Lambda(A)$ the ring structure obtained from A by adjoining a unit (i.e. define $[m, a] \otimes [n, b] = [mn, mb + na + a \otimes b]$), then $\Lambda(A)$ admits a unique λ -ring structure such that

(i) for each pair of integers m, n, there is a polynomial $Q_{m,n}(X_1, \dots, X_n)$ with integer coefficients such that

$$\lambda^{m}[0, a] = [0, b] \quad where \quad b_{n} = Q_{m,n}(a_{1}, \dots, a_{n});$$

(ii) $\lambda^{m}[0, 1 + a_{1}] = (-1)^{m-1}[0, 1 + a_{1}] \quad if \quad a_{1} \in A_{1} \quad and \quad m \ge 1.$

The existence and uniqueness depend on formal algebra.

We define a functor $D: \mathfrak{A} \to \mathfrak{A}$ as follows:

If $A \in Ob$ $(\mathcal{A}) = A$ as a graded abelian group but with multiplication (denoted by \cdot) defined as follows: if $x_m \in A_m$ and $x_n \in A_n$ then

$$x_m \cdot x_n = \frac{(m+n)!}{m!n!} x_m \times x_n.$$

If $f: A \to B$ in \mathcal{C} define $D(f) = f: D(A) \to D(B)$.

Let $N_n = N_n(\sigma_1, \dots, \sigma_r)$ be the polynomial defined inductively for $n \ge r$ by $N_1(\sigma_1, \dots, \sigma_r) = \sigma_1$ and the formula

$$N_n - \sigma_1 N_{n-1} + \sigma_2 N_{n-2} - \dots + (-1)^n n \sigma_n = 0.$$

Define $\sigma: \Lambda(A) \rightarrow D(A)$ by

$$(\sigma[m, a])_0 = m, \quad (\sigma[m, a])_n = N_n(a_1, \dots, a_n) \text{ for } n \ge 1,$$

where N_n is evaluated in A, not in D(A).

Proposition 2. $\sigma: \Lambda(A) \to D(A)$ is a ring homomorphism.

Proof. That σ is additive depends on certain identities satisfied by the polynomials N_{π} , and is omitted.

To show σ preserves multiplication, by virtue of the universality of the definition of multiplication, it suffices to examine $\sigma(x \otimes y)$ where x = [1, 1 + a] and y = [1, 1 + b] with $a, b \in b_1$.

In this case
$$x \otimes y = [1, 1 + a + b]$$
 so that $(\sigma(x \otimes y))_n = (a + b)^n$. But
 $(\sigma(x)\sigma(y))_n = \sum_{r+s=n} \frac{(r+s)!}{r!s!} a^r b^s = (a + b)^n$.

So $\sigma(x \otimes y) = \sigma(x) \cdot \sigma(y)$.

2. The main theorem. Let \mathfrak{V}_* be the category of finite based connected CWcomplexes and based maps. If $X \in \mathfrak{V}_*$ then $H^{ev}(X) = \bigoplus_{n \ge 0} H^{2n}(X, \mathbb{Z})$ is a graded commutative ring and, since $H^0(X, \mathbb{Z}) = \mathbb{Z}$, belongs to \mathfrak{A} . Thus H^{ev} : $\mathfrak{V}_* \to \mathfrak{A}$ is a functor, and we define

$$\begin{aligned} \widetilde{G} &= \widetilde{\Lambda} H^{ev} \colon \widetilde{\mathbb{Q}}_* \longrightarrow rings, \\ G &= \Lambda H^{ev} \colon \widetilde{\mathbb{Q}}_* \longrightarrow \mathscr{B}, \\ H &= D H^{ev} \colon \widetilde{\mathbb{Q}}_* \longrightarrow \mathfrak{A}. \end{aligned}$$

The internal multiplication $G(X) \otimes G(X) \to G(X)$ induces an external multiplication $G(X) \otimes G(Y) \to G(X \times Y)$ in the usual way. This in turn induces a multiplication $\widetilde{G}(X) \otimes \widetilde{G}(Y) \to \widetilde{G}(X \wedge Y)$.

If $E \to X$ is a complex vector bundle, let $c_i(E) \in H^{2i}(X, Z)$ denote its *i*th Chern class and define

$$\widetilde{c}(E) = 1 + c_1(E) + c_2(E) + \cdots \in \widetilde{C}(X),$$

$$c(E) = [\operatorname{rank} E, \widetilde{c}(E)] \in G(X).$$

Lemma 1. If E, F are vector bundles over X and G over Y then (1) $\widetilde{c}(E \oplus F) = \widetilde{c}(E) \oplus \widetilde{c}(F)$ and $c(E \oplus F) = c(E) \oplus c(F)$.

(2) $c(E \otimes G) = c(E) \otimes c(G)$ where $E \otimes G$ is the exterior tensor product bundle over $X \times Y$.

(3) $c(\lambda^i E) = \lambda^i c(E)$.

Proof. The formulae are the standard ones-see Hirzebruch [3].

Hence \widetilde{c} defines a ring homomorphism $\widetilde{c}: \widetilde{K}(X) \to \widetilde{G}(X)$ and c defines a λ -ring homomorphism $c: K(X) \to G(X)$. Let $s: K(X) \to H(X)$ be the composite $K(X) \to c = G(X) \to \sigma H(X)$.

The purpose of this section is to prove the following theorem. If n is a positive integer let l_n be the set of primes less than n.

Theorem 1. If X is a finite CW-complex of dimension $\leq 2n + 1$, then (i) $\widetilde{c}: \widetilde{K}(X) \to \widetilde{G}(X)$ and $c: K(X) \to G(X)$ are isomorphisms modulo l_n -torsion. (ii) $s: K(X) \to H(X)$ is an isomorphism modulo l_{n+1} -torsion.

The proof of Theorem 1 is an easy consequence of the following mod $\mathcal C$ version of a well-known theorem on half-exact functors.

Proposition 4. Let \mathcal{C} be a Serre class of abelian groups, and let $\rho: t_1 \to t_2$ be a map of balf-exact functors, where $t_i: \mathcal{W}_* \to Abelian$ groups, such that $\rho: t_1(S^n) \to t_2(S^n)$ is an isomorphism mod \mathcal{C} for $n \leq m$. Then $\rho: t_1(X) \to t_2(X)$ is an isomorphism mod \mathcal{C} when X is finite and dim $X \leq m$.

Thus in order to prove the theorem, we examine the maps on spheres.

Lemma 2. (i) $\widetilde{K}(S^{2n+1}) \rightarrow \widetilde{C} \widetilde{G}(S^{2n+1})$ is an isomorphism. (ii) $\widetilde{K}(S^{2n}) \rightarrow \widetilde{C} \widetilde{G}(S^{2n})$ is a monomorphism with cokernel $\mathbb{Z}_{(n-1)!}$. (iii) $G(S^{2n}) \rightarrow \sigma H(S^{2n})$ is a monomorphism with cokernel \mathbb{Z}_n .

Proof. (i) Trivial, since both groups are zero.

(ii) The map $K(S^{2n}) \rightarrow G(S^{2n}) \cong H^{2n}(S^{2n})$ is given by the *n*th Chern class, and by theorems of Borel-Hirzebruch the *n*th Chern class of a complex vector bundle on S^{2n} is a multiple of (n-1)! times the generator, and every such multiple arises.

(iii) The map $G(S^{2n}) \rightarrow^{\sigma} H(S^{2n}) \cong H^{2n}(S^{2n})$ is easily seen by calculation to be multiplication by *n*.

Let \mathcal{C}_n be the class of abelian groups whose order is a product of primes in l_n . By Lemma 2

 $\widetilde{c}\colon \widetilde{K}(S^m)\to \widetilde{G}(S^m) \quad \text{is an isomorphism mod } \mathcal{C}_n \text{ for } m\leq 2n+1,$

 $s: K(S^m) \to H(S^m)$ is an isomorphism mod \mathcal{C}_{n+1} for $m \leq 2n+1$,

whence the theorem follows.

3. Finite CW-complexes of dimension ≤ 5 . In the case n = 2, Theorem 1 says that if dim $X \leq 5$, $c: K(X) \to G(X)$ is an isomorphism of λ -rings, i.e. $K(X) \cong \Lambda H(X)$ [in particular, if dim $X \leq 4$, we see that $K^1(X) \cong H^1(X) \oplus H^3(X)$], so that the graded ring structure of $H^{ev}(X)$ determines the λ -ring structure of K(X). In this section we show that in these low dimensions the converse is true, namely $H^{ev}(X) \cong \Gamma K(X)$. Since we already know that $K(X) \cong G(X)$ as λ -rings, it suffices to show that $\Gamma G(X) \cong H^{ev}(X)$.

Let $a: \widetilde{G}(X) \to H^2(X)$ be the projection $a(1 + a_1 + a_2) = a_1$ and let $\beta: H^4(X) \to \widetilde{G}(X)$ be the inclusion $\beta(a_2) = 1 + (-a_2)$. The sequence $0 \to H^4(X) \to \beta$ $\widetilde{G}(X) \to a H^2(X) \to 0$ is clearly exact.

Lemma 3. (i) Im $\beta = G(X)_2^{\gamma}$. (ii) $G(X)_n^{\gamma} = 0$ for n > 2. (iii) The product in $\Gamma G(X)$ from $(G(X)_1^{\gamma}/G(X)_2^{\gamma}) \times G(X)_1^{\gamma}/G(X)_2^{\gamma} \to G(X)_2$ is (isomorphic to) the cup product $H^2(X) \times H^2(X) \to H^4(X)$.

Proof. By formal algebra it follows that

(1)
$$\gamma^{n}[0, a] = [0, 1 + (-1)^{n-1}(n-1)!a_{n} + \cdots],$$

 $[0, 1 + a_n + \text{higher terms}] \otimes [0, 1 + b_n + \text{higher terms}]$

(2)

=
$$[0, 1 + c_{m+n} + \text{higher terms}]$$
.

From (1), (2), it follows that $G(X)_n^{\gamma} = 0$ for n > 2 and since $\gamma^2[0, 1 + a_2] = [0, 1 - a_2]$, we see that Im $\beta \subset G(X)_2^{\gamma}$. But $G(X)_2^{\gamma}$ in this case is generated by elements of the form $\gamma^2[0, 1 + a_1 + a_2]$ or $[0, 1 + a_1][0, 1 + b_1]$, i.e. by elements of the form $[0, 1 + a_2]$, whence Im $\beta = G(X)_2^{\gamma}$. Finally a simple calculation shows

$$[0, 1 + a_1 + a_2] \otimes [0, 1 + b_1 + b_2] = [0, 1 + (-a_1b_1)]$$

which completes the proof of the lemma.

4. A real version. We would like to prove a theorem analogous to Theorem 1 for KO-theory using the corresponding characteristic classes. Since Stiefel-Whitney classes do not carry enough information even on spheres, we try Pontryagin classes. However, there is a technical difficulty to overcome, namely that Pontryagin classes do not obey a Whitney-sum formula. However, if E, F are real vector bundles over X and if $p_i(E) \in H^{4i}(X, \mathbb{Z})$ denotes the *i*th Pontryagin class then $p_n(E \oplus F) - \sum_{i+j=n} p_i(E)p_j(F)$ is an element of order 2 in $H^{4n}(X, \mathbb{Z})$. Let $H^{4^*}(X) = \bigoplus_{n\geq 0} H^{4n}(X, \mathbb{Z})$. $H^{4^*}: \bigoplus_* \to graded rings$, so we can define

$$(GO)^{(X)} = \Lambda H^{4}(X), \quad GO(X) = \Lambda H^{4}(X), \quad H^{4}(X) = DH^{4}(X),$$

(Alternatively, we can define $(GO)^{\sim}(X)$ as the subring of $\widetilde{G}(X)$ consisting of elements with zero components in odd degrees:

$$(GO)^{\sim}(X) = \{a \in \widetilde{G}(X) : a_n = 0 \text{ if } n \text{ is odd}\}.$$

Let q: $(KO)^{\sim}(X) \rightarrow \widetilde{G}(X)$ be the composite

$$q: KO(X) \xrightarrow{\text{complexification}} K(X) \xrightarrow{c} G(X) \xrightarrow{\psi^2} G(X)$$

where ψ^2 is the Adams operation.

Clearly q is a ring homorphism.

Lemma 4. If
$$F \to X$$
 is a real vector bundle, then
 $(q(E))_{2n+1} = 0, \quad (q(E))_{2n} = (-4)^n p_n(E).$

Proof. If F is the complexification of E, with Chern classes c_1, \dots, c_n , then $p_i(E) = (-1)^i c_{2i}$. If F were a sum of line bundles $F = L_1 \oplus \dots \oplus L_n$ with $c_1(L_i) = \alpha_i$ then

$$\psi^{2}c(F) = c\psi^{2}(F) = c(L_{1}^{2} \oplus \cdots \oplus L_{n}^{2})$$

= [1, 1 + 2\alpha] \oplus [1, 1 + 2\alpha_{2}] $\oplus \cdots \oplus$ [1, 1 + 2\alpha_{n}]
= [n, 1 + 2\cap c_{1} + 2^{2}c_{2} + 2^{3}c_{3} + \cdots]

so by the splitting principle for complex vector bundles, we see that $(q(E))_i = (\psi^2 c(F))_n = 2^n c_n(F)$.

If *i* is odd, then $2c_i(F) = 0$, so $(q(E))_i = 0$. If i = 2n, then $(q(E))_{2n} = 2^{2n}c_{2n}(E) = 2^{2n}(-1)^n p_n(E)$.

Thus the image of q is contained in GO(X). By naturality it induces a map $\widetilde{q}: (KO)^{\sim}(X) \rightarrow (GO)^{\sim}(X)$.

Theorem 2. If X is a finite CW-complex of dimension $\leq 4n + 3$, then (i) $\sim (100)^{\circ}(10) = (100)^{\circ}(10)$

- (i) \widetilde{q} : $(KO)^{\sim}(X) \rightarrow (GO)^{\sim}(X)$ is an isomorphism modulo $(l_{2n} \cup \{2\})$ -torsion.
- (ii) q: $KO(X) \rightarrow GO(X)$ is an isomorphism modulo $(l_{2n+1} \cup \{2\})$ -torsion.
- (iii) $\sigma_q: KO(X) \rightarrow DH^{4*}(X)$ is an isomorphism modulo $(l_{2n+1} \cup \{2\})$ -torsion.

Proof. As before it suffices to examine the maps on spheres. On S^t , where $t \neq 0 \mod 4$, $(KO)^{\sim}(S^t)$ is either \mathbb{Z}_2 or 0, but $(GO)^{\sim}(S^t)$ and $H^{4^*}(S^t)$ are zero. The map from $(KO)^{\sim}(S^{4n}) \rightarrow (GO)^{\sim}(S^{4n}) \cong H^{4n}(S^{4n}, \mathbb{Z})$ is 4^n times the *n*th Pontryagin class and again by theorems of Borel-Hirzebruch the *n*th Pontryagin class is a multiple of (2n-1)! GCD(n+1, 2), and moreover every such multiple arises. Thus this map from \mathbb{Z} to \mathbb{Z} is multiplication by some power of 2 times (2n-1)!

whose cokernel is thus a $(l_{2n} \cup \{2\})$ -torsion group. The result now follows. We briefly state two corollaries of Theorems 1 and 2.

Corollary 1. (1) If X is a finite CW-complex of dimension $\leq 2n + 1$ and $H^{ev}(X)$ has no l_{n+1} -torsion then

 $K(X) \cong H^{ev}(X)$ as abelian groups.

(2) If X is a finite CW-complex of dimension $\leq 4n + 3$ and $H^{4*}(X)$ bas no l_{2n+1} torsion then

 $KO(X) \cong H^{4^*}(X)$ modulo 2 torsion, as abelian groups.

Proof. (1) K(X) and $H^{ev}(X)$ have the same ranks and the same *p*-torsion for $p \neq l_n$. From [6] by a simple spectral sequence argument we see that if $H^{ev}(X)$ has no *p*-torsion then K(X) has no *p*-torsion.

(2) Proof similar.

Corollary 2. If X is a finite CW-complex of dim $\leq 2n$ and $H^{2k}(X)$ has no l_k -torsion then c: $K(X) \rightarrow G(X)$ is an isomorphism on non- l_n -torsion and a monomorphism on l_n -torsion.

Proof. By Corollary 1, it suffices to show that \tilde{c} is a monomorphism. Suppose $\tilde{c}(x) = 0$. Then since dim $X \leq 2n$, we can represent x by E - n for some *n*-dimensional complex vector bundle E. Then $\tilde{c}(E) = 0$, so by a theorem of Peterson [7] E is trivial whence \tilde{c} is a monomorphism.

5. Bott periodicity and an exact sequence. By Brown's theorem, \widetilde{K} and \widetilde{G} are representable functors. Let $\widetilde{K}(\) = [\ , E]$ and $\widetilde{G} = [\ , B]$ where E, B are H-spaces with multiplication m. Then $\widetilde{c}: \widetilde{K} \to \widetilde{G}$ defines a map $p: E \to B$ which we can assume without loss of generality to be a fibration, and which is an H-map, since \widetilde{c} is a homomorphism.

Let $i: F \to E$ be the fibre of $p: E \to B$. The composite $F \times F \to {}^{i \times i} E \times E$ $\to^m E \to^p B$ is homotopic to the composite $F \times F \to_{i \times i} E \times E \to_{p \times p} B \times B \to_m B$ which is the constant map. Let $H: * \simeq pm(i \times i)$.

There exists a map $G: F \times F \times I \to E$ making the diagram commute. Let $m = G_1: F \times F \to F$. Thus *m* defines an *H*-space structure on *F* such that $i: F \to E$ is an *H*-map.

Define $\widetilde{U} = [, F]: \ \mathcal{W}_* \longrightarrow Abelian groups.$ The Puppe sequence

$$\cdots \to \Omega^n F \xrightarrow{\mathbf{a}^n i} \Omega^n E \xrightarrow{\mathbf{a}^n p} \Omega^n B \to \cdots \to \Omega B \to F \xrightarrow{i} E \xrightarrow{p} B$$

induces a long exact sequence

$$\cdots \to [X, \Omega^n F] \to [X, \Omega^n E] \to [X, \Omega^n B] \to \cdots$$
$$\to [X, \Omega B] \to [X, F] \to [X, E] \to [X, B]$$

which can be rewritten as

(S)
$$\cdots \to \widetilde{\mathcal{U}}(\Sigma^n X) \to \widetilde{\mathcal{K}}(\Sigma^n X) \xrightarrow{\widetilde{\mathcal{C}}(\Sigma^n X)} \widetilde{\mathcal{G}}(\Sigma^n X) \to \cdots$$

 $\to \widetilde{\mathcal{U}}(X) \to \widetilde{\mathcal{K}}(X) \xrightarrow{\widetilde{\mathcal{C}}(X)} \widetilde{\mathcal{G}}(X).$

A simple calculation when $X = S^k$ gives the following lemma.

Lemma 5. (i) $\widetilde{U}(S^{2n}) = 0$. (ii) $\widetilde{U}(S^{2n+1}) = Z_{n!}$. (iii) If X is a finite CW-comp

(iii) If X is a finite CW-complex of dimension $\leq 2n+1$ with ν_r r-cells then $|\widetilde{U}(X)|$ divides $\prod_{r< n} (r!)^{\nu_{2r+1}}$.

The purpose of this section is to obtain an exact sequence

(E)
$$\widetilde{U}(\Sigma^{2}X) \to K(X) \xrightarrow{s} H(X) \to \widetilde{U}(\Sigma X) \to K^{1}(X)$$
$$\xrightarrow{t} H^{\text{odd}}(X) \to \widetilde{U}(X) \to K(X) \xrightarrow{c} G(X)$$

where t is defined as follows: If $E \to SX$ is an n-dimensional vector bundle, then it is determined by a map $X \to {}^{f} U(n)$. The cohomology of U(n) is an exterior algebra on generators $x_i \in H^{2i-1}(U(n))$ where $1 \le i \le n$. Define $t(E) = (f^*x_1, f^*x_2, \dots, f^*x_n)$.

First we observe that since cup products vanish on suspensions the natural bijection $\widetilde{H}^{ev}(\Sigma X) \to \widetilde{G}(\Sigma X)$ is an isomorphism of abelian groups, so that $\widetilde{G}(\Sigma X) \to H^{odd}(X)$, and $\widetilde{G}(\Sigma^2 X) \cong \widetilde{H}^{ev}(X)$, so we can insert these groups into the sequence (S). That the map

$$t: K^{1}(X) = \widetilde{K}(\Sigma X) \stackrel{\widetilde{c}}{\longrightarrow} \widetilde{G}(\Sigma X) \cong H^{\text{odd}}(X)$$

is given by the above construction we leave to the reader. Essentially it remains to prove the following lemma.

Lemma 6. The following diagram commutes:

where β is Bott periodicity and $*: \tilde{K}(X) \to \tilde{K}(X)$ is conjugation.

Proof. Let $L \to X$ be a line bundle with $c_1(L) = l \in H^2(X)$ and let $H \to S^2$ be the Hopf bundle with $c_1(H) = b$. From the commutative diagram

we see that

$$P(L - 1) = c(L - 1) \otimes c(H - 1)$$
$$= (1 + l) \otimes (1 + b)$$
$$= (1 + \hat{b} + \hat{l}) \ominus (1 + \hat{b}) \ominus (1 + \hat{l})$$

where \hat{b} , \hat{l} are the images of b, l in $H^2(S^2 \times X)$. That is, $\tilde{c}\beta(L-1) = (1+\hat{b}+\hat{l})$ $\oplus (1-\hat{b}) \oplus (1-\hat{l}+\hat{l}^2-\hat{l}^3+\cdots)$ since $\hat{b}^n = 0$ for n > 1, i.e. $\tilde{c}\beta(L-1) = (1+\hat{l}-\hat{b}\hat{l}) \oplus (1-\hat{l}+\hat{l}^2-\cdots)$. The component in dimension n, that is in $H^{2n}(S^2 \times X)$, is

$$(-1)^{n-1}\hat{l}^{n-1}\hat{l} - (\hat{b}\hat{l})(-1)^{n-2}\hat{l}^{n-2}$$

The term $(-1)^{n-1}\hat{l^n}$ lies in $H^{2n}(S^2\nu X)$ and so contributes nothing in $H^{2n}(\Sigma^2 X)$ and the term $(-1)^{n-1}\hat{bl^{n-1}}$ on desuspending maps to $(-1)^{n-1}l^{n-1} \in H^{2n-2}(X)$, so that

$$\hat{c}\beta(L-1) = (-l, l^2, -l^3, \cdots) = s(L-1)$$

and so by the splitting principle and the universal definition of s, we see that $\tilde{c}\beta * = s$.

The exact sequence (E) is now obtained from (S) by replacing $\widetilde{K}(\Sigma^2 X) \rightarrow \widetilde{C}$ $\widetilde{G}(\Sigma^2 X)$ by $K(X) \rightarrow {}^{s} H^{ev}(X)$ which is isomorphic to $\widetilde{K}(\Sigma^2 X) \oplus Z \rightarrow \widetilde{C}^{\oplus 1} \widetilde{G}(\Sigma^2 X)$ $\oplus Z$ and so preserves exactness.

REFERENCES

1. M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R. I., 1961, pp. 7-38. MR 25 #2617.

2. M. F. Atiyah and D. O. Tall, Group representations, λ -rings and the J-homomorphism, Topology 8 (1969), 253-297. MR 39 #5702.

3. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Math. und ihrer Grenzgebiete, Heft 9, Springer-Verlag, Berlin, 1956; English transl., Die Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, New York, 1966. MR 18, 509; 34 #2573.

4. A. Dold, Halbexakte homotopiefunktoren, Lecture Notes in Math., vol. 12, Springer-Verlag, Berlin and New York, 1966. MR 33 #6622.

5. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. MR 21 #1586.

6. L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1-36. MR 35 #4950.

7. F. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 69 (1959), 414-420. MR 21 #1593.

8. E. H. Brown, Cohomology theories, Ann. of Math (2) 75 (1%2), 467-484. MR 25 #1551.

J. P. Serre, Groupes d'homotopie et classes de groups abéliens, Ann. of Math.
 58 (1953), 258-294. MR 15, 548.

10. A. Grothendieck, Special λ -rings, (1957) (unpublished).

11. A. Thomas, Almost complex structures on complex projective spaces, Trans. Amer. Math. Soc. 193 (1974), 123-132.

12. D. Knutson, λ rings and the representation theory of the symmetric group, Lecture Notes in Math., vol. 308, Springer-Verlag, Berlin and New York, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE OF SWANSEA, SINGLETON PARK, SWANSEA, WALES