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A RELATION BETWEEN K-THEORY AND COHOMOLOGY

BY

ALAN THOMAS

ABSTRACT.  It is well known that for X a CW-complex,  K(X) and Hev(X)

ate isomorphic modulo finite groups, although the "isomorphism" is not natural.

The purpose of this paper is to improve this result for X a finite CW-complex.

1.   Preliminaries.   For the basic definitions and theory (!) of A-rings, we refer

to [2], [12].   The ring Z of integers has a A-ring structure with Xm: Z —> Z the

function

«(» - l) • • • d - zzz + l)•«■(:)=

mi

Definition.   An augmented A-ring is a A-ring R together with A-ring homomor-

phisms i: Z —* R and e: R —* Z such that ez = 1.

Since the Definition implies that i: Z —» R is a monomorphism, we think of

ZCK as the multiples of the identity.   Let 3 denote the category of augmented

A-rings and A-ring homomorphisms which commute with the augmentation.   If S £

Ob 9>, we write ßj for the nth term of the y-filtration on B, and T(ß) for the

associated graded ring.  We note that r(ß)0 = Z.   Let & be the category of com-

mutative graded rings A with AQ = Z.  We define A: U —» $ as follows:  If A £

Ob S, then as a set A(A) = II    n A .   If a e A(A), we denote the component in

A    by a    and for convenience of notation define aQ = 1 £ AQ and write a as

either of the formal expressions

1 + a, +a   +...+a   +•••    or     Z a-
1 ¿ " 7*0      '

If a, b eA(A), we define their sum, a © b, componentwise:

(a © £>)   =   Z   ab.
"     ;+/=77       '

so that '©' is analogous with multiplication of formal power series. This opera-

tion makes A(A) into an Abelian group, and we denote the inverse of a by 0 a.

In particular if a is an element with a   = 0 for « > 2, then
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Qa = 1 - «t + a2 -*j + ••• + (-ay)n + ... .

A map /: A —* ß in u induces a function A(/): A(A) —♦ A(ß) componentwise:

(A(/)(«))n = /(«„)•

Since '©' is. defined in terms of the ring structure and / preserves the ring struc-

ture, clearly A(/) is a homorphism.

Define A(A) = Z © A(A) as a abelian group, and write [772, a] for the element

772 © a.

Proposition 1 (Grothendieck).   (a)  There is a unique multiplication on A(A),

denoted by ®, which is associative, commutative and distributive over addition

such that

(i) for each integer n there is a polynomial P (X,, • • • , X , Y .,•••, Y )

with integer coefficients such that

(a®b)   = P (a,,. = •,« , b.,*••, b );
n        n     1 n      i n

(ii) if ay bl eAj. then (1 + aj ® (1 + by) = ( 1 + ax + è1)6(l+«1)6

(1 + èj).

(b)  // we give A(A) the ring structure obtained from A by adjoining a unit

(i.e. define [m, a] ® [72, ¿7] = [77772, mb + na + a ® b]), then A(A) admits a unique

k-ring structure such that

(i)  for each pair of integers m, n, there is a polynomial Q     (X , • • •, X )

with integer coefficients such that

km[Q, a] = [0, b]   where bn = Q^J«,,• • • . «„).

(ii) Am[0, l + tfjl-i- îy-'tO, l+-aj] if ax eAj a?2¿ 77? > 1.

The existence and uniqueness depend on formal algebra.

We define a functor   D: 8. ~* U as follows:

If A £ Ob S let x denote its multiplication.   Define^DÍA) = A as a graded

abelian group but with multiplication (denoted by •) defined as follows: if x    €

A     and x   e A    then
m n n

(m + 7?)!
x    • x   =-x   x x

If /: A — ß in fl define Dif) = /: DiA) — D(ß).
Let N   = N (o~., • • • , a ) be the polynomial defined inductively for 72 > r by

A/ ,(a,, • • • , o ) = a.  and the formula
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Nn - Wl + °2Nn-2 - • ' ' + (-WnOn = 0.

Define o: AÍA) -* DÍA) by

d[zzz, a])Q = 722,      ioim, a])n = Nial.an)   for n > 1,

where N    is evaluated in A, not in DÍA).
72 '

Proposition 2.   a: A(A) —» D(A) z's a rz'ng homomorpbism.

Proof.   That o is additive depends on certain identities satisfied by the poly-

nomials N , and is omitted.
77'

To show o preserves multiplication, by virtue of the universality of the defini-

tion of multiplication, it suffices to examine o(x ® y) where x = [l, 1 + a] and

y = [l, 1 + b] with a, b £ b ,.

In this case x ® y = [l, 1 + a + è] so that (o(x ® y))   = (a + b)n.   But

(oix)oiy))n =    £    ^^-aV = (a + è)".
r+s=77      r!s!

So oix ® y) = o(x) • o(y).

2.  The main theorem.   Let iß+ be the category of finite based connected CW-

complexes and based maps.   If X £ u\ then HeyÍX) = ®n¿0 H2n(X, Z) is a graded

commutative ring and, since H (X, Z)= Z, belongs to U.   Thus Hevr. ffi^-» Q is

a functor, and we define

C- = XHev: Wirings,

G-A/f.-a^-s,

H »D/T":».-fl."#

The internal multiplication G(X) ® G(X) —► GÍX) induces an external multi-

plication GÍX) ® GÍY) —* GÍX x Y) in the usual way.   This in turn induces a multi-

plication g(x)®c?(y) ->gXx A Y).

If E —» X is a complex vector bundle, let c.(E) £ H   ÍX, Z) denote its z'th

Chern class and define

c(E) = 1 + cAE) + c2ÍE) + ... 6 CÍ(X),

c(E) = [rank E,c(E)] e G(X).

Lemma 1.   If E, F are vector bundles over X and G over Y then

(1) c(E © F) = ?(E) © ciF) and cÍE © F) = c(E) © cÍF).
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(2) c(E ® G) = c(F) ® ciG) where E ® G is the exterior tensor product bun-

dle over X x Y.

(3) c(AlF) = A'c(F).

Proof.   The formulae are the standard ones—see Hirzebruch [3J.

Hence c   defines a ring homomorphism c : MX) —► G(X) and c defines a A-

ring homomorphism c: KÍX) —» G(X).   Let 5: KiX) —* H(X) be the composite MX)
-^c G(X) —a ß(X).

The purpose of this section is to prove the following theorem.   If 72 is a posi-

tive integer let /    be the set of primes less than 72.

Theorem 1.   If X is a finite CW-complex of dimension < 2n + 1, then

(i) c : K(X) —* GiX) and c: KÍX) —» G(X) are isomorphisms modulo I -torsion.

(ii)  5: K(X) —► i/(X) is an isomorphism modulo I    .-torsion.

The proof of Theorem 1 is an easy consequence of the following mod C ver-

sion of a well-known theorem on half-exact functors.

Proposition 4.   Let & be a Serre class of abelian groups, and let p: t. —► t2

be a map of half-exact functors, where ty. ffl+ —» Abelian groups, such that p:

t.iS") —* t2iSn) is an isomorphism mod £ for n < m.   Then p: ty[X) —» t2iX) is

an isomorphism mod C when X is finite and dim X < 772.

Thus in order to prove the theorem, we examine the maps on spheres.

Lemma 2.   (i)   KiS2n+l) —>c GÍS¿n+1) is an isomorphism.

(ii)   ¿.(S2")—>c GÍS2n) is a monomorphism with cokemel Z,  _1«,.

(iii)   GÍS2n) —i<TH(S2n) is a monomorphism with cokemel Zn.

Proof,   (i)  Trivial, since both groups are zero.

(ii)  The map KÍS2") — GÍS2") Ot H2niS2") is given by the 72th Chern class,

and by theorems of Borel-Hirzebruch the 72th Chern class of a complex vector

bundle on S      is a multiple of (72- l)! times the generator, and every such multi-

ple arises.

(iii)  The map G(S2n) —a HÍS2") S H2"iS2n) is easily seen by calculation

to be multiplication by n.

Let C    be the class of abelian groups whose order is a product of primes in

/ .   By Lemma 2
n        J

"c: KiSm) —» GiSm)    is an isomorphism mod £    for 772 < 2?2 + 1,

s : K(Sm) —» H(Sm)    is an isomorphism mod C +1 for 772 < 2m + 1,

whence the theorem follows.
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3.  Finite CW-complexes of dimension < 5.   In the case « = 2, Theorem 1

says that if dim X <5, c: KÍX) —»GÍX) is an isomorphism of A-rings, i.e. K(X)

SíAHÍX) [in particular, if dim X < 4, we see that KliX) Sé HlÍX) © H3(X)], so

that the graded ring structure of //ev(X) determines the A-ring structure of K(X).

In this section we show that in these low dimensions the converse is true, namely

Eev(X) S rX(X).   Since we already know that K(X) S GÍX) as A-rings, it suffices

to show that Tg(X) Sí /íev(X).

Let a: G(X) —• H (X) be the projection a(l + a. + a2) = a.  and let ß:

H4ÍX) — GÍX) be the inclusion jßd2) = 1 + (- a2).   The sequence 0 -> HAiX) ->B

GÍX) -*a H2ÍX) — 0 is clearly exact.

Lemma 3. (i) Im ß = GÍX)^. (ii) G(X)J = 0 for n > 2. (iii) Tie /Wzvcf

z» TG(X) /rozTZ (G(xy>7G(X)p x G(X)J'/G(X)2y -» G(X)2 is (isomorphic to) the

cup product H2iX) x H2(X) -» H4(X).

Proof.   By formal algebra it follows that

(1) y"[0, a] = [0, 1 + i-lT-Hn - 1)! an + - - • ],

[0,1 + a   + higher terms] ® [0,1 + b   + hi gher terms]
(2) " "

= [0, 1 + cm+n + higher terms].

From (1), (2), it follows that G(X)J = 0 for » > 2 and since y2[0, 1 + a2\ =

[0, 1 - a2], we see that Im ß C GÍX)J.   But GÍX)2   in this case is generated by

elements of the form y2[0, 1.+ a^ + a2\   or   [0, 1 + a^tO, 1 + &j], i.e. by ele-

ments of the form [O, 1 + a2], whence Im ß = GÍX)2.   Finally a simple calcula-

tion shows

[0, 1 + aj + a2] ® [0, l + bl + b2\= [0, 1 + (-a^)]

which completes the proof of the lemma.

4.   A real version.   We would like to prove a theorem analogous to Theorem 1

for XO-theory using the corresponding characteristic classes.   Since Stiefel-Whit-

ney classes do not carry enough information even on spheres, we try Pontryagiri

classes.   However, there is a technical difficulty to overcome, namely that Pontry-

agin classes do not obey a Whitney-sum formula.  However, if E, F ate teal vec-

tor bundles over X  and if p (E) e H 'ÍX, Z) denotes the z'th Pontryagin class then

pnÍE © F)- 1.    _n p{iE)p.iF) is an element of order 2 in HAnÍX, Z).   Let

/74*(X) = ©nä0 H4n(X, Z).   /Y4*: ¡B* — graded rings, so we can define

ÍGOríX) = ÄV*(X),      GOÍX) = A//4'(X),      H4*(X) = DH4*(x).
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(Alternatively, we can define iGO) (X) as the subring of G(X) consisting of ele-

ments with zero components in odd degrees:

(GOV(X) = \a£ G(X) : a   = 0 if n is odd!.
n

Let?: (KOf(X) -*CÏ(X) be the composite

,,^i.,\     complexification    „,.,,     c      _/,,»     *A       „/,,\
q : KO(X)-E-► fC(X)-*G(X)-* G(X)

where f is the Adams operation.

Clearly ? is a ring homorphism.

Lemma 4.   If F —> X is a real vector bundle, then

(?(H))2n+1 = 0,      (q(E))2n = (-4)"pn(E).

• » c_
n'

Proof.   If F is the complexification of F, with Chern classes c,,

then p;(E) = (- lrc,..   If F were a sum of line bundles F = L. (B • -• (& L    with
I *« 1 ft

c-|(L.) = a. then

->2c(F) = cxb2iF) = c(L2 ©•.. © L2)
*■ n

= [1,1 + 2a]©[l, l+2a,l© •••©[!, 1 + 2a ]

= [72, 1 + 2c, + 22c2 + 23c3 + • • • ]

so by the splitting principle for complex vector bundles, we see that iq(E)). =

(ib2c(F))n = 2"cn(F).

If i is odd, then 2c .(F) = 0, so (q(E)\ =0.   If i - 2n, then (?(F))2|| =
22% (F) = 22n(- l)np (E).

Thus the image of q is contained in GO{X).   By naturality it induces a map

q:iKOnx)-+iGOnx).

Theorem 2.   // X is a finite CW-complex of dimension < 4n + 3, /Ac«

(i)  q: (KO)  (X) ~*iGO)  (X) is an isomorphism modulo (L    u\2])-torsion.

(ii)  q: KOiX) —> GOix) is an isomorphism modulo il2    . U í2¡)-/orsz'o«.

(iii)  oq: KOiX) —» DH \X) is an isomorphism modulo il2     . u í 2|)-iorsio«.

Proof.   As before it suffices to examine the maps on spheres.   On Sl, where

MOmod 4, (KOHsO is either Z2 or 0, but iGOViS1) and HA'(Sl) are zero.

The map from (KOf(S4n) — iGO^S4") « H4n(SAn, Z) is 4" times the nth Pontryagin

class and again by theorems of Borel-Hirzebruch the «th  Pontryagin class is a

multiple of (2?2 - 1)! GCDin + 1, 2), and moreover every such multiple arises.

Thus this map from Z to Z is multiplication by some power of 2 times (2« - l)!
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whose cokernel is thus a (l2n ui2i)-torsion group.  The result now follows.

We briefly state two corollaries of Theorems 1 and 2.

Corollary 1.   (1)  // X is a finite CW-complex of dimension < 2« + 1 and

Hev(X) has no  I     , -torsion then
77+1

K(X) 2á Bev(X)    as abelian groups.

(2)  If X is a finite CW-complex of dimension < 4« + 3 and E4*(X) bas no

Z,     ,  torsion then
2tz + 1

.*
KOÍX) Sf71 (X)    modulo 2 torsion, as abelian groups.

Proof.   (1)   X(X) and Eev(X) have the same ranks and the same p-torsion for

p £ ¡n-   From [6] by a simple spectral sequence argument we see that if Eev(X)

has no p-torsion then X(X) has no p-torsion.

(2)  Proof similar.

Corollary 2.   // X is a finite CW-complex of dim < 2» and H2k(X) has no

I,-torsion then c: KÍX) —» GÍX) is an isomorphism on non-l -torsion and a mono-
K n

morphism on I -torsion.r n

Proof.   By Corollary 1, it suffices to show that c  is a monomorphism.

Suppose cd) = 0.  Then since dim X < 2«, we can represent x by E - » for some

»-dimensional complex vector bundle E.   Then cÍE)= 0, so by a theorem of

Peterson u] E is trivial whence c  is a monomorphism.

5.  Bott periodicity and an exact sequence.   By Brown's theorem, K and 2?

are representable functors.  Let KÍ )= [ , E] and G = [ , ß] where E, B ate H-

spaces with multiplication 722.   Then c : K —» G defines a map p: E —» B which

we can assume without loss of generality to be a fibration, and which is an E-map,

since c  is a homomorphism.

Let i: F —» E be the fibre of />: E -» B.   The composite F x F —»ixf Ex E

—,m E —>p B is homotopic to the composite FxF—*^.ExE —»        B x B —*    B

which is the constant map.   Let H: * ~pz7z(z x z).

E-P-->B
S

N

77z(z X  t)

Fx FC-±Fx Fxl

\ G
N

There exists a map G: F x F x I —* E making the diagram commute. Let m = G^:

F x F —» F. Thus 222 defines an E-space structure on F such that i: F —» E is

an H-map.

Define    U = [ , FÍ: ffl,,, ~* Abelian groups.   The Puppe sequence
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-,Q»F Jl^iin'ß^->çib^f-Ue  ¿*B

induces a long exact sequence

-» [X, Q"F] — [X, Û"E] -» [X, 0"ß] -» ...

-* [X, OB] — [X, F] -♦ [X, F] -» [X, B]

which can be rewritten as

... - DtiEfx) - ÄßPx) ^Bjf)> G(2"X)

- U(X) - K(X) JS2^ G(X).

A simple calculation when X = S    gives the following lemma.

Lemma 5. (i) 7j($2n) = 0.

(ii)  l/(S2n+1)=Z  ..
72 !

(iii)  // X is a finite CW-complex of dimension < 2« + 1 with v   r-cells then

\U(X)\ divides Ü.       (r!)V2r+1.

The purpose of this section is to obtain an exact sequence

t/(X2x) - k(x)-i-//(x) -+rj(2x) -kHx)
(E)

—♦   H^ (X)   -»Î/(X)-»K(X)-Î*C(X)

where / is defined as follows: If F —» SX is an «-dimensional vector bundle,

then it is determined by a map X—►' ilin).   The cohomology of U(«) is an ex-

terior algebra on generators x¿ e H        (U(n)) where 1 < í < n.   Define /(F) =

(f*xy f*x2,...,f*xn).

First we observe that since cup products vanish on suspensions the natural

bijection /iev(2x)—» G(2X) is an isomorphism of abelian groups, so that G(2x)

-*Hodd(X), and G(12X) Si îïev(X), so we can insert these groups into the se-

quence (S).   That the map

/: K'(X)= KiïX) Z   C*(Sx) M H^iX)

is given by the above construction we leave to the reader.   Essentially it remains

to prove the following lemma.

Lemma 6.   The following diagram commutes:
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KÍX)

141

K(22X)'

G(S2X).

"KÍX)

-*HiX)

where ß is Bott periodicity and *: KÍX) —> KÍX) is conjugation.

Proof.   Let L -> X be a line bundle with cAV) = / e E2(X) and let H — S2

be the Hopf bundle with Cj(//) = h.   From the commutative diagram

KÍX) ® K(52)->G(X) ® G(52)

X(22X) -G(22X)

we see that

?/3(L-l) = 2U-l)®?(//-l)

. (1 + /) ® (1 + h)

= íi + h + í) en + h) Gii + l)

where h. I ate the images of h. I in H2(S2 x X).   That is, c/3(L - l) = (l + h + I)

©(1 - h) © (1 - Î+ P - Í3 + • • •) since bn = 0 for » > 1, i.e. c/3(L - 1) =

(1 + /-/)/)© (1 -l + P -•••).  The component in dimension », that is in H2nÍS2 x X),

is

(-1)"-1/"-1? - (¿7)(-i)"-2/"-2.

The term (- l)"-1/" lies in H2nÍS2vX) and so contributes nothing in H2"(22X)

and the term (- l)"_1W"_1  on desuspending maps to (- l)"-!/""1 e H2""2(x),

so that

cßiL - 1) = (-/, I2, -l\... ) = siL - 1)

and so by the splitting principle and the universal definition of s, we see that

cß * = s.

The exact sequence (E) is now obtained from (S) by replacing X(S2X) —*c

GÍ12X) by X(X) ̂ s Hev(X) which is ¡somorphic to X(22X) © Z —^ G(22X)

© Z and so preserves exactness.
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