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SEMIGROUPS OVER TREES
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M. W. MISLOVE

ABSTRACT. A semigroup over a tree is a compact semigroup S such that }
is a congruence on § and S/K is an abelian tree with idempotent endpoints. Each
such semigroup is characterized as being constructible from cylindrical subsemi-
groups of S and the tree S/H in a manner similar to the construction of the hormos.
Indeed, the hormos is shown to be a particular example of the construction given
herein when S/H is an I-semigroup. Several results about semigroups whose un-
derlying space is a tree are also established as lemmata for the main results.

Introduction. Recall that a tree is a continuum in which any two points can
be separated by a third point. In [3], Hofmann and Mostert prove the following:

Theorem. Let S be a compact semigroup. Y is a congruence on S and S/H
is an I-semigroup if and only if S = Horm(X, S, m xy) for some chainable collec-
tion (X, S,, '”xy)'

This theorem completely describes the semigroup § in terms of S/H and
cylindrical subsemigroups of S. Our purpose here is to generalize this result by
obtaining a similar characterization of those compact semigroups § with S/H an
abelian tree with idempotent endpoints, thus giving a partial solution to Problem
43 of [1, p. 99] and also to Problem PS5 of [3, p. 160]. .

If {"a}aeo is a net in a space X and x € X, {"alaep =z, Axduep —
will denote the fact that {a € D: x, € U} is cofinal (residual) in D for each open
set U containing x. Otherwise, the notation and terminology will be that of [31.
This work forms part of the author’s doctoral dissertation, and he wishes to ex-
press his deep gratitude to Professor J. H. Carruth for his many helpful sugges-
tions and his advice, and for his patient listening during its preparation.

The following will be referred to as Koch’s theorem throughout this work.

Theorem (Koch [6]). Let S be a compact connected semigroup with identity
1 and minimal ideal M(S)# S. If each subgroup of S is totally disconnected,
then there is a standard thread I in S from 1 to M(S).
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Semigroups on trees. The structure of trees and of semigroups whose under-
lying space is a tree has been studied in [7], [12], [13], and [14]. We now list
some properties established in these works, and we shall use these properties
throughout this work without specific reference.

If X is a continuum, X is a tree if and only if X is hereditarily unicoherent and lo-
cally connected [13]. If X is atree and p € X, dcfinegp on X by xS,y if and only if
X=y, Xx= p, or x separates y and p. If x €X, let M(x) ={y € X: x <, ) and L(x) =
ly € X: y <, x}. Then, <, is a closed partial order on X, M(x) and L(x) are
closed subsets of X, and M(x) ~ {x} is anopen subset of X for each x € X [14].
If A and B are connected subsets of X, then A N B is connected. If a, b € X,
there is a unique arc in X from a to b, denoted [a, b, and [aq, b] = {q, b} U
{x € X: x separates @ and b}. If @ € X and {xg}qep C X with {x,lpep — ¥ € X,
then {[a, x, 1} ,cp — [a, x], where convergence in the latter case is in the
lim sup-lim inf sense [7). From this it is easily shown that if tyalaep € X,
Yalacp = ¥ €X, and y, €la, x,] for each @ €D, then {ly,, xeep = Ly, 2.
Finally, each subcontinuum of a tree is itself a tree [12].

Definition 1.1. Let T be atree. x €T is an endpoint of T if x separates

no arc in T.

Lemma 1.2. Let T be atree and let x €T. If x is not a cutpoint of T, then

x is an endpoint of T.

Proof. If A is an arc with endpoints @ and b, then A =[a, b] since T is
uniquely arcwise connected. If x separates A, then x € (a, b), whence x sep-
arates a and b. But, in that case, x sepatates T, and so % is a cutpoint of T.
The result follows by contraposition.

Our concern will be with semigroups on trees with idempotent endpoints in
which the idempotents commute. The following results show we can assume that
the trees with which we work are abelian.

Lemma 1.3 (Hunter [4]). Suppose T is a semigroup with zero on a beredi-
tarily unicoberent arcwise connected continuum. If the endpoints of T commute,

one with another, then T is abelian.

Lemma 1.4. Suppose T is a semigroup on a tree with idempotent endpoints
in which the idempotents commute. Then the maximal subgroups of T are totally

disconnected, and hence T bhas a zero.

Proof. If e € E(T), then H (), the identity component of H(e), is a subcon-
tinuum of T, and so it is a tree. Thus, Hy(e) = {e} by homogeneity, whence H(e)
is totally disconnected.

If, now, e € E(T) N M(T), then H(e) = eTe is connected and totally discon-
nected, and so H(e) = {e}. Thus, M(T) C E(T), and we have M(T) is a singleton,
since E(T) is abelian.
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Lemma 1.5. If T is an abelian semigroup on a tree with idempotent endpoints,
then [0, el is a standard thread and H(e) = {e} for each e € E(T). Consequently,

if s€lo, ], then s gyt

Proof. According to Lemma 1.4, each maximal subgroup of T is totally dis-
connected, and so, if e € E(T), then Koch’s theorem implies the existence of a
standard thread I running from e to 0. But, since [0, el is the unique arc in T
from e to 0, I =10, el.

Now, since T has idempotent endﬁoints, T =Utlo, ]']: f € E(T)}, and so
eTe =IO, ef]: f € E(T)}. Thus, as eTe is a subcontinuum of T, eTe is a tree
with idempotent endpoints, and, by [7], no point of H(e) is a cutpoint of T. Hence,
H(e) = {e} by Lemma 1.2.

Finally, if s € [0, ¢], then s, ¢t €[0, €] for some e € E(T) since T has idem-
potent endpoints. Then, s € #[0, e] N [0, elt C¢T N Tt, whence s Syt

Let T be an abelian semigroup on a tree with idempotent endpoints, and let
0 be the zero of T. The relation defined on T by x <y if and only x €10, y]
will be called the cutpoint order on T, and if x €T, M(x) and L(x) will denote
the upper and lower sets at x, respectively, with respect to this order only.

Since £ is a closed partial order on T, T is locally convex with respect to <
[10, Proposition 3 and Corollary 4]. If X = E(T), we define X' ={x € X: x is iso-
lated in [0, x] N X}, and if x € X', we let x' = sup([0, x)NX). We shall also
use this notation consistently throughout this work. We now establish some con-
vergence properties in T.

Proposition 1.6. Let T be an abelian semigroup on a tree with idempotent
endpoints, let X = E(T), and let {x,},cp, C X with {x.}aep SixeX.

(a) If x, €X' foreach a €D, x €X', and {x; }ycp £, x', then there is
B €D with x), =x' for a 2.

(b) If x € X' and xyx = x, for each a €D, then there is B € D with x, € x'
and x5 € X' for each a 2 B.

Proof. For part (a), if ¢ € (x', x), then x € M(t) - {t} is open in T. Thus,
there is B, € D with x, €M(t)~{ti for a 2 B4, and so [0, 8] clo, x,] for az
B,. Now, M(t), is closed, and, as x' € T — M(t), there is B, € D with x, €
T - M(t) for a 2 Bz’ whence xq €10, 4] for a 2 By, B,. Thus, if B €D with
B 2By, B, then x,=x' for azB since [x', d N X ={x'}.

For part (b), suppose xx = %, for each a €D and x € X'. Then, x € M(x")
—{x'} and M(x") —{x'} is an open subset of T, and so there is 8 € D with x,
€M(x") —{x'} for @ > B, whence x' € [0, x] for a2 B. Now, for a 2 3,

xlx', d =lxgx', x,); and, as x" € [0, %), xx' = x' by Lemma 1.5. Moreover,
as T is abelian and x, is idempotent, translation by %, is a homomorphism,



386 M. W. MISLOVE

and hence (x', x,) N X=0. Thus, for a 2 B, x, € X' and x' = x4, concluding
the proof.

Lemma 1.7. Let T be an abelian semigroup on a tree and let X = E(T). If
x €X' and x is not isolated in xX, then

D={yeX:xy=y and y is isolated in yX}
is a directed set under y < z if and only if yz =y, and b’}yeb 5 x

Proof. If y,, y, €D, then, for i=1,2, yx=y; and y; isolated in y X im-
ply there is an open set U containing x with y UNX ={y} for each i. But %
is not isolated in xX and x € X', whence a simple application of Koch’s theorem
yields the existence of y € U - {x} with yx =y and y isolated in yX. Clearly
y €D and y;, y,Sy-

To show {yfyeD £, x, it suffices to show this convergence in X. But,
since < is a closed partial order on X, X is locally convex with respect to <.
Now, if x € U and U is open and convex, a simple application of Koch’s theorem
yields DNU # O, and if y DN U and z €D with y <z, then y £ 2 £ %, and so
z € U by convexity. This proves the result.

Semigroups over trees. We now turn our attention to the first of our main re-
sults. The following definition is very similar to that of a chainable collection
[3, p. 139).

Definition 2.1. (T, X, S, m ., 0 ,) is a generalized collection if:

(a) T is an abelian semigroup on a tree with idempotent endpoints and X = E(T).
(b) For each x € X, S_ is a cylindrical semigroup with identity 1, and minimal
ideal M satisfying:

() If x X', then S_=H,_=M_ is agroup, H, being the group of units
of §,.

Gi) If x € X', n: S, —[x', x] is a surmorphism, and there is an isomor-
phism ¢ _: S, /H,—x', 2] so that v =n,, where vz S S,/H, is the
natural map.

(iii) If x#y, then S, N S =0.

(c) If x,y € X with xy =x, thenm,:S —S, isa homomorphism with:
(i) m,, is the identity.
(i) If x € [0, y), then mxy(Sy) CH,.
(iii) If xy =x and yz=y, then m, om =M, .
(d) (i) If x € X', then m_, |M, is an injection.

(i) f x,y €X', xy=x,and ' =y', then m, |97 1Ly, £] is an injection
into 7 x!, ¢], where t = sup(lx’, A Nly, yh.

(iii) Suppose {x,},ep C X with xplocp S x so that x,x = x, for each a €D
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and x,xg= %, if @ B €D. Then, ¢.:S — IS _: o €D} defined by ¢ (s)=
(mmx(s))aeD is an isomorphism of §, onto proj lim{Sxa, Myaxe &S B €D}

(iv) If x, y € X with xy = x, then nx(m xy(s)) =X ny(s) for each s € Sy.

If (T, X, S,, My n,) is a generalized collection and s'= ULlSs,: x e Xi,
define p: S'— X by p(s)=x if and only if s €S,. p is well defined by (b)(iii).

Proposition 2.2. Let (T, X, S, m,., 1) be a generalized collection and let
S'=UtS:xeXl If s, €S’ let s t= M e p(s) (WMo t), where x = p(s)p().
With this multiplication, S' is an algebraic semigroup and S' is abelian if and
only if each S is abelian.

Proof. The proof is straightforward.

Proposition 2.3. Let the assumptions and notation be as in Proposition 2.2,
Let T be the basis of all open connected subsets of T; and, if U €T and z €
U N X, define (U, 2)=U if z is isolated in zX, while (U, 2)=U N M(2) - {z}
otherwise. If, then, V CS is open, let

WU, z, V) = {s € §': p(s) € (U, 2), zp(s) = z, and mzp(s)(s) € vl

Then, ¥={W(U, z, V): U€T, z€ U N X, and V CS is open} is a basis for a
topology on S' relative to which S' is a topological semigroup when endowed with
the multiplication of Proposition 2.2,

Proof. We first show T is a basis: Clearly S'=W(T, 0, S o) and so §' =T.
Suppose s € W(U,, z,, V) N W(U,, 2, V,). For each i, if z, is isolated in zX,
then there is U; €T with p(s) € U; CU; and z,U] N zX={z]. If, onthe other
hand, p(s) € (U, z;) = U; n M(z;) - {z,}, then, since (U, z;) is open
in T, there is U] €T with p(s) € U; C(U; 2. If U=NU;:i=1,2}, clearly
p(s) €U and U is open and connected. If p(s) € X', then Koch’s theorem implies
the existence of z € U N X with z isolated in zX and zp(s) = z, while if p(s)
£ X', pick z € (U N [0, p(s)) N X). In either case, p(s) € (U, 2) CU C Ui' C
(U, z), and zz =z, since z,U N zX =1z} for i=1, 2. Thus, if V =
n{m;:z(v,.): i=1,2}, V is an open subset of S, and m_, \(s) € V since
mzl,p(s)(s) €V, for each i. Then, s € W(U, z, V), and cleacly W(U, 2z, V) C .
N, z,, v, i=1,2%

The topology is Hausdorff: Let s, s, €S LI p(s)) # p(s,) or p(s ) = p(sy)
= x is isolated in xX, then it follows easily that s, and s, can be separated
by disjoint open sets.

Next, we suppose x £ (X' U {0}), and let D =[0, x)NX. Direct D by y < z
if and only if yz = y, and note that {y} o\, < x. Then, by (d)(iii) of Definition
2.1, s, # s, implies there is w € D with myx(sl) # ”’yx(sz) for w <y € D. Since
x € M(w) - {w}, there is U € T with x € U CM(w) —{wl. Let z€U N X N [0, x),
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and note that m zx(s l) # m, x(sz). Hence, there are disjoint open subsets V; of
S, with mzx(si) €V, for i =1, 2. Thus, s; € w(u, =, Vi) for each i, and these
sets are clearly disjoint.

Lastly, if x € X', but x is not isolated in xX, then D ={y € xX — {x}: y is
isolated in yX} is directed under y < z if and only if yz =y, and Iy} ¢}, Zx by
Lemma 1.7. Again applying (d)(iii) of Definition 2.1, if w € D with myx(sl) # myx(sz) for
w<y €D, then there is U € " with x € U and wU N X ={w} as w is isolated
in wX. By Koch’s theorem there is z € UN D, and if V, and V, are disjoint
open subsets of S, with m_.(s,) €V, for each i, then clearly s, eW(U, z, V)
for each i and these sets are disjoint. This exhausts the possible cases.

Multiplication is continuous: Let s, ¢ € S’ with st € W(U, z, V) and let x =
p(s)p(t). Then x € (U, 2), and if z is isolated in zX, there is 0 € I" with x €0
and z0 N X ={z}. Let U’ = (U, 2) if (U, 2) = UN M(z) - {z}, while we let U’ =
0 N U if z isisolated in zX. Now, there are U, €T for i = 1, 2 with p(s) €
U,, (t) € U,, and U,U,C U'. Again, we pick z, € U, for each i so that s €
WU, 24, Szl) and t € W(U,, 25, S2,) and note that (U,, z,) (U, 2,) C u',
whence 2(x,x,) = z for any idempotents %; € U,. Since st € WU, 2, V), m_ (st)
€V, whence m(zlzz)x(st) € m;%zlzz)w)’ and this set is open in Szlzz' But,

),

m(zlzz)x(St) = m(zlzz)zl(mzlp(ﬂ(s»m(zlzz)zz(mzzp(t
and so there are open sets V; in Sz[z2 for i =1, 2 with

[
(m (S)) € V; and m(zlzz )zz(mzzp(‘)(t)) € Vz’

KRR RN

and ViV, Cm ¢, eV B V= m;;lzz)zi(v{ ) for i=1,2, then m, ,\(s)
€V, mzzp(‘)(t) €V,,V,; is openin Sz; for each i, and so s €W(U,, z;, V)
and ¢t €W(U,, z,, vV, A simple calculation now yields

W(U,s 2y VW, 2,5 V,)C WU, 2, V)
Lemma 2.4. Let everything be as in Propositions 2.2 and 2.3. For each
x € X, the topology induced on S as a subset of § ! is the same as the original
topology on S..
Proof. This follows from the facts that S is compact, § ' is Hausdorff, and

the natural embedding of S, into S' is continuous.

Proposition 2.5. Let everything be as in Propositions 2.2 and 2.3. Then,
endowed with the topology of Proposition 2.3, § ' is a compact space.

Proof. Let {s.}oep CS'. Then, {p(s)laep C X and X is compact, whence
there is x € X with {p(s )}, o5 and by possibly picking a subnet, we may
assume {p(s Nyep < x. By again picking a subnet, we have one of the following
cases.



SEMIGROUPS OVER TREES 389

Case 1. xp(s,) = x for each a € D. Then {mxp(s Sa Neep C S, and so there
is s€S w1th {mxp(s )(s )}aED TR s in §_. Suppose s € W(U, z, V) Then, as
{p(s )}aED 2 x and € (U, z), there is Bl eD with p(sp) € (U, 2) for B, a €
D. Moreover, if B €D, there is & €D with a 2 8, 8 so that m,, )(sa) €
m;;(v), whence s, € W(U, 2, V). Thus {sa‘aep s in S'.

Case 2. x, = xp(s,) # x for each a €D. Since {p(s)yep 5 %, x},¢p 5
x + x = x. We distinguish two subcases.

The first subcase is x £ (X' U {0}). Let E = [0, x) N X, and direct E by
y £z if and only if yz = y. By (dXiii) of Definition 2.1, S o
proj lim{S , m__, y < z € E}. We now define a net {todaep in TS : y € E} by
(t ) = 1 if yp(s,) #y, while (¢ ) = yp(sd)(s ) if yp(s,) =y. Then, as
H{S y 6 E} is compact, there is ¢ €[S : y € E} with {tdoep — ¢, and stan-
datd arguments show ¢ € proj hm{S M,y SZE El

Thus, there is s € S, with (m,, (5))yes =t. We now show {s;l,¢p L.

If se W(U, 2, v), then p(s) x € (U, z) and zx = z. It follows that there is
an open set U' with x € U' C (U, 2) and zU'N X = {2}. Since {y} veE = x,
there is w € E with y € U' for w <y € E. Moreover, as {p(sa)}aeb Zix and x
€U'N Mw) - {w}, there is B € D with p(s,) € U'N M(w) - {w} for B a €D.
Now, since s € WU, z, V) and zw =z, m,,, (s) € m‘l (V), and this set is open in
S, Thus,as m, (s)=t  and {t. }aED 5S¢, {a €D (t Dw em'l (v)} is cofinal
in D. Thus

B={aeD:(,) € m;L(V) and p(s,) € U' N M) - {wl}

is cofinal in D. If @ € B, then p(s,) € (U, z) and zp(s,) = 2. Moreover, wp(s,)
=w, S0

s)=m_ (m

-1
ZP(S ) Zw wp(s )sa,)) € mZW(mzw(V)) C V,

whence s, € W(U, 2, V). Thus, a € B implies s, € WU, z, V), and so {saaen
Los.

The second subcase is x € X'. Since {"a}aep % x and K% = xa;é x for
each a €D, x is not isolated in xX. Thus, if E ={y € xX ~{x}: y is isolated in
yX}, {y}yEE < x by Lemma 1.7, and so S proj lim{Sy, m,,ySZE D}. We
define the net {¢,} . exactly as in the previous subcase, and pick ¢ €
TI(S,: y € B} with Ut Joep Lo 1., Again, there is s €S, with (m, () eg = t-
The proof that {s,};¢p 4, s follows as in the previous case.

As this exhausts the possible cases, the result is established.

Lemma 2.6. Let everything be as in Propositions 2.2 and 2.3. Define p:
S' — X by p(s)=x if and only if s €S, and define 7: S'=T by q(s) = qp(s)(s).
Then, p and 7 are continuous surmorphisms of § ' onto X and T, respectively.
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Proof. p is clearly a sumorphism, and if U €T, then p~}(U) =
Utw, =, S ZEUNX }, and so p is indeed continuous.

We now turn our attention to 7). Since 7 is well defined for each x € X
and the S, ’s are pairwise disjoint, 7 is well defined. If ¢ € T - X, then there is
x € X with ¢t €[0, x] since T has idempotent endpoints. Thus, there is y € X'
with 2 €[y’, y), and so 2 €7, (S) Cn(S’). If ¢ €X, then n(1) =7,(1,)=1¢, and
so 7 is surjective. That 7 is a homomorphism follows essentially from (d)(iv)
of Definition 2.1.

We now show 7 is continuous. Let s €S, CS' with n(s)=9,(s) €U €T
We distinguish two cases:

Case 1. x =17(s). Then, pick z € UN X with zx =z and x € (U, 2), and let
V=97 1U). Then V isan open subset of S, 7. (m, (s)) =29 (s)=2z €U, and
so m, (s) € V, whence s € W(U, z, V). Moreover, if t € W(U, z, V), p(t) € (U, 2)
C U, and since U is connected, if r = sup(l0, 21N [0, p()]), then [r, zZ1U[r, p(2)]
=[z, p)l Ccu. 1If nw)(t) = p(t), then np(t)(t) € U. Suppose p(t) € X' and
Ty ey® € [6@Y, p(2)). Since 1 € WU, 2, V), my, (1) €V, and S0 2z, (¢) =
Mo () €M (V) C U. As 1, \(®) €[p@)', p®), 1,40 €10, AU L7, p(0)]. I
qp(t)(t) € [0, 71, then, since r €10, ], np(t)(t) = z'qp(‘)(t) EU. If np(t)(t)'e (r, p(2)),
then ”p(t)(t) €U as [r, p(t)] C U. In either case, 7(t) = "p(:)(t) € U, and so
(WU, =, V)) C U.

Case 2. x €X' and 7,(s) €[x', x). Pick r € (n.(s), x) and let U, €T with
x € U, C M(r) - {r}. Then, by Koch’s theorem, there is z € U; N xX Wwith z iso-
lated in 2X since x € X'. If r, = sup([0, z] N [0, x]), then, as U, is connected,
['l’ z]u [’1’ x] =z, x]C U,. Since U, CM(r) - {r}, r €0, '1]’ and so [’1' ANX
= {x}. Moreover, [r, z] = z[r , #] implies [r;, 21N X = {2} as wanslation by =z is
a homomorphism, and so z ' = . V= ng I{z’, r) N U), then V is open in S,
since 7, is continuous. Now, p(s) = x € (U, z) by choice of z, and 7,(m_ (s)) =
m (s) = 1,(s) since 1.(s) € [x', r), =[z', ). Hence, as 7,(s) € U, m (s) €V,
and so s € W(U, z, V). Arguments similar to those given in Case 1 show
n(W(u, =, V))C U.

Proposition 2.7. Let everything be as in Propositions 2.2 and 2.3. If R is
the relation on S' whose cosets are

Rlsl=1r €' :n(s) = () and m ,( () =m,

where x = p(s)p(t), then R is a closed congruence on § '

)(t)}:

Proof. R is clearly reflexive and symmetric. Suppose (s, t), (t, u) €ER.
Then, 7(s) = 7(¢) = n(x). Let
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x = p(s)p)y y=p()pp@), z=p(s)p(t), w = p()p(u).

We must show m,, (s)=m, . \(u) to show (s, u) € R. Now, since 7(s) = 7(¢)
=1(u), n(s) € (S N NS ) N (S u))- Moreover, m_,  (s), m . \(u) €S,
and by (d)(iv) of Definition 2.1, n(m o s)(s)) = x7(s) and "(mxp (u)(”» = xn(u).
Bug as 5(s) = n(u),

xn(s) = p(s)p(an(s) = p(s)p(uIn(w) = pls () = pls)ls) = 7(s).

Simila.tly, n(m,, ot u)(u)) =n(u), and so 7(s) €S, and 7(m,, o€ s)(s)) =n(m, o u)(u)).
A similar argument yields the fact that 7(s) = '7(”',, (s (SN = n(m o »#), and so
7(s) € n(S y) Hence 7(s) € 7(S,)N q(S ), and, if ¢ = inf(r](S )N7(S,) and 7=
sup((S,) N 7(S,)), then n(s) € [g, rl. Moreover, as nlm,, s)(s)) 1M ) (8)) =
7(s), we have m_,_|(s), xp(u)(u) eny g, 71, and as n(m (D= n(m,,p(, @)
=7(s), yp(s)(s), yp(u)(u) €n, 1{g, r]. Furthermore, using the facts that (s, ¢)
and (¢, u) are in R, it is easily shown that m (mxp(s)(s)) m (mxp(u)(u)) But,
by (d)(i) and (d)(ii) of Definition 2.1, m, |17x l[q, 7] is an m]ecuon into r] [q, 7,
whence My s)(s) ™ ot u)(u) Thus R xs indeed transitive. A simple calcula-
tion using the fact that 7 is a homomorphism and the definition of multiplication
in §' yields R is a congruence.

A simple argument, using the continuity of 7 and p and the fact that mxy(s)
=1, -5 if xy =x shows that R is closed.

Definition 2.8. Let (T, X, S My 1,) be a generalized collection and let
s’ U{S x € X} be the semxgroup constructed in Propositions 2.2 and 2.3. If
R is the congruence on S' defined in Proposition 2.7, then § =§ '/R is called
the semigroup over the tree T generated by the generalized collection
(T, X, S, myy, 1), and is denoted § = T, X, Sxr Myyp 7,0

Lemma.2.9. If (T, X, S,, my» 1 ,) is a generalized collection and 0 is the
zero of T, then S =8(T, X, S My n,) is connected if and only if S is con-
nected.

Proof. An argument utilizing the structure of S similar to that given in the
proof of [15, Proposition 3.6, p. 128] is straightforward.

Two of the motivations for this work were a desire to generalize the con-
struction of the hormos to non totally-ordered semilattices, and a desire to ob-
tain a generalization of the following theorem.

Theorem (Hofmann and Mostert [3]). Let S be a compact semigroup. His
a congruence on S and s/H is an I-semigroup if and only if S = Horm(X, S, m, y)
for some chainable collection (X, S,, mxy)

The last section of this paper is devoted to.the latter of these. As to the
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former, we note that, in constructing a hormos from a chainable collection, there
was no question as to how to sew the semigroups {S§ LXEX } together. However,
it is easy to find examples of semilattices which can be embedded in each of the
several nonisomorphic trees so as to contain the endpoints of the tree in each
case, and so we include the tree T in the definition of a generalized collection.
We now show that the construction given in this section indeed generalizes that

of the hormos.

Theorem 2.11. Let (T, X, S, m xyr 1 ,) be a generalized collection, and let
0 be the zero of T. If T is an arc and 0 is an endpoint of T, then (X, S, mxy)
is a chainable collection and (T, X, S, My n,) = Horm(X, S, mxy).

Proof. Since T has idempotent endpoints and the cutpoint order agrees with
the H-order by Lemma 1.5, the endpoint other than 0 is an identity for T. Thus
T is an I-semigroup, and if 1=sup T, then 1 is the identity of T. If x €X
with x not isolated in [0, 1 N X, then b (myx(b))y<x is an isomorphism of H .
onto proj lim{H g My ¥ £ < z < x} after (c)(ii) and (d)(iii) of Definition 2.1, and
it is now clear that (X, S ,'m ) is a chainable collection. If R is the congru-
ence defined on S’ —U{S x 6 X } in Proposition 2.7, and if R' is the congru~
ence defined on S’ as a chainable collection, it is routine to check R = R'.

Let T, be the topology on S' as a chainable collection, and let T, be the
topology on S' as described in Proposition 2 3. We show i: ¢s',1) — (O T,
by i(s) =s is continuous. Let s €5, C s' wuh s €W(U, 2z, V). Then U is an
open connected subset of T, p(s)=x € (U, 2) with zx = z, and mzx(s) €V with
V an open subset of T. Now, (U z)=U if z € (X' U {0}), while (U, 2)=U
N (z, 1] otherwise, and we let v'=unlz 11nXx if ze(X'U{0}), while v’
Un (z, 11N X otherwise. Then w', m“l(V)) € T,, where p = inf U', and
clearly s e W(U', m'l(V)) and iW(U', m'*(v»)c W(U, 2, V). Thus i is indeed
continuous, and since (S T,) is compact and s',r ,) is Hausdorff, i is an iso-
morphism. Since R =R ', the induced map i*: Horm(X, S, mxy) -

T, X, S, Mysr 1,) is an isomorphism, thus proving the theorem.

We note that, as a result of this theorem, the inclusion of the basis for § -

H, for each x € X' in the definition of the topology for a chainable collecuon

is superfluous.
Proposition 2.12. Let (T, X, S, m_,, n,) bea generalized collection and

let T be a subtree of T with idempotent endpoints. If X =TN X, then (T, X,
Spr My T,) is @ generalized collection and ST, X, S,,m xyr M) 15 @ subsemi-

group of ST, Xy S, My 1,

Proof. The proof is straightforward and uninteresting.
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A characterization of semigroups over trees. We are now ready to turn our
attention to the main result of this work, a characterization of those compact semi-
groups S with X a congruence on S and S/H an abelian tree with idempotent
endpoints. In particular, we show that each such is &(S/H, E(s/X), s 2 My )
where §, is a suitably chosen cylindrical subsemigroup of S for each x €E (5730,
and m xy is translation by 1. Conversely, if § = &1, X, S 2 Py N then we
show that H is a congruence on S and S/H~T. It is because of this fact that
we call such a semigroup a semigroup over the tree T. We first establish some
technical lemmata we shall need for the proof of our main result, and we begin by
quoting the following theorem, which is proved in [2].

Theorem 3.1.(Hofmann and Mislove [2]). Let S be a compact semigroup with
identity such that S/M(S) is connected. If sH(1) C H(1)s for each s €S, then the
identity component of the centralizer of H(1) in S meets M(S).

Lemma 3.2. Let S be an algebraic semigroup and let e € E(S). If es € Se
and se € €S, then es = ese = se. In particular, (es, se) € X implies es = ese =
se. Finally if } is a congruence and S/H is abelian, then E(S) C Z(S), the cen-
tralizer of S.

Proof. We prove only the last statement. If s €S and e € E(S), then (es, se)
€ Has S/} is abelian, and so es = se by the first part.

Lemma 3.3. Let S be a compact semigroup with { a congruence and s/H
an abelian tree with idempotent endpoints. Let X = E(S/K), let x €X', and sup-
pose ¢ — 7~ Mx', x] and ¢, 2— 7~ Yx*, x] are homorphisms with
1 (E)) = nl(EN) = [x', x1, 72 § — S/H being the natural map. Then (=) - H,
=¢A3) - H,

Proof. We show this first for x isolated in xX.

Claim 1. There is t €[0, x) with [0, y1N [0, x]1 C[0, #] for each y € xX = {x}.

Proof. Suppose not, and let D =1{y € xX = {x}l. If, then, 2 = sup(l0, y1n[0, x)
for each y €D, we have it} ¢p Z, x, where we direct D by y £z if
and only if ¢ €l0, ¢ ). Since xX is compact, thete is z € xX with hep — %
and by possibly picking a subnet, We may assume convergence. Now
{lo, yuyeD = (o, 2], and t, €[0, y] for each y € D, whence x 6[0., z.] as
{tyiy €D 2, x. But z € xX, and so zx = ze. Therefore z = x, contradicting the fact
that x is isolated in xX, since fyiyep 2, z. This establishes the claim.

Let ¢ €[0, % with [0,y1n[0, 11 [0, 1] for each y €D, and let A = 7~ x's 4.
Then A is clearly a compact subsemigroup of S with group of units H,. Pick
s €A with 7(s) €(t, xl.

Claim 2. Hg(s) = sH, = H s.
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Proof. First note that E(S) C Z(S) by Lemma 3.2, If u € Hg(s), then there
are a, b € S with u = sa and s = ub, whence s = sab. Thus, s = sly for ly €
I'(ab) N E(S), and so uly =u as (s, u) el. If z= Xy, then slz = Sley = s and
ul = u, whence zn(s) =n(s). Now z €xX and 7(s) = zn(s) € 20, x] = [0, 2], so
1(s) €l0, 21N 10, x]. Since n(s) € (¢, x, we have z = x. Hence, al,, bl _€H
since ly € I'(ab) and lxly = lx. Moreover, s(al) = (sa)l = u1x= z, and so
Hys)CsH,.

If a €H_, then 7(sa) = n(s)n(a) = n(s)x =7(s), and so sH,, C H{(s). Therefore H(s)
=sH,, and a similar argument shows H s(s) = H_S, proving the claim.

Now, A =H_Un~ l[x', x), and 7(H, )N n(n‘l[x !, x)) =0. Hence, since H
is closed in A and 7 isa closed map, H_ is not open in A as [x’, x] is con-
nected.

It follows that there is a one parameter semigroup in A containing 1 whose
closure meets M(A), and from this that A/M(A) is connected. This, along with
Claims 1 and 2 imply that A satisfies the hypotheses of Theorem 3.1. Therefore,
the identity component of the centralizer of H@1)) in A, C, meets M(A), and since
1, is isolated in C, there is a one-parameter semigroup in C containing 1
whose closure meets M(C) C M(A). Thus there isa homomorphism ¢: = x H o
A with (0, 0), b) = b for each b € H_ and $(E x H,) ¢ H, [3, p. 87, 2.3].
Hence, (¢ x H)) =[x ' x], and it now suffices to show §(E x H,) = P ). H,
for any ¢ s 2—A with n(¢'(2)) =[x’ xl.

Let s €¢'(2) with n(s) € (¢, x]. Then there is s'ep(Ex H ) With ns')
=17(s), and so there is b €H  with s= s'b by Claim 2. Hence s=s'b €
HE X HIH, = pE x H), and so ¢'(Z) CH(Z x H)) since ¢ '®) is generated
by {s € ')z n(s) € (2, x]}. Therefore, ¢ ') - H C HNExH)H, = & xH.

Now, there is r € H with r> 0 and B, s(p)), 1) en‘l(t, x] for r>p €H,
and so n(((p, s(p)), 1,)) = 7(s) for some s € ¢' ). Moreover, by Claim 2, there
is b’ €H, with &(p, s(p)), 1) = sbﬁ, whence

(o, s(p)): p<rlx {lxD ce'x). H,.
But 2 x {1 } = ({(p, s(p)): p <r}x {1,)* and so
$(S x 11,1 = 31y s@D: p <A x 1D C g D) - He
Finally, $(E x H,) = #(E x 11D H, C@'E) - H - H, =$'(D) - H,. This es-

blishes the desired result in the case that ¥ is isolated in xX.

Now, suppose X € X' and x is not isolated in xX. If D={y €xX:y %
isolated in yX}, then D is directed under y < z if and only if yz=y and
lep £, x by Lemma 1.7. Moreover, by possibly picking a residual subset of
D, we may assume y' =x' for each y €D by Proposition 1.6. Now, if {Hglsep
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is a universal subnet of {H } ¢p, [5, p. 81], then {H,},ep converges to some sub-
semigroup H of §. Moreover, as 7: S—S/H is continuous, if {b)}yeu IR bh€s,
then {n(by)}yeb — 7(h), and so n(h) = x since q(by)= y for each y €D and
{y}yeD — x. Thus b €H, and we have H CH,. But H, CH since 1 H CH,
for each y €D, and so H=H,.

Now, let ¢;: 2 —7~ x', x] and $pI— 7~ x", x] be homomorphisms with
n(p,E) = T](t;bz(z)) =[x', xl. If y €D, since E(S)C Z(S) by Lemma 3.2, transla-
tion by 1 is a homomorphism, and moreover,

(L, - 7', <D = S By xl=[n(1)x"s 7@ ) =)= [n@ Y, (1)),

whence 1_ - 2~ x’, cq” I[17(1))',17(13,)]. Hence, if y € D, then ¢, : 5 —
n~ l[7](1),) ! r)(ly)] by qSiy(s) =1, ¢(s)yi=1, 2, are homormophisms and

M, () = [n(1)", 7(1 )] for each i. Thus, $1,32) + H, = ¢, () H by the
first part of this proof. Therefore,

$,(2)H =¢,(3) . limH =lim¢,(2) - H =lim ¢, (2). H
=lin ¢, (2)-H =¢,(3).H,.

This concludes the proof of the lemma.

Main theorem. Let S be @ compact semigroup. H is a congruence on S and
S/H is an abelian tree with idempotent endpoints if and only if

XT, X, S x» My M) for some generalized collection (T, X, S, m . 7,)-

Proof. We first establish necessity. Suppose § is a compact semigroup with
X a congruence on § and $/H an abelian tree with idempotent endpoints. We now
construct a generalized collection (T, X, S, Moy 1 -

Let T = S/} and let X = E(S/H). Then T has a zero by Lemma 1.4, Let
x € X' and consider 7~ [x", x], n: § — S/H being the natural map. If x is iso-
lated in xX, then, as in the proof of Lemma 3.4, there is a homomorphism ¢: 2 x
H,— 7~ x', o with $((0, 0), b) = b for each b € H, and n(¢p(Z)) =[x, #l. If
(ry7') €2 and b €H_, then

¢y ')y 1)b = 6((ry ), B) = $((0, 0, Yp((r, '), 1) = bp((r, '), 1,),

and so (= x {1 x}) CZ(H,). Thus, if C,.is the identity component of the central-
izer of H, in n~!x', #], then C, contains 1.

If, on the other hand, x is not isolated in xX, then arguments similar to those
given in the consideration of the analogous part of the proof of Lemma 3.3 show
that 1 ¢ € C, the identity component of the centralizer of H, in 2~ s, .

If now, H is the group of units of C, then H is closed in C, H # C, and, as
C is connected, H is not open in C. Since C Cq’l[x’, , 1, is isolated in the
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set of idempotents of C, and so there is a one-parameter semigroup f: H-'C with
f(0)=1_ and f(H) ¢ H. Since C is a subset of the centralizer of H,

7~ 1%, x] there is a homomorphism ¢é: £ x H, — 5~ {x’, x] with qS((O 0), b) =
b for each b €H_ and (¢ x H,, )) [x', %] [3 p- 87, 2.3

Thus, in euher case, if x €X', there is a homomorphism é: 2 x H —

n~1x’, «] with $((0, 0), b) = b for each b € H, and n($E x H,)) = [x x]. Pick
one such, and let S, = HE x H,). If x ¢ X', let S,=H,. If x,y €X with xy =
x, let Myt S gy S, be defined by m xy(s) =1 S+ Since s/} is an abelian tree
with idempotent endpoints, E(S) CZ(S) by Lemma 3.2, and so m
phism. If y ¢ X', then S = H, and, if b €H,

-1 - -
ey Bm, (™) = B 5 =1 h™ =11 =1,

vy 1S 8 homomor-

whence m, (S.) CH, CS,. Suppose y € X'. If x ¢ X', then «ly', y] C[0, £]
and, as translation by % is a homomorphism, xy’, y1N X = {xy’, x}, whence xy'
=x, Hence if s esy,

nlm, () = (1 s) = (1 Jls) = xn(s) = x,

and so m, (s) €H, CS,. Suppose x€X’. Then x{y ,ylclo, x1, and [y’ yl
nx -{xy ,x} as above. Thus xy' =x or xy'=x', and so, if s €S, cn~Uy', 5l

then 7(m, (s)) = (1,5) = x7(s) €lx’, x], whence m (S ) Cn"l[x x] Therefore,

if S, =¢(2 x H,), then m, o @|(Z x {1 i) xsahomomorphxsm of = x{l } into
"l[x x, and so m,, (¢(2>< {1 3)) CS by Lemma 3.3. Thus

mxy(Sy) = mxy(tﬁ(z X Hy)) = mxy(¢(2 X {lyf)Hy)
= mxy(¢(2 x lly})m xy(Hy)Sx -H_=S,

the containment following from the obvious fact that m, (H ) CH,.

In any case, m (S ) CS,,and m S) CH, if x 6[0, y). In particular, if
y€eX' and x=y', M ¢ H, and so m, [M, is the identity map, and hence it is
an injection. If x eX let 7):=17|S If %,y €X with xy=x and s €S_,
nx(m (s)) =n(1,8) = x7(s) = xny(s) As S, is cylindrical, “S = }( N (S, xS )
[9, Lemma 2 4] and so (b)(ii) of 2.1 holds. ‘Moreover, if xy = x and yZ =1y, then
My, om, = 1sclearasll =1.

Suppose x, y €X', xy =x, and x' =y’ Then, if t = sup(lx’, x1 N[y’ yD)
and if s €7 1y, 1], then n(s) €[x’, t], and so x(s) = 7(s) by Lemma 1.5.
Hence m, (s) l,s=s, and so m, |n7 Iy’, 1 is an injection into Ny Yu!,

We have shown that (T, X, S, m, » 1 ) satisfies all the conditions of Defmi-
tion 2.1 except (d)(iii) and (b)(iii) . We consider these in that order.

Suppose {x,},.p CX such that {x,}. . S, x €X with %% = x, for each
a €D and agf implies x ;xg=x, Let ¢,: S, — IIIS,: & €D} be defined by
b, (s) =(m ,‘ax(s)) a€D
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¢, is a homomorphism as each m, , is, and clearly ¢ (S)C

proj lim{S, , m, ., a B €D Since {1, l,.p = 1,if ¢.(s) = ¢ (1),

then

xaqxg’
s=Uim1, Js=lim1, s=lin @, ) =lim($, (1)), =1,

whence ¢_ is one-to-one. To show ¢_ is surjective, fix (sg)y¢p €
proj lim{s xa? Pagrp & S B € D}. Ve distinguish two cases.

Case 1. x ¢ X', in which case S, = H,. By possibly picking a subnet, either
xaex' for each @ €D or xaﬂ'X'foreach a ¢ D. In the former case, if U is
a connected open subset of T containing x, then there is y € UN [0, x)NX so
x € UNM(y) = {y}. Thus there is B € D with x, €UNM(y) -1y} for Bg a €D,
whence y €[0, x,] for Bga €D. As y,x, €U and U is connected, ly,xJcu
for B< a €D, and, since y €[0, xa]ﬁx, x; €U for B< a €D. Thus
{xo} oep 2y x,and therefore, since xq SNsy) < x, for each o €D, we have
(s dlaep Soxif x, €X' for each a €D, this fact being obvious if x, ¢ D.

As § is compact, there is s €S with {sa}ae D ER s, and, by the above, s €
S, Standard arguments now show lxa * S=s, for each @ €D, so ¢(s) = (S@acp

Case 2. x € X', According to Lemma 1.6, we may assume x, € X' and
%, =x' for each a € D. Let S, =$E x H,) with ¢((0, 0), b) = b for each b €EH .
Then, by Lemma 3.3, Sxa’: [(m,‘ax o@)E x {1 ] - H, , and so, for each a €D,
there ace £, €XEx {1 D and b, €H,  with Sq =My (th, Thereis t e x {1 D
HE x LD with {2}, L4, and so there is a/subnet tglgeg with{tgle o & Since §
is compact, there is b €S with {h /31 geg — b, and, since n: § — S/} is contin-
uous and {xﬁ } BeE A %, b € H . By possibly picking another subnet, we may
assume {b,B},BeE 5 b. Now, s = th € H(E x {1,) - H =S5, and again standard
arguments show &(s) = (s,) 4¢p-

Thus, property (d)(iii) of Definition 2.1 is fulfilled, and, to accomplish (b)(iii),
we make the following inessential changes: for x €X, let T, = {x}xs . and,
if'x, y €X with xy = x, define mx'y:Ty—» T, by m; (y,s)=(x, m, (s)). Let
n,:T,— [x', x] be defined by 1,(%, 8) =7,(s). Clearly (T, X, T, m;y, 7.)
is a generalized collection.

Let § = T, X, T, m;y; 7,). We show S~ S. Let §' =UIT,: x €X} be
the semigroup constructed in Propositions 2.2 and 2.3, and define f: ' Sby
f(ey s) = s for each (x, s) €S'. We will show that f is a continuous surmorphism
and that P;= R, the congruence defined in Proposition 2.7.

Clearly f is well defined. Let s €S. If 7(s) = x €X, then s €H_CS,, and
so (%, s) €T, and {(x, s) = s. Suppose 7(s) €(x’, x) for some x € X', Then,
since 7(S,) = [x', x], there is ¢ €5 » With 7(2) = 5(s), whence (s, ) e}(s, and so
there are @, b € S with sa=1¢ and tb = s. Then, s = sab, and, therefore s =sly
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/
where ly € ['(ab). Now, “ly’ bly €Sly and f(alybly)"inea, - ly, whence aly,
bl:y €H,. If z=xy, then

M, (8)C S, and my, (Dm, (61)= (1,01 b1 )=1tb=1y5=s.

Thus, s €S, and so (z,s) €T, and [(z, s) = s. Therefore, f is sutjective.e
To show the continuity of f, let {(x,, s} ,ep CS' with {(x,, s, Mleep —
(%, s). Then {s Y, is anetin S, and so there is t €S with {s JaeD — t. By
picking a subnet, we may assume {s,},c;, — t. If y, = xx, for each a €D, then,
by possibly picking a subnet, we may assume that either y £ x for each a €D
or y,=x for each a €D. In the first case, x is not isolated in xX, and as in the
last case of the proof of Proposition 2.5, we pick a net b’}yee CxX with yz =y
if y$z and iyl ¢ <> x. Moreover, as is shown in that proof {a €D:yy =y}
isresidual in D for each y €E. If ¥, =% for each a €D, we let b'}yEE be the
constant net {x}. Fix y €E and let 8 €D with YYo=y for B<a €D. Then,
fmyx(sa)}ﬁéacsy and {m, Gpga = m,(s) in S as a subset of §* More-
over, ilysal Bsa AN Iyt in § as multiplication in S is continuous. But, m x.,,(sa)
= lysa for each B < a €D, and since Sy is a closed subset of §, lyt € Sy. But,
by Lemma 2.4, the topology on § y @s a subset of § ' is the same as the topology
on S as a subset of §, and so m, (s) = Lr. Sincg y €E is arbitrary and lys =
myx(s) for each y €E, s = 1.s = (lim ly)s = lim lys = lim lyt = ¢, the last equal-

ity following from the fact that fsa}aeD S tand 1 xa} a€p =1 5 Thus,
{f (x,, Salaep S f(x, s), and f is indeed continuous.

Suppose (%, 5), (y, 1) €S ', Then, if z = xy,
[y $)ys ) = [(zy m (s)m, () = [z, (15)(1_2))
=Lst=11st=1s1 t=st = flx, s)(y, 2),

whence f is a homomorphism.

We now show P;=R.If f(x, s)={(y, t), then s = ¢, and so 7(s) = n(t). More-
over, if z = xy, then

Maels )= 2y m, (N = (z, s) = (2,1 1) = (z, My () = m_ (2).

Therefore, since 7, (x, s) = 7(s) = n(t) = q;(y, t), (%, s), (y,t)) €R, and so P CR.

If, conversely, ((x, s), (y, t)) €R, then n(s) =7 ;(x, s) = 1;; (y, t) = 9(t). But,
1s=s and lyt =t as s€S_and ¢ eSy, and so lys =s and 1.t =t since (s, t)
eX. Now, if z = xy, then s = lxlys =1ls= m, (s) = mzy(t) =1lt= lxlyt =t, and
we have f(x,s) =s =t =[(y, t), whence ((x, 9), (y,t)) Epr Therefore RC Pp and
so R= P
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We therefore have the following commutative diagram:

st

and i is an isomorphism since R=p . This concludes the proof of the necessity.

To show sufficiency, suppose S = (T, X, § 0 My 1 ,) is the semigroup over
the tree T generated by the generalized collection (T, X, S, m, » ) First,
to see that H is a congruence, let (a, b)) €} and let c €S. If a €S,and b€ Sy,
then 1 a2 = lyas aand 1 b= lyb = b. Thus, @, b €5, where z = xy, and so
(a, b) E}(Sz [9, Lemma 2.4]. If ¢ €S, and v = zw, then (m,, (), m,, (b)) e}(su
as m,, is a homomorphism, and, since §,, is cylindrical, KS,, is a congruence,
whence (m,, (@)m,,(c), m, (Bm, () X . But, ac=m, (a) m  (c) and b=
m, (bym_ (c) and }(su CH and so (ac, bc) € H. Similarly, (ca, cb) € X, and so
H is indeed a congruence on S.

Let n: S' =UIS,: x € X} =T be defined by n(s) = 7,(s), where s €S,, and
let ¢: S'— S =S'/R be the natural map, R being the congruence defined in Pro-
position 2.7, and, lastly, let v: § — S/H be the natural map. We show S/H~T
by showing that Pn = Pyog» thus establishing that § M is an abelian tree with
idempotent endpoints.

If (s, 1) € Py then np(s)(s) = ”p(:)(’)’ where p: §' — X is defined by p(s)
=x if and only if s € Sx. If x = p(s)p(t), then

nx(mxp(s)(s)) = xnp(s)(s) = x7,,(8) = ”x(’”xp(z)(t»’

and so UP(m,, . (s)) = Ue(m, o)) as 7 is the H-class map on § . Thus,
(™, psy(Sh My o)1) € Pyogy and, furthermore,

n(mx p(s)(s)) =7, ys) = p(t)p(s)qp(s )(s) = p(t)r;p(s)(s) = P(t)ﬂp(,)(t)

= "P(t)(t) = np(s )(S),

and so (s, m, p(s)(s)) € R. Similarly, (m, ﬂ(t)(t)’ t) €R, and therefore, (s, m, p(s)(s)),
(mxp(t)(t),, t) ERC Progs and, since (mxp(s)(s)’ mxp(t)(t» € Pyogpr (s, t) € Prog
Thus, p, C Poog®

Suppose now that (s, t) € Prog® Then ¢(s) € $(1)S N SP(¢), and so there is
beS' with ¢(s) = @(tb). Hence, (s, th) € R, and so 7(s) = n(tb) = n(t)n(b). There-
fore, n(s) gﬂrl(t), and similar arguments yield n(s) ggn(t), 7(t) gm n(s), and 75(z) §2
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n(s). Thus, (n(s), n(t)) € RN & =K, and, since all the subgroups of T are triv-
ial, 7(s) = (t), whence (s, ) € Ps and Puog C Py Ve therefore have the de-
sired result.

The author is indebted to Professor Thomas Hays for the argument for the
continuity of the function f in the proof of the necessity in this theorem.

We note that, in view of Lemmas 1.3 and 1.4, we have really characterized
those compact semigroups S with } a congruence on S and S/H a tree with idem-
potent endpoints in which the idempotents commute as semigroups over trees.
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