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KONG-MING CHONG

ABSTRACT.  In this paper, expressions of the form f < g or f« g (where

< and « denote the Hardy-Littlewood-Polya spectral order relations) are called

spectral inequalities.   Here a general induction principle for spectral and rear-

rangement inequalities involving a pair of n-tuples in R" as well as their decreasing

and increasing rearrangements is developed.   This induction principle proves

that such spectral or rearrangement inequalities hold iff they hold for the case

when n = 2, and that, under some mild conditions, this discrete result can be

generalized ro include measurable functions with integrable positive parts.   A

similar induction principle for spectral and rearrangement inequalities involving

more than two measurable functions is also established,   with this induction

principle, some well-known spectral or rearrangement inequalities are obtained

as particular cases and additional new results given.

Introduction.   In [2], characterizations in terms of spectral inequalities are

given for the uniform integrability or relatively weak compactness of a family of

integrable functions.   With these characterizations, the present author proved an

extension and a 'converse' of the classical Lebesgue's dominated convergence

theorem where domination in the usual partial order sense (<) can now be replaced

by domination in the weak spectral order sense (■« ) or in the strong spectral

order sense (-<) under some mild restrictions (see [2, §5]).

In [l, Chapters V and VII, pp. 156—238], spectral inequalities are shown to

be fundamental tools for the study of rearrangement inequalities (i.e. inequalities

involving the equimeasurable rearrangements of functions) which in turn are es-

sential for the investigations concerning rearrangement invariant Banach function

spaces and interpolations of operators.   Moreover, by means of an extended form

of a rearrangement theorem of Hardy, Littlewood and Pólya given in [3, Theorem

2.5], it is proven in [3, Theorem 3.5] that one of the most important classical
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inequalities, viz. Jensen's inequality, can be obtained as a direct consequence

of a simple spectral inequality.  Furthermore, via the spectral inequalities es-

tablished in [3lj [4] and [5]» it is shown that the Hardy-Littlewood-Pólya-type re-

arrangement theorems obtained by the present author in Í3, Theorems 2.1, 2.3 and

2.5] serve as a unifying thread connecting many well-known rearrangement in-

equalities such as those of Jensen (cf. [3, Theorem 3.5]), Hardy-Littlewood-Lux-

emburg (cf. [4, Corollary 5.3]), London (cf. [4, Theorem 6.1]), Jurkat and Ryser

(cf. [5, Theorem 3.l]) and others.-

In a subsequent paper, we show that spectral inequalities also play a funda-

mental role in our new approach to the study of martingales through the theory of

equimeasurable rearrangements of functions.

In this paper, we investigate the methods by which the spectral inequalities

given in [4] and [5] were obtained, and develop some very simple criterion from

which to derive spectral inequalities of this type.   In view of the analogy be-

tween the methods used in [4] and [5], we realize that the basic principle is to

start with a (continuous) real-valued function <r* of two real variables u, v (e.g.

VP (a, v) = uv, u > 0,  v > 0) and then to establish a certain "spectral" relation

between any two pairs of real numbers involving the function \P (e.g. (a, v., a,tú)

«(u[v\, u'2v'2), i.e., %i*, v') « V(u', v1) where u* = (u*, a*), v' = (v\,v'2) re-

spectively denotes the decreasing and increasing rearrangement of u = (a., a-),

v = (fj, v 2)).   The "spectral" relation thus obtained is then easily extended to

any pair of a-vectors and also to integrable functions through some limiting pro-

cess (cf. the proofs given in [4, Lemmas 3.1, 3.2 and Theorem 3.3] and [5, Lemmas

2.1, 2.2 and Theorem 2.3]).  This procedure is summarized in Theorem 2.1 below

which turns out to be an induction principle.

1.   Preliminaries.  Let (X, A, p) be a finite measure space, i.e. X is a non-

empty point set provided with a countably additive nonnegative measure p on a

a-algebra A of subsets of X such that p(X) < «••   Whenever it is clear from the

context, we shall often write /• dp for integration over X.   By M(X, p) we de-

note the set of all extended real-valued measurable functions on X.   Two func-

tions f, g £ M(X, p) are said to be equimeasurable (written /~ g) whenever

p({x: f(x) > t\) = p(ix: g(x) > t\)

for all real t.  If /~ g and if (X',A',p') is any other measure space with

p'(X') = p(X), it is not hard to see that f°o^g°a whenever a: X1 —» X is a

measure-preserving map, i.e., o'He) £ A' and p'(o~1(E))= p(E) for all E £ A.

If f £ M(X, p), it is well known that there exists a unique right continuous

nonincreasing function 8, on the interval [0, p(X)], called the decreasing rear-

rangement of /, such that 8, and / are equimeasurable.   In fact,
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8f(s) = mf\te R: p({x: f(x) > t\) < s\

fot all s e [0, p(X)].  Moreover, there also exists a unique right continuous non-

decreasing function t, = -8   ,, called the increasing rearrangement of /, such

that t. ~ /.

In [4, Theorem 1.1 and Corollary 3.5], it is shown that the operation of de-

creasing or increasing rearrangement preserves a.e. pointwise convergence, con-

vergence in measure and all Lp convergence, 1 < p < o», i.e., if /  —» / point-

wise a.e., in measure or in Lp as »»—».<», then 8.  —» 8, and t,   —» t. in the
In i In        i

same sense as « —».«.

In what follows, we denote the Lebesgue measure on the real line R by m.

If /, g e M(X, p) and /+, g+ e Ll(X, p) where p(X) = a < <», then we write

/ ■« g whenever PQ8,dm < /¿8  dm, t € [0, a], and /•< g whenever /•« g

and $y>fdm =ffigdm.

In [6, Proposition 10.2(x)], it is shown that, if / •< g and if g e L", then

/£L~  and||/|L<;||g|L.
In the sequel, expressions of the form / ■< g (respectively /•« g) are

called strong (respectively weak) spectral inequalities.   The spectral inequality

/ << g (respectively / •« g) is said to be strictly strong (respectively strictly

weak) if / a22á" g are 220/ equimeasurable (respectively if / 0222»' g do not have

equal total integrals).

In establishing the spectral inequalities to be given below, we need the fol-

lowing results proved earlier in [3].

Theorem 1.1.  (Chong [3, Theorems 2.3, 2.8, 3.1 and Corollaries 2.4 and 3.2]).

Suppose (X, A, p) is a finite measure space.   Suppose f, g e M(X, p) with in-

tegrable positive parts, then f ■« g if and only if fô(f)dp < fô(g)dp for all

nondecreasing convex functions í>: R —» R or, equivalently, $(/) •« $(g) for

all nondecreasing convex functions <&: R —» R such that í>+(g) e Ll(X, p).

If f ■« g a72a' if $: R —» R is strictly convex increasing such that í»(g) e

Ll(X, p), then f<b(f)dp = f®(g)dp if and only if / ~ g.
Moreover, if $: R —» R is strictfy increasing convex and if f, g e L (X, p)

are such that f ■« g, then the strong spectral inequality /■< g holds whenever

the integrals /4X/) dp and /4Kg) dp are finite and equal.

Theorem 1.2 (Hardy, Littlewood and Pólya [6, Theorem 10, p. 152] and

Chong [3, Theorem 2.5 and Corollary 2.6]).  Suppose f, g e lKx, p), where p(X)

< o» , then f < g if and only if /$(/)a)x < f®(g)dp for all convex functions 4":

R —♦ R or, equivalently, <K/) •« $(g) for all convex functions $: R —♦ R such

that $+(g) e Ll(X, p).
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If f < g and if <t>: R —* R is strictly convex such that $(g) £ LHx, p), then

the equality ¡<t>(f)dp = JíKg)aJi holds if and only if f ~ g.

2.  An induction principle for spectral and rearrangement inequalities.   In

what follows, we assume without comment that for any given a-tuple a = (a{, a2,

.", an) £ Rn, the a-tuples a* = (a*, a*;..., a*), a' = (aj, a'2,> • •, a'n) will al-

ways denote respectively the decreasing and increasing rearrangements of a; here

we have regarded a as a measurable function defined on a discrete finite measure

space with a atoms of equal measures.

Theorem 2.1 (a general induction principle).   Let XV: Rx R —» R be a contin-

uous function.   Let I C R be an interval.   Let a = (a.   a-,..., a ), b = (b,, b2,

• • • » b ) be any two n-tuples in I" C Rn where n £ N.   Then each of the follow-

ing three statements holds (for all a, b e /") for any a £ N if and only if it holds

for the case a = 2.

(i) Z iuj. **) » Z «K*. *? < Z *«,. *P
2 = 1 2 = 1 2=1

< z *K- *? - z «u;, bp,
2=1 2=1

(ii) <P(a', b*) ^ f(a*. b') -«  -?(a, b) -« *(a', 10 ^ ^a*. b*),

(iii) <P(a', b*) *. ¥(a*. b') < >P(a, b) -< <P(a', b') ^ -?(a*, b*).

/a o/èer words, (i), (ii) aaa* (iii) are respectively equivalent to the following:

(ia) 1»(a*, i/p + «PGi*, iv'2)< ¥(«',, „J) + >P(a'2, ,£),

(iia)  M*(u , v' ) ■« MKu', v' ) which is equivalent to condition (ia) plus

(ia'): %V »',) V *(b^ tv'2)< fd«;, h'j) V *{«2, t»2),

(¡iia) VrV.v'XWu'.v'),

títere u = («j, «2), v = (v., v2) are any 2-tuples in J2.

// the inequality in (ia) or the weak spectral inequality in (iia) is strict for

any vectors u - (»j, a2),  v = (v., v2) in 1    satisfying u^4 «2' v\ ¿ v2* ^°en

equality in (i) or strong spectral inequality in (ii) holds on the left, i.e.,

2?a,»P(a*, b\)= 2¡miy(at, b¡) or V(a*. b') < >P(a, b) (respectively on the right,

Le"., 2jJ,V¿., b¡U ^j*(a;, b\) or *(a, b) < W(a', b')), if and only if »P(a*, b')

~ 'Pía, b) (respectively VP(a, b) ~ ¥(a', b')) or, equivalently, the sequences

{(a*, i.pinal aaa1 l(a¿, J.f)ln=1 (respectively \(a., b.)Y¡ml and {(a\, b'^^ of or-

dered pairs are rearrangements of each other.

In general, let (X, A, p) be any finite measure space with p(X)= a.   Then
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condition (ia) and condition (iia) are respectively both necessary and sufficient

that

(ib) /«¥($,, ig)dm < /xV(/t g)dp < fa0V(8f, 8g)dm, and

(iib) mf, ig) « W(f, g) « mr 8g) for all f, g e L°°(X, p).   Moreover,

the spectral inequalities in (¡ib) are strong, i.e.,

(iiib) V(8f, ig) ■< ¥(/, g) -< W(S7, 8g), if condition (nia) holds.

If I = R, then the assertions concerning (ib), (iib) «22^ (iiib) are also true for

all f, g e L (X, p) provided that one of the following two conditions holds:

(I) V is bounded on R2;

(II) VAb  , kn) —» m(h, k) in L1 whenever  hn~* h and kn—*k in L    where

h ,k ,h, k e Ll(X,p) or Ll([0, a], m), n e N.
n     n '

Moreover, if R   C / C R and if V is nondecreasing or nonincreasing in both

variables on I , then condition (ia) is both necessary and sufficient for (ib) a22a*

(iib) to hold and equality in (ia) is sufficient for (¡iib) to hold for all 0 < /, g e

LX(X, p) such that ^(S,, 8 ) e L^tO, a], m) in (üb) a72a' (¡üb), provided that

|V(0, 0)| < 00 (respectively í'+(0, 0)< 00) if ¡ft is nondecreasing (respectively

nonincreasing) in both variables.

Finally, if I = R, if W is nondecreasing in both variables on R    and if (¡b),

(üb) or (¡üb) holds with f-t, g - t replacing f, g for all t e R and for all 0 < /,

g £ Ll(X, p), then (¡b), (üb) or (¡üb) also holds for all f, g e M(X, p) such that

/\g+ e Ll(X, p) and V+(8f, 8 ) e Ll([0, a], m) provided that V*(b, O), *+(0, k)

e L1(X,p)uL1([0, a],m) whenever 0<h, k e LAX, p)uLl([0, a], m).

Proof.   For the first part of the theorem, the necessity of the conditions ¡s

clear.   For the suffic¡ency of the conditions, we fust prove that (ia)=^(i) and we

need only prove this for the left-hand inequality, i.e. ^"   m(a¿, b'.) < 2? .WiajtV);

the rest is analogous.

Without loss of generality, we may assume that a. = a.,  2 = 1, 2,• • •, «.  In

th¡s case, ¡f l<f < j < n and b- > b-, then condition (¡a) ¡mpües that the sum

2? ,V(a., ü.) ¡s never ¡ncreased on interchanging b- and b-.   Thus 2? /9(a-,b')
l S I I I is        is 1 j (Slit

is the smallest possible value attainable by 2^ i^1^,-' O as D ranges through

all its rearrangements.   With virtually the same principle, mutatis mutandis, we

can prove the implications (iia)=^(ii) and (iiia) =>(iii).   For, by a theorem of

Hardy, Littlewood and Pólya [7, Theorem 10] (cf. [3, Corollary 1.7]), statements

(iia) and (ii) are respectively equivalent to requiring that

nuj, v\) - /]+ + n*«*, v'2) - /]+< [k.;. v\) -t}+ + piv2. v'2) - tV
and

¿ ma*, bp -1\+ < ¿ [*(«., bt) -1\+ < ¿ w«;, ¿p - /]+
2=1 2=1 2=1

hold for all t e R.
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Next, we consider the cases of equalities.   The sufficiency of the conditions

is clear.   For the necessity of the  conditions, here again, the general case for

a > 3 follows from the case that a = 2.   In fact, suppose 2" .MKa*, b') =

2?mlV(af, bj) in (i) or VP(a , b'X \P(a, b) in (ii).  Suppose by contradiction that

}(a¿, í>,')l"_j is not a rearrangement of {(af, b-)\nml.   Without loss of generality

(in fact, by renumbering), we may assume that a,, a,,« • •, a    are already ar-

ranged in decreasing order, i.e., a¿ = a;,  i = 1, 2,« • • , a.   Then at least one, say

(aj5 b\), oí the ordered pairs of í(a¿, ¿¿)i"_j does not belong to Í (a{, b)\"_y

Thus ¿j < ¿>j and J>j = b. for some 1 < ; < a.   Clearly, a* > a., otherwise the

pair (flj, fcj) would have belonged to {(a., i»,)!"^,.   By hypothesis, \P(a*, b¡) +

V(a*, bf) > V(a*, bj) + V(a¡, b¿ implying'that

Z Wa*, bt) > Ka*, bf) + ¥(«*, *,) + ... 4 ¥U/_ p è._,)
2=1

+ f(«;,*l) + ï(«;+1.*/+1)+ ... + 'n«;,*ll).

Bur the latter sum is not less than 2?   Via , ¿J) to which the former sum is equal,

a contradiction.   The remaining case is treated similarly.

To prove the result for measurable functions / and g, we first assume that

(X, A, u) is nonatomic.   Then there exist two sequences Í/ !°* ,,{g }°° , of
* B   B»l ■    OB nsl

simple functions / , gn with the same number (say 2") of common sets of con-

stancy such that /  ■< f> gn-K. g and /„—*/> g„ —> g  both pointwise p-a.e. and

in L (cf. the functions fn, gn constructed in the proof of Lemma 3.2 in [4]).

Since the operation of decreasing or increasing rearrangements preserves a.e.

pointwise convergence, convergence in measure and all L^ convergence, 1 < p <

»• [4, Theorem l.l], we see that <S,   and t      also converge in L    to 5, and t„
In 8n IB

respectively.  Moreover, since /n-< / and gn ■< g, we have Wfjl^ < WfW^, llgJL

< ■llgIL» n £ N  (see [6, Proposition 10.2(x)]).   Thus, if f, g £ L°*(X, p), let

M-jMsllVUb v)\: (a, v) £ I2, \u\ < fl/fl.. and \v\ <\\g\\J;

then Al < oo  since V is continuous. It is not hard to see that \V(8, , t    )| < M,
in    .n

|¥(/ , g )| < M and |*P(o\ , S    )| < M, a e N.   Since the assertions concerning

(ib), (iib) and (iiib) are true for the functions /    and gn,  a £ N, they are also

true for all /, g £ L°°(X, p), by Lebesgue's dominated convergence theorem.

If (X, A, p) is not nonatomic, we can imbed it into a nonatomic measure

space (X, A,p). (For details of this device.see [6, pp. 52-54] or [lO].)  Then

/, g £Ll(X,p) can be identified with /, g  £ L!(X, p) by a map h —» h   satisfy-

ing h ~ h and VP(/, g) = V(J, g ).  Thus the case that (X, A, p) is not nonatomic fol-

lows directly from that case that (X, A, p.) is nonatomic.
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The case that (I) or (II) holds is treated similarly.

If V is nondecreasing or nonincreasing in both variables, we first observe

that condition (ia') is automatically satisfied since then either ^(u2, v'2) or

y(u., v'.) is the largest of the four terms involved in that inequality. Next, it is

easily seen that (iia) is equivalent to (ia) plus (ia').   Thus, if (¡a) holds and if

0< /, g e LHx, p), then (ib) and (iib) are true for the functions / A «, g A «»

n e N u{0!, by the preceding result, and hence for the functions /, g by

Lebesgue's monotone convergence theorem for the case that f is increasing in

both variables and'Levi's monotone convergence theorem for the case that f is

decreasing in both variables.   The assertion concerning (iiib) is similarly proven.

The last part follows directly from [3, Corollary l.ll], [4, Theorem 3.7] and

the preceding result using the fact that the hypotheses imply that V*(8+, S +),

?V, g+) and ¥+(8/+, tg+) e LX(X, p) U L'([0, a], 222).

We note that with Theorem 2.1 we are able to obtain any spectral inequality

or more general rearrangement inequality involving any pair of 22-vectors in Rn

merely by verifying its validity for any pair of 2-vectors in R .  Since 2-vectors

are much more easily dealt with than any other 22-vectors, Theorem 2.1 thus proves

to be a very powerful tool in this respect.  However, owing to the complications

involved in the limiting processes, a more general theorem, which works for all

integrable functions (or, more generally, for measurable functions with integrable

positive parts) and for any function Ï1 satisfying condition (ia ) in Theorem 2.1,

does not seem to be readily feasible, though martingale theory may sometimes be

very useful in this regard, especially when dealing with some special individual

cases.   Take, for example, Theorem 5.1 in [4], where it is proven that

4X8/ + tg) « 4X/ + g) « <^8f + 8g)

for all convex functions 0: R —» R and for all /, g e L (X, p) such that

<t> (8. + 8 ) is integrable.   In this case, Theorem 2.1 is not immediately appli-

cable to proving the desired result, since the function W: Rx R —* R defined by

yi(u, v) = $(22 + v) tot some convex $>: R —► R is not necessarily increasing in

both variables on R x R (unless 0 is increasing convex on R).   In this particu-

lar instance, some martingale theory or some indirect procedure resembling the

one given for the proof of [3, Theorem 2.5] will help overcome this difficulty.

Nevertheless, Theorem 2.1 is most effectively used in conjunction with Theorems

1.1 and 1.2.  In this way, most of the problems arising in connection with the

limiting processes are readily solvable and we are thus able to derive from the

discrete case many spectral or more general rearrangement inequalities for any

pair of measurable functions with integrable positive parts, and also to deal with

the cases of equalities or strong spectral inequalities accordingly.
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If the function V has continuous second partial derivatives, it is often use-

ful to observe that condition (ia) of Theorem 2.1 is equivalent to requiring

d y/dudv > 0.   This fact can be easily verified after interchanging any two terms

between both sides of (¡a) (cf. G. G. Lorentz [9, condition (3a), p. 176]).   For ex-

ample,.the functions (u, v) |-» uv, (u, v) —» u + v ate of this type and are increas-

ing in both variables and so Theorem 2.1 applies to give the spectral inequalities

obtained in [4, Theorems 3.8 and 4.1].   Of course, the results given in [4, Theorem

3.10] and [5, Theorem 2.3 and Corollary 2.4] are also related to Theorem 2.1. The

following theorem gives a further illustration of the applications of our general

induction principle.   We include a particular case of [4, Theorem 5.l], since its

proof serves as an illustrative example.

Theorem 2.2.   Let 4>: R —» R (respectively 4>: R* —» R) be any convex func-

tion.   Then

(I) 4>(a* + b') ~ 4Xa' + b*) « 4>(a.+ b) -« 4Xa* + b*) ~ 4>(a' + b')

(respectively

(H) <D(a* + b') - 4*a*) - 4X1)') <K 4>(a + b) - 4Xa) - 4Kb)

-« 4Xa* + b*)-4Xa*)-4Xb*)).
for all n-vectors a, b e R" (respectively 0 < a, b e Rn).

In general, if 0 < /, g e L l(X, p) where p(X) = a< <», such that [4X8. + S )

- 4*8,) - 4KSg)]+ e lA[0, a], m), then

4X8, + ig) - 4X8,) - 4Xtg) « 4X/ + g) - 4X/) - 4Xg)

(III) -<•< 4X8, + 8 ) - 4XS,) - 4X8 )
I 8 I 8

and if 4> is also nondecreasing, then, for all f, g e L^(X, p) satisfying

4>+(8/+8g)e LHtO.a]),

(IV) 4X8, + tg) -«< 4X/ + g) « <t>(8, + 8g).

If, in addition, 4> is strictly convex, then strong spectral inequalities hold

in (I) iff 4Xa* + b') ~ 4>(a + b) ~ 4>(a* + b*) or, equivalently, iff a* + b' ~ a + b

~ a* + b*, a22a" strong spectral inequality holds in either side of (II) or (III) iff

both sides of the corresponding spectral inequality are equimeasurable, provided

they are integrable.   If 4>(8. + 8 ), 4X8.), 4>(8 ) e Ll([0, a]), then strong spectral

inequality holds on the left (respectively on the right) of (III) iff 8, + t   ~ / + g

(respectively f + g ~ 8, + 8 ) and similarly for (IV).

Proof.   By Theorem 2.1, we need only prove (I) and (II) for the case that 22 =

2.  To prove (I), let V(u, v) = <b(u + v) where u, v e R.   U s < t < t' and s <s'

< t', then using the convexity of 4> it is not hard to see that
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(1) <&(/) V SUO < $(s) V $(í%

(2) $(í) - <D(s) „ $(f') - <E(s')

Now, for any pair of vectors u = (aj, a2), v = (t1 , t22) e R    such that either

ul £ u2 or fj 4 v2, let s = a2 + v2 ,  f = aj + Wj, s = u2 + v2, t = ut + Vy

Then, clearly, s < t < /',  s<s'<t'.  Moreover, conditions (ia' ) and (ia) of The-

orem 2.1 are respectively direct consequences of inequalities (1) and (2) above.

Thus (I) follows immediately.

To prove (II), let V(u, v) = 0(a + v) - $(a) - <&(v) for a > 0, v > 0.  When

aj < a 2 then, by (2) above, we have

ÍKax +v)-4Kaj)     0(a2+t/)-0(a2)

(aj+t^-aj     ~     (a2 + w) - a2

which'implies that V(u^, v) < j?(a2,12) or V is increasing in the first variable

and hence in both variables by symmetry.   Thus condition (ia') of Theorem 2.1

is automatically satisfied. Moreover, condition (ia) of Theorem 2.1 is an obvious

consequence of the proof given for (I). Hence (II) follows.

Since the function (a, v) H» $(a +■ v) — 0(a) - 4>(f) is increasing in both vari-

ables, (III) follows immediately from Theorem 2.1, so does (IV) when /, g =

Ll(X, p) are nonnegative.   Since the function a V-* 4>(a - 2r) remains convex in

a £ R for any t £ R, (IV) still holds true with /, g respectively replaced by / -

t, g- t whenever 0 < /, g e L1(X, p).  Hence, by Theorem 2.1, (IV) holds for

all f, g £ Ll(X,p) whenever <P+(8f + 8g) £ LHÍo, a], 222).

Finally if í> is strictly convex, then it is easily seen that the inequality

•(2) is strict whenever s < t < t', s < s' < t' and this fact in turn implies that the

inequality in condition (ia) of Theorem 2.1 is strict for the function V(u, v) =

4>(a + v) or 4>(a +12)— <ï>(a)- Q>(v) when u^ 4 a2 and v. 4 v2' Hence the result

follows from Theorems 1.1, 1.2 and 2.1.

By assigning different convex functions for $ in (III) of Theorem 2.2, various

new spectral inequalities can be derived, the simplest example of which is given

by $(a) = a2,   a > 0, in which case the spectral inequalities obtained are pre-

cisely those given in [4, Theorem 4.l].   Further examples are obtained as follows.

Examples 2.3

(i) fyÄ(S, + i8) « fgif + g) « S,*,®, + Bg).

8,1 ,„ 8.8
(¡i) /jl^Jl«   U     f,g>u
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(iii) 8/íg - (8, + tg) « fg-(f+g)*« 8f8g - (8, + 8g),      /, g > 1.

(iv) kg -ííi. ^ log Jl- -« log -Lf-,      /, g > 1.
ô/ + l8 f+S Sf+8S

(8f + ig)p -(¡h* + tj) «« (/ + g)p -.(y* + g0) -<-< (8, + 8/ - («5» + Sg),

(v)

p> 1.

(vi) (5/ ♦•'*? - (S/ * '/ ^ (/* + gP) - (/+ g)P

-*<(8p + 8p)-(8f + 8g)p,      0<p<l.

etc., where 0 < /, ge L (X, /i), /t(X) < °c  and the last function of each set of

spectral inequalities is integrable.

To see this, apply to Theorem 2.2 the convex functions 4>(a) = a3 for (i),

<¡>(u) = -log« for (iv),  <b(u)=up for (v) and $(u) = -up fot (vi), where u > 0.

Again, (ii) is obtained from (iv) by exponentiating and (iii) is obtained first by re-

placing the function /, g by log /, log g in (III) of Theorem 2.2 and then apply

the convex function 4K«) = e", u > 0.

Observe that the spectral inequalities in Examples 2.3 are strong iff the cor-

responding sides are equimeasurable, and that in some cases the conditions for

strong spectral inequalities can be simplified, e.g., in (iii), strong spectral in-

equality holds on the left (respectively on the right) iff 8.i   ~ fg (respectively

fg~o¡8g).
In [9, p. 176], G. G. Lorentz proved a general rearrangement theorem for any

finite sequence of bounded nonnegative measurable functions defined on the unit

interval (0, 1). Using a concept similar to the one developed in Theorem 2.1, we

can generalize his theorem for the spectral orders ■< and ■<■< (see Theorems 2.4

and 2.5 below).

Let yix, UyU2," ', un) be a continuous function defined for  0 < x < a, a<

•oe ' uk - 0» k= I, 2,'" ,n.   Following G. G. Lorentz [9], in any expression in-

volving V, we shall omit those variables which merely repeat themselves through-

out the expression.

Theorem 2.4. Suppose f,, f-,,••', f € L" ((0,a), 222) are positive functions.

Let I denote the identity map of (0, a). Then

v(i.fv—rf„)«m8fi,..,,8f)

if and only if
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(D Wa. + h, a.), <P(af, ay + h)) « Vñu., ay), ft«, + A, 8, + Ö)

aaa"

(2) f * {Vs(x - t, a. + h) + Vs(x + i, a.) - V?s(x + <, a. + h) - V(x - t, u¡)\dt > 0

for all 0 < x < a, afc > 0,  A = 1, • • •, a, b > 0,   0 < c < x, c < a - x,  i ¿ / aaa*

V :r r->0P(r)-s)+, t £ R*, s £ R.   If >P has continuous second partial deriva-

tives with respect to all variables, then the necessary and sufficient conditions

reduce to

d2V d2V
<la) inr^0 and (2a) t~<o.

aupUj dxdui

Proof. By Hardy, Littlewood and Pólya's Theorem [7, p. 152] (cf. [2, Theo-

rem l.l] and [3, Corollary 1.7]), condition (1) is equivalent to

¥ («. + h, u) + <P Au., u. + h)< 'Pía., a.) + <P Au. + h, a. + h)
St / oí/ ~        S       I ] SI J

for all s £ R.   Thus by Lorentz's Theorem [9, p. 176], conditions (1) and (2) are

equivalent to

a *.<*. tv—odm * /o v* */,• • ■- v*

for all s e R, i.e. ¥(/, /,,-••,/„)« V(l, S^,- • •, 8^) by Hardy, Littlewood

and Polya's Theorem again.

Remark.   Condition (1) in Theorem 2.4 is equivalent to

CO <P(a£ + h, u}) V <P(af, a;. + b) < <P(a., a;.) V VP(a. + b, a. 4- h)

and

(1") <P(a. + b, u¡> + ¥(«,. a. + ¿) < '«a., a.) + <P(a¿ + Ä. ay + A).

Thus if \P is increasing (or decreasing) in each variable, then condition (l')

is trivially satisfied.

Using a combination of the arguments given in Theorems 2.1 and 2.4, we can

generalize part of Theorem 2.1 in the following direction, thus obtaining a simi-

lar induction principle for spectral and rearrangement inequalities involving more

than two functions.

Theorem 2.5. Suppose V: R^ —» R is a continuous function of p variables,

p £ N. Let IC R be an interval. Suppose a. = (a,-.,» * • , «,•„)» « = 1» 2,- • •, p,

are n-tuples in P.   Then

(os^iv...,«^)^^«*.,..-,«;.)
[respec/i've/y
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(ii) *(■,,. •., ap) « W(a*,- • •, a*),

(iii) W(a1,...,a/,)<W(ai,...,a*)]

if and only if

(ia) K»<t Uj + b)+ Viu. + h, Mj) < Ç(af, u¡) + VGi, + h, Uj + h)

[respectively

(iia) 0P(nit a;. + *), W(h. + h, up) « (f fe,, u), W(«f + b, u} + b)),

(iiia) OW»,., «y + ¿), W(a. + A, a.)) -< WO/., B/), Vfy + b, Uj + b))]
for all u.,uk + h € I, k = 1, 2, • • • , 72, & > O ö22<i i 4 /'•

// fie inequality in (ia) or <¿e toeafc spectral inequality in (iia) 2°s strict,

then equality in (iY or strong spectral inequality in (ii) holds if and only if

W(aj,... ,a)n'^/(al,"' »a*) or, equivalently, the sequences {(aj.,a2.,.-«,a .)P?=1

and [(a*., a2. • • •, a *.)}?  ,  o/ ordered p-tuples are rearrangements of each other.

In general, let (X,A,p) be any finite measure space with p(X) = a.   T£e2j

(ia), (iia) and (iiia) are respectively the necessary and sufficient conditions that

(i') /„ftfl./j.— ,fp)dp< /Sf®,!» 8f2,...,8fp)dm,

(ii') W(/x, /2,•.., /,) -<-< W(8Xl, 8/2,..., 8fp),

an') xfi(f1,f2.fp)<mn>8/2>~"8fp>

hold either for all ft,f2,..., fp e L°° (X, p) or for all 0 < /j, /2,... , /    e

L'(X, ii) such that *+(8/ ,8. ,... ,8. •) 6 lH[0, a], m), provided that, in the

latter case,^ is nondecreasing in each variable on Ip, where R   C / C R.

If W is nondecreasing in each variable on Rp and if (i'), (ii') or (iii') holds

with f.-t replacing f{, 2 =* 1, 2," •, p, for all t e R and for all 0</j,/2,...,

fp e LAX, p), then (i'\ (ii') or (iii') also holds for all f. e M(X, p) such that

f*e L'iX./i),  2 = 1, 2,-..,p,and f+(8/j,^/ .... ,ay ) e L>(\.Q,a],m), pro-

vided that ^(g^'g^»"* »gf ) e lHx, p)u lH[0, a],m),wbere dl,i2,..., ip)

is a permutation of (1, 2,.• •, p) whenever 0 <g¿ € L1!^,/t) U L^tO, a], m), í = 1, 2,

• • •, p — 1 a22a" g   = 0.

Proof.  This follows as in Theorems 2.1 and 2.4.

Remark.  Some of the results given earlier in [4, Corollary 3-6, Theorem 3.8,

Corollary 3.9 and Theorem 4.ll and [5, Theorem 2.3] can be obtained directly

from Theorem 2.5.
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