MAXIMAL QUOTIENTS OF SEMIPRIME PI-ALGEBRAS

BY

LOUIS HALLE ROWEN ${ }^{(1)}$)

Abstract

J. Fisher [3] initiated the study of maximal quotient rings of semiprime PI-rings by noting that the singular ideal of any semiprime PI-ring R is 0 ; hence there is a von Neumann regular maximal quotient ring $Q(R)$ of R. In this paper we characterize $Q(R)$ in terms of essential ideals of $C=$ cent R. This permits immediate reduction of many facets of $Q(R)$ to the commutative case, yielding some new results and some rapid proofs of known results. Direct product decompositions of $Q(R)$ are given, and $Q(R)$ turns out to have an involution when R has an involution.

1. Introduction. Let Ω be a commutative algebra with 1 and let R be a semiprime Ω-algebra, not necessarily with 1 (by semiprime we mean R has no nonzero nilpotent ideals, where all ideals are understood to be Ω-invariant; equivalently, the intersection of the prime ideals of R is 0). Let the standard polynomial on k letters $S_{k}\left(X_{1}, \cdots, X_{k}\right) \equiv \Sigma_{\pi}(\mathrm{sg} \pi) X_{\pi 1} \cdots X_{\pi k}, \pi$ ranging over the permutations of ($1, \cdots, k$); a polynomial $f\left(X_{1}, \cdots, X_{m}\right)$ (with coefficients in Ω) is an identity of R if, evaluated in $R, f\left(X_{1}, \cdots, X_{m}\right)=0$, each r_{1}, \cdots, r_{m} in R. The semiprime algebra R is a PI -algebra of degree n if $S_{2 n}$ is an identity of R but $S_{2 n-2}$ is not an identity of R. Throughout this paper we assume R is a semiprime PI-algebra of finite degree n, and we let $C=$ cent R. Formanek [4] has shown there exists a polynomial $g\left(X_{1}, \cdots, X_{n+1}\right)$ with integral coefficients, one of which is ± 1, such that each of $X_{2}, \cdots, x_{n_{+1}}$ has degree 1 in each monomial of g; moreover, evaluated in $R, g\left(r_{1}, \cdots, r_{n+1}\right) \in C$ for each r_{1}, \cdots, r_{n+1} in R, and there exist r_{1}, \cdots, r_{n+1} in R such that $g\left(r_{1}, \cdots, r_{n+1}\right) \neq 0$ (in particular $C \neq 0$). An application of Formanek's polynomials is

Theorem A (Rowen [8]). If A is a nonzero ideal of R then $A \cap C \neq 0$.
Now for subsets V, W of R, define $A n_{V} W=\{v \in V \mid W v=0\}$ and $A n_{V}^{\prime} W=$ Received by the editors August 7, 1973.
AMS (MOS) subject classifications (1970). Primary 16A08, 16A12, 16A38; Secondary 16A28, 16448.

Key words and phrases. Essential, identity, injective hull, involution, maximal quotient algebra, PI -algebra, semiprime, singular ideal.
${ }^{(1)}$ The bulk of the work on this paper was done while the author was a doctoral candidate at Yale University under the guidance of N. Jacobson, and was supported in part by NSF Grant GP-33591.
$\{v \in V \mid v W=0\}$. If $V=R$ then the subscript will be omitted. Clearly, for any ideal A of $R, A n n A=A n n^{\prime} A\left(P r o o f .\left(A A n n^{\prime} A\right)^{2}=A\left(\left(A n n^{\prime} A\right) A\right) A n n^{\prime} A=0\right.$, so $A A_{n n^{\prime}} A=0$ since R is semiprime. Hence $A n n^{\prime} A \subseteq A n n A$ and, symmetrically, Ann $A \subseteq A_{n n}{ }^{\prime} A$.) Similarly, one sees that for any ideals A, B of $R, A B=0 \Longleftrightarrow$ $A \cap B=0$.

Call a (left, right, 2-sided) ideal J of R (left, right, 2-sided) essential if $J \cap B \neq 0$ for all nonzero (left, right, 2-sided) ideal of R. (The word " 2 -sided" will often be omitted for convenience.) An ideal J of R is essential if and only if Ann $J=0$, if and only if $A_{n n \prime}^{\prime} J=0$ (by the preceding paragraph); we conclude each essential ideal of R is left essential and right essential. (Indeed, suppose J is an essential ideal of R and B is a left ideal of R such that $J \cap B=0$. Then $J B \subseteq J \cap B=0$, so $B \subseteq$ Ann $J=0$.) By a left essential ideal we mean a left essential left ideal. If J is a left essential ideal of R then $A n n^{\prime} j=0$. Let $Z=\{r \in R \mid$ there exists a left essential ideal J of R such that $r \in$ Ann $J\}$. Z is well known to be an ideal of R, called the left singular ideal. The right singular ideal Z^{\prime} is defined analogously.

Proposition 1 (Fisher [3]). $Z=Z^{\prime}=0$.
Proof (Martindale [6]). Let $c \in Z \cap C$. Then $c \in A n n^{\prime} J$ for some left essential ideal of R. But $A_{n n^{\prime}} J=0$, so $Z \cap C=0$. Therefore, $Z=0$ by Theorem A. Likewise $Z^{\prime}=0$. Q.E.D.

In this case, it is well known (cf. Johnson [5]) that the left injective hull of R has a natural ring stmeture $Q(R) . Q(R)$ can be characterized in terms of essential ideals, as follows (cf. Martindale [6]):
(a) There is a canonical injection $R \subset Q(R)$ by which we view $R \subseteq Q(R)$.
(b) For any left essential ideal J of R and for any f in $\operatorname{Hom}_{R}(J, R)$ (as left R-modules), there exists q in $Q(R)$ such that $x q=f(x)$, all x in J.
(c) For any given q in $Q(R)$ there is a left essential ideal J of R such that $J q \subseteq R$.
(d) $q=0$ if and only if $J q=0$ for some left essential ideal J of R.

There is a natural way to extend the algebra structure of R to $Q(R)$. Namely, given q in $Q(R), \omega$ in Ω, let J be a left essential ideal of R such that $J q \subseteq R$, and define f in $\operatorname{Hom}_{R}(J, R)$ by $f(x)=\omega(x q)$, all x in J. By (b), we may pick q_{1} in $Q(R)$ such that $x q_{1}=f(x)$, all x in J; define ωq to be q_{1}. To see that ωq is well defined, suppose J^{\prime} is another left essential ideal of R such that $J^{\prime} q \subseteq R$, and define f^{\prime} in $\operatorname{Hom}_{R}\left(J^{\prime}, R\right)$ by $f^{\prime}(x)=\omega(x q)$, all x in J^{\prime}; let q_{1}^{\prime} in Q be such that $x q_{1}^{\prime}=f^{\prime}(x)$, all x in J^{\prime}. For all x in $J \cap J^{\prime}, x q_{1}=f(x)=\omega(x q)=f^{\prime}(x)=x q_{1}^{\prime}$, so $\left(J \cap J^{\prime}\right)\left(q_{1}-q_{1}^{\prime}\right)=0$. Since $J \cap J^{\prime}$ is left essential, $q_{1}=q_{1}^{\prime}$ by (d); hence ωq is well defined, extending the algebra structure on R. Similar verifications show that $Q(R)$ is now an algebra, called henceforth the maximal left quotient
algebra of R; for any $f \in \operatorname{Hom}(J, R)$, J left essential, we have $f(\omega x)=\omega f(x)$ for all ω in Ω, x in J.
2. A central characterization of $Q(R)$.

Lemma 1 (Martindale [6]). Any left essential ideal J of R is itself a semiprime PI-algebra, and cent $J=J \cap C$.

Proof. Straightforward application of Proposition 1. The following lemma is also known by Martindale [6], but a different proof is used to avoid reliance on the other results in [6].

Lemma 2.(i) If J is a left essential ideal of R then $J \cap C$ intersects nontrivially all ideals of R. Hence $(J \cap C) R$ is 2 -sided essential.
(ii) A left ideal J of R is left essential if and only if $(J \cap C)$ is essential in C.

Proof. (i) Suppose B is an ideal of R such that $(J \cap C) \cap B=0$. Then $(J \cap C) \cap(J \cap B)=0$, so by Theorem A applied to the semiprime PI-algebra J (with center $J \cap C$), we conclude $J \cap B=0$. Hence $B=0$, so (i) follows immediately.
(ii) Suppose J is left essential and let $B=A n_{C}(J \cap C)$. Clearly $B R(J \cap C)$ $=0$, so $(B R \cap(J \cap C))^{2}=0$; hence $B R \cap(J \cap C)=0$, implying $B R=0$ from (i). Therefore $B=0$, so $J \cap C$ is essential in C.

Conversely, suppose ($J \cap C$) is essential in C and let B be a left ideal of R such that $J \cap B=0$. Then $(B R \cap C)(J \cap C) \subseteq B(J \cap C) R \subseteq(B \cap J) R=0$, so $B R \cap$ $C=0$. Therefore $B R=0$, by Theorem A, so $B=0$ and J is left essential. Q.E.D.

The routine preliminaries have been set for the main theorem:
Theorem 1. $Q(R)$ is characterized by the following properties:
(i) There is a canonical injection $R \hookrightarrow Q(R)$ sending C into cent $Q(R)$.
(ii) For any essential ideal E of C and for any f in $\operatorname{Hom}_{C}(E, R)$, one can find q in $Q(R)$ such that $x q=f(x)$, all x in E.
(iii) For any q in $Q(R), E q \subseteq R$ for some essential ideal E of C.
(iv) $q=0$ if and only if $E q=0$ for some essential ideal E of C.

Proof. First we show (a)-(d) of the previous characterization imply (i)-(iv).
(i) $R \subseteq Q(R)$; we claim $C \subseteq$ cent $Q(R)$. Choose c in C, q in $Q(R)$. By (c), $J q \subseteq R$ for some left essential ideal J of R, so, for all x in $J, 0=(x q) c-d(x q)=$ $x q c-(c x) q=x q c=x(q c-c q)$, implying $q c-c q=0$ by (d). Hence $C \subseteq$ cent $Q(R)$.
(ii) Let E be an essential ideal of C. Then $C \cap R E$ is surely essential in C, so, by Lemma 2, $R E$ is essential in R. Given f in $\operatorname{Hom}_{C}(E, R)$ we wish to define $f^{\prime}: R E \rightarrow R$ by $f^{\prime}\left(\Sigma r_{i} c_{i}\right)=\Sigma r_{i} f\left(c_{i}\right)$, all c_{i} in E, all r_{i} in R. To check
that f^{\prime} is well defined, let $B=\left\{\Sigma r_{i} f\left(c_{i}\right) \mid \Sigma r_{i} c_{i}=0, r_{i}\right.$ in R, c_{i} in $\left.E\right\}$, an ideal of R. If $B \neq 0$ then $B \cap C \neq 0$ by Theorem A, so $B \cap C \cap E \neq 0$ and we could choose nonzero $b=\Sigma r_{i} f\left(c_{i}\right)$ in $B \cap E \cap C$, with $\Sigma r_{i} c_{i}=0$. But then $b^{2}=$ $b \Sigma r_{i} f\left(c_{i}\right)=\Sigma r_{i} f\left(b c_{i}\right)=\Sigma r_{i} f\left(c_{i} b\right)=\left(\Sigma r_{i} c_{i}\right) f(b)=0$, contrary to C being semiprime. Hence $B=0$ and f^{\prime} is a well-defined element of $\operatorname{Hom}_{R}(R E, R)$. By (b), there exists q in $Q(R)$ such that $x q=f^{\prime}(x)$ for all x in $R E$, implying (by (d)) $x q=f^{\prime}(x)$ for all x in E.
(iii) By (c), $J q \subseteq R$ for some left essential ideal J of R. Let $E=J \cap C$, an essential ideal in C by Lemma 2.
(iv) Immediate from (d) and Lemma 2.

Thus, the left maximal quotient algebra $Q(R)$ satisfies (i)-(iv). Conversely, assume some algebra Q satisfies (i)-(iv). We shall show $Q=Q(R)$ by verifying (a)-(d).
(a) Immediate from (i).
(b) Suppose J is left essential in R and $f \in \operatorname{Hom}_{R}(J, R)$. Then, by Lemma 2, $E=J \cap C$ is essential in C and surely $f \in \operatorname{Hom}_{C}(E, R)$. By (ii), there exists q in Q such that $f(c)=c q$, all c in E. For all x in J, all c in $E, c(f(x)-x q)=$ $f(c x)-c x q=f(x c)-x c q=x(f(c)-c q)=0$, so $E(f(x)-x q)=0$, all x in J. Hence by (iv), $f(x)=x q$, all x in J.
(c) Immediate from (iii) and Lemma 2.
(d) Immediate from (iv) and Lemma 2. Q.E.D.

Corollary 1 (Martindale [6, Theorem 5]). $Q(R)$ is also the right maximal quotient algebra of R.

Proof. Conditions (i)-(iv) are left-right symmetric. Q.E.D.
Martindale also has shown $Q(R)$ satisfies all multilinear identities of R. Call a polynomial $f\left(X_{1}, \cdots, X_{m}\right)$ bomogeneous if each monomial of f has the same total degree.

Corollary 2. Each homogeneous identity of R is an identity of $Q(R)$.

Proof. Let $f\left(X_{1}, \cdots, X_{m}\right)$ be a homogeneous identity of R, of total degree d. We wish to show, given any q_{1}, \cdots, q_{m} in $Q(R)$, that $f\left(q_{1}, \cdots, q_{m}\right)=0$. By Theorem 1 (iii) there are essential ideals E_{i} of C such that $E_{i} q_{i} \subseteq R, 1 \leq i \leq m$. Let $E=E_{1} \cap \ldots \cap E_{m}$, an essential ideal of C. For each c in $E, 0=$ $f\left(c q_{1}, \cdots, c q_{m}\right)=c^{d} f^{m}\left(q_{1}, \cdots, q_{m}\right)$, so $0=\hat{E} f\left(q_{1}, \cdots, q_{m}\right)$, where \hat{E} is the ideal of C generated by $\left\{c^{d} \mid c \in E\right\}$. But \hat{E} is essential in C; indeed, for any nonzero ideal B of C we can pick $b \neq 0$ in $B \cap E$, and then $0 \neq b^{d} \in B \cap \hat{E}$. Hence $f\left(q_{1}, \cdots, q_{m}\right)=0$ by Theorem 1 (iv). Q.E.D.

Corollary 3 (Armendariz-Steinberg [2]). cent $Q(R)=Q(C)$.

Proof. Let $C^{\prime}=$ cent $Q(R)$. We need to verify (i) $)^{\prime}$-(iv) ${ }^{\prime}$, obtained from conditions (i)-(iv) of Theorem 1 by replacing R by C.
(i) $C \hookrightarrow C^{\prime}$ is part of (i).
(ii)' Given E essential in C and f in $\operatorname{Hom}_{C}(E, C)$, Theorem 1 (ii) provides q in $Q(R)$ such that $x q=f(x)$, all x in E. It suffices to show $q \in C^{\prime}$. Note $E q \subseteq$ $C \subseteq C^{\prime}$; for all c in E, all q^{\prime} in $Q(R), 0=(c q) q^{\prime}-q^{\prime}(c q)=c\left(q q^{\prime}-q^{\prime} q\right)$, so $q q^{\prime}-q^{\prime} q=0$ (by (iv)), all q^{\prime} in $Q(R)$, implying $q \in C^{\prime}$.
(iii)', (iv)' are immediate respectively from (iii), (iv). Q.E.D.

Incidentally, if R is the infinite direct sum $\bigoplus M_{n}(Q)$ then $Q(R)$ is the infinite direct product $\Pi M_{n}(Q)$, so $Q(C) R \neq Q(R)$ in this case (example due, I believe, to R. Snider).

Proposition 2. For q in $Q(R), q \in$ cent $Q(R)$ if and only if there is a left essential ideal J of R such that $q x-x q=0$, all x in J.

Proof. (\Rightarrow) Obvious.
$\left(\Leftarrow\right.$ Pick q^{\prime} arbitrarily from $Q(R)$ and let E be an essential ideal of C such that $E q^{\prime} \subseteq R$ (cf. Theorem 1 (iii)). Then $E^{\prime}=(J \cap C) E$ is essential in C and, for all c in E^{\prime}, we have $c q^{\prime} \in J$ and $c\left(q q^{\prime}-q^{\prime} q\right)=q\left(c q^{\prime}\right)-\left(c q^{\prime}\right) q=0$. Hence $q q^{\prime}$ $-q^{\prime} q=0$, all q^{\prime} in $Q(R)$, implying $q \in$ cent $Q(R)$. Q.E.D.

Theorem 2. Let J be a 2-sided essential ideal of R. For any bimodule bomomorphism $f: J \rightarrow R$ there exists q in cent $Q(R)$ such that $f(r)=r q$, all r in J.

Proof. Since f is a left module homomorphism and J is left essential, there exists q in $Q(R)$ such that $f(r)=r q$, all r in J. For all x, r in $J, x r q=x f(r)=$ $f(x r)=f(x) r=x q r$, so $x(r q-q r)=0$, implying $q q-q r=0$, all r in J. By Proposition 2 $q \in$ cent $Q(R)$. Q.E.D.

Remark. One could parallel the proof of Theorem 1 to show $Q(R)$ is actually the $Q_{0}(R)$ of Amitsur [1]. Hence, [1, Theorem 3] implies Proposition 2 and Theorem 2. Similarly, [1, Theorem 5] yields a nice proof that $Q(R)$ is von Neumann regular, a fact observed in general (for rings with zero left singular ideal) by Johnson [5].
3. Structure of $Q(R)$. In this section we assume $1 \in R$ and give two direct sum decompositions of $Q(R)$. (Note 1 is also the multiplicative unit of $Q(R)$.) The point of departure is the easily verified

Theorem B. Viewing a left essential ideal J of R as a semiprime PI-algebra (by Lemma 1), we have $Q(J) \approx Q(R)$.

Corollary 4. If A, A^{\prime} are ideals of R such that $A^{\prime}=\operatorname{Ann} A$ and $A=\operatorname{Ann} A^{\prime}$, then $Q(R) \approx Q(R / A) \oplus Q\left(R / A^{\prime}\right)$.

Proof. Given in [9, Theorem 4]. Like Theorem B, one does not need the
assumption R is a PI-ring but only requires that R has zero left singular ideal.
Say a prime ideal P of R has degree j if R / P has degree j. Let N_{n} be the intersection of those prime ideals of R with degree n, and, for $j<n$, let $N_{j}=$ $\bigcap\left\{P\right.$ prime in R of degree $j \mid P \nsupseteq N_{i}$, all $\left.i>j\right\}$. Clearly, $N_{1} \cap \ldots \cap N_{n}=0$.

Theorem 3. $Q(R) \approx Q\left(R / N_{1}\right) \oplus \cdots \oplus Q\left(R / N_{n}\right)$.
Proof. First we show $Q(R) \approx Q\left(R / N_{n}^{\prime}\right) \oplus Q\left(R / N_{n}\right)$, where $N_{n}^{\prime}=\bigcap_{i=1}^{n-1} N_{i}$. In view of Corollary 4, it suffices to show $N_{n}^{\prime}=\operatorname{Ann} N_{n}$ and $N_{n}=A n n N_{n^{\circ}}^{\prime}$ Since $N_{n} N_{n}^{\prime}=0, N_{n}^{\prime} \subseteq \operatorname{Ann} N_{n}$. On the other hand, it is easy to see $N_{n}^{\prime}=\bigcap\left\{P \mid P \nsupseteq N_{n}\right\}$. For $P \nsupseteq N_{n}$, however, Ann $N_{n} \subseteq P$ since $N_{n} \operatorname{Ann} N_{n}=0 \subseteq P$; hence Ann $N_{n} \subseteq N_{n}^{\prime}$. Analogously, it is clear $N_{n} \subseteq$ Ann N_{n}^{\prime}. Since R / N_{n}^{\prime} has degree $\leq n-1, P \nsupseteq N_{n}^{\prime}$ for each prime P of degree n, so, arguing as above, we have Ann $N_{n}^{\prime} \subseteq \bigcap\{P$ prime of degree $n\}=N_{n}$.

So $Q(R) \approx Q\left(R / N_{n}^{\prime}\right) \oplus Q\left(R / N_{n}\right)$. Since R / N_{n}^{\prime} has degree $\leq n-1$, the theorem follows by induction on n. Q.E.D.

Armendariz-Steinberg [2] proved $Q(R)$ is a finite direct sum of Azumaya algebras of finite rank; we are now in a position to develop a straightforward proof of this fact, displaying at the same time the structure involved.

Let $g\left(X_{1}, \cdots, X_{n+1}\right)$ be the Formanek polynomial described in $\S 1 ; g$ happens to be homogeneous of total degree n^{2} (cf. [4]). Let $I_{g}(R)=\left\{g\left(r_{1}, \cdots, r_{n+1}\right) \mid\right.$ all r_{1}, \cdots, r_{n+1} in $\left.R\right\}$; note that $c g\left(r_{1}, \cdots, r_{n+1}\right)=g\left(r_{1}, \cdots, r_{n+1} c\right)$ for all c in C, so $I_{g}(R)$ is a monoid ideal of the (multiplicative) monoid C. Let $I_{g}^{\prime}(R)$ be the additive subgroup generated by $I_{g}(R) ; I_{g}^{\prime}(R)$ is an ideal in C, and the prime ideals of R containing $I_{g}(R)$ are precisely those primes of degree $\leq n-1$. Also observe for any central idempotent $e, e R$ is a semiprime PI-algebra of degree $\leq n$, with multiplicative unit e.

Definition. R is stable if $1 \epsilon I_{g}(R)$.
Lemma 3. If $e \in I_{g}(R)$ and e is a nonzero idempotent then $e R$ is stable of degree n; i.e. $e \in I_{g}(e R)$.

Proof. Let $e=g\left(r_{1}, \cdots, r_{n+1}\right)$. Then $g\left(e r_{1}, \cdots, e r_{n+1}\right)=e^{n^{2}} g\left(r_{1}, \cdots, r_{n+1}\right)=$ $e e=e . \quad$ Q.E.D.

Theorem 4. (i) If every nonzero ideal of C contains a nonzero idempotent of $I_{g}(R)$ then $Q(R)$ is stable.
(ii) If $I_{8}^{\prime}(R)$ is essential in C then $Q(R)$ is stable.

Proof. (i) Using Zom's lemma we find a collection of idempotents e_{λ} in $I_{g}(R)$ such that $\bigoplus e_{\lambda} R$ is an essential ideal of R. Then $Q(R) \approx Q\left(\bigoplus_{\lambda} e_{\lambda} R\right) \approx$ $\Pi_{\lambda} Q\left(e_{\lambda} R\right)$ canonically, so $\Pi_{\lambda} e_{\lambda}=1$ in $Q(R)$. But, by Lemma 3, $e_{\lambda} \in I_{g}\left(e_{\lambda} R\right) \subseteq$ $I_{g}\left(Q\left(e_{\lambda} R\right)\right)$, so $\Pi_{\lambda} e_{\lambda} \in I_{g}\left(\Pi Q\left(e_{\lambda} R\right)\right)$. Hence $Q(R)$ is stable.
(ii) If $I_{g}^{\prime}(R)$ is essential in C, then Theorem 1 (iii) implies $I_{g}^{\prime}(Q(R))$ is
essential in cent $Q(R)$. Since $Q(R)=Q(Q(R)$), we may replace R by $Q(R)$ and assume C is von Neumann regular (in view of Corollary 3). We shall conclude the proof of (ii) by showing that the hypothesis of part (i) is now satisfied. Indeed, let A be a nonzero ideal of Choose $a \neq 0$ in A and r_{1}, \cdots, r_{n+1} in R such that $\operatorname{ag}\left(r_{1}, \cdots, r_{n+1}\right) \neq 0$ (possible since $0=\operatorname{Ann} I_{g}^{\prime}(R)=\operatorname{Ann} I_{g}(R)$). Let $a^{\prime}=$ $\operatorname{ag}\left(r_{1}, \cdots, r_{n+1}\right)=g\left(r_{1}, \cdots, a r_{n+1}\right) \in A \cap I_{g}$. Since C is von Neumann regular, there exists d in C such that $a^{\prime} d a^{\prime}=a^{\prime}$. But $a^{\prime} d$ is a nonzero idempotent of $A \cap I_{g}$, as desired. Q.E.D.

Theorems 3 and 4 combine to show $Q(R)$ is always a direct sum of the stable semiprime PI-algebras $Q\left(R_{1}\right), \cdots, Q\left(R_{n}\right)$. But every stable semiprime PI-algebra is Azumaya of finite rank, by the celebrated Artin-Procesi theorem (cf. [7]), so we get Armendariz-Steinberg's result with an explicit construction.

We turn now to the question of whether $Q(R)$ can be decomposed into a direct product of simple artinian factors. First observe if R is prime then a simple extension of R, easily seen to be $Q(R)$, is obtained merely by inverting elements of C (cf. [8]). Conversely, there is

Theorem 5. Let a semiprime Ω-algebra T be essential as a left R-module

 extension of R. Then for any inessential prime ideal P of $T, P \cap R$ is an inessential prime ideal in R.Proof. $0 \neq R \cap A \mathrm{nn}_{T} P \subseteq \mathrm{Ann}_{R}(P \cap R)$, so $P \cap R$ is inessential in R. To see $P \cap R$ is prime in R, let A, A^{\prime} be ideals of R such that $A A^{\prime} \subseteq P$, and pick q arbitrarily in T. Since $Q(R)$ is the maximal left essential extension of $R, T \subseteq$ $Q(R)$ as left R-modules, so (by Theorem 1 (iii)) there is an essential ideal E of C such that $E q \subseteq R$. Let $B=A n n_{R}(P \cap R) . E B A q A^{\prime}=B A E q A^{\prime} \subseteq B A A^{\prime}=0$, so $B A q A^{\prime}=0$ by Theorem 1 (iv). But $B \nsubseteq P$ since T is semiprime, so $A q A^{\prime} \subseteq P$, all q in T. Hence $A T A^{\prime} \subseteq P$, implying $A \subseteq R \cap P$ or $A^{\prime} \subseteq R \cap P$. Q.E.D.

Incidentally, it is well known and very easily seen that the module injection $T \hookrightarrow$ $Q(R)$ is in fact a ring injection.

Corollary 5. Let T be as in the theorem. If T is prime then R is prime (and thus $Q(R)$ is simple artinian).

Proof. 0 is an inessential ideal of T, so 0 is prime in R. Q.E.D.
Call a ring prime-essential if all its primes are essential. Prime-essential semiprime PI-algebras exist, as shown in [9].

Corollary 6. If R is prime-essential then T is prime-essential.
Proof. Immediate from the theorem.
In [9], under the assumption R has zero left singular ideal (not necessarily a PI-algebra), $Q(R)$ is given canonically as the complete direct product of maximal left quotients of prime images and the maximal left guotient of a prime-essential
ring, the latter being 0 if and only if $\bigcap\{P \mid P$ inessential prime ideal of $R\}=0$. Hence, in view of Theorem 5, we have immediately

Theorem 6. $Q(R)$ is the direct p.roduct of simple algebras and a prime-essential algebra. There is a direct summand, simple as an algebra, of $Q(R)$ if and only if R bas an inessential prime ideal. There is an algebra $T \supseteq R$, essential as a left R-module and a product of simple algebras, if and only if the intersection of the inessential primes of R is 0 ; in this case we can take $T=Q(R)$.
4. Maximal quotients of semiprime PI-algebras with involution. A semiprime PI-algebra with involution ($R, *$) is a semiprime PI-algebra with antiautomorphism (*) of degree ≤ 2. Note (${ }^{*}$) is an automorphism of degree ≤ 2 on C. Define $\operatorname{cent}\left(R,{ }^{*}\right)=\{c \in C \mid c *=c\}$, and let $\hat{C}=\operatorname{cent}(R, *)$. If $\hat{C}=C$ then $\left(^{*}\right)$ is of first kind on R; otherwise (*) is of second kind on R.

Theorem 7. If $\left(R,{ }^{*}\right)$ is a semiprime PI-algebra with involution then $Q(R)$ bas an involution of the same kind as (*), coinciding with (*) on R.

Proof. We use the characterization of $Q(R)$ in Theorem 1. Given q in $Q(R)$, choose an essential ideal E of C such that $E q \subseteq R$. It is easy to show $E^{*}=$ $\left\{c \in C \mid c^{*} \in E\right\}$ is an essential ideal of C; define $f: E^{*} \rightarrow R$ by $f(x)=\left(x^{*} q\right)^{*}$ for each x in E^{*}. For any c in $C, f(c x)=\left(x^{*} c^{*} q\right)^{*}=\left(c^{*} x^{*} q\right)^{*}=\left(x^{*} q\right)^{*} c=f(x) c=$ $c f(x)$, so $f \in \operatorname{Hom}_{C}\left(E^{*}, R\right)$. Hence there is an element of $Q(R)$, which we shall call q^{*}, such that $x q^{*}=f(x)$ for all x in E^{*}. A straightforward verification shows q^{*} is independent of the choice of E, and $q \rightarrow q^{*}$ is an involution, coinciding with the given involution on R. In particular, if (*) is of the second kind on R then cent $\left(Q(R),{ }^{*}\right) \neq$ cent $Q(R)$, so $\left(^{*}\right)$ is of the second kind on $Q(R)$.

On the other hand, suppose (${ }^{*}$) is of the first kind on R. Then, with notation as above, $E^{*}=E$ and f is given by $f(x)=(x q)^{*}$ for each x in E^{*}. If $q \in$ cent $Q(R)$ then $x q \in R \cap$ cent $Q(R)=C$, sө $f(x)=x q$; therefore $q^{*}=q$ and (*) is of the first kind on $Q(R)$.

An ideal of ($R,{ }^{*}$) is an ideal of R, stable under (*); an ideal of ($R,{ }^{*}$) is essential if it intersects nontrivially each nonzero ideal of ($R,{ }^{*}$).

Lemma 3. (i) If A is an ideal of $\left(R, *^{*}\right)$ then Ann A is an ideal of ($R,{ }^{*}$).
(ii) If J is an essential ideal in $(R, *)$ then J is essential in R.
(iii) If J is an essential ideal of R then $J J^{*}$ is essential in ($R, *$)。

Proof. (i) Let $B=\operatorname{Ann} A . B^{*} A=\left(A^{*} B\right)^{*}=(A B)^{*}=0$, so $B^{*} \subseteq \operatorname{Ann} A=B$; by symmetry, $B=B^{*}$.
(ii) $(J \cap \operatorname{Ann} J)^{2} \subseteq J$ Ann $J=0$, implying $J \cap$ Ann $J=0$. But Ann J is an ideal of ($R, *$), so Ann $J=0$, implying J is essential in R.
(iii) J^{*} is clearly essential in R, so $J J^{*}$ is essential in R; thus $J J^{*}$ is certainly essential in ($R, *$). Q.E.D.

Theorem 8. Let $\hat{C}=\operatorname{cent}(R, *) .\left(Q(R),{ }^{*}\right)$ can be characterized as follows:
(i) There is an injection $(R, *) \rightarrow(Q(R), *)$ sending \hat{C} into cent $(Q(R), *)$.
(ii) For any essential ideal E of \hat{C} and for any f in $\operatorname{Hom} \hat{C}(E, R)$, there exists q in $Q(R)$ such that $x q=f(x)$, all x in E.
(iii) Given q in $Q(R)$, one can find an essential ideal E of \hat{C} sucb that $E q \subseteq R$.
(iv) $q=0$ if and only if there exists an essential ideal E of \hat{C} sucb that $E q=0$.

Proof. This is straightforward from Theorems 1 and 7, when it is noted that $\hat{C}=\operatorname{cent}(C, *)$; hence any essential ideal of \hat{C} is an essential ideal of C by Lemma 3, and if E is an essential ideal of C then $E E^{*}$ is an essential ideal of \hat{C}.

Conversely, we wish to show that for any algebra ($Q,{ }^{*}$) satisfying (i) ${ }^{\prime}$-(iv) ${ }^{\prime}$, Q is the maximal quotient algebra of R. To see this, we shall show Q satisfies properties (i)-(iv) of Theorem 1. Observe that, by Lemma 3, any essential ideal in \hat{C} is essential in C.

Hence (iii) and (iv) are immediate. To obtain (i), we need only show $C \subseteq$ cent Q. Indeed, given $c \in C$ and q in Q, choose an essential ideal E of \hat{C} such that $E q \subseteq R$. Then $E(c q-q c)=0$, so $c q-q c=0$ for all q in Q, implying $c \in$ cent Q.

Finally we need to prove (ii). Suppose E is an essential ideal of C and $f \in \operatorname{Hom}_{C}(E, R)$. Then $E^{*} E$ is essential in \hat{C} and f restricts to a \hat{C}-homomorphism from $E^{*} E$ to R; hence there is q in Q such that $f(x)=x q$, all x in $E^{*} E$. Thus, for all x in $E, E^{*}(f(x)-x q)=0$, implying $f(x)-x q=0$, all x in E by (iv). Q.E.D.

REFERENCES

1. S. A. Amitsur, On rings of quotients, Istituto Nazionale di Alta Matematica, Symposia Matematica, vol. VIII, 1972.
2. E. Armendariz and S. Steinberg, Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc. 190 (1974), 417-425.
3. J. W. Fisher, Structure of semiprime P.I. rings. I, Proc. Amer. Math. Soc. 39 (1973), 465-467.
4. E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132. MR 46 \#1833.
5. R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392. MR 26 \#1331.
6. W. S. Martindale III, On semiprime P.I. rings, Proc. Amer. Mach. Soc. 40 (1973), 365-369.
7. C. Procesi, On a theorem of M. Artin, J. Algebra 22 (1972), 309-315. MR 46 \#1825.
8. L. H. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223.
9. ——, A subdirect decomposition of semiprime rings and its application to maximal quotient rings, Proc. Amer. Math. Soc. (to appear).
