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MAXIMAL QUOTIENTS OF SEMIPRIME PI-ALGEBRAS

BY

LOUIS HALLE ROWEN(l)

ABSTRACT.  J. Fisher [3] initiated the study of maximal quotient rings of

semiprime Pi-rings by noting that the singular ideal of any semiprime Pi-ring R

is 0; hence there is a von Neumann regular maximal quotient ring Q(R) of R.

In this paper we characterize Q(R) in terms of essential ideals of C = cent R.

This permits immediate reduction of many facets of Q(R) to the commutative

case, yielding some new results and some rapid proofs of known results. Direct

product decompositions of Q(R) are given, and Q(R) turns out to have an invo-

lution when R has an involution.

1. Introduction. Let Q be a commutative algebra with 1 and let R be a

semiprime Q-algebra, not necessarily with 1 (by semiprime we mean R has no

nonzero nilpotent ideals, where all ideals are understood to be ö-invariant; equiv-

alently, the intersection of the prime ideals of R is 0). Let the standard poly-

nomial on k letters SAX^, • • •, X, ) = S_(sg 7r)X  , • • • X k, it ranging over the

permutations of (l,.««, k); a polynomial /(X,,«««, X  ) (with coefficients in Q)

is an identity of R if, evaluated in R, f(X., •••, X  ) = 0, each T\>' " * rm ia R«

The semiprime algebra R is a Pl-algebra of degree n if S-    is an identity of R

but S2     - is not an identity of R. Throughout this paper we assume R is a semi-

prime Pi-algebra of finite degree 72, and we let C = cent R. Formanek [4] has

shown there exists a polynomial g(Xj, • • •, X    .) with integral coefficients, one

of which is + 1, such that each of X2,.- • •, X    j has degree 1  in each monomial

of g; moreover, evaluated in R, g(rj,..., r    j) eC for each r.,««»j r    j  in R,

and there exist r,,...,r    .  in R suchthat g(r.,...,r    ,) 4 0 (in particular

C 4 0). An application of Formanek's polynomials is

Theorem A (Rowen [8]). // A  is a nonzero ideal of R then A fl C 4 0.

Now for subsets V, W of R, define Ann^ W = \v e v\Wv = 0! and Ann¿ W =
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\v e V\vW = 0}. If V = R then the subscript will be omitted. Clearly, for any

ideal A of R, Ann A = Ann' A (Proof. (A Ann' A)   = A((Ann' A)A)Ann' A = 0, so

A Ann  A = 0 since R is semiprime.   Hence Ann A Ç Ann A and, symmetrically,

Ann A C Ann  A.) Similarly, one sees that for any ideals A, B of R, AB = 0 «=»

A n B = 0.

Call a (left, right, 2-sided) ideal J of R (left, right, 2-sided) essential if

/ O B ?¿ 0 for all nonzero (left, right, 2-sided) ideal of R. (The word "2-sided"

will often be omitted for convenience.) An ideal / of R is essential if and only

if Ann / = 0, if and only if Ann' / = 0 (by the preceding paragraph); we conclude

each essential ideal of R is left essential and right essential. (Indeed, suppose

/ is an essential ideal of R and B is a left ideal of R such that / n B = 0. Then

/B C / O B = 0, so B Ç Ann / = 0.) By a left essential ideal we mean a left essen-

tial left ideal. If / is a left essential ideal of R then Ann' / = 0. Let Z = {r e R\

there exists a left essential ideal ] of R such that r e Ann /j. Z is well known

to be an ideal of R, called the left singular ideal. The right singular ideal Z   is

defined analogously.

Proposition 1 (Fisher [3]). Z = Z' = 0.

Proof (Martindale [6]). Let c e Z O C. Then c e Ann  / for some left essen-

tial ideal of R. But Ann / = 0, so Z n C = 0. Therefore, Z = 0 by Theorem A.

Likewise Z = 0.    Q.E.D.

In this case, it is well known (cf. Johnson [5]) that the left injective hull of

R has a natural ring structure Q(R). Q(R) can be characterized in terms of essential

ideals, as follows (cf. Martindale [6]):

(a) There is a canonical injection R c, Q(R) by which we view R Ç Q(R).

(b) For any left essential ideal J of R and for any / in HomR (/, R) (as

left R-modules), there exists q in Q(R) such that xq = f(x), all x in /.

(c) For any given q in Q(R) there is a left essential ideal / of R such that

JqÇR.
(d) q = 0 if and only if Jq = 0 for some left essential ideal / of R.

There is a natural way to extend the algebra structure of R to Q(R). Namely,

given q in Q(R), co in Q, let / be a left essential ideal of R such that Jq Ç R,

and define / in HomR (/, R) by f(x) = co(xq), all * in /. By (b), we may pick qx

in Q(R) such that xq^ = f(x), all x in /; define a>^ to be q^. To see that coq is

well defined, suppose /' is another left essential ideal of R such that JqÇR,

and define /' in HomR(/', R) by f'(x) = co(xq), all x in / ; let q^ in Q be such

that Xflj = f'(x), all x in /'. For all x in / D /', xq^ = ¡(x) = tu(x^) = f'(x) = x^',

so (/ D /'X^ - ?i) = 0. Since / n /' is left essential, #j = q't by (d); hence

eu£ is well defined, extending the algebra structure on R. Similar verifications

show that Q(R) is now an algebra, called henceforth the maximal left quotient
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algebra of R; for any / e Hom(/, R), J left essential, we have /(eux) = af(x) fot

all û) in Q, x in /.

2. A central characterization of Q(R).

Lemma 1 (Martindale [6]). Any left essential ideal J of R is itself a semi-

prime Pl-algebra, and cent / = / O C.

Proof. Straightforward application of Proposition 1. The following lemma is

also known by Martindale [6], but a different proof is used to avoid reliance on the

other results in [6].

Lemma 2.(i) // / is a left essential ideal of R then J C\ C intersects non-

trivially all ideals of R. Hence (] n C)R is 2-sided essential.

(ii) A left ideal J of R is left essential if and only if (J D C) is essential

in C.

Proof, (i) Suppose B is an ideal of R such that (/ O C) O B = 0. Then

(/ O C) O (/ O B) = 0, so by Theorem A applied to the semiprime Pi-algebra /

(with center / O C), we conclude / O B = 0. Hence B = 0, so (i) follows immedi-

ately.

(ii) Suppose / is left essential and let B = Annc(/ n C). Clearly BR(] n C)

= 0, so (BR n(J n C))2 = 0; hence BR n (/ O C) = 0, implying BR = 0 from (i).

Therefore B = 0, so J C\ C is essential in C.

Conversely, suppose (/ O C) is essential in C and let B be a left ideal of R

such that / n B = 0. Then (BR n C)(/ nC)Ç B(J O C)R Ç (B O J)R = 0, so BR n

C = 0. Therefore BR = 0, by Theorem A, so B = 0 and / is left essential.    Q.E.D.

The routine preliminaries have been set for the main theorem:

Theorem 1. Q(R) is characterized by the following properties:

(i) There is a canonical injection R <-+ Q(R) sending C into cent Q(R).

(ii) For any essential ideal E of C and for any f in Homc(E, R), 072e can

find q in Q(R) such that xq = f(x), all x in E.

(iii) For any q in Q(R), Eq Ç R for some essential ideal E of C.

(iv) «7 = 0 if and only if Eq = 0 for some essential ideal E of C.

Proof. First we show (a)-(d) of the previous characterization imply (i)—(iv).

(i) R Ç Q(R); we claim C Ç cent Q(R). Choose c in C, q in Q(R). By (c),

Jq Ç R for some left essential ideal / of R, so,  for all x in /, 0 = (xq)c - Axq) =

xqc - (cx)q = xqc = Aqc - cq), implying  qc - cq = 0   by (d).   Hence

C Ç cent 2(R).

(ii) Let E be an essential ideal of C. Then CO RE is surely essential in

C, so, by Lemma 2, RE is essential in R. Given / in Homc(E, R) we wish to

define /': RE -+ R by /'(S r.c¿ - 2 ^/(c^, all c. in E, all r. in R. To check
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that /' is well defined, let B = [S r\/(c¿)|2 r{c{ = 0, r. in R, c{ in E\, an ideal

of R. If B 4 0 then B O C ¿ 0 by Theorem A, so BOCnE/O and we could

choose nonzero b = S r.f(c.) in B "H E O C, with 2 r.c. = 0. But then è   =

è S r¿/(c¿) = S rif(bci) = 2 rj^fl = (S r.c)f(b) = 0, contrary to C being semi-

prime. Hence B = 0 and /   is a well-defined element of Hom„ (RE, R). By (b)',

there exists q in Q(R) such that x# = f'(x) for all x in RE, implying (by (d))

xq = / (x) for all x in E.

(iii) By (c), Jq ÇR for some left essential ideal / of R. Let E = / O C, an

essential ideal in C by Lemma 2.

(iv) Immediate from (d) and Lemma 2.

Thus, the left maximal quotient algebra Q(R) satisfies (i)—(iv). Conversely,

assume some algebra Q satisfies (i)—(iv). We shall show Q = Q(r) by verifying

(a)-(d).

(a) Immediate from (i).

(b) Suppose / is left essential in R and / 6 HomR (/, R). Then, by Lemma 2,

E = / O C is essential in C and surely / € Homc(E, R). By (ii), there exists q

in Q such that f(c) = cq, all c in E. For all x in /, all c in E, c(f(x) — xq) =

f(cx) — cxq = f(xc) — xcq = x(f(c) - cq) = 0, so E(f(x) - xq) = 0, all x in /.

Hence by (iv), f(x) = xq, all x in /.

(c) Immediate from (iii) and Lemma 2.

(d) Immediate from (iv) and Lemma 2.    Q.E.D.

Corollary 1 (Martindale [6, Theorem 5]). Q(R) is also the right maximal quo-

tient algebra of R.

Proof. Conditions (i)—(iv) are left-right symmetric.    Q.E.D.

Martindale also has shown Q(R) satisfies all multilinear identities of R.

Call a polynomial f(X j, • • •, Xm) homogeneous if each monomial of / has the

same total degree.

Corollary 2. Each homogeneous identity of R is an identity of Q(R).

Proof. Let f(X^, • • •, Xj) be a homogeneous identity of R, of total degree

d. We wish to show, given any ql, • • •, qm in Q(R), that f(q j, • • •, qm) = 0. By

Theorem 1 (iii) there are essential ideals E. of C such that E .q. ÇR, I <i<m.

Let E = E. Ci-'-H E  ,an essential ideal of C. For each c in E, 0 =
I w

f(cqx, '", cqm) = c  f(qx, • • •, qm), so 0 = Ef(qx, • • •, 0m), where Ê is the ideal

of C generated by |c \c e E]. But E is essential in C; indeed, for any nonzero

ideal B of C we can pick b 4 0 in BnE, and then 0 4- b   6 B H Ê. Hence

/(?,, • • •, ?m) = 0 by Theorem 1 (iv).    Q.E.D.

Corollary 3 (Armendariz-Steinberg [2]). cent Q(R) = Q(C).
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Proof. Let C' = cent Q(R). We need to verify (i)'-(iv)', obtained from condi-

tions (i)—(iv) of Theorem 1 by replacing R by C.

(i)   C c_, C   is part of (i).

(ii)    Given E essential in C and / in Homc(E, C), Theorem 1 (ii) provides

q in Q(R) such that xq = f(x), all x in E. It suffices to show q € C'. Note Eq C

C C C ; for all c in E, all q   in Q(R), 0 = (cq)q - q (cq) = Aqq - q q)t so

qq' -q'q = 0 (by (iv)), all q' in Q(R), implying c/ e C*.

(iii) , (iv)   are immediate respectively from (iii), (iv).    Q.E.D.

Incidentally, if R is the infinite direct sum © M (Q) then Q(R) is the infinite

direct product II M (Q), so Q(C)R 4 Q(R) in this case (example due, I believe, to

R. Snider).

Proposition 2. For q in Q(R), q e cent Q(R) if and only if there is a left

essential ideal J of R such that qx — xq = 0, all x in J.

Proof. (=») Obvious.

(«=) Pick q   arbitrarily from Q(R) and let E be an essential ideal of C such

that Eq  ÇR (cf. Theorem 1 (iii)). Then E  = (/ f~l C)E is essential in C and,

for all c in E , we have cq   e J and Aqq  - q q) = q(cq ) — (cq )q = 0. Hence qq

- qq = 0, all q   in Q(R), implying q e cent Q(R).    Q.E.D.

Theorem 2. Ler J be a 2-sided essential ideal of R. For any bimodule homo-

morphism f:J—*R there exists q in cent Q(R) such that f(r) = rq, all r in ].

Proof. Since / is a left module homomorphism and / is left essential, there

exists q in Q(R) such that f(r) = rq, all r in /. For all x, r in /, xrq = xf(r) =

f(xr) = f(x)r - xqr, so x(rq - qr) = 0, implying rq-qr^O, all r in /. By Proposition 2

q e cent Q(R).    Q.E.D.

Remark. One could parallel the proof of Theorem 1 to show Q(R) is actually

the Q0(R) of Amitsur [l]. Hence, [l, Theorem 3] implies Proposition 2 and

Theorem 2. Similarly, [l, Theorem 5] yields a nice proof that Q(R) is von Neumann

regular, a fact observed in general (for rings with zero left singular ideal) by

Johnson [5].

3. Structure of Q(R). In this section we assume 1 e R and give two direct

sum decompositions of Q(R). (Note 1 is also the multiplicative unit of Q(R).) The

point of departure is the easily verified

Theorem B. Viewing a left essential ideal J of R as a semiprime Pi-algebra

(by Lemma 1), we have Q(J) « Q(R).

Corollary 4. If A, A   are ideals of R such that A' = Ann A and A = Ann A*,

then Q(R) M Q(R/A) © Q(R/A').

Proof. Given in [9, Theorem 4], Like Theorem B, one does not need the
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assumption R is a PI-ring but only requires that R has zero left singular ideal.

Say a prime ideal P of R has degree j if R/P has degree /'. Let N   be the

intersection of those prime ideals of R with degree n, and, for / < n, let N. =

fl IP prime in R of degree j\P^N., all f > j}. Clearly, Nj H ... n /Vn = 0.

Theorem 3. Q(R) » Q(R/N¡) ©• • .®Q(R/Nn).

Proof. First we show Q(R) « Q(R/N'r) © Q(R/NJ, where N¿ -fijjj1 Wf ^

view of Corollary 4, it suffices to show N    = Ann AÍ    and N   = Ann N . Since

NnN^ = 0, N¿ Ç Ann Nn. On the other hand, it is easy to see N^ = fl ÍP|P¿ N„î.

For P¿ N , however, Ann N   C P since N Ann N   - 0 C P; hence Ann N   CN'.
■f-    n' ' n — n n —    ' n —    n

Analogously, it is clear N   C Ann N . Since R/N    has degree < n — 1, P 2Î /V

for each prime P of degree «, so, arguing as above, we have Ann N    C 0|P prime

of degree n] = N .
n

So Q(R) « Q(R/N^) © Q(R/Nn). Since R/N¿  has degree < « - 1, the theorem

follows by induction on n.    Q.E.D.

Armendariz-Steinberg [2] proved Q(R) is a finite direct sum of Azumaya alge-

bras of finite rank; we are now in a position to develop a straightforward proof of

this fact, displaying at the same time the structure involved.

Let g(X.f • • •, X    .) be the Formanek polynomial described in §1; g happens

to be homogeneous of total degree tí    (cf. [4]). Let / (R) = lg(rj,. • •, rn  ,)\ all

rl' ' * " ' rfi+l   in  R'; n0te that  C^TV " ' • rn+l^ = e^rl» '"' Tn+lC^ for a11  C in  C»

so / (R) is a monoid ideal of the (multiplicative) monoid C. Let /  (R) be the

additive subgroup generated by / (R); /  (R) is an ideal in C, and the prime ideals

of R containing / (R) are precisely those primes of degree < 71 - 1. Also observe

for any central idempotent e, eR is a semiprime Pi-algebra of degree < n, with mul-

tiplicative unit e.

Definition. R is stable if 1 e / (R).

Lemma 3. If e el (R) and e is a nonzero idempotent then eR is stable of

degree n; i.e. eel (eR).

2
Proof. Let e = g(rv • • •, rn+1). Then g(erv • • •, erfl+1) = e" g(rj, •. •, rn+1) -

ee = e.    Q.E.D.

Theorem 4. (i) // every nonzero ideal of d contains a nonzero idempotent of

I (R) then Q(R) is stable.

(ii) // / ' (R) is essential in C then Q(R) is stable.

Proof, (i) Using Zorn's lemma we find a collection of idempotents e^ in

/ (R) such that © exR is an essential ideal of R. Then Q(R) « Q(©^ <>XR) «

nx Q(exR) canonically, so Ilx ex = 1 in Q(R). But, by Lemma 3, ex e l(exR) Ç

I (Q(exR)), so nx cx el (II Q(exR)). Hence Q(R) is stable.

(ii) If l'(R) is essential in C, then Theorem 1 (iii) implies I (Q(R)) is
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essential in cent Q(R). Since Q(R) = Q(Q(R)), we may replace R by Q(R) and

assume C is von Neumann regular (in view of Corollary 3). We shall conclude

the proof of (ii) by showing that the hypothesis of part (i) is now satisfied. Indeed,

let A be a nonzero ideal of C. Choose a4 0 in A and rx»'••» r„+i ltt " such

that ag(rj, •••>''„  j) 4 0 (possible since 0 = Ann /  (R) = Ann ICO). Let a' »

flg(r,, • • •, r    .) = g(r., • • •, ar    j)  e A O / . Since C is von Neumann regular,

there exists ¿in C such that a da' = a'. But a a1 is a nonzero idempotent of

A C\ I , as desired.    Q.E.D.

Theorems 3 and 4 combine to show Q(R) is always a direct sum of the stable

semiprime Pi-algebras Q(R.), • • •, Q(R ). But every stable semiprime Pi-algebra

is Azumaya of finite rank, by the celebrated Artin-Procesi theorem (cf. [7]), so we

get Armendariz-Steinberg's result with an explicit construction.

We turn now to the question of whether Q(R) can be decomposed into a direct

product of simple artinian factors. First observe if R is prime then a simple ex-

tension of R, easily seen to be Q(R), is obtained merely by inverting elements of

C (cf. [8]). Conversely, there is

Theorem 5. Let a semiprime ù-algebra T be essential as a left R-module

extension of R. Then for any inessential prime ideal P of T, P O R is an

inessential prime ideal in R.

Proof. 0 4 R •"> AnnT P Ç AnnR (P f~l R), so POR is inessential in R. To

see P n R is prime in R, let A, A' be ideals of R such that AA' Ç P, and pick

q arbitrarily in T. Since Q(R) is the maximal left essential extension of R,TC

Q(R) as left R-modules, so (by Theorem 1 (iii)) there is an essential ideal E of

C such that Eq Ç R. Let B = AnnR (P n R). EBAqA' = BAEqA' Ç BAA' = 0, so

BAqA  = 0 by Theorem 1 (iv). But B £P since T is semiprime, so AqA' Ç P, all

q in T. Hence ATA' Ç P, implying A Ç R n P or A' ÇR n P.    Q.E.D.

Incidentally, it is well known and very easily seen that the module injection T C»

Q(R) is in fact a ring injection.

Corollary 5. Let T be as in the theorem. If T is prime then R is prime (and

thus Q(R) is simple artinian).

Proof. 0 is an inessential ideal of T, so 0 is prime in R.    Q.E.D.

Call a ring prime-essential if all its primes are essential. Prime-essential

semiprime Pi-algebras exist, as shown in [9].

Corollary 6. // R is prime-essential then T is prime-essential.

Proof. Immediate from the theorem.

In [9], under the assumption R has zero left singular ideal (not necessarily

a Pi-algebra), Q(R) is given canonically as the complete direct product of maxi-

mal left quotients of prime images and the maximal left quotient of a prime-essential
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ring, the latter being 0 if and only if Ç\ |P|P inessential prime ideal of R] = 0.

Hence, in view of Theorem 5, we have immediately

Theorem 6. Q(R) is the direct product of simple algebras and a prime-essen-

tial algebra. There is a direct summand, simple as an algebra, of Q(R) if and only

if R has an inessential prime ideal. There is an algebra T DR, essential as a

left R-module and a product of simple algebras, if and only if the intersection of

the inessential primes of R is 0; in this case we can take T = Q(R).

4. Maximal quotients of semiprime Pl-algebras with involution. A semiprime

Pl-algebra with involution (R, *) is a semiprime Pi-algebra with antiautomorphism

(*) of degree < 2, Note (*) is an automorphism of degree < 2 on C. Define

cent(R, *) = lc eC|c*=c}, and let C= cent(R, *). If C=C then (*) is of first kind on R;

otherwise (*) is of second kind on R.

Theorem 7. // (R, *) is a semiprime Pl-algebra with involution then Q(R)

bas an involution of the same kind as (*), coinciding with (*) on R.

Proof. We use the characterization of Q(R) in Theorem 1. Given q in Q(R),

choose an essential ideal E of C such that Eq C R. It is easy to show E* =

\c e C\c* e E\ is an essential ideal of C; define f: E* —* R by f(x) = (x*q)* for

each x in E*. For any c in C, f(cx) = (x*c*q)* = (c*x*q)* = (x*q)*c = f(x)c =

cf(x), so / eHomc(E*, R). Hence there is an element of Q(R), which we shall

call q*, such that xq* = f(x) fot all x in E*. A straightforward verification shows

q* is independent of the choice of E, and q —> q* is an involution, coinciding

with the given involution on R. In particular, if (*) is of the second kind on R

then cent (Q(R), *) 4 cent Q(R), so (*) is of the second kind on Q(R).

On the other hand, suppose (*) is of the first kind on R. Then, with notation

as above, E* = E and / is given by f(x) = (xq)* for each x in E*. If q e centQ(R)

then xq e R r\ cent Q(R) = C, s& f(x) = xq; therefore q* = q and (*) is of the first

kind on Q(R).

An ideal of (R, *) is an ideal of R, stable under (*); an ideal of (R, *) is

essential if it intersects nontrivially each nonzero ideal of (R, *).

Lemma 3. (i) // A is an ideal of (R, *) then Ann A is an ideal of (R, *).

(ii) // / is an essential ideal in (R, *) then J is essential in R.

(iii) // / is an essential ideal of R then JJ* is essential in (R, *)„

Proof, (i) Let B = Ann A. B*A = (A*B)* = (AB)* = 0, so B* Ç Ann A = B;

by symmetry, B = B*.

(ii) (/ n Ann J)2 Ç J Ann / = 0, implying / n Ann / = 0. But Ann / is an

ideal of (R, *), so Ann / = 0, implying / is essential in R.

(iii) /* is clearly essential in R, so //* is essential in R; thus //* is cer-

tainly essential in (R, *).    Q.E.D.
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Theorem 8. Let C= cent(R, *). (Q(R), *) can be characterized as follows:

(i) There is an injection (R, *) —» (Q(R), *) sending C into cent (Q(R), *).

(ii) For any essential ideal E ç/ C and for any f in Hom£ (E, R), there

exists q in Q(R) such that xq - f(x), all x in E.

(iii) Given q in Q(R), one can find an essential ideal E of C such that

EqÇR.

(iv) q = 0 if and only if there exists an essential ideal E of C such that

Eq = 0.

Proof. This is straightforward from Theorems 1 and 7, when it is noted that

C = cent (C, *); hence any essential ideal of C is an essential ideal of C by

Lemma 3, and if E is an essential ideal of C then EE* is an essential ideal of C.

Conversely, we wish to show that for any algebra (Q, *) satisfying (i) — (iv) ,

Q is the maximal quotient algebra of R. To see this, we shall show Q satisfies

properties (i)—(iv) of Theorem 1. Observe that, by Lemma 3, any essential ideal

in C is essential in C.

Hence (iii) and (iv) are immediate. To obtain (i), we need only show C C

cent Q. Indeed, given c e C and q in ¡3, choose an essential ideal E of C such

that Eq C R. Then E(cq - qc) = 0, so cq - qc = 0 for all q in Q, implying

c e cent Q.

Finally we need to prove (ii). Suppose E is an essential ideal of C and

/ e Homc (E, R). Then E*E is essential in C and / restricts to a C-homomorphism

from E*E to R; hence there is q in Q such that f(x) = xq, all x in E*E. Thus,

for all x in E, E*(/(x) - xq) = 0, implying f(x) - xq = 0, all x in E by (iv).   Q.E.D.
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