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ABSTRACT. The notion of a lax adjoint to a 2-functor is introduced and

some aspects of it are investigated, such as an equivalent definition and a

corresponding theory of monads.   This notion is weaker than the notion of a

2-adjoint (Gray) and may be obtained from the latter by weakening that of 2-

functor and replacing the adjointness equations by adding 2-cells satisfying

coherence conditions.   Lax monads are induced by and resolve into lax adjoint

pairs, the latter via 2-categories of lax algebras.   Lax algebras generalize

the relational algebras of Barr in the sense that a relational algebra for a

monad in OeJtu. is precisely a lax algebra for the lax monad induced in jielL

Similar considerations allow us to recover the T-categories of Burroni as

well.   These are all examples of lax adjoints of the "normalized" sort and

the universal property they satisfy can be expressed by the requirement that

certain generalized Kan extensions exist and are coherent.   The most impor-

tant example of relational algebras, i.e., topological spaces, is analysed in

this new light also with the purpose of providing a simple illustration of our

somewhat involved constructions.

Introduction. Ever since Kan [9] introduced adjoint functors, several variants

of this notion have appeared in the literature.   One such is the generalization

achieved by replacing the category of sets and mappings by any monoidal category

(or "multiplicative category", cf. Benabou [2]) and by relativizing to it all the

ingredients entering into the description of an adjoint situation.  We have shown

in [3] that the theory of monads (Huber [8] and Eilenberg and Moore [6], therein

called "triples") carries over to the relative case.   In particular, this applies to

2-monads (or "strong" monads) in 2-categories, as these are the notions relative

to Cal.

Weaker types of adjointness for 2-functors have also been considered. Thus,

Gray [7] defines "2-adjointness" by weakening the notion of a natural transforma-

tion and applies it to the fibred category construction.
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In this paper we introduce a notion of "lax adjointness" which encompasses

those of strong adjointness and of 2-adjointness.   From a formal point of view,

we obtain it by weakening not just natural transformations but also the functors

involved and by replacing the adjointness identities by adding appropriate 2-cells

in their place—all of this tempered by the presence of four coherence conditions.

From a universal point of view a special instance called "normalized lax adjoint-

ness" has a nice interpretation: it is completely determined by giving a family of

generalized Kan extensions which behave coherently.

We arrived at the above definitions not out of a mere wish to generalize but

rather out of a desire to incorporate into the theory of 2-categories the notion of

a relational algebra due to Barr [l].   Motivated by the same example, Burroni [5]

introduced the notion of a "T-category", a more general structure than the rela-

tional algebras and liable to a variety of interesting applications.   We show here

that any lax monad resolves into a lax adjoint pair by means of a category of lax

algebras.   If the lax monad lies in Span % for some category X and is induced by

a monad in X, its lax algebras are none other than the T-categories.   This sup-

plies us, in principle, with many more instances of lax adjointness than those

originally envisaged.   The details of these applications will not, however, be

given here.

The contents of the paper are, briefly, as follows.   In §1, we define the

notion of a family of 1-cells in a 2-category u being coherently closed for U-

extensions, where U is a given 2-functor ÍB —* a.   The motivating example in-

volves topological spaces (the relational algebras over the monad of ultrafilters

in S«ii, as proved in [l]) and is shown in detail to be part of an instance of the

universal property.   In §2, lax monads and the corresponding 2-category of lax

algebras are defined.   In V3 formal lax adjoints come in as a way to resolve lax

monads; they also induce them.   In §4 it is shown that any family of coherent U-

extensions, in the sense of §1, determines a lax adjoint to U.  The converse

holds if the lax adjoint is "normalized".   It is then pointed out that such is the

case with the available applications.

Lax functors occur in Benabou [2] with a reversal of 2-cells and under the

name "morphisms of bicategories".  We assume, however, that the bicategories

are 2-categories.   (Recall that the pseudo-functors introduced by Grothendieck to

correspond to arbitrary fibrations are of this kind.)  Lax natural transformations,

called "2-natural" in [7] and "quasi-natural" in [4], are responsible for "2-

adjointness" and are due to Gray.   The "lax" terminology has been borrowed

from Street [12].   Our lax functors, however, are dual to those of [12]; our lax

transformations are those which there have been labelled "right".   Aside from the

fact that only one type of transformation occurs throughout the paper, a reason for
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avoiding labels is the relationship which these notions bear to extensions and

liftings.   Thus, for a 2-functor U, a family r¡- X —» UFX with the left extension

property makes E a lax functor and n a right lax transformation.   But also, a

family ex: UFX —» X with the left lifting property makes F into a lax functor and

e into a left transformation.

1. Coherent [/-extensions. We start by giving a definition that generalizes

the notion of a left Kan extension, as in Mac Lane [lO].   The generalization is

two-fold: first, extensions take place in an arbitrary 2-category rather than in

Cat; secondly, extensions are required to be relative to U in some sense.

(1.1) Definition.  Let S, S be 2-categories and (/: io ~* u a 2-functor.   Let

kx: X-^UX and /: X -» UY be 1-cells of Ö.

The (left) ¿/-extension of / along kx is given by a pair (/ ; if/,) consisting

of a 1-cell f : X —* Y and a 2-cell ifi,: f —» Vf   • kx, i.e., as in the diagram

satisfying the following universal property: for any other pair (g; </>) with g: X —*Y

and  <£:   / —» Ug   • z<x» there exists a unique </>:/—» g such that the diagram of

the 2-cells in

U<p
U/  ->]Ug

commutes.   This says, exactly, that (¡> = [(U<f>)Kx] • if/,.

Note that the usual notion is recovered with u = ÍB = Cat and U the identity

2-functor.

Assume now that for each X £ |u| we are given kx: X —» UX for some X £ \£\.

Note   then   that   there   is   a   diagram  for any /: X —» UY, obtained by composing

the (/-extension of dyy • /) with the (/-extension of l^y, assuming these exist.
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-.UX

*t(KVY-I)j

\U(KUY- /)

UY--"1-\—>U(ÏÏY)

U(lUY)

Also note that the (/-extension of kx along itself, if it exists, is a pair

rTT7;iff{     ¿as in

X- -* UX

V(KX)

(1.2) Definition. A family of 1-cells \tx'. X —> UX\, indexed by the objects

of U, is said to be coherently closed for U-extensions Hi the following hold:

(i) for every /: X —» UY, the pair (/ , iff,) exists;

(ii) Ï77- fr"7) = /" and tU(l-^M n.[iff( }f = ifrf;

(iii) Kx = l^and^(     }=l(i    ,.
UY

'UY'

(1.3) Example. Recall the description of the monad ß in S«ii., whose alge-

bras are the compact T2-spaces (Manes [ll]).   For a set X, ßX is the set of all

ultrafilters on X and a basis for the topology on ßX (making it into a compact

T,-space) is given by all sets of the form A = V¿ £ ßX :A £ W\ for subsets A
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of X.   The unit of the monad, 77: lg^ —♦ ß assigns, to a point x £ X, the princi-

pal ultrafilter on x, i.e., x = {A C X :x £ A\.   Finally, if § € ßßX, the monad

multiplication ft: ßß —* ß has the effect that px(§) = {A C X : A e £! e /SX.

In [1], Barr showed that a topological space is a relational algebra for the

monad ß.  If Y is a topological space, let 6: ßY —- Y denote the relation on

ßY x Y which is determined by the condition: (JB, y) £ 6 iff SB —» y (i.e., 58 con-

verges to y).

Let us extend the functor ß: S«to. —» Setzt over to a /S: 3ve£ —* Stet?, where 5d£

is the 2-category of sets, relations and inclusions of their graphs as 2-cells.

This is done in [l] as follows: given a relation r:X —* Y, decompose it as

x—r—*rT—'-* v.

where T C X x Y is the graph of the relation and where d , c  are the domain

and codomain functions.  Define ß(r): ßX —- ßY as the composite

(ßdj-1 ßcT
ßX-r—^ß(r)—-+ßY.

If we recall that, for a function /: X —> Y, ßf: ßX —> ßY assigns to an ultrafilter

11 £ ßX the filter generated by sets of the form /A for A e II, the latter denoted

/[ll] and automatically an ultrafilter, we have now the following description of

ßr: let (11, SB) £ ßX x ßY.   Then, (11, SB) 6 /3r iff there exists S 6 ;3(r.) such that

djm = 11 and crm = SB.

Recall also Barr's observation that, in general, for composable relations r

and s one only has ß(r • s) < ß(r)  « ß(s).  This will later on be called a "lax

functor".

(1.3.1) Definition. A relation r: X —» Y, where (X, £) and (Y, 6) ate topo-

logical spaces, is called a /ax morphism of topological spaces iff the following

holds :
ßr

i.e., 6 • ß < r • rf. By the above, this means that, given 11 £ ßX and y e Y, if

there exists 1 £ ß(F ) such that d [52] = U and c^l] —+ y, then there exists

x £ X such that (x, y) £ r and 11 —» x.

We make some remarks on this notion.   First, it follows from the characteri-
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zation of continuous functions given in [l] that an inverse of a function, i.e.,

r = g~   with g: Y —* X, is a lax morphism of topological spaces iff g is a con-

tinuous function.   This suggests that we call a relation r: X —» Y a continuous

relation whenever the reverse inequality holds, namely, r • ¿; < 6 • ßr.

Basil Rattray pointed out to us that any lax morphism /: X —> Y with / a

function is always a closed mapping, as it is easy to prove.   He also called our

attention to the following observations.  There exist closed mappings which do

not satisfy the condition of (1.3.1).   For example, a constant mapping X —> \y\

satisfies the condition iff in X every ultrafilter converges.   (Needless to say, the

condition always holds for continuous functions between compact spaces.)  The

above example shows that continuous or open mappings are in the same predica-

ment with respect to the condition.   But also, the condition does not imply con-

tinuity.   An example is the following: let /: X —» Y and g: Y —» X be inverse

functions with / continuous and g closed but not conversely.   Then g satisfies

the condition and is not continuous.

Denote by ¡R«£3ap the 2-category of topological spaces, lax morphisms and

usual ordering between relations.   Let U: íReOop —* 5\«f be the forgetful 2-

functor.

(1.3.2) Proposition. The family \X—-+/3XÎ, indexed by all sets, is coherently

closed for U-extensions.

Proof. Given r: X — Y with X a set and Y a topological space, define F:

ßX — Y as follows: (11, y) £ F iff there exists SB £ ßY such that (11, SB) £ ßr and

such that SB —> y.   We show now that F is a (/-extension of r along t¡x (note that

2-cells need not be specified in this example).   First, we show that r < F • r/x.

This statement says: given (x, y) £ r it follows that (x, y) £ F.   In order to see

that this is so, we only need to observe that, since y —» y in any topology,

(x, y) £ ßr.   Now, let 52 be the principal ultrafilter on (x, y) in T .  Clearly

¿.[52] = x while cr[52] = y.

Next, we wish to show that F: ßX —» Y satisfies the condition (1.3.1), i.e.,

that 6 ' ßF <r~'Px holds.   To do so, endow T— with a topology Ç, in the ca-

nonical way so as to have both diagrams below commutative:

ß(d-)                                    ßc-

ßßX<-P—¿A-ßT^ -£-1->ßY
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Once this is done, the result follows from the way the left-hand side commutative

square is affected if one inverts d- and ß(d-).   In general, for functions a, b, c,

d, it follows from a • d = c • b that d • b~   < a"   • c, as the reader may easily

verify.

Let us verify the universality of ~: ßX —* V among all relations s: ßX —» Y

for which (x, y) £ r implies (x, y) £ s, i.e., show that in that case  T < s, which

means that fot all U £ ßX and y £ Y, (11, y) £ r~ implies (U, y) e s.

Given (il, y) £ T, let S e /3Y be such that S — y and (U, S3) e ßr.  Such a

S exists by the definition of r .

Since s satisfies (1.3.1) one knows that (11, y) £ s provided one can find

some § £ ßßX with § —• Ü and (§, S3) e /3s.  We claim that § = 77X(U) has these

properties.

(1) r,x(U)-U.

Let 11 e A, for some A C X.   This means simply that A € 11.  We want to show

that for some B £^-, A contains t]x(B) so that 3iu C <7X(11) as required for con-

vergence in the topology of ßX.   But this is immediate as A Dr¡x(A).   Indeed,

nx(A) = \x :x £ A\, and any such x is an ultrafilter on X containing A (since

x e A); thus, x £ A.

(2) (r,x01), 33)e/35.

Since (11, S3) e /3r, there is I e /SfT.) such that dJM = U and cf[S8] = S3.  We

want to define S e 23(Ts) such that dJM = r/x(U) whereas cJS] = S3.  A filter

basis for K may be given by all sets of the form r)x(A) x B for all pairs (A, B)

such that /4 e 11, ß e S3 and A x B e 8.   Then, we are done since (x, y) e r for

x £ A and y £ B implies, by assumption on s, that (x, y) £ s.   The rest is clear.

It remains to check on the coherence of these extensions.   For this, observe

that the diagrams below are all (7-extension diagrams:

(i) (ii)

for X a set and (Y, d) a topological space.

Let us show (i): by definition of r¡Y • r: ßX —* ßY, (U, 33) £ r¡Y • r iff there

exists some 1 e ßßY such that (11, 52) e ß(-qY . r) and B — S3.   Equivalently,

there exists some S3' £ ßY with (U, S3') e /3r and r/y(S3') -» S3 (or ,7y(S3') = SB).
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The last condition implies that SB = SB' and therefore, (11, SB) e jjy • r iff (11, Sß) e

ßr. _

Conditions (ii)and (iii) are obvious: (SB, y) £ ly iff SB —» y, i.e., iff (SB, y) e

6, and (11, 11') £ r^Tiff ̂ (ll) -» U', i.e., iff U = tt'.

The second coherence condition in (1.2) is precisely the statement that (iii)

above is an extension diagram.

The first coherence condition follows immediately from the observation that

an equivalent description of F: ßX —» Y, for any given r: X —* Y, is the follow-

ing: F = ßX£L.ßY—> Y.   In fact, we could have stated the definition in precisely

this way.   This completes the proof.    □

Let us close the section with some remarks.  First, note that the usual for-

getful functor Jap. —► beta, can be obtained by pulling back the opposite of U:

3w£ Jap —> 5le£ along the functor Seta. —* 3vet?op which is the identity on objects

and takes a function /: X —» Y into the relation /"  : Y —» X.  Secondly, note

that even if we only tested the universal property with functions /: X —» Y rather

than arbitrary relations r: X —* Y, relations come out anyway since / : /SX —* Y

is a relation not a function, unless Y is compact.   Of course, when restricted to

compact spaces as well as functions, what we obtain is the universal property of

the Stone-Cech compactification functor, i.e., ordinary adjointness (this is easily

seen as, for functions / and g, f < g simply means / = g).

2. Lax monads and their algebras.

(2.1) Definition. Let U and S be 2-categories.   By a lax functor F: d —* S

we mean the following:

to each Xe |fi|,an FX £ |S|;

to each 1-cell /: X — Y of S, a 1-cell Ff: FX -» FY of S;

to each 2-cell a: f — f' of &, a 2-cell Fa: Ff -t Ff' of $;

to each X e |(3| a 2-cell e£: F(lx) -» 1FX;

to each composable pair of 1-cells g, f of (2 a 2-cell c    ,: F(gf) —* Fg • Ff

of %; satisfying the following conditions

(2.1.1) ev-^cf.iv-1*/-

(2.1.2) («Y^/>cfy</ = lF/.

(2.1.3) («■OL/^L-^r

for any pair of composable g, f.
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(2.1.4) For any /: X -> Y, F(lf)= lp/.

(2.1.5) For any a: /->/', «':/'-»/» F(«'• «)« Fa'• Fa.

(2.1.6) For any composable g, / and g , /   and 2-cells a: / —> / , b: g —» g

one has (Fa • Fa)c    , = c iji  ' F(ba).

Remarks. A 2-functor is a lax functor with ex and c   . all identity 2-cells.

If u and % ate bicategories and if we replace in the above diagrams, identities

such as / = / • lx or h(gf) = (hg)f by the corresponding 2-cell isomorphisms, a

lax functor becomes a dual morphism of bicategories (cf. Benabou [2]).

(2.2) Definition. Let F, G:Q.^>^> be lax functors between 2-categories.   A

lax natural transformation cl: F —» G is given by any family !ax: FX —» GX\ of

1-cells of % indexed by |ö|, and a family \ay. ay • Ff -> Gf • ax\ of 2-cells of S

indexed by the 1-cells of u, satisfying:

(2.2.1) (ex . ax)a     = ax . e£: ax . F(lx) - ax.
A

(2.2.2) (Gg • aF)(cÇif • ax)ag/ = (ag . Ff)(az . cpgf): az . F(gf) — Gg • ay • F/.

(2.2.3) For each a: /—♦ /', (Ga • ax)a. = a.,(ay • Fa).

Remarks. If F, G: (Î —* S are 2-functors, and if one requires that each 2-

a. be the identity, the définit

of 1-cells and 2-cells of the form:

cell a. be the identity, the definition reduces to the commutativity of the diagrams

FX->GX

Ff\^\Ff

«y

fot any /, / and a: / —♦ /'.  This says exactly that a: F —* G is a strongly

natural transformation or a Cat-natural transformation (cf. [3]).

(2.3) Definition. Let U be a 2-category.   By a lax monad in (2 we mean

a lax functor T: â -» S;

a lax natural transformation 77: lg —» T;

a lax natural transformation p.: T • T —» T;

(note that there is a canonical way to make the composite  T • T into a lax

functor)



364 M. C. BUNGE

families |\x!, \px\, |axl of 2-cells of U where Ax: px • Tr)x —* 1TX, px' 1TX ~

Px ' ^TX' aX: Px ' Tf-x —' ''x * r^TX' 'fldexed by the objects of u, satisfying:

(2.3(1.D) (ax • r,TTX)ipx • ^)(px • nx)

= Px " Ptx: ux~* Px ' Ptx ' Vttx-

(2.3(1.2))     (pf. r¡TX)ípx, • T]Tjipx, • Tf)

= Tf • px: Tf —» Tf • px • r¡TX,    fot any /: X —» X'.

(2.3(1*))  ÍTf. \x)iuf • Trix)ipx, ■ c7)^, ■ Tit¡f))

= ÍXX, • T/Xitx. • cT): px, • 7tr7x, • /) -» Tf,    tot any /: X — X'.

(2.3(a)) (fxx • ATX)(ax . TrjTX)ipx • cT)ipx ■ Tipx))

= ux • e   : ux • TilTX) —» ux • 1TTX-

(2.3(2*)) Ux • rjx)ipx ■ r,Vx)iPx ■ Vx) = lT)jf •

(2.3(3.1))   (Ax • z,x)(Fx • Pv/ax ■ TTr,x)(px - cT)

= W • e.){Px ■ rtAx)): z,x • Ttftx • TVx) -» ftx • T(lrx). •

(2.3(3.2)) (ax ■ /xTrxk/rx • ft^)(ax . TT,ix)^x ■ cT)

= (fix.- aTX)(ax . T/1^% • cT)(ííx • Tax):

px • r(/iX • T//x) -» px • pTX ■ pTTX.

(2.3(3-3))   ipf ■ pTX)ipxi ■ PTf)iax ■ TTTf)ipx ■ cT)

= (Tf ■ ax)(F/ . Tpx)ipx, - cT)ipx, ■ Tpj:

pxi • TÍpxi • TTf) —* Tf • px • pTX tot any /: X —» X'.
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Remarks. If T is a 2-functor, n and ii strongly natural and if all the 2-cells

A.x, px and ax ate identities we obtain precisely a strong monad.   One could

also assume that T is a 2-functor and that the 2-cells kx, px and a    are identi-

ties, leaving the transformations to be lax.   The resulting notion of monad corre-

sponds to the 2-adjointness notion given by Gray.

(2.4) Definition.  Let T = (T, rj, u, (Àx), (pxX (ax'> De a iax monad in the 2-

category U.   A T-/ax algebra X¿ consists of

an object X of (Í;

a 1-cellf: TX — X of â;

a 2-cell ic '■ lx ~* £ * r\x of u;

a 2-cell Kç : £ • Tf —» £ • ux of d;

satisfying:

(2.4.1) (kç   ■ T]TX)(¿; ■ 71ç)iiç  -0 = Ç • Px:t-^Ç- PX' iTX-

(2.4.2)      iÇ ■ \x)(k¿ ■ TVx)(g.. cT)i£ • Ttç ) = £ . e7-: £ • 7tlx) - £ • 1TX'

(2.4.3) (£ • ax)Uç ■ Tux)iÇ ■ cT)i£ ■ Tk¿)

~(ks  ■ utx)(£ ■ uç)(kç .TTO(t-cT):

£ ■ T(f • Ttf)-*tf ■ /ix • pTX.

Remarks. Let Ji be any category, T a monad on A.   Let U. = öpan X, the

bicategory of spans (cf. Burroni [5]).   In the "same" way that a monad on Seta,

induces a lax monad on Jve£ (cf. Barr [l]) one can show that T induces a lax

monad, also called T, on bpan X.   The lax T-algebras in this case are precisely

the T-categories of Burroni.  We leave the details to the reader»  Note that this

application requires the slight generalization of lax functors, etc., suggested in

the remarks after (2.1), unless a choice of pullbacks is made in X so as to have

upan X a 2-category.

(2.5) Definition. Let X, and Yg be lax T-algebras for some lax monad T on

a 2-category u.  A lax T'-homomorphism X c —• Yg is given by any pair (f; tp)

where /: X —» V is a 1-cell of U and <f>: Ö • Tf —» / • <f is a 2-cell of S, i.e., one has

satisfying:
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(2.5.1) ieß ■ rjx)íd ■ -qjítg •/) = /• t¿ : f -» /• «f ■ r¡x-

(2.5.2) (f.Kg){<p- T£)iO • cT)íe ■ T<f>)

= í<f> ■ px)íd ■ pjue • TTf)íe ■ cT): ö . 7te • r/) — / • «f • px.

Remarks. For X¿ and Y^ topological spaces, i.e., lax z3-algebras for the

induced monad ß in Setû., a lax /8-morphism was analysed in §1.   Note that in

this example the coherence conditions are automatic as, in Jve£, each category

3tel!(X, Y) is a preorder.   One may, in general, i.e., for a lax monad T, consider

T-algebras and T-homomorphisms, the former by requiring the 2-cells (r and Kt

to be identities; the latter by assuming that (f> is the identity.

(2.6) Proposition» There exists, for any lax monad T on a 2-category U, a

2-category U    whose objects are the lax T-algebras, whose 1-cells are the lax

T-homomo'rphisms, and a 2-functor UT: u    ~* u which is faithful on 2-cells.

Proof. Define composition of 1-cells as follows:Let (f; <f>): X* —> Yq and

(g; y): Yq —» Z. be given.  Define

k;y)-(f;<f>)=á{(gf;tg<f>-y(Tn-£clf]).

Note that

y*<f> = t-Tigf)     C'CgT/  ,(.Tg.Tf2ULg.C.TfJ^tgf€

has the correct domain and codomain for (gf; y *<j>) to be a lax T-homomorphism

Xc —* Z..    It remains to verify the two conditions on a lax T-homomorphism.

(2.6.1) The pair (gf; y *<f>) satisfies (2.5.1).   This follows from the following

commutative diagram:
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The reasons for the commutativity of each of the subdiagrams is indicated

as follows: a number such as (2.5.1) indicates that this condition is used essen-

tially but it leaves unspecified which is the lax T-morphism in question, the

reader can, however, identify it easily.  Above, e.g., (2.2.2) refers clearly to rj.

The notation'^ywill be used when a diagram commutes by no special reason,

e.g., above it does because both composites are clearly equal to y • f].: Ç, • Tg •

rjY ' f —> g • d • Tf • Tjx.   The word "def" means "by definition". Similar con-

ventions will be used in the sequel.

(2.6.2) The pair (gf; y *<f>) satisfies (2.5.2).   This follows from the follow-

ing commutative diagram:

l(- TiC- Tig ■ iW-^—U- T(- TTig - f)]

(2.1.6) CT

[(■^■TTig-m

O

l(- TiC- Tg.TI)]-^*[(-T(- TiTg-T/)\-^[C- T( ■ TTg • 7T/1-X l(- cz • TTg ■ TT/\ [( - Tig ■ f) ■ ux)

(2.1.3)

lC-nc-Tg)-n

(2.1.6)

(2.5.2)

(2.2.2)

IC-Tig-e- T/)]-^~lc- rig■ e)■ rr/l-i[¿. Tg-re- rrft      [£■ Tg-H- rr/l-^[<- ts■ r/-^]

(2.1.3)

Ai-Tg-TW-T/)]' (216)

(2.1.6)

lg-0-Tie- T/)]

O Ig-e-re- tt/\

O

tí- Tig ■ f.&l-ÉLlC. Tg ■ Til- fil-^U -e-iXf- ()\ \.g-6-liy-TTI\—'—lg-6-V-iix)

(2.1.3) O (2.5.2)

lÍ-Tig-/)-T(]    —    lC-Tg-T/-T(\    -2-    [g.fl-T/.Til   -±-  lg - / ■ (. T{\   -ÏÎ-   lg-/-f-/ixl
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Define the pair (lx; £ • ex): X^ —> Xç  to be the 22222'/, a fact which we pro-

ceed to verify.   First, it is a morphism.

(2.6.3) The pair (lx; ¿; • ex) satisfies (2.5.1).   Look at the corresponding

diagram, which is:

¿•fx

í-fx

(2.6.4) The pair (lx; £ • ex) satisfies (2.5.2).   In this case, the appropriate

diagram is:

£-T(£. T(lx)) ^— (-Tí- TT(lx) -i-*_» f • Px . T7tlx)

i'Tii-eh (2.1.6)

f . T(lx ■ f )      ff • Tff/ T(.J) TT

J <7

f-7tix).rf f"*-rf

ff-Mi

r.    f.Tdx)-ftx

ff • *x ' ''x

T    re 1X'Ki

. lx • «f ■ Tf   -►   lx • £ • PX

(2.6.5) lx     is a left and right unit for composition.

By definition, (/; <f>) • (lx; ( • ejj - (/ • lx; (/ • f • ejf) • (0 • Tdx)) .

(0 • c, ,   )).    Clearly, the result follows from (2.1.1) since one has the diagram
/.ix
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d -T(f ■ ix)

uLh

d-Tf. T(lx)

<*>-T(lx)

/ • Í • T(lx)

TX

-/•MTX

Similarly, using (2.2.2) one can check that (1 y; d • ey) • (/; <p) = (/; tp).  We

leave this to the reader.

(2.6.6) Composition of l-cells is associative.   Let (/; tp): X, —> Yg;

(g; y). Yg —» Z. and (h; x)' Z. —» U^  We compute:

0>; x) ■ [ig; y) ■ (/; <f>)]

= ih(gf); (hgtp) ■ (hyiTf))ih - C ■ cTgf)iX ■ Tigf)) • (vcThgl))

and

Kb; x) • (g; y)] • (/; tb)

= (ihg)f; ihg4>)(hyiTf))ix ■ Tg ■ Tf)(Á(c¡i8 ■ Tf)(c¡gJ)}))

The result now follows from (2.1.3) for T.

It remains to specify the 2-cells of (Í     and to show that it is a 2-category.

(2.6.7) Given 1-cells (/; tb) and (/'; tb') from X^ to yö, a 2-cell a: /-» /'

of Cl is a 2-cell of Cl provided it satisfies the following coherence condition:

the diagram

4>
d ■ Tf-

6. Ta

d ■ Tf-
4>'

a.i

should be commutative.

Let them compose in the same way as in Cl, the unit in Cl     is then also the

unit in Cl.   It is, of course clear that composites of 2-cells satisfying (2.6.7)

again satisfy this condition and that the identity 2-cell always does.

Define now  U   : uT ~~• U to be forgetful, i.e., it sends X¿ into X; (/; tp)

into / and a into a.   From the definitions of compositions and unit U     is a 2-

functor (even though we started with a lax functor T).   It is clearly faithful on 2-

cells as U   (a) = a.   This completes the proof.    D
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3. Lax monads generation and resolution.

(3.1) Definition. Let U: $ —> ff be a 2-functor.  A formal lax adjoint to U is

given by

a lax functor F: S ~* ÍB;

a lax natural transformation 77: la —* UF;

a lax natural transformation e: FU —* la ;

for each X £ |ff| a 2-cell Lx: iFX « Fr/X —• lpX5

for each Y £ |$| a 2-cell Ry: 1 yy —► i/ey • 77^,

satisfying

(3.1.1) For each g: y -» y' in $,

ÍUeg.riUY)ÍUeY,-71ujíRY,'Ug)

= Ug-Rr: Ug^Ug- UeY ■ r,UY.

(3.1.1*)     For each /: X -» X' in ff,

(F/. Lx)(fp/ . Fr/X)(£FX/ • cF)(eFX, • F7/)

= (Lx, - F/)(iFX, . cF): iFX, . F(r,x, ■ f) -+ Ff.

(3.1.2) (eY-LUY)(ee    ■ FnUY)(eY ■ CF)(ey . F(Ry))

= eY • e   : ey ■ FilUY) —* eY • 1FUY.

(3.1.2*) (u{Lx) . Vx)(UeFX • Vvx)(RFX • r,x) = 1^.

Remark. This definition could have been stated more generally with U a dual

(or right) lax functor.  In that case the symmetry of the conditions would be more

apparent.  However, as we shall see, any lax monad resolves into a pair F, U

with U a 2-functor and F a lax adjoint to U in the above sense.

The above definition yields immediately:

(3.2) Proposition. Let (F, r¡, e, (Lx), (Ry)) be the data for a formal lax

adjoint to a 2-functor ¡7:$ —» ff.   Then, the data (UF, 7], UeF, (U(LX)), (R,FXy),

(Ue,       A) is that of a lax monad in ff said to be generated by U and the given
\eFX>

lax adjoint to U.

Proof. We split up the proof into the verification of the required conditions.
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(3.2.1) T= UF:â-*â is a lax functor.   Define «?x = U(tx) and cT f =

U(c    ,).   Verification of the axioms is immediate and follows from F lax.   It is
S 91

essential here, as in what follows, that U is a 2-functor and not just lax in either

direction.

(3.2.2) p. = UtF is a lax natural transformation.   In this case there is a little

more work to be done but it follows essentially from c being a lax natural trans-

formation.   It is clear that it will be enough to show that eF is a lax natural trans-

formation, since U is a 2-functor.

Condition (2.2.1) for eF holds by virtue of the following commutative diagram:

fF(lx)

iFX.FUF(lx)  ->Mlx).fFX

eFX-FUex (2.2.3) X'eFX

tFX - FU(lFX)

CFX "U

FX
-1

FX      'FX

(2.2.1)

(FX ' ^FUFX

To see the above note that the lax structure on FUF is given by

F FFUey • eUFX

FUF(lx) -- FU(lFX) = F(lUFX)->lFVFX

and by

F

FUF(gf)
FUc

8.1
•FUiFg, Ff) = FiUFg, UFf)

F
cUFg.UFf

.FUFg ■ FUFf.

Similarly, the reader can check that (2.2.2) for tF follows from an application

of both (2.2.2) and (2.2.3) for f, plus U a 2-functor.  Finally, all that is needed to

obtain (2.2.3) for eF is the corresponding one for e, this since for any a: / —» /',

Fa: Ff —» Ff' implies that

U(
Ff

U(eFY • FUFf)-'->UiFf ■ eFX)

U(tFY- FUFa) (2.2.3)

Ut
Ff

U(Fa.(FX)

U(t      . FUFf) —^ U(Ff' • eFX)zFY   -  *   "« /    / —   "V.  /       -  <:FX/

commutes.

(3.2.3) It remains to verify the coherence conditions on a lax monad.
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Condition (2.3(1.1)) is precisely

UeFX ■ VUFX ■ Ue'CFX

UfFX-7>l/i

'•FX 'UeFX

FX

UeFX ■ UFUeFX • r¡UFUFX

IkeFX ' VUFUFX

tFX

UeFX ' RFUFX

UecFX ' UeFUFX ' ^UFUFX"

and commutes by an application of (3.1.1) with g = cFX' FUFX —» FX.

Let us indicate how to obtain the remaining conditions on a lax monad: w

(2.3(1.2)) follows also from application of (3.1.1), this time with g = Ff: FX-

FX';

(2.3(1   )) follows from (3.1.1  ) simply by applying U to the diagram;

(2.3(2)) is a consequence of (3.1.2) and it is obtained by applying U again;

(2.3(2  )) follows from (3.1.2  ), in fact: it is the very same condition.

The remaining conditions, i.e., (3.1), (3.2) and (3.3) do not depend on the

coherence axioms for a lax adjoint but only on the lax naturality of e.  We shall

be more explicit here since the diagrams may be not easy to find on a first try.

(2.3(3.1)) follows from

■FUFvx

'FX teFX-eFUFX-FUFrlx

(FX-F0JLXÍ

'FX

CFX F%Fj
(FX ' 'UFX

Note that (2.2.3) is applied with a = Lx: epx • F?7X —» lpx.  Similarly, the

reader can show that (2.3(3.2)) is a consequence of twice an application of

(2.2.2), namely for the composites f„x • FUepx and epx • Cp¡jFijFX, and then

applying (2.2.3) with a = e(     : epx
FX

FUepx —» fFX *FUFX'

Finally, (2.3(3.3)) is an application of (2.2.3) for e withzz = ep,: eFXi' FUFf—>

Ff . epx plus a double application of (2.2.2) one for each of the composites which

constitute the domain and codomain of the 2-cell a.   The proof is now finished.   □
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(3.3) Proposition.  For any lax monad T on a 2-category &, the 2-functor

U   :U    —' Cl has a formal lax adjoint together with which it generates T.

Proof.  The data for a lax adjoint to U     is given as follows.

(3.3.1) A lax functor F   : u ~* u    given in this way.   For an object X of U,

let FT(X)=(TX).      j with i.      j = px and k.      ) = ax'  That this is the data for

a lax T-algebra follows directly from (2.3(1.1)), (2.3(2)) and (2.3(3.2)).

If /: X — X' is any 1-cell in Ö, define FT(/)= (Tf; ft,).   That this is a lax

T-homomorphism F   (X) —> F   (X ) is a direct consequence of (2.3(1.2)) and

(2.3(3.3)).

Let FT(a) = Ta tot any 2-cell a: f —»/'.  That Ta is also a 2-cell in CfT,

i.e., that (2.6.7) is satisfied1 for any a, follows from (2.2.3) for lax natural p.

C T C ^ T*

The rest of the data is given by ex    = ex and c   . = c    ,.  That these are

well defined can be shown by using (2.2.1) and (2.2.2) respectively.   E.g., since

ex: T(lx) —» 1TX and   since   F   (lx) =  (T(lx); fi(I   J and   1   T        =

T _ 'X F   (X )
(l_x; px • erx), in order for ex to be a 2-cell F   (lx) —* 1   T       in Cl   , the

following, i.e., (2.6.7) must be satisfied.

• T(lx).pxpx.TT(lx)

/VTXeJ)

r*X • T(1TX)

The reasons for the commutativity are indicated inside the diagram.  We leave to

FT
the reader a similar verification with regard to c   ..

That F     is a lax functor now follows directly from F a lax functor and U a

2-functor.   Also, their composite is T.

(3.3.2) Since there is available a lax natural transformation rj: 1« —» T =

JcT

(GT)
U  F   , we must now ptoduce a /ax natural transformation t: F   U    —* 1

For any object X^ of âT, let e(x   }: FTUT(X,) —» X^ be given by f(x   j

(Í. ^)= TX(M   )-»Xf.  Note that conditions (2.5.1) and (2.5.2) for (tf; Kg)

translate into conditions (2.4.1) and (2.4.3) of the lax T-algebra X, and say that

(tf; Kc) is a lax T-homomorphism.  So, e,x   . is well defined.

For a 1-cell (f; tp): X¿ -» Yg of flT, let
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Hf.tf Hy6 ) • [FTuT{f' *)] - [1öT(/= W • '<xff ,

be given by et..(¡,\ = (f>: d • Tf —> f • ¿j.  Since we should have

Hf;4>Y {e ' T/; (^/} • keiTTf)) ■ id ■ cT9Tji) -. (/£ (/%)(<£ ■ Tf )(0 • ejtf))

after computing the domain and codomain of e,,,., we must have (2.6.7) satisfied

for (f>.   This says precisely that (/; <f>) satisfies (2.5.2), which is one of the two

conditions stating that it is a lax T-homomorphism.   Thus, also c,,,. is well

defined.

It remains to check that the definitions of e,x   j and f/*.^» given above make

e a lax natural transformation.   This is immediately observed by simply writing

down what this means.  We let the reader carry out these computations.

(3.3.3) Finally, we want families (Lx) «22fi (R,x   A of 2-cells, as in (3.1).

Define Lx: epJ^ • F^)— lpT,x) bV lettinS LX = AX: Px * TVX ~ lTX-

In order to see that this is well defined, we observe that the domain of Lx should

be the composite

(px; ax) . (Tr¡x; p^^)

- W • TrlX< ^X ■ Hix)} " <aX(7T?XW ■ W • Cßx.TVx

and that its codomain should be, simply,  0-TX\ Px ' eTX)"  That Ax verifies

(2.6.7) and is thus a 2-cell in ff   , is spelled out in the condition (2.3(3.1)) on

the lax monad T.

Define R,v   »: 1   _ —♦ U  elv   . • n   _ by letting Rlv   .= t,: lv—*
<*£>     t/T(X¿r) {XÇ>      uT(xp &    (Xf)      f     X

£ • r¡x.   This is clearly well defined.

We verify, lastly, the axioms for the formal lax   adjointness   of (FT, rj, e,

Lx, R{X   j) to UT: ffT — ff, as in (3.1).

Let us mention briefly how this is done, letting the reader convince himself

by writing down the appropriate diagrams:

(3.1.1) with g = (f; (f>): X, —» Yq is verified by condition (2.5.1) on a lax T-

homomorphism;

(3.1.1*) for /: X — X'in ff, results in (2.3(1*)) on the lax mpnad T;

(3.1.2) with a lax T-algebra Yq is precisely condition (2.4.2) on the latter;

(3.1.2 ) is just (2.3(2  )) on the lax monad T.

This completes the proof, once we make sure that the lax monad induced in

the sense of (3.2) is indeed T.  We have seen already that the lax functor t/TFT = T

and rz is the same in both.   But also, UT(e    T       ) = UT(py ; a  ) = p     whereas' (F   (X)) A     A        A

UT(e    T   ) = Ur(p,) = p,.  Also, C/T(LV)= i/T(Ax) = A    and R   _      =
(Ff) ' ' F    (X)
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R((TX)a   ) - W> " PX'  We are done'    D
Llx X

Further investigations into other aspects of a theory of lax monads, such as

an analogue of Beck's theorem (cf. [lO]), are out of the scope of this paper.

4. The universal property of a lax adjoint.

(4.1) Theorem. Let U:% ~~' Cl be a 2-functor.   Let us be given, for each

X £ |S|, a??, object FX of % and a l-cell rjx: X -* UFX of C£.

Then, if the family \t]x\ is coherently closed for U-extensions, it follows

that there is determined a structure of a lax functor on F, as well as a lax

natural transformation t: FU —» la and families of 2-cells (Lx) and (Ry) and

the data (F, r¡, f, (Lx), (Ry)) is that of a formal lax adjoint to U.

Proof.  (4.1.1) F can be extended to a lax functor and 77 becomes lax natural.

(1) Define, for /: X — X' in ö, Ff: FX -» FX'e SB as the (/-extension of

(r)x; f): X — UFX' along J7X: X — UFX.   Let r¡f be the 2-cell in

vx
X--—>UFX

X'- —<-*UFX'

UFf

UFX'
Vvi

i.e., let Ff = »7xi • / and 77, = iff.       .,. in the terminology of (1.1) with kx = 77x.

(2) Given  a:/—»/'   in S, define  Fa: Ff —» Ff' as follows:  Fa =

(r¡x, • a) • 7],,, also following the terminology of (1.1) with r/> = (?7X, • a)-q,,.

Indeed, one has, from

that

vx
X->UFX

UFf

Y1
—<->iify'

Vyt
UFX'

Vx
X-~-.UFX

\UFf
(Vxi-a)-rifj,

X'- L+UFX'
Vyl
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By the universal property, Fa is unique so that the diagram

nx, ■ f-lL-,UFf • r/x

•Hyi-a UFa • T\x

Vx, •/' >UF(' ■ rjx
V

commutes.

Note that this is already the condition (2.2.3) for (qx, r¡.) to become a lax

natural transformation 77: lg —» UF.

(3) The diagram below commutes (we write the identity 2-cell to indicate this)

U(lFX)

By the universal property there is a unique 2-cell e^ =,.  1,      .: F(l v) ~~* 1 cv
A

satisfying

*UFilx) - r,x

,   F
Uex-vx

^■UFX ' Vx

The commutativity of this diagram is condition (2.2.1) on lax naturality for r¡.
tip F Zrt

This is indeed so, letting cx   =   U(ex) and ex - lx-

Next we look at the diagram:

X-'UFX

UF/

VVY       I       *
—-Ufjpy

UFg

UFZ
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It follows that there exists a unique 2-cell c    .*    [(77   • /) • (UFg)r),]: F(gf) —*

Fg • Ff, so that

(UFg • l,Uvg ■ f) ' «><./ ■ IxKf-- Iz-gf^ UFg ■ UFf ■ Vx>-

a condition which is none other than (2.2.2) for a lax natural transformation 77.
F       F

Thus, as all three conditions for 77 lax natural have been established and e   , c

defined, all we must now do is check F is a lax functor with these.

(4) We verify the conditions of (2.1) of F.  For these, the uniqueness part in

the definition of the extensions will prove the essential tool.

Proof of (2.1.1). Note that the diagram

VU-\X)

Vy - f - lx->UF(f ■ lx) - Vx

V1*

UFf.r,x.lx

(2.2.2) U<cf,ix>-T'x

♦ UFf - UFlx . Vx

UFf • Uex ■ T)X

UFf ■ Vx

is commutative

uniqueness a

i„,=;¡y

imutative (setting c, F= U(c.   )).   But also (U(lp.) • î7x)>7/= Vf   BY
F F

;ness and universality of the pair (Ff, 77.), it follows that (Ff • ex) • c, j    =

Ff= Vf
Proof of (2.1.2). Similar to the previous one and left to the reader.

Proof of (2.1.3).  Begin by observing the commutativity of the diagrams below

for any 1-cells X -^ y,  y -** Z, Z -^ W:

T)w • hgf->UF(hgf) - 77X

%-ef

UFH-r,z -gf

UFh'Ve-f

(2.2.2)

UFh-T)   ,

-^-^UFh ■ UF(gf) • r/x

Uch.ef^x

(2.2.2)

UFh-UFg-T),

UFh . UFg • r)Y ■ f-i iVF* • UFg ■ UFf ■ rjx

UFh-UcFgj--nx
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Vw • Hf

Vba't

vbgf
^UF(hgf).r,x

(2.2.2)

VF(hg) • v„

Uchg,fvX

UF(hg) • 77y • / —-^—' UF(hg) ■ UFf • 77X

J
UFb • UFg • t7/

Vchg-vY-f

UFb ■ UFg-Tjy. f

Uc'bg.UFf>vX

* UFb . UFg ■ UFf • ?7X

Next, observe that another application of (2.2.2) for 77 delivers:

(UFh - UFg • V/) - (UFb • 77g • /) • (77^ • gf)

= (UFh - fJFg - r,f) ■ (UcFg . r,y ■ f)(Vhg • f).

Calling this 2-cell ß, uniqueness yields

^■<,M.gf)=ß = Kg-F»-cLr

Proof of (2.1.4). Observe that r// • (t7x, • lf) = (U(lpf) • r¡x)r]f fot any /: X-

X', trivially. Hence, F(lf) =# (r¡x, • lf) • vf = 1F/, by uniqueness.

Proof of (2.1.5). Let a: f — /', a' : /' -. /".   By definition, F (a' • a) is

unique so that 77,,, (vx>(a' ' a)) = (UF(a'a) • Vx)v,.  Since also

77,» • (t]xAa'a)) = t),ii(t)xi • a')(r]xi • a) = (UFa' • r¡x)(77//)(r¡x 1 • a)

= (UFa  . r¡x)(UFa ■ Vx) ■ r¡f = iUiFa  ■ Fa) ■ r)x) • r¡f,

one has that F(a   • a)= Fa  • Fa.

Proof of (2.1.6). Let a: f—♦ /', b: g —» g' and g, f composable, g', /'

composable.

Consider the commutative diagrams
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and

Vz • gf

T)z • ha

VZ ■ gf

V'

'gf

(2.2.3)

V/'

(2.2.2)

UF(gf) ■ t?x

UF(ba) ■ t,x

■UFig'f').rjx

UFg'-r,,,

UFg'-7iY.f-UuFg'-UFf

Uce'.f"nX

Vx

Vz ■ gf'
'«./

UF(gf)

v •/

Vx

(2.2.2) F
cUcz/-nx

UFg-r,,

UFg ■ r,Y ■ f-î->UFg ■ UFf . nx

UFg-Vy-a (2.2.3) UFg-UFa-Tix

i         ,        UFg-T,,, Ï

UFg ■ r,Y • f-'-->UFg ■ UFf ■ r¡x

UFb-qY-¡' sj) UFb-UFf'-r,x

,        1 , UFg'-Ti,
UFg  -vyf  -L-» UFg'. UFf ■ r,x.

Next, we observe that

(UFg' ■r,fl).(r¡g,-f)-ir]z-ba)

= (UFg' ■ rifl)(UFb ■ r¡Y ■ f'HUFg ■ r¡Y ■ a)ir,g ■ f)

since

Vz ■ gf-

•77    •/'e '

Vz-g-a

->VZ ■g-f'-
Vz-b-f

J
-+VZ •

?-f   ■    (2.2.3)

g  ■ f

v.-r

1         UFg-VY-a              I                   UFb-Vy-f'        *
UFg .r,Y.f->UFg . ^ ./'->UFg> .lY.f>
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The uniqueness now gives: c   , ,,  • F(ba) = (Fb • Fa) • c    ,.

(4.1.2).  The rest of the data, i.e., e, (Lx), (Ry).  So far we have only used

the fact that there are (/-extensions along the 7]x.   This gave us F a lax functor,

77: la —' UF a lax natural transformation.   The coherence conditions (ii) and

(iii) of (1.2), the definition of a coherently closed family for (/-extensions, are

indispensable for establishing lax adjointness.

Let ey = l..y and Ry = if/.^      ..   Note that both are well defined, as we have

*UFUY

U(lUY)

By coherence (ii) and the above definitions, / = ey • Ff fot any /: X —• UY and

if/j= iUey • r]f) • (Ry • f).   In   particular,    tF¿   =   epx   •   Ft]x   and   i/r        ) =

(Uepx -77      ) • (RFX ' 7?x).   One then deduces the existence of a unique   L.. =
A

1(T,x):fFX * Ft)X - 1PX' satisfying  U(LX) • "A(7,x)= l(7?xV   Before reducing,

let us translate: the above is exactly condition (3.1.2  ) of a lax adjoint.   It says

precisely  (U(LX) • r,x)(UeFX • rz^p • Rpx • r]x = l(^r

Let us now bring in the coherence (i) into this picture.   It says that 77T7 =

l„x and that if/,     >= 1.      y   But then, Lx - identity.   This will be one of the
x x

conditions on an arbitrary formal lax adjoint when we attempt to recapture the

universal property.

Note something else.   The diagram

"»X

UFX

'J(Vy) '

UFX

says also that r¡x = F(lx), by definition, and that if/,      x= 77.,    ..   Since  r¡y =
X A

1FX one has F(lx)= lpx, and, since  ex = 1.      .is unique so that 1(      . =
A A^
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(^X-7/x)"7(ix)andsincer/(lx)=df^T?x)=1(TîxV one   must  have   ex =

identity as well.   This will be another condition which will allow us to recapture

the universal property.

We have not finished defining the data.   We need to choose, for each g: Y —♦

Z £ m, some e : ez • FUg —» g • ey.

By coherence, e~ • FUg = Ug.   Thus, we only need some appropriate diagram

of the form

^UY
* UFUY

U(g • ey)

UZ

By taking ß = Ug « Ry: Ug —» Ug • Uey • VtjY, a°d letting e   - ß, we obtain as

:ell which makes

♦ Uiez • FUg) • r¡UY

a result a characterization of e    as the only 2-cell which makes
g

Ug
"Ug

Ug-RY
<\) ■ vUY

Uig   ■   ey)    -    77^

commutative which, upon translation with if/„   = iUe~ ' T),. ) • (Rz • Ug) by co-

herence (ii), gives precisely the condition (3.1.1) on lax adjoints, with g: Y —• Z.

(4.1.3) e: FU —» 1« is a lax natural transformation.

Proof of (2.2.1).  By definition, f(1   )= (/(l y) • Ry = FTC = i^      )=1(f   )•

This, of course, is true of any ^7.   On the other hand we have shown that co-

herence implies that ex = 1FX.   Thus the result.

Proof of (2.2.2). By definition, eh   = U(hg) • Ry tot any pair g: Y —* Z,

h: Z —► W of 1-cells of ÍB.   This says that e,     is the only 2-cell for which

(U(f*g) * *UY){UeW ■ «U(hg)){RW • W> = Mg) ■ RY.

Thus, in order to establish (2.2.2) all we have to do is show that the composite

ew • FUihg) -> ew - FUh ■ FUg
(u ■ FUg b-e.

FUg -*h ■ g • £.
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satisfies the same condition as e,    above.  This is done below:"g

Uihg)-a Uew ■ r,uw - Uihg)-U-^-^ Uew ■ UFUihg) . luY

UeWV„h-u8 (2.2.2)"W   ''Uh

(3.1.1)     Uew - UFUh . Vuz - Ug

u<b-vuz-ue

U(w ■ UFUh ■ v us

Ucw.Ucr-v UY

Uh.Rz-Ug
Ub-Ug->Uh . Uez • r¡uz ■ Ug

Uh-Ug-RY

J
Uh-U(z-yUg

(3.1.1)

♦ U(W . UFUh ■ UFUg • r¡UY

Uth-UFUg-vUY

♦ Uh • Uez . UFUg . luY

Uh- Ueg.r,UY

Uh • Ug • f/ty • r¡UY

Note that condition (3.1.1) was established in (4.1.2).

Proof of (2.2.3). Let b: g —. g' in S, g, g': Y —» Z.  We want to show that

the 2-cells

Yi = *z ' Ft/« -►   g • ty-»g   ' (y>       and

y2 = ez • Fl/g
ez • Ft/6

r,.,    7        g »
♦ fz • F(/g-a g   • ey

are equal.   To do so we must find some ß: Ug —» U(g' • ey) • r¡UY for which it

is the case that

(U(yt) • r,UY)(U(z • Vug)(RZ • Ug) = ß,    for i = 1, 2.

Ub u_,  Ug' -RYWe claim that this is so with ß = fig —* Ug'

fication is given in the diagrams below:

Rz-Ug
Ug-► Utz . rjuz . Ug

Utz-jnUg

Ug' ' UeY • vUY- The veri"

>Utz.UFUg-T,UY

(3.1.1) "Ví/Y

Ug • UeY • j]UY

Ug' • RY
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and

Ry'Ug Ufz-vUg

Uiz,7>uz-Ub      (2-2-3)

♦ Uez • UFUg • r,uy

Uez-UFUb'T\{]Y

* 1

♦ Uez • UFUg' • r¡ÜY

l/g'.Ry
(3.1.1) C/£

g',7>l/Y

Ug' ■ UeY • 77(/y

(4.1.4). The remaining conditions on lax adjointness hold.  We have already

established (3.1.2*) and (3.1.1), both in (4.1.2).  We need to prove (3.1.1*) and

(3.1.2).
Proof of (3.1.2). We want to show that the composite

ey-F(Ry)                                       ey • c

y = íy • F(lfjy)-' £y • FiUey • r)UY)-'—»fy • FUey • Fr]UY

feY'Fr<UY

*€Y ' €FUY ' FrlUY

is the identity.   Indeed, this is all that remains of (3.1.2) after the identifications

of e{.y and Lj.y with identity 2-cells have been made.

The following observations will guide us to find the correct diagram.  First,

note that y: ey —* ey since by the coherence conditions imposed, it followed

that F(lyy)= Iprjy and that ep(JY ' PVuy ~ ^FUY'  Secondly, note that, since

Rv = if/n      ., Rv - 1      and therefore that y = 1      will immediately follow if we
77V Y Y

could establish the equation

(*) iUy ■ r,UY) • Ry = Ry.

Note also that 77,,   . = 1,     » has been established in (4.1.2) using coherence
A A

(i), and finally, note that (3.1.2 )reduces, after all the identifications with

identity 2-cells, to the equation

(3.1.2*) iUeFX • TiVx)iRpX • 77X) = 1^.

We use the above remarks in the proof of (*) below:
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UtY • t)uy

(2.2.3)

Y  ' VUY

Ufy-   UFIR „•   7)

U(Y  ■   T,UY  ■   Uly  ■  2,y y-liX, Ufy • UF(U(y • ZJy y) ■ 22,jy

lZf„ (2.2.2) ' Uiy-17 'i/y

(3.1.1) ffy   •   UFf/fy   •   ZJypyy   •   JlfJ y--ISXL, U, y • t/FI/iy • UF^y   •   ̂ y

uu( )-v UFUY      'UY A W(€€y)-U| lp7>zjy ""tzy

UeY'U(FUY"nnUy

0(y  ■ 22yy -. Ufy •   Ufpyy ■   I/ypyy  ■  ^yy ' "(y ' «Fl/V ^VUY'IUY

13.1.2*)
f(y    •    2/yy

Proof of (3.1.1  ). This amounts, after reducing the 2-cells which are identi-

ties, to showing the equation:

(iF/ • FVx)^FXl ■ cF)(fFX' * Frij) = fFX' * cF; VFX' ' F^Vx' ' 0 ~* Ff-

P . .        .
Let y. = (FXi' c    and y2  be the other side of the equation given above.   The

proof will be achieved by showing that (U(y{) • r]x)^l>tv   (    )) = Vf, f°r ' = 1» 2-
x •/

Recall that, since t/x< • /: X —* UFX ,

^(VX. -f)={U£FX'  • 77(t)x,./)) • (fiFX''"X' * 0-

Let y = y, = fc-v' ' c-n      r   The diagram is given below and commutes:

RFX' ' VX' ' {

Vx' ' f-' UtFX> 'VUFX' • Vx' " /

^FX'-^,./)

(3.1.2*) *FX"V*/ (2,2,2)

*l/fpX, • UFÍr¡x, -f)-vx

UeFX,-Uc- -Vx

Uepxi • UFr¡x, • -n.

UeFX, ■ UFr]x, ■ J]X, •/-*Uepx, ■ UFr¡x, • UFf • r¡x

Vx- ■ f - <"V • Vx

Let y = y2 = (ep/ • Fr7x) • (fFX, • c   ) « (epx, • Frjf).  The relevant diagram com-

mutes and is the following:
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RFX' mTlx' 'I
Ufpyl   • V

1x< *UeFX> ' VUFX1 'VX' ■ I'
(Vy-I)

J U(
FX' ' VUFX' ' 'V

RFX, ■UF/-rix

•JF/-r,x-. UtFX>. r,VFX< ■ VFj- 7>x

(2.2.3)

VtPX'-r>W.i,x)

(3.1.1)

UFf.Vx

UfFX'-7'l/F/"7'X

UtFX, ■ UFUFf ■ VuFX ■ 7]X

u<F/--nUFX-vx

>UFf- UfFX-T,UFX-T,x

(2.2.2)

t/fPV, • UFUFf. 7)_
hK_^X

J
UFI-UtFX-vVx

(3.1.2*)

-UtFX'-UF(r,x.-/).Vx

UeFX, ■ UFVf- t,x

V*px> *• UFWFf. Vx) ■ r,x

F

UeFX, ■ UFUFf ■ UF-qx . rfc

UtFI-UFvx-vx

' UFI ■ U<FX ■ UFVX ■ VX

II
UFf ■ ,x

This completes the proof of the theorem.    D

(4.2) Definition. Let U'3 — 3 be a 2-functor with (F, 77, t, (Lx), (Ry)) a

formal lax adjoint to U.  Say that it is a normalized lax adjoint provided the fol-

lowing 2-cells are all identities:

(i) e^:F(lx)-lFX,forallX;

(ii) c*  j: F(nx ■ f) —FJ7X • Ff, for all /: X' — X;

(iii) 1(VXY Vufx ' Vx ~* UFrlx ' Vx for a11 X>

(iv) Lx: fFX • FVx ~~* *fx» *or a^ X'

We point out that this list can be expanded since (i) implies that also

(v) 77,,   ,; £,,   ,; c. ,    ande.     , are all identities, and (iii) and (iv) yield
1 ( 1 x /     (ly7      ' '   X !y»/

(vi) Rpx: ^uFX ~~*UfpX ' Vufx 1S ü^e identity, for all X.   Note however

that nothing in the world gives arbitrary Ry to be the identity and that, in

general, the 77, and t    need not be so either.  Same for the arbitrary c   ,.   In

other words, the matter does not trivialize.

(4.3.) Theorem. Let U:%—> d be a 2-functor, and (F, 77, t, (Lx), (Ry)) a

normalized lax adjoint.   Then, the family \vx' X ~* UFX\ is coherently closed

for U-extensions.

Proof. Given any /: X —► UY, define J: FX —» Y to be J = €y • Ff, and

i¡tf: f - Uf • r¡x to be iff f = [(Ut^-nl. [ßy . /].

Assuming we have shown the extension property, let us establish the co-

herence, independently.   Here, the normalization is the key.

(4.3.1) Coherence of the extensions. The conditions (ii) say that one should

have
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f=1UY'VUY-f       and        ̂ /-MW-^yy./P'^Uyy)-/}-

By definition, l^y = ey • F(lyy) = £y and r¡UY ' f=ep(JY ' p(vUY ' D =

eFUY ' FVuY ' Ff = Ff'  ^ote tnat tne aDOve uses tnat: ezjy» c7,       / and Lx are

identities.   Therefore, it is true that l^y • 77^ • / = / .

Also by definition, t(Vuy.n = (^Ft/y ' '/(t,^./)) ' (KFl/y • ^y • /)•   But

r?(7?rjy./)= (UFr,UY)r,f, since ^y>/and 77^ are identities; also, RFf/y =

identity.   Thus, if/,        .l\ = Vl-  As for if/.,      «, by definition 'if/,,      » =
* 'l/y ''      ' v UY' *■ uy'

[(Uey)r¡fl      )HRy • 1UY]= Ryi since 77.j      . is the identity.   Therefore, their

composite yields [(Uey)T}f][Ry • /] = ^ifr,.

We now verify the coherence condition (i), which says that rjx =.1FX and

^(77X)=1(7?X)-

By definition, rjx = fFX • F77x>   On the other hand, since  Lx is the identity,

the latter is lpx.  Also, by definition, if//rj   } = \-iUeFX)Vv   1 * [Rpx ' VX^ =
A A

identity by conditions (iii) and (vi) of a normalized lax adjoint.

(4.3.2) Extension property of the pairs (f ; if/,).   Let g: FX —* Y and ß: f —♦

Ug • 77x be given.  Define then ß: ey • F/—» g as follows:

£y • F,S £y . cF

/3 = £y . Ff-> ey . F(Ug • 77X)->£y • FUg ■ FVx

(S-F7>X   „

-» g • £FX • Ft7x.

The diagram on the next page establishes that (Uß)rjx • if/, = ß.

Note that, when verifying the commutativity of this diagram, we did not take

advantage of the fact that some of the 2-cells are identities.   However, this

made it easier to identify the coherence conditions involved.

The only thing that remains is to establish the uniqueness of ß.  Thus,

assume y: ey • Ff —» g satisfies the equation (Uy)r¡x '^f = ß' Claim: ß-y.   In

order to prove it let us write down the definition of ß replacing ß by (Uy)t]x • if/,

in it.  What results, prior to the usual reductions, is the composite:

iyF(Ry/)                                                   fy-Fd/fyn.)

ß = ty . FjJL-L_^ fy . FiUeY ■ t,uy • f)-'-+ ey ■ FiUey . UFf . r,x)

fy-F(Uy-7,x)                               eY-cF                               (g-F^X

-'ey • FiUg • 77X)-'eY ■ FUg • Fr¡x->g • ep    . Fr)x.
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-♦ Uty   ■   UFf ■  77X

J <JCy-V,,

Ry -Wg--r,x)

Ug - Vx->U(Y ■ VUY ■ US ■ VX

II

(2.2.3)

VtY^WS-r,x)

U€Y-UFß-nx

Utv  ■  UF(Ug  • 77X)  • 77X

'"Wx (2.2.2)

U(Y-UFUS-VV

(3.1.1) UtY . UFUg ■ VuFX- Vx-^U(Y - UFUg ■ UFVx ■ Vx

U{g,7>UFX,7>X

Ug-U<FX-VUFX-Vx

'ug-Rpx-nx (3.1.2*)

J
^s-utFX-vrix

llg-Vx-.

First reduction. The diagram below is commutative:

fyF(Ry-/)

<Y ■ Ff->eY ■ FiUfy -VuY'f>

(y-FWCy-Vf)

U€g-upi,x.-nx

U(px ■ UFr¡x ■ t,x

US-Vx

ty- F(Ur-77x)
ty   ■   F\U(y   ■    UFf ■   77X)   -><Y   ■   FiUg  ■   J,X)

tY • FUtY ■ FUFf ■ Fr¡x

ty   ■   FUity   ■   Ff)   ■   FT7X

(2.1.6)

ty'FUy-Fvx

HiyPIÏF7>X       <2-2-3>

.ty ■ Füg ■ Fr¡x

tg-FVx

V-lpx-Frix
(Y ■ Ff ■ (FX • FVx-'S - eFX - trlX

387

ty-Ff-

Combine this with the following in order to obtain the desired result:
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Second reduction. The following diagram commutes:
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This completes the proof of the theorem.    □

(4.4) How to recover the original example.  Note that any monad in o«Ia.

induces a lax monad in 3v«£— just follow the indications given by Barr [l].

That the example (1.3), shown directly in (1.3.2) to have the universal prop-

erty of (1.2), is a consequence of (4.3) follows from the observation that any such

induced lax monad T on J\<d resolves (as in (3.3)) into a 2-functor U    and a nor-

malized lax adjoint F    and therefore, by (4.3), it satisfies the universal property

of (1.2).

This observation consists of the following remark, which the reader can find

in [l].   Firsr.that if T: Jx«? —» iRel? is induced from T: ü«í¿l —» o«ía. in the manner

therein indicated, one always has T(lx)= l7-x» trivially.   This gives (i) of (4.2).

Next, if r is a function (or if s is an inverse function) then equality holds in

T(r ' s) < T(r) • T(s).  Apply this to the pair 77x, / in order to obtain (ii) of (4.2),

i.e., use that 77x is a function.   Thirdly, observe that lax natural a: T —> T.,

i.e., having the property that if r: X —- Y is a relation then a.    • T(r)< T.(r) •

ax, becomes natural relative to functions—clearly, if r: X —» Y is a function, the

above inequality becomes an equality.   This gives (iii) for 77 since it is there

required that the 2-cell 77.      . should be the identity.  As for (iv) it is immediate:
X _,

it says that £FX • Fr¡x < lpx should be an equality where here F = F   .  Note

for this that fFX = px, Frjx = Tr7x and that equality px • Tr¡x = l~x holds for

the original monad.   Or, should we obtain a 2-cell px • Tr]x < l_x from formal

considerations, note that an inequality between relations which are functions

must be an equality.  This completes the proof that all conditions of (4.2) hold.

(4.5) Remark about continuous relations. We may ask now whether it is also

possible to recover the continuous relations in a similar way.   The recipe is

this.   Let the functor o-etá.011 —' 3U2 (/ I-* f~  ) act on the monad ß in Sets..  There

results a comonad (ß, r/-1, p'1) with ß lax but r/'1, p'1 dual (or "left") lax.

The lax coalgebras are again the topological spaces (view X,  as a coalgebra

via ¿;~  : X —- ßX) but the morphisms are continuous relations, as desired.

The universal property changes; explicitly it is the following.   Given a

relation r: X ■—» Y where X,  is a topological space and Y is a set, there exists

a continuous relation F: X —- ßY (in fact, F = ßr • rf~  ) such that r < 77"   • F

and such that if s is any other continuous relation satisfying r < rj~    • s4 it fol-

lows that F <s.   I.e., in the language of [12], F is the left U-lifting of r along

r/y1 : Y — ß Y where U: Jap íR<-í -* %A is the forgetful and Top %d is the 2-

category of topological spaces, continuous relations and natural inclusions.

Coherence holds and one has that ß is a lax coadjoint to U.
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