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ABSTRACT.    Let  T = fz T(S>) be a direct integral of Hilbert space opera-

tors, and equip the collection g of compact subsets of C with the Hausdorff

metric topology.   Consider the [set-valued] function sp which associates with

each & e Z the spectrum of  7"(g).   The main theorem of this paper states that sp

is measurable.

The relationship between  <?(T)  and icr(F(6))f is also examined, and the

results applied to the hyperinvariant subspace problem.   In particular, it is proved

that if cr(T(S)) consists entirely of point spectrum for each  S e Z, then either   T is

a scalar multiple of the identity or  T has a hyperinvariant subspace; this gener-

alizes a theorem due to T, Hoover.

1. Introduction.   Let T = /®T(e) be a direct integral.   Roughly speaking

(precise definitions will be given later), this means we are given a family

ÎT(ë)!ceZ of Hilbert space operators "depending measurably on the index ë".

The main purpose of this paper is to examine the following two problems:

(1) How do \a(T(S))\ depend on g?

(2) How does ct(T) depend on \a(T(<%))\?

Intuitively, one feels the answer to the first question should be "measurably".

In order to make this precise, we equip the collection (? of compact subsets of

the plane with a certain natural Borel structure.   This makes it meaningful to ask

whether the [set-valued] correspondence € —» o(T(&))  is measurable.   That such

is the case constitutes the main result of §3 (Theorem 3.5).

The second problem is taken up in §4.   Here, the results are somewhat dis-

couraging; a simple example (4.4) shows that the spectrum of T may have little

relation to the spectra of   ÎT(ë)i.  If one is willing to restrict T to an appropriate

reducing subspace however, some intelligent comments are possible.   Our best

result in this direction (Theorem 4.6) states that if each T(S) has disconnected

spectrum, then for a suitable %, cr(T\^ will also be disconnected.
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The final section of the paper applies the above considerations to the hyper-

invariant subspace problem.   (A general discussion of the problem, along with

references, can be found in §5.)   It is known that any operator with   disconnected

spectrum has a hyperinvariant subspace; applying Theorem 4.6, we see that if

oiT(S)) is disconnected for each ë, then T has a hyperinvariant subspace.   A

slightly more delicate argument (Theorem 5.10) yields a similar conclusion if T

is nonscalar and each  o{T((o))  is exclusively point spectrum.   As a corollary,

we obtain Hoover's theorem that every (nonscalar) n-normal operator has a hyper-

invariant subspace.

In closing this introductory section, it seems appropriate to make two semi-

philosophical remarks.   First, although direct integral theory is usually thought

of as a tool for studying operator algebras, it can also be helpful in investigating

individual operators.   Indeed, this approach is taken in Gilfeather's papers, [5]

and [6], and is implicit in [9] and [13].

Finally, the tools used in this paper are all of a measure-theoretic nature.

This seems natural in view of the fact that a direct integral is essentially a mea-

sure-theoretic entity.   When the S 7(e)! act on a finite-dimensional space H ,

many measure-theoretic arguments can be replaced by continuity arguments; this

is, in fact, the spirit of [9] and [13] (and [2] on which they depend).   For insight

into "why" such methods fail when HQ is infinite-dimensional see [12].

2. Preliminary topics. In this section, we discuss briefly two concepts

which will be fundamental to this paper: (1) the finite topology on (2, and (2)

direct integral theory.

For a thorough discussion on methods of topologizing collections of subsets,

see Michael [ll]; we will follow [11] in matters of terminology and notation.

Denote by  (?, the collection of compact subsets of the complex plane.   If S , ••»,

Sn are subsets of C, we write (S , • • •, Sn) for  \K e C\K n S. 4 0, i = 1, • • •, n;

KcU"=i^,!'   Consider the family of subcollections, \(U., •• -, U )\n is an

integer; If.I are open sets in Ci.   This forms a basis for a topology on (2 called

the finite topology.   (Although it will be of no concern to us here, it turns out

that this topology coincides with the Hausdorff metric topology [8, §28].)

In the sequel, we will always regard (2 as equipped with the finite topology

and with the Borel structure subordinate to this topology.   It thus becomes mean-

ingful to speak of a map between some measure space Z and (? being measur-

able.   At several points, we will make use of the existence of a measurable

choice function for <2, i.e., a function <jSQ: (? —> C which is measurable (relative

to the Borel structures on C and  C) and satisfies <pÂK) e K for each compact

K.  An existence proof can be found in Corollary 2 of [l0].
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We now consider a few of the rudiments of direct integral theory.   Our dis-

cussion (and terminology) will be based on Dixmier[3], especially the first two

sections of Chapter II.

Let Hn be a fixed separable Hilbert space and (Z, v) a fixed standard mea-

sure space [3, p. 140].   We allow H. to be finite dimensional.   For each ë e Z,

set K(ë) = K„.   We then form K = /?H(ë), the direct integral (corresponding to

the collection of constant vector fields) of the H'lbert spaces K(ë).   This con-

sists by definition, of all [equivalence classes of] functions *{•): Z —» K.  satis-

fying

(1)   for each y eK„ the scalar valued function ë —* Wë), y) is measur-

able, and

(2) rzMë)||2^<~.
One defines an inner product on K by setting (*(•), y(-)) a J" (x(ë), y(ë)) dtb; this

makes H into a (complete, separable) Hilbert space.

Suppose for each ë e Z, we have an operator 7të)  on H(ë)  such that

(1) the function: ë —► (7të), x, y) is measurable for each pair of vectors x

and y in KQ, and

(2) ess sup||T(ë)f|  is finite.

We then define JÎT(ë), the direct integral of i7të)S  by the formula:

/* r(ë)(x)0ï) = 7tîl) xQl),       xeK,JleZ.

This is a bounded operator on H with norm equal to ess sup ||7të)||. It should be

noted that, in the case when Z is discrete, the concept of direct integral reduces

to that of direct sum.

In the sequel, T = /_7lë) will denote a fixed direct integral operator on H.

Following Dixmier, we will say an operator in £(H) is decomposable if it can be

expressed as a direct integral.

3. Measurability of the spectral function.  The objects Z, K , K, and T con-

structed above are to be regarded as fixed.   We define the spectral function of T

(denoted sp_ or sp) by the correspondence ë ~* (ÁT(fb)).   The main purpose of

this section is to show that sp is measurable (as a function between Z and (E).

This is accomplished in Theorem 3.5 through the aid of several introductory

lemmas.

Lemma 3.1. Let K be a separable Hilbert space and A e£(K). Choose

\y, ITL. to be a countable dense subset of the unit sphere (\y\ \\y\\ = 1Î) of K.

Then the following are equivalent:

(1)   A  is invertible and \\A~l\\ < n.
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(2)  inffe \\Ayk\\ > 1/n and inf^ \\A*yk\\ > l/n.

Proof. (1) => (2).   Immediate.

(2) =» (1).   Use the open mapping theorem,    a

Lemma 3.2.   Let A  and lv. i?L,   be as above.   Suppose moreover that K is a

compact subset of C and \X !°°_    is a dense subset of K.   Then the following

are equivalent:

(1) The spectrum of A  is disjoint from K.

(2) infkn \\(A - Xnl)yk\\ > 0 and inf¿ J(A - \nl)*yh\\ > 0.

Proof.   (2)==>(1).   Suppose (2) holds.   Then for each X e K,  inik\\(A - Xl)yk\\

and inf^ \\(A - Xl)*yk\\ are both nonzero and, hence, (A - Xl) is invertible by

Lemma 3.1.

(1) => (2).   Suppose (2) fails.   (For definiteness, say infn k \\(A - An/)yt|| = 0.)

We get a sequence of integers i«-l°°j  such that inffe ||(A - XnJ)yk\\ -£* 0.   Drop-

ping down to a subsequence, we may assume À   .—> A0.   Hence inf. ||(A - XJ)y, \\

= 0 and (A - XQl) is not invertible.   Thus (1) fails.    D

Remark 3.3.   For future use, note that the proof of Lemma 3.2 actually shows

that supA£K ||(A - A/)" !|| = [wikn \\(A - Xnl)yk\\]- ».

Lemma 3.4.   The Borel structure on (2 is generated (as a a-algebrd) by the

family

* |(V) C (2 | the complement of V is a compact subset of C!

of subcollections of (2.

Proof.   By definition, the Borel structure ÍB on (2 is generated by the family

(1) \{V,,--;V ) C(2 I V,,...,V    are open!.

But (V,, » - » , Vn) = (UfVi)\U- <UlV • V¡) so S is generated by the family

(2) \(V)CC | V open!.

Now any open subset V of the complex plane can be expressed as the count-

able intersection of sets ÎVnÇ_,  with compact complement.   Since (V) = C\n=i(Vn),

we see that the family * generates S, as desired.    D

Theorem 3.5.   sp is measurable.

Proof.   Recall that we have T - /^ T(ë) and sp: Z —* (2 by the correspondence

& —* o(T(&)).   Let K be a fixed compact subset of the plane and choose sequences
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IA ! and \yk\ dense in  K and the unit sphere of K0 respectively.   Then, by virtue

of Lemma 3.2 we have ë e sp~ l ((Kc)) if and only if both inffe n\\(M&)-Knl)yk\\

and inf.     ||(/4(e) - X l)*yk\\ are positive.   Thus sp~ ' ((Kc)) is measurable for

each compact K and the proof is complete by Lemma 3.3-    O

Let /: Z -* C   When is / the spectral function of some decomposable

operator T?   One necessary condition (Theorem 3.5) is that / be measurable.

Borrowing a result from §4 (Theorem 4.3) we see that / must also be essentially

bounded (i.e., there exists a fixed compact set K of C such that /(ë) Ç K for

almost all ë).   To conclude this section, we will show these two conditions are

also sufficient.

Lemma 3.6.   There exists a countable collection \cf> ¡°°     of measurable

choice functions for Ç. such that for each K e C the set of points \cf> (K)V°_.  is

dense in K.

Proof.   Let d)Q be a fixed measurable choice function on C   For X € C, and

í > 0, denote by B((X), \z e C | \z - A| < el   Define <£X£: £ —► C by

'<t> (K n B(X))   if Kns(A)/rf,

■S-K) otherwise.

Note that each <f>^( is measurable.   The collection, i<£A,|A has rational coordinates,

e is rational] then satisfies the lemma.    □

Theorem 3.7-   Let f: Z —» £   The following are equivalent:

(1) / is measurable and essentially bounded.

(2) / = sp_ for some decomposable T.

Proof.   We need only show (1) => (2).   Thus assume / satisfies (1).   Let K.

be an (infinite-dimensional) Hilbert space with orthonormal basis \e  |°°     and

choose {cp P0. as in Lemma 3.6.    Define T(ë) e£(KQ) to be the operator corre-

sponding to the matrix diag(<£ (/(ë))).   Clearly, /(ë) is the spectrum of T(ë) and

hence / = spT for T = J® T(ë).    D

4. The spectrum of T versus the spectra of ÎT(ë)i.   In this section, we try

to answer the following question:   Knowing the spectra of lT(ë)S, what can one say

about the spectrum of T = /® T(ë)?   Unfortunately, the answer is "not much"

(Example 4.4), though we do obtain a partial result in Theorem 4.3.   Rather than

give up the problem entirely, we change the question slightly:   What can one say

about the restrictions of T to reducing subspaces?   Our best result in this direc-

tion is Theorem 4.6.   The proof of the following lemma is taken from Chow [l].



216 E. A. AZOF F

Lemma 4.1.   Let T = ff 7(ê).   Then the following are equivalent:

(1) T is invertible and \\T~1\\ < n.

(2) 7(e) is invertible for almost all ë and ess sup ||7(ë)- »|| < n.

Proof.   (2)—»(1).   The hypothesis implies that both T and 7* are bounded

below by 1/n.  Hence (1).

(1) =»» (2).   The decomposable operators form a von Neumann subalgebra of

£(H).   Hence T" » must be decomposable.   Say T~ » = /®S(ë).   Then for almost

all ë, S(ë)7(ë) = 7(ë}S(ë) = /.   Thus 7(ë) is invertible for almost all g and

ess sup||(7(6))-!|| = esssup||S(ë)|| = |T-*|.    □

Example 4.2.   It is an immediate consequence of Lemma 4.1 that if

* |ë e Z | X e cr(7(ë))î has positive measure,

then X e ct(7).   The weakness of this assertion is demonstrated by considering

multiplication by the independent variable on L.[0, l].   (Here HQ is one dimen-

sional, Z = [0, l] and  7(ë) = ë/.)

In this case, no A satisfies * but oiT) = [0, l].   We can do a bit better with

the aid of the following theorem.

Theorem 4.3.   Suppose o(T) is disjoint from the compact set K.   Then for

almost all ë, a(7(ë)) is disjoint ¡rom K.

Proof.   Suppose o(T) (~)K = ß   and choose lAn!°°.  dense in K.   Then

supn ||(7 - An/)- »|| is finite; call this number s.

Now for each integer n there is a set En of measure zero such that

SUPS4E   ||(7(ë) - An/)- !|| < s (Lemma 4.1).   Set E = \JE„-   Then

supg.g sup   ||7(ë) - A /)"* » || < s.   Note that for any operator A  and any A,

HU - A/)-»|| > l/dist(A, a(A)).

It follows that for ë i E, (7(ë) - A/) is invertible for each A e K.    □

Suppose each closed ball about the complex number A intersects a(7(ë))

for ë in a set of positive measure.   Since the spectrum of 7 is closed, the last

theorem shows A e oiT).   Let oXT) be the set of all A satisfying this condition.

We call oiT) the synthetic spectrum of 7.   Our theorem shows   oiT) Q o(T); for

the 7 of Example 4.2, a(T) = o<7) = [0, l].

Example 4.4.   Take Z = N with the counting measure; H0 = Z,(N).   For each

n € N, set T(n) to be the weighted shift with weights (l, 1, • • •, 1, 0, ■ • •) (l

occurs n times).   Then ô(7) - loi but a(T) is the closed unit disc.   (This is a

slight variation of Solution 81 in [7].)    O

At this point, one might well give up the problem, but we will make one more
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attempt.   If E Ç Z is measurable, we can form Kg = jE K(ë) and TE = J?T(ë).

Then Kg reduces T and T- is the restriction of T to Kg.   In the next two

theorems, we examine the spectra of iTgi.

Remark.   The results of this section are closely related to Lemma 2.1 of [l].

In particular, it is not difficult to see that o\T) = fl!UêeS(T(ë))|8 is a set of

full measure!, and the proof of Theorem 4.3 does not differ appreciably from

Chow's arguments.   On the other hand, the measurability considerations of the

preceding section play a crucial role in the following two proofs.

Theorem 4.5.    Let  U be an open set containing 6\T).   Then ¡or some E

(positive measure) o~(Tp) Ç U.

Proof.   For each A £ UC, there is an open set 0A 3 A such that for almost

all ë, o(T(tb)) is disjoint from 0A.   U     is covered by countably many of the

Í0A!.   Thus for almost all ë, o(T(ê>)) is disjoint from U   .

Set /(ë) = supi||T(ë) - A/||_1|A e VCI Applying the continuity of the resol-

vent, we see / is finite almost everywhere.   Also (Remark 3.3) / is measurable.

Thus for an appropriate integer   N, /-1([0, N]) has positive measure.   Set E =

/-1([0, N]).  It follows from Lemma 4.1, that a(TE) is disjoint from UC.    □

Of course it may happen that o(TE) is much smaller than 5{T).  Neverthe-

less, we have the following.

Theorem 4.6.   Suppose o(T(&)) is disconnected for each ë.    Then for some

E (positive measure), o{TE)  is also disconnected.

Proof.   Let (?   Ç (2 be the collection of all (closed) squares in the complex

plane whose corners have rational coordinates, and set C2 = [finite unions of sets

in (:,].   Now, for each ë e Z, there exist disjoint sets K.  and K? in C, such

that sp(ë) e (K., K).   Also sp is measurable and the collection C,  is coun-

table.   Hence we can find a set F Ç Z of positive measure and fixed sets  K.,

K2 e £2 such that sp(ë) e (K , K2) for each ë e F.

Let V.   and  V? be disjoint open sets containing  K.  and  K2 respectively.

Applying Theorem 4.5 to  TE, we find a subset  E oí F (v(E) > O)  such that

°(T E) <ZV .\jV 7.   Moreover (Theorem 4.3), ct(7*e) intersects both K.  and K2.

Thus  TE has disconnected spectrum.    D

5. An application to hyperinvariant subspaces.   Let A be a (bounded, linear)

operator on a Hilbert space K and ?H a nontrivial (closed) subspace of K invar-

iant under each operator commuting with A.   Then % is said to be hyperinvariant

for A.   It is immediate that no scalar multiple of / can have a hyperinvariant sub-

space.   Whether every other operator has one is open; an affirmative answer
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would solve the invariant subspace problem.   For a general summary of the work

done on the hyperinvariant subspace problem, see [4].

In this section, we will examine the relationship between direct integrals and

hyperinvariant subspaces.   The special case of direct sums (i.e., Z is discrete)

can be handled using the concept of disjoint pair; the situation is completely

described by Theorem 5.5»   In the general case, we cannot do quite as well.   Our

main results are Theorems 5.9 and 5.10.

A pair of operators A. e£(H,) and A    e£(H2) is said to be disjoint if 0 is

the only bounded operator in £(K2, Kj) satisfying A.X = XA-, this concept,

implicit in [13] and formalized in [4], will play a crucial role in Theorem 5.5 below.

Proposition 5.1 summarizes several well-known techniques for constructing hyper-

invariant subspaces.

Proposition 5.1.   Let A (nonscalar) e£(K) and suppose %. and tl are non-

trivial subspaces of K.   Each of the following conditions is sufficient to guarantee

that A have a hyperinvariant subspace:

(1) A bas nonempty point spectrum.

(2) A* has a hyperinvariant subspace.

(3) A does not have dense range.

(4) 511 is invariant under A, Ji is invariant under A*, and the pair (PjiAjj, Ay)

is disjoint.

(5) M is invariant under A, Ti reduces A, and the spectra of Ajj and A% are

disjoint.

(6) A has disconnected spectrum.

Proof.   (1) Any eigenspace of A  is hyperinvariant for A.

(2) If % is hyperinvariant for A*, then %    is hyperinvariant for A.

(3) If A does not have dense range, then zero is an eigenvalue for A*.

(4) See Theorem 2.5 of [4].

(5) If A.J, Ajj have disjoint spectra then both pairs (Ajj, A^) and (Aj., Aj,)

are disjoint.   (Second paragraph on p. 302 of [13].)

(6) Let p be a nontrivial spectral set of A. Then E(p), the spectral projec-

tion associated with p, commutes with every operator commuting with A.   Since

E ¿ 0 or /, either the null space of E or the closure of the range of E is non-

trivial, and hence hyperinvariant for A.    □

The next lemma is a standard obvious reformulation of the hyperinvariant sub-

space problem. For x eK and A 6 £(K), we write A' for the commutant of A and

%A    for the closure of \Bx\B eA'\; this notation conforms with Dixmier.

Lemma 5.2. In order for A e£(K) to have a hyperinvariant subspace, it is

necessary and sufficient that for some nonzero x £ K, the subspace % not be

equal to j\.
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Proof.   («=) %       is invariant under A'.

(=»)   Suppose ?lî is hyperinvariant for A  and choose x 4 0 in %..   Then 31Î

contains SC       but 111  is proper.    □

Proposition 5.3.   Let Ax e£(Kj) and A2 e£(K2).   T¿erc At © A2 ¿as a

hyperinvariant subspace if and only if either

(1) Aj  ßös <z hyperinvariant subspace, or

(2) A    has a hyperinvariant subspace, or

(3) the pair (A , A 2)  is disjoint, or

(4) the pair (A , A.) is disjoint.

Proof.   Every operator B in £(Kj© KJ can be represented by a 2x2

(operator) matrix

ßn      ßi2

ñ21      ß22

where B .. e £(K., K.).
it j     i

Note that in order for B to commute with A} © A , it is necessary and sufficient

that A.B^ = BijAj for z, ; = 1, 2.

Sufficiency of (1).   Assume A.  has a hyperinvariant subspace.   Pick x¡¿0

in Kj  such that 3CX1  ^K..   By the above comments about matrices, it follows

that %Axm ̂ Kl®K2.

Sufficiency of (3).   Suppose (A,, A2) is disjoint and choose x 4- 0 in K2.

Then every vector in SC0_     has 0 in its first coordinate.   Thus ^0mx ^ A.® K2.

Sufficiency of (2) and (4).   Similar.

Necessity.   Let x  © x    be a nonzero vector in a, © A,.   Without loss of

generality, we assume x   ^ 0.   Now [o11  n] commutes with A. © A2 for each

B,,  commuting with A,.   By assumption A. has no hyperinvariant subspaces so

%A '        contains K, © 0.
xiffix2 1

Choose B21 4 0 such that A2B2l = B21Aj. Then [ß q] commutes with

A © A, and so 3C m contains nonzero vectors in 0© K,. The argument of

the preceding paragraph shows % also contains all of 0© A, and hence

equals Kjffi K2.    a

Corollary 5.4.   Suppose TE has a hyperinvariant subspace.   Then so does T.

Proof.   T=Tg©rzXg.    D

Theorem 5.5.   Suppose Z is discrete and no atom in Z has measure zero.

Let T = /?T(ë) be a decomposable operator in £(K).   Then T has a hyperinvariant

subspace if and only if either:
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(1) some  7(e) has a hyperinvariant subspace, or

(2) some pair (7(e), 7(jT)) is disjoint.

Proof.   The proof is a slight (but messy) modification of the proof of Proposi-

tion 5.3, and hence is omitted.

What is the proper analogue of Theorem 5.5 when Z is not discrete?   Cer-

tainly condition (1) makes no sense in this case, for 17(e)! are only determined

up to a set of measure zero.   A reasonable sufficient condition is provided by the

following conjecture.

Conjecture 5.6.   Suppose 7(e) has a by perinvariant subspace for each ë eZ.

Then 7 has a hyperinvariant subspace.

As a "proof" of this statement, one might be tempted to form UK = f®5ll(ë)

where w(ë) is hyperinvariant for 7(e). Even leaving aside the problem of choos-

ing !)R(ë)î measurably, this approach fails since the commutant of 7 may con-

tain nondecomposable operators. (We avoided this problem in the discrete case

by choosing all the {3îl(ë)! except one to be zero.) The remainder of the paper

is devoted to proving several special cases of Conjecture 5.6.

Lemma 5.7.   Suppose Ran 7 is dense in H.   Then for almost all ë e Z,

Ran 7(e)  is dense in K(ë).

Proof.   We will assume KQ is infinite dimensional and iXZ) < oo; trivial

modifications of the argument adapt the proof to the remaining cases.   Let Iß-iTL,

be an orthonormal basis for K_.   Note that for almost all ë, |7(ë)e 1°° ,  is total
U n n— 1

in Ran 7(e).   For each n, let *n(ë) be the projection of e    orthogonal to

Ran 7(e); it is easily seen that the \x \ ate measurable.

Define y e H by

Íx (ë)   if x.(ë)=...x   ,(ë)=o
but x (ë) 4 0

n

0 if x (ë) = 0 for all ».
n

Then y_LRan 7.   Since Ran 7 is dense, y = 0.   Thus for almost all ë, x (ë) = 0

for all n.   But then Ran 7(e) is dense for almost all ë, and the proof is com-

plete.    D

Theorem 5.8.   Suppose 7(e) has nontrivial null space for each ê e Z.   Then

7 has nontrivial null space and hence  7 has a hyperinvariant subspace.

Proof.   For each & € Z, 7*(ë) has nondense range.   Thus  7* has nondense

range and 7 has nontrivial null space,    a
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By virtue of Corollary 5.4, the conclusion of Theorem 5.8 remains valid

under the (weaker) assumption that T(ë) have 0 as an eigenvalue for each ë in

some set of positive measure.   Similar comments apply to the results below.

Theorem 5.9.   Suppose o(T(o>)) is disconnected ¡or each ë e Z.   Then T

has a hyperinvariant subspace.

Proof.   Applying Theorem 4.6, we find an appropriate set E such that Tg

has disconnected spectrum.   Thus TE (Proposition 5.1 (6)), and hence T, also

have hyperinvariant subspaces.    O

Theorem 5.10.   Suppose T is nonscalar and o(T(&)) consists entirely of

point spectrum for each ë e Z.   Then T has a hyperinvariant subspace.

Proof.   If some fixed A belongs to <r(T(ë)) for almost all ë, then A is an

eigenvalue for T and we are done by Proposition 5.1(1).    Thus we may assume

no A belongs to o(T(&)) for almost all ë.

Claim. For some square R in C, ië|a(T(ë)) intersects/?! is proper.

Indeed suppose not. Using the method of bisection, we find a sequence of

squares \Rn\ satisfying:

(2) the sides of R    ace half as long as those of R  _.;

(3) sp~ H(R  )) is a set of full measure in  Z.

But then H~=1 R„ is a single point A which would belong to o(T(<%)) for almost

all ë.   This establishes our claim.

Pick sets  E,   and E    in Z of finite positive measure such that sp(ë) inter-

sects R for each ë e E., but for no ë € E2.   Replacing E2 by a smaller set if

necessary, we can even assume dist(R, o(TE )) positive.

Composing <£Q with sp, we get a measurable function A: E.—» C such that

A(ë) eo-(T(ë)) for each ë eEy   Moreover, for each ë eEp (T(ë) - A(ë)/) has

zero as an eigenvalue.   Applying Theorem 5.8, we get a vector x £Kg    such

that    T(ë)x(ë) = A(ë)x(ë)   for almost all ë in  E  ; we can also assume

||x(ë)|| = 1.

Set % = [/(.)*(.)   eKg  \feL2(Evu)\ and ÎÏ = Kg .   Note that o(T\^ =

ess ran A C R and o(TL) =a(TEJ is disjoint from R.   Moreover M is invariant under T

and jl reduces T.   Hence T has a hyperinvariant subspace by Proposition

5.1(5).   ü

Corollary 5.11.   Suppose T is nonscalar and T(6>) satisfies a (perhaps

different) polynomial equation for each ë £ Z.    Then  T has a hyperinvariant

subspace.
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Proof.   Every point in o-(7(ë)) is an eigenvalue,    n

Corollary 5.12.   Suppose Kn  is finite dimensional.   Then every nonscalar

decomposable operator in £(H) has a hyperinvariant subspace.

Corollary 5.13  (Hoover).   Every nonscalar n-normal operator has a hyper-

invariant subspace.

Proofs of Hoover's theorem can be found in [9] and [13].   They depend on

the fact that in expressing an n-normal operator as a direct integral, the mea-

sure space (Z, v) can be taken to be perfect; since HQ is finite dimensional,

this allows them to use "continuity arguments" in place of the "measure-

theoretic arguments" of this paper.   These methods do not seem to apply when

KQ is infinite dimensional.

It is somewhat disconcerting that the hypothesis of Theorem 5.10 demands

that o(A(6>)) consist entirely of point spectrum.   The final corollary indicates

conditions under which this can be avoided.

Corollary 5.14.   Suppose 7 is not scalar and o(T(&)) has at least one

eigenvalue for each ë £ Z.   Suppose moreover that either

(1) <r(7(ë)) is finite for each ë £ Z, or

(2) 7(e) is compact for each ë e Z.

Then 7 has a hyperinvariant subspace.

Proof.   Set E = |ë e Z|cr(7(ë)) does not consist of a single point!.   E is

measurable since   \K e£\K is a singleton! is closed in (2.   If E =0, apply

Theorem 5.10.   Otherwise TE (and hence 7) has a hyperinvariant subspace by

Theorem 5.9.    D

Concluding remark.   For ease of exposition, in our definition of direct

integral, we assumed H(ë) was the same Hilbert space for each ë.   For the

more general definitions, see §11.1 of [3].

As the reader can easily verify for himself, every theorem about decompos-

able operations stated in this paper is true in the more general case. This is a

consequence of the following facts:

(1) Proposition l(i) on p. 144 of [3],

(2) Theorem 2 on p. 167 of [3], and

(3) unitarily equivalent operators have the same spectrum.
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