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ABSTRACT.   The prime computable (respectively, search computable) rela-

tions of an arbitrary mathematical structure are shown to be those relations  R

such that both R and its complement are definable by disjunctions of recursively

enumerable sets of quantifier free (respectively, existential) formulas of the

first order language for the structure.   The prime and search computable func-

tions are also characterized in terms of recursive sequences of ternis and formu-

las of this language.

1.   Preliminaries.   Let ?I = (A, Rj, — , R , f v • • •, ¡b ) be a structure with

each  R.   an  a.  place relation on A and each j. a b. place function from A to
I l    r ' t 7    r

A.   Let 0 be an object not in A, let A0 = A U {Oi and let A* be the closure of

A    under ordered pair formation.   Fot each i = 1, • • •, a define g. on A   by:

(0 if \uv • « •, ua \ C A and R.(a,, • • •, u   ),

II i      \ (0, 0)    otherwise.

For each i = 1, •••, b define /. on A    by

fiuv •", ub)    ii {uv ..., ub ! C A,
/. (a,, •• •, a, )
1 i       ( (0, 0) otherwise.

The extension of A to A    is essential to the definitions of the classes of prime

and search computable functions (cf. [3]). As in [3], we let 7r and 8 be respec-

tively the left and right predecessor functions, corresponding to the ordered pair

function r\xy(x, y).   The natural numbers are identified with elements of A   via

the correspondence: 0 = 0, n + 1 = (72, 0).   The set of natural numbers will be
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denoted by N.  Note that N r\ A = 0.   Given any set C, let C(*' denote the

cartesian product of C with itself k times.   We will be particularly interested in

partial functions from sets of the form zV^' x A(?) into zV or into A.   Such func-

tions which are restrictions to /V(i>' x A(<3f' of functions on A    which are absolutely

prime or search computable in g j, • • •, g , /j, • • • , f',   will be called respectively

u-prime-computable or ^.-search-computable.   The domain of an 21-prime-computable

or 2I-search-computable function will be called respectively a semi-'d-prime-comput -

able or semi-d-search-computable relation.   Among other results, it will be shown

that a relation on A  is semi-S-prime-computable if and only if it is definable by

an infinite disjunction of a recursively enumerable set of quantifier free, finite

formulas of the language of 21.   It will also be shown that   a relation on A  is

semi-?I-search-computable if and only if it is definable by an infinite disjunction

of a recursively enumerable set of existential, finite formulas of the language of 21.

2. The languages QF and QF .   Let 21   be the structure

(A*, A0, \xy(x, y), n, S, 0, Rv —, Ra, /*,•••, ft).

QF and QF   will be the quantifier free, finite languages for 21 and 21   respec-

tively.   We will not distinguish between the elements of these languages and

their "gô'del numbers".   Given natural numbers »Q, • • •, »,    j, let (nQ, • • •, », _ j)

denote the product H^ P ■  ,   where PQ = 2 and, for i > 0, P. is the z'th odd

prime.   If x - (nQ, • • •, »,    j)  then x will be called a sequence number of length

k and we write  lh(x) = k and (x). = n. (i - 0, • • •, k - 1).   In case k = 0, x = 1.

It y £ N is not a sequence number of length greater than i, let (y)¿ = 0.

QF is defined as follows.

(1) Variables.   For each natural number 222, (0, 222) is a variable (denoted by V  ).'222

(2) Terms.   The set of terms of QF is defined inductively by:

(i) Variables are terms.

(ii)  If 1 < z < b and if t j, ..., t,    are terms then (1, i, t j, —, ¡j) is a term

(denoted by l¿tv • • «, ffc .))•

(3) Formulas.   The set of formulas of QF is defined inductively by:

(i)   (2) is a formula (denoted by T and representing "true").

(ii)   If 1 < i < a and if t ,,•••, t     ate terms then (3, z, r.,...,/) is a
—    — 1 a, ■■ a,-

formula (denoted by R it j, — , t   )).

(iii)   If <f> and if/ ate formulas then so are (4, <f>, if/) (denoted by <f> A if/),

(5, <f>, if/) (denoted by <f> V if/) and (6, <fj) (denoted by ~~[   <f>).

QF is extended to QF   as follows.

To the inductive definition of "term", add the clauses:

(iii)    0 is a term (denoted by 0).

(iv)     If s  and t ate terms then so is (7, s, t) (denoted by p(s, t) and repre-

senting the ordered pair of s and r).
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(v) If / is a term then so are (8, /) and (9, t) (denoted by rrt and St

respectively).

To the inductive definition of "formula", add the clause:

(iv) If / is a term then (10, t) is a formula (denoted by A (t) and representing

"t £ A0").

Satisfaction of formulas of QF in the structure SI and of formulas of QF   in

the structure ?I   is defined in the natural way, in light of the denotations used.

In particular, the formula T is true under all interpretations of variables.   If / is

a term of QF (or QF*) with variables from V ,, • • •, V    and if x.,..., x    isa

sequence of elements of A  (or A ) then t[x j, — , x ] will be used to denote

the interpretation of / determined by the interpretation of each V. as x..   If 0

is a formula of QF (or QF  ) and if X .,•••, x    is a sequence of elements of

A (or A ), then tf>[x,, • ••, x ] will mean "the variables of tp are from Vj, •• •, V

and tp is satisfied in 21 (or 21 ) by the interpretations of each V. as x".

Notice that if t is a term and tp is a formula of QF and x,, ••., x"    is a

sequence of elements of A  then t[x j, • • •, x ] and tf>[x j, • • •, x ] have the same

meanings with respect to 21* as they have with respect to 21. If y is a term or formula of

QF   and tj, • • •, /,   are terms of QF , let y\t j, • • •, t, | be the term or formula

resulting from simultaneous substitution of f j, • • •, /.   for all occurences of

Vj, • • •, V,   respectively in y.   As a function of y, t j, • • •, /, ; y | ¿1? • • •, t, |

is the restriction of a primitive recursive function to a primitive recursive domain.

3.  The main lemma.   It will be shown (1) that prime and search computable

relations and functions are definable by certain forms and (2) that relations and

functions definable by those forms are prime or search computable.   The latter (2)

will probably be immediate to anyone conversant with the notions of prime and

search computability.   The former (1) is apparently somewhat surprising.   The

most difficult part of the proof is the proof of the main lemma (Lemma 1).

Lemma 1.   For every a place junction f on A    into A    which is absolutely

primitive computable in g,, • • •, g*, f., • • •, /,,  there are total recursive ¡unctions

F and G such that, for each k £ N,  F(k) and G(k) are respectively a formula

and a term of QF   with variables from V,, • • •, V    and such that, for any

a *XV ' "' xg '

(i) there is a unique k such that F(k)[xl, ..., x ] and,

(ii) if F(k)[xv •.., x ] then f(x v . • •, x^) = G(k)[x v ..., x ].

The proof is by induction on the length of a primitive computable definition

of /.' The designations COj, • • •, CO    ,, C2, ..., C7 refer to clauses of the

inductive definition of the class of primitive computable functions.   If /, G and F

are as above then we say that (F, G) détermines /.   In most cases we indicate a
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function / and define functions F and G, leaving it to the reader to verify that

F and G are recursive and that (F, G) determines /.

C0.il<i<a), fitv >--,ta., xv ...,x) = g*itv ••-,ta).

FiO) = R.(V j, .. -, Va ),    F(l) = 1R.(V,,..«, Va ),    Fik + 2) = "IT.

G(0) = 0,      Gik+ l)=p(0, 0).

COa+2(l <*<*>)> Ñv '"> H* *1* '••' *r) = /*(íl' "•' V^

F(0) = T,    FU+l) = nT.      GU) = f.(Vj, ..., Vfc).
z'

C2, fiy, xv ..., *r) = y.

F(0) = T,    FU+1)=-|T.       G(ze) = V1.

C3, /(s. i, xv ..., x) = is, t).

FiO) = T,    Fik + 1) = IT.      G(A) = p(V j, V2).

CV Ay. *!' •••,*.) = Try.

F(0) = T,    F(A + l) = IT.       Gik) = zrV j.

C4j, fiy, xv •••, xr) = Sy.

F(0) = T,    F(k + 1) = IT.      G(£) = SVj.

C5', fix,, •. •, x ) = g(i(xj, ..., x ), Xj, • • •, x ).   Assume, by the induction

hypothesis, that there are functions Fj, Gj, F2 and G2 such that (Fj, Gj)

determines g and (F2> G2) determines b.

Letting k. - (k).,

( F2ikQ) A iF.ik^GpA, V,, -.,, Vr|)    if A- <*„. A,>,

l "IT    if k is not a sequence number of length 2.

G(A) = G1U1)|G2(A0), Vj,---, Vr|.

C7, /(jtj,..., xj = g(*y+ii «j» '••» x., x.^2, ..., x).   C7 and C5 are handled

similarly.

This completes all cases but C6 (C2 can be omitted when considering

"absolute" computability).

C6, fiy, Xj, .. -, xf) = giy, xv • • •, x) if y £ A0, fiis, t), xv ..., x) =

hi fis, xl,---, x), fit, *,,•••, x), s, t, x , ..., x).   Assume, by the induction

hypothesis, that there are recursive functions F., G,, F    and  G, such that
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(F , G ) determines g and (F2> G2) determines h.   Before proceeding with the

definitions of F and G, some development is required.

By a definition or proof by A -induction we will mean a definition or proof by

induction with respect to the well-founded partial ordering on A    defined by:

(i) x < (x, y) and y < (x, y);

(ii) if x < y and y < z then x < z;

(iii) x < y only as required by (i) and (ii).

This ordering will not be referred to again.

Given a sequence number w = (x¡, .. •, x.), let w k = (xj, • • •, x , &) and

Afu; = (/s, Xj, • • •, x, ).   By a 0-1 -sequence is meant a sequence number w such

that (7^7). £ {0, 1} for all i < lh(w).   By a bush is meant a finite, nonempty set

B oí 0-1-sequences such that, for any w,

(i) w 0 £ B ii and only ii w   I £ B,  and

(ii) if w~0 £ B then w £ B.

Notice that 1 is a member of every bush.   An element w oí a bush B will be

called an endnode oí B  ii w   0 4 B.   If B is a bush, then a definition or proof

B-induction is a definition or proof with respect to the well-founded (in fact finite)

partial ordering < on B defined by:

(i) w  0 <w and w   I < w ii w  0 £ B;

(ii) if x < y and y < z then x < z;

(iii) x < y only as required by (i) and (ii).

This ordering will not be referred to again.   If ß is a function whose domain is a

bush B then /3-induction will mean ß-induction.

We associate with each 0-1-sequence w, a term t(w) oí QF .   The definition

of t(w) is by induction on  lh(w).

(3.1) r(l) = V1,    t(w~o) = nt(w),    t(w"A) = St(w).

It is easy to show that, for each 0-1-sequence w,

(3.2) AÓ~w) = í(w)|»tV1|,       t(lw) = í(w)|SVj|.

Given a function ß from a bush B into N, we assign to each w £ B a term t(w)

and a formula <£(u/).   The functions r and 0 are defined simultaneously by

/3-induction.   Write r^ and tp^ to indicate the dependence upon ß.   Recall that

(Fj, Gj) determines g and (F2, G2) determines è.   If w is an endnode of B,

tpiw) = A0«»)) A FAßKw))\Aw)\    and    K«0 = G^M)!flV)|.

If w is an element of, but not an endnode of B,

tp(w) = tp(w~0) A tb(w"l) A -)A°(ïM)

AF2(j8(«/))|Ku/*o), Kw'l), rtw~o), KuTi), V2,..., V   ,|
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and

t(w)= G2ißiw))\riw~0), Kzz/l), Ktz/O), t(w"l), \2, •••, Vr+,|.

Lemma 1.1.   For i - 0, 1, 2, let ß. be a ¡unction from a busk B. into N.

Let <£¿ = (f> ' and r. = r '.   Assume that B2 = |1| U i(T*uz: w £ BQ\ u [Y~w: w £ B j¡,

/32(Oliz) = ßQiw) and ß2iVw) = /8,(uz).   Then:

(a) /or eacè t/z e BQ, <£2(0lz2) = ç5>0(iA2)|ttVt| and T2i0"w) = rn(w)|2rVj|, zzkzí

(b) for each w £ B p <p2(TTw) = tp^(w)\S\ ̂  and T2il"lv) = fjMISVj.

Proof of (a) by BQ  induction.   If w is an endnode of BQ, then Cf"u/ is an

endnode of B2 and <f>0iw) = \°itiw)) A Fj(z30(u/))|iM|.   Therefore, <f>Q(w)\ff\^ =

A°(/(Mz)|irV1|) AF^/BnUWI/MlirV!!.   So, by (3.2),

<p0iw)\ff\ J = \°U(Tw)) A F1(j30(a,»|K(ri')|.

Since ßQiw) = ß2i0"w), <f>Q(w)\ff\¡\ =<p2((Tw).   Similarly, TQ(w)\ir\¡\ = r2((Tw).

If 2¿> is an element of but not an endnode of BQ, then tzz   0 and w   1 ate elements

of Bg and, by the BQ-induction hypothesis, <f>0iw   z')|»Vj| = <f>2i0"\u   i) and

r0(u/'"z)|»rV1| = r2((Tw~i), fot i = 1, 2.  By (3.2), t(w~ i)\rr\ ¡\ = t(Ö~w~i) and

K^lffVjl =t(0~w).   Herice

.¿„MlffVjl = <¿>2(o"Vo) A <¿2(o1/A) A -lA°(/(0liz))

A F2(z30(uz))|r2(ÓÜzA0),r2(P^''l), z(ÓVo), /(ÓVl), V? ..., Vf+1|.

Since ßQ(w) = /S2(0~uz), 0o(i^)|ttV1| = <¿2(0lzz).    Similarly, ^Mlz/Vj! = t2(G~w).

This completes the proof of part (a).   The proof of part (b) is similar.  Now let

K be any effective one-one enumeration of functions ß into N whose domains are

bushes and define functions F and G by: Fik) = <f>K(k)(l),  G(k) = S^Xl).   By

Church's thesis, F and G are recursive.

Lemma 1.2.   Let x = x., • • •, x   be a sequence of elements of A .   Then

(a) for each y £ A    there is a unique number k such that F(k)[y, x] and (b) if

F(k)[y, x] then G(k)[y, x] = fiy, x).

Proof by A*-induction on y.   If y e A    choose k such that k(A) is that

unique function ß with domain ¡lj such that Fj(/3(l))[y, x].   Then Fik) =

cpPil) = \°i\ A A F ¿ßil)) and G(k) = Al) = G¿ß{D).   Therefore Fik)[y, x] and

Gikly, x] = giy, x) = /(y, x).   Suppose F(k')[y, x].   Let *{*') = ß' so F(A') =

<pß'(l). If  1  is not an endnode of ß '   then 9^(l)[y. x] implies that _lA°(V1)[y, x],

which implies that y 4 A0.   Therefore  1 is an endnode of domain (/3'),(i.e.,

domain (ß') = ¡l!) and <pß'(l)[y. x] = F ¿ß'ilWy, x]. This uniquely deter-

mines ß'(l)   so ß = ß'.  Now assume y = (s, r>)t   Let   feQ   and  zij  be the unique

numbers such that F(zen)[s, x] and Fik,)[t, x] and assume, by the induction



PRIME AND SEARCH COMPUTABILITY 397

hypothesis that G(/eQ)[s, x] = fis, x) = u and G(k])[t, x] = fit, x) = v.   Let j be

that unique number such that F2(j)[u, v, s, t, x].   Let k(&q) = /3Q, «(/e,) = ß,  and

let ß2 be that function such that /32(l) = /' and ßQ, ßi  and ß2  ate related as in

Lemma 1.1.   Choose k such that K.(k) = ß2.   Letting tp. = cf>ß'   and r. = r l

(i = 0, 1, 2), we have

F(k) = tbp) = 02«o» A <p2«l» A lA^Vj)

A F2(7)|r2((0», r2«l», n\v 8V,, \2, •■•, Vf+1|

»¿„(DlirVjJ A cp/DISVjl A-|A°(Vj)

A FjWIr^OlwVJ, r/DISVJ, rV,, SV,, V2, .... Vf+1|.

Similarly GU) = G2(/)|r0(l)lffVj|, rt(D|fiVj|, n\ v 8\v X2, ..., Vf+1|.   Now it is

easy to verify that

(a) F(k)[y,x] ii and only if F(kß)[s, x], F(k1)[t, x], y 4 A0  and

F2(/)[a, f, s, i, x], and that

(b) G(k)[y, x] = G2(j)[u, v, s, t, x] = h(u, v, s, t, x) = f(y, x).

To show the uniqueness of such k, assume that F(k')[y, x].   Let K.(k ) = ß'.   If 1

is an endnode of domain(ß'),  then F(/é')[y, x] implies that </j^ (l)[y, x] which

implies that y e A  .   Hence  1 is not an endnode.   Let fl! (w) = /3'(0  iv) and

ß^iw) = /3 (1   ty), for all tf in the appropriate domains.   Then /3q , /3j   and ß   are

related as in Lemma 1.1.   Choose k^   and ky   such that k(^ ) = ß0   and /<(fe, ) = ß.

From the assumption that F(k )[y, x], it can be concluded that F(/<^ )[s, x],

F(^1)[/, x]  and F2(ß'(l))[u, v, s, t, x] and hence that k^ = kQ, k'^ = k^ and

/S (1) = /3(1).   Therefore ß = ß .   This completes the proof of Lemma 1.2 and

hence the proof of Lemma 1.

4.   Embedding QF in QF .   Let Tm   be the smallest set of terms of QF

containing all the terms of QF, the term 0 and containing p(s, t) whenever it

contains s and t.   Tm    contains a numeral m for each natural number m, i.e.,

0 = 0, m + 1 = p(m, 0).

Lemma 2. There is a total recursive function 77 such that if t is a term and

tp is a formula of QF with variables from ¡V., • • •, V, ! and if x j, .. •, x, is a

sequence of elements of A  then

(i) T](t) is a term of Tm   with variables from  \\., •••, V,j,

(ii) r¡(t) £ QF if and only if /[x,, ..., x, ] £ A,

(iii) for m £ N, r¡(t) = m  if and only if ¿[x,, • • •, x, ] = 777,

(iv) /[x,, ..., xk] = 77(/)[xj, ..., xj,

(v) T)(tp) is a formula of QF with variables from  ¡Vj, • • •, V, ! and

(vi) tp[xv ■ ■., xj if and only if rf[tp)[x r ..., xfe].
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T,.    T]iirt)

Proof.   If z is neither a term nor a formula of QF , let r¡(z) = 0.  Define r\

on the terms of QF    by recursion and the following cases:

Tr    tj(0) = 0.

T2.    7i(V¿) = V¿, for each variable X. .

0 if rjit) = 0,

1 if 7]it) £ QF,

u    ii rjit) = p(a, v),

0    otherwise. (This case never occurs.)

0 if rrit) = 0,

1 if rrit) £ Qf,

v ii rrit) = p(a, v),

0 otherwise. (This case never occurs.)

T5.    ?i(p(s, /)) = p(jj(s), r¡it)).

(J^VUA, — , v(tb)>    if Vitj, ••v V(tb) e QF,

T,.    rjiSt)

T6.    ijtt/l i,—,*»))-
otherwise.

Define 7/ on the formulas of QF   by recursion and the following cases:

F,.   ij(A0(/))
T      if rjM = 0  or 77(7) e QF,

~~IT    otherwise.

IR^O,). • • ', 7?(ia ))   if ij(f,), • • •, v(ta ) e Qf.

IT otherwise.

F3.    tt(T) = T.

F4.    riiAtp) = lr,(0), 77(0 A iff) = 7,(<p) A r,(i!f) and r)(<p V 1/» = rritb) V 77(1/7).

That 7/ is recursive follows from the recursive definitions of QF and QF*.   Parts

(i) and (v) of Lemma 2 are immediate by induction over the definitions of term

and formula respectively.

Lemma 2.1.   // t is a term of Tm , Xj, ..., x,   is a sequence of elements of

A  and ¿(x,, ..., xk) £ A then t £ QF.
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Proof.   If t £ Tm* and t 4 QF then either r = 0 or  t is of the form p(zz, tz).

In either case z[xj, • • •, xfe] e A.

Lemma 2.2. // t is a term of Tm , x., • • •, x, is a sequence of elements of

A, m £ N and t[xv ..., x, ] = 222,  then t = m.

The proof is easy by induction over the inductive definition of Tzzz .

Now part (iv) of Lemma 2 can be proved by induction over the definition of

77.   The proof is straightforward except that, in case Tß (r = f¿(íj, •••» í¿.))>

Lemma 2.1 is needed.   Parts (ii) and (iii) follow immediately from parts (i) and (iv)

and Lemmas 2.1 and 2.2.   Part (vi) can be proved by induction over the definition

of 77.   In cases F.  and F2, Lemmas 2.1 and 2.2 are needed.

5.   Prime computable functions.   Let p be the minimalization operator.

Theorem 1(a). /// is an ^.-prime-computable function from N^ x/i'?' into

A then there are total recursive functions F and G from N'^ ' into the sets of

formulas and terms respectively of QF such that, for any (n., • • •, « , x., •••, x )

a(p)xA(?)

finv •••» np. xv •■.-, x?)

= GipkFik, « j, • ««, n)[xv ••., xq], nv •.., np)[xv •••, xj.

(b) // / is an U-prime-computable function from N^ x A^  into N then

there is a total recursive function F from /V^*1)   z'»ro the set of formulas of QF

anda total recursive function H from A/(i,+1)   z»/o N such that, for (n     ..., n ,

xv ...,xq)eN<p> x A<«>, P

/(»!»•••, np, *j, •••, xj = HipkFik, nv •••, np)[xv •••, x?], nv •••, np).

Proof.   Let / be an 21-prime-computable function from ¿V p' x A(?) into A or

into N.   By Remark 10 of [3], there is a function U and a relation T, each

absolutely primitive computable in g j, • • •, gfl, /j, • • •, /,, such that, for any

nV ' " ' nt,' XV ' ' ' ' xa' z' f(nV ' ' ' ' "/>' xl' ' " * ' x ) - z l* anc* on^y ^ there is

some m £ N such that T(2?z, «,, • • •, », Xj, ..., x ) and (/(zrz, »,, • • •, n ,

Xj, • • •, x ) = x.   Furthermore, there is such a relation T with the property that,

for each n j, .. •, », Xj, • • •, x    there is at most one 222 such that

T(z22, «j, ..., », Xj, • ••, x ).   Let (FT, Gt) and iPy, Gy) determine the

representing function of T and the function U respectively as in Lemma 1.   Now

T(t72, »j, • • •, », Xj, •. •, x ) if and only if, for some kl £ N,

FTikJ[m, »,, • « >, », Xj, • « «, x ]    and    G^AjHrn, «j, • • •, », Xj, • « ■, x ] = 0.



400 C. E. GORDON

Also U(m, «j, • •., b , Xj, ..., x ) = z H and only if, for some k2 £ N,

Fu(k2)[m, 72,, • • •, 72 , x,, • • •, x ] and Gy(&2)[m, n,, . • •, 72 , x,, • • •, x ] = z.

Let Z be the formula A°(V,) A A^rrV,).   If z e A* then Z[z] ii and only if

z = 0.   Now define recursive functions FQ  and G.  on /V(i,+3' by:

F0(tt7, ky krnv'", np) =    [FTikA A Z|GTU,)| A F^kJ]

• |m, n,, •••, np, V,, ••-, VJ,

GQ(m, ky k2, 72,, •", 77 ) = GL,(fe2)|m, n,, • • •, n , V,, ••., VI.

Now /(t2,, • • •, 72  , x,, • • •, x  ) = 2 if and only if there are natural numbers

772, ky and k2 such that FQ(m, k v k2, 72,, . . . , rt  )[x y, • • ■, x 1  and

G0(?72,   ky,   k2,   72,,   • • . ,  72    )[x,,   • . • ,   X    ]   = 2.     Let   Fik,   72,,   • • • ,   72   )  =

T]iF0iik)0, (k)y, (k)2, 72,,  ..., 72^)).    If  7;(G0(U)0, (k) y, (k)2, 72,, ..., 72^))   is

a term of QF, let G(k, 72,, ...,») = 7?(G0((/e)0, (&),, (k)2, n,, ..., b )).   Other-

wise, let G(&, 72,, .. •, 72 ) = V,.   Let d be some total recursive function such

that, for any m £ N, d(ta) = m and let

H(k,   72, , . . - , 72p) = dÍT,ÍG0iik)0, (k)v  ik)2, 72,,  ... , np))).

Notice that F, G and H ate recursive and that, for all k, n., • • •, n ,

F(k, n,,"', « ) and G(k, n , ' • •, n ) ate respectively a formula and a term

of QF.   Let (ny, ...,np, Xy,...,X¡) £ N(p) x A(«\  If /(t2,, •■•,np, x,, ....x^)-*

then there are unique 777, ky  and k2 suchthat F0(ttz, ky, k2, ny, ••-, 72 )[x,, •••, x 1

and, for those 777, 4,  and &2, G0(r72, &,, /e2, 72,, • • •, 72 )[x,, • • •, x ] = 2.   By

Lemma 2, using the fact that each x. is an element of A,  77IF Am, ky, k2, «.,•••, n ))

' [*p-'", x ].  In fact, letting&= (^ ^j< k2), k - pkFik, 72,, • • •, 72p)[xp • • •, xj.

If / is into A then z e A so, by Lemma 2, rriGAm, ky, k2, ny, ■ • ■, n ))

is a term of QF  and 77(G0(t72, £,, k2, ny, ... , n ))[xy, • • •, xj = z,  i.e.,

Gik, ny, —, 72 )[xp ..., x ] = 2.   To summarize, if (72,, — , n , x,, — , x , z)

£ N{p) x A(« + 1> and if /(t2 ,, ...,», xx, ..., x) «. z then

GipkFik,   72,,  •••,   «pH«,,  •««,   *g],   72,,  •..,  «^[Xj,  ...,   X?] =  2.

Now suppose that / is into N. Then z £ N so, by Lemma 2,

riiGAfn, ky, k2, 72,, •••, 72p))= z.

Therefore, H(/e, 72  , ... 72 ) = 2. To summarize, if (2, t¡,, •••, 72 , x,, •••, x )

£ N{p+l)x A(,) and/(«,,•••, » , xp.-., x ) - z then

HiukFik, ny, ••-, np)[xy, ..., x<¡], 72,, •••, np) = 2.

Now if / is into A  and GipAFik, ny, ••-, 72 )[x,, .. .,x ], 72,, .. •, » )[x,, . • • , x ] = z,
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then there is some A such that F(A, nv . •., n )[xv • •., x ].   It follows that,

n^letting 222 = (A)0, T(z22, «j, ..., » , Xj, •••, x ) and hence that finv

x,, •••, x ) is defined and equal so some z v   But, as has just been shown, it

follows that

GipkFik, «j, ..i, np)[xv ••■., xfl], »,, •.., ^H*,, •", xj - Zj.

■ Hence z = z.. This concludes the proof of part (a) of the theorem. Similarly, if / is into A

and HipkFik, »j, ■ ■ ■ ,np)[xy..., Xq],nv ■ ■ ■, np) = z then finv • • ■, np, Xj, •■■,xq)

is defined and must equal z.  This concludes the proof of part (b) of the theorem.

The converse to Theorem 1 will be proved in §7.   It follows from the prime

computability of (i)  all recursive functions and (ii) the satisfaction relation for

formulas of QF.

6.   Search computable functions.   Given a term t of QF   with variables from

V -, ..., V        and given elements x v • • •, x,   of A , let /[xj, •••, xA    be

that element of A    which the term t represents when V .,..., V    ,   are

interpreted as Xj, • • •, x,   respectively.

Lemma 3.   There are total recursive junctions a and ß such that, for

natural numbers q and »,   aiq, n) is a term of Tm   with variables from

V j, — , V     o,  . (or aiq, n) = 0 if ßin) = 0) and such that, given any w £ A*,

there is some n £ N and some Xj, — , Xg,  > £ A such that, for any q £ N,

ß(n)\
aiq,   »)[Xj,   • • • ,  Xß,     .]_  :

Proof.   Define a and ß as follows:

V     .    .    if » =   A,

aiq, n) = { p(a(i/, u), aiq + ßiu), v))    if n = (u, v),

0    if n is not a sequence number of length  1  or 2.

A+ 1       if »=<A>,

ß(»)= {ßiu) + ßiv)    if n=(u, v),

.0      if « is not a sequence number of length 1 or 2.

The functions a and ß ate clearly recursive, in fact, both a and ß ate primi-

tive recursive.   By induction on », it is immediate that aiq, n) is a term of T

with variables from V     ., . .., V     a.  ..   We show by A -induction that, for

*
222
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w £ A  ; for any q £ N there is some n £ N and some x,, « • •, Xo. . £ A  such

that aiq, n)[xp •••, x m y]   =u>.   li w £ A,   let n = (0) so aiq, n) = X    ,,

/3(«) = 1 and a(q, n)[w]   = w.   If w = 0, let n = 0 so a(a, «) = 0 and /3(b) = 0.

Suppose w = (s, /) and the induction hypothesis holds for s and t.   Let a be

fixed.   Choose u, Xy,...,Xg, > suchthat a(q, a)[x,,..., x a, A   =s and choose

v, y y, - • •, yß,v) such that a(q + ß(u), v)[y y, ..., y^q^u) = y.   Let n = (a, t/).

Now

where

and

aiq, n)[Xy, ..., xß{u)yv ..., y^q = (s'. ñ

s' = aiq, u)[xy, ..., xg^,, y,, • - •, y^

/' = a(a + ß(u), v)[xy, • -., xg^j, yp • ••, y^^.

But the variables of a(a, a) are from V     ,, .. •, V  +au) and the variables of

a(a + /3(a), i/) are from Xq +ß(u ) +,, .. •, V? +ÄB)+Äw) so s = a(f. a)[x,,..., x^J^ = s

and i' = a(q + /3(a), iO[y,, ..., yß(v)\+ß(u) = t.   Therefore (s', t') = w.   This

concludes the proof of Lemma 3.

Theorem 2.   There is a recursive function y such that: (a) if f is an

^.-search-computable function from N(p) x  A^q' into A,  then there are total

recursive 6+1 place functions F and G such that, for any (k, n    ...   n ) e
1 '    p

N^p+l\ F(k, ny, ..., n ) and G(k, ny, •••, n )  are respectively a formula and

a term of QF with variables from V,, • • •, V   ,yik\ and such that, for any

(»i, ••♦. n , Xj,«'«, x . z) £ Nip) + A*-9*1', /(b,, ..., b  , x,, ..., x ) = 2 if

and only if there is some natural number k and some sequence y,, • • •, yytk\

of elements of A such that

F(k, B,, -•, np)[xy, -.., Vyl'*"'yr(«]

aB^

Gik, B,, •.., np)[x,, ..,, xq, y,, • • •, yy(kj = z.

(b) if f is an '^■search-computable function from N^p' x A(?' zbîo N then there

are total recursive functions F and H such that, for any (k, ny, • • •, n ) £

yylpt )f p'^ n^ ..., n ) is a formula of QF with variables from V,, • •.,

V   .   (fe. and such that, for any (z, «,,••., n , x,, ..., x ) e N(i,+1) xA(î),

/(s,, • • •, B , Xp • • •, x ) = z if and only if there is some natural number k and

some sequence y ,, • • •, yytk\ of elements of A such that F(k, ny, • • •, n ) •

[xp ..., x?, y,, "•■>yyl¡ty\ an<i H(k> »i» •••» «J = *•
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Proof.   Let r\ be as in Lemma 2.   Let a and ß be as in Lemma 3.   Let 6

be a total recursive function such that, for each z £ N, dix) = z.   Let y(A) =

/S((A)Q).   If / is any 21-search-coniputable function into A or into N, then, by

the normal form theorem for search computable functions, there is a relation T

and a function U, each absolutely primitive computable in gj, • • •, g , /j, • • •, /,,

such that, for all «j, ..., », Xj, ..., x , z, /(»j, ■••, », x,, ..., x ) =z if

and only if there is some w £ A   such that T(»j, ..., », Xj, .. •, x , i¿/) and

(/(«,, ..., n , x j, .. •, x , izz) = z.   Let (F^., G^.) and (P,j, G A) determine the

representing function of T and the function  U respectively as in Lemma 1.  Define

functions FQ and GQ on N(p+3) by:

F0im, kv k2, »j, -.., »í)) = (FT(A1) A Z\GTik¿\ A F^A^)

• In,,---, n^, Vj, ..,, V?, 0.(27, 272)|,

G0(222, Aj, A2, »j, ..., «p = GyiA^lnj, ••., np, \v •••, V?, a(?, 22z)|.

Now if

F0(222, Aj, A2, »j, ..., »^Uj, ..., xq, yv ..., V/3(m)]

and

G0(222, Ar A2, »j, .,,, »^[xj, .-., x?, y1( .,,, y^^Nz

then, letting tzz = 0.(27, m)[yv ..., yß,m)}q,

PTikA[nv..., np, Xj, ..., x^, tzz],       G-rU^Uj, ..., np, x v • ■., xq, w] = 0,

Fuik2)[nv ..., «^ Xj, ••-, xq, w],     G^kAln^ ..., np, xv ..., xq, w] = z.

Therefore, T(»j, •.., n , x,, • • •, x , w) and  i/(» ,, • • •, « , xp ..., x , tzz) = z

so fin j, • • •, », x j, ..., x ) = z.  On the other hand, if /(»j, ...,«, Xj, ..., x ) = z

then there is some w e A   and some natural numbers Aj and A2 such that

FT(A1)[»1, ...,», Xj, ..., x , w], GT(A1)[»1, ..., »    Xj, ••., x , 2¿z] = 0,

Fy(A2)[»1, >•.,», Xj, ..., x , tzz] and G ik2)[nlt ...,«, Xj, ..., x , w\ = z.

Pick some m £ N and some sequence y j, • • •, y»,   , of members of A  such that

«■(?, Z2z)[y1,...,y/3(m)]9 = "', then

F0(t22, kv k2, nV"-,np)bv»', xq- ?!'••• >y/3(22!)]

and

G0(22z, kv k2, nl,...,np)[x1, '-',xq, yx, • • •, y ß,m)] = z.
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Now let

and

Fik, b,, •.•, Bh) =-rj(Fa((k)a, U),, (k)7, B,, ••., B^))

G(k, b,,..., b)= r/(G0((^)0, U),, ik)2, B,, •", Bp)).

For each (k, «p •••, b ) e Nip + 1\ Fik, ny, ..., b ) is a formula of QF with

variables from V,, ••«, V    vfi-,.   In case / is a function into A then, for each

(k, B,, • • •, b ) e N(p +   ,  G(&, b,, • ••, b ) is a term of QF with variables fromi p i p

X,,-■., X    ..,,,.   Furthermore, for each (b,, — , n. x., •. •, x , z) e N p) x

A(,+ ', /(b,, • • •, b , x,, ••., x ) = 2 if and only if there is some k e N and

some sequence y,, ■ • •, yyik\ of elements of A  such that

F(k, B,, -.., Bp)[x,, ..i,x4, yv •-., yr(fc)]

and

G(«j, B,, •••, np)[xy, ..., xq, yv •••, yy(jfc)] = 2.

In case / is a function into /V   then, for each (k, b,, — , b ) e N(i,+ ',

G(/s, B,, ..., b ) is a numeral of T777 .   Furthermore, for each (2, b,, ..., b  ,

x,, • • •, x ) e N^p+    x A(i), /(»,, •. -, b , x,, ..., x ) = 2 if and only if there

is some k £ N and some sequence y,, • • •, yy,,,  of elements of A  such that

F(k, B,, .. •, b )[xp ..., x , y p • • •, yy(fe)] and G(k, ny, ..., n ) = z.   Letting

H(k, ny, . •., b ) = d(G(k, ny, • • •, n )) and leaving the reader to verify that F, G

and H are recursive, the theorem is proved.

Define the language Ex as follows:

(1) The terms of Ex ate just the terms of QF.

(2) The formulas of Fx are defined inductively by:

(i) Every formula of QF is a formula of Fx.

(ii) If <tS is a forumla of Fx and x is a variable then (11, x, rp) is a

formula of Fx (denoted by  lxtf> and having the corresponding interpretation).

Corollary to Theorem 2.   // / is an ^.-search-computable function from

N^p) x A(q' into N then there are total recursive functions F and H such that,

for any (k, ny, ..., n ) £ N(p+ ',  F(k, «,,..., b) is a formula of Ex and, for

any (ny, ..., n , x,, ..., x ) £ N(p) x A(l\ /(b,, ..., n , x,, •.., x ) =

H(ukF(k, ny, ..., b )[xp • • •, x ], B,, ... , b ).

7.   The converses to Theorems 1 and 2.   Putting aside our use of

\*0, • • • » xk_ ,)" to denote Ui<kP'i,   we now let "(x0, —,*,,)" denote

that element of A    which codes "(x0, — , x, _ ,)" as in [3].   If x = (xQ, ..., x,    ,),
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let  lh(x) =  A and (x). = x. (z = 0, ..., A - 1).   Let Val be the partial function on

A    defined by

t[xv •••, xq]    it t is a term of QF and x= (xj, •••, xq),

Val(i, x) =     { where each   x.   is an element of A,
2 '

undefined    otherwise.

Let Sat be the relation on A* defined by:   Sat(</>, x)  if and only if <f> is a formula

of QF, x is of the form (Xj, •• •, x ),  with each x¿ £ A, and <£[x,, • • •, x ].

It is a consequence of the recursion theorem for prime computable functions that

Val and Sat are absolutely prime computable (cf. [3]).   Every recursive function

is prime computable (cf. [3D, and the set of prime computable functions is closed

under the minimalization operator.   This is sufficient to give us

Theorem 3.   (a) // F and G are p + 1 place total recursive functions and if,

for any (A, «,,..., « ) e zV(p+ ', F(A, » j, . • •, » ) and G(A, »l; • • •, » ) are

respectively a formula and a term of QF with variables from V,, •.., V ,  then

the function f from N^ x A(,)  into A defined by

/(»j, ..., np, Xj,..., xq)

= GipkFik, «j, ■•., np)[xv -.,, x ], »j, •••, np)[xp •.., xq]

is ^.-prime-computable.

(b) // F and H are p + 1 place total recursive functions and, for every

(A, »j, • • •, » ) £ n'-C*1^,  F(k, »j, .. •, » ) ¿s a formula of QF with variables

from Vj, • • •, V ,  iien the function f from N^p' x A<?) z'nro zV defined by

/(»j, ..., « , Xj, ..., x )= HipkFik, »j, ..., n )[xj, ..., x ], «,, •• •, « ) ¿s

u-prime-computable.

Theorem 4.   (a) // F and G are p + 1  place total recursive functions and

y is a total recursive function and if, for any (A, »,,•••,» ) e N^p+ ',

Fik, »,, • • • , » ) flnz/ G(A, »j, • • •, n ) are respectively a formula and a term of

QF with variables from V r ... , Vq+yik), then the ipartial, multiple valued)

function f from N<-p) x A(?) into A defined by:

/(»j, • •., », x., • • •, x ) = z if and only if, for some k £ N and some

G(A, »j, ..., np)[xj, ••«,*, yj, •«•, yr(/fe)] = z,

is ^.-search-computable,  (b) // F aníi H are p + 1 place total recursive functions,
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and y is a total recursive function, and if, for any (k, ny, • • •, n ) £ N^p+ ',

F(k, b,, •••, b ) is a formula of QF with variables from Vp •••, Vg+ytky then

the function f from N(p) x A{?' into N defined by:

/(«,, ■ • •, n , xy, • «., x ) = 2 if and only if there is some k £ N and

some y,, •««, yfe £ A such that F(k, ny, •«•, np)[xy, •••, x , y,, • •«, yyy¿y\

and H(k, ny, •. «, n ) = z

is ^-search-computable.

Proof.   Let v be the search operator of [3]-  Let / be defined from F and

G as in part (a).  Define y = yin y, ..., n , x,, •.., x ) = ¿"«/(sequence (w) &

(w)0 £ N & (V¿ < IhU) - D((w). + y e A & lhiw) = yiiw)0) + l x F(a/)0, n,, •••,«i))

• [x,, •••, x^, (tf)p • •., ^w\((w) .)])•  Now y is 2I-search-computable and

/(«j, •", np, xv ..., xq)

= G((y)0, b,, ..., np)[xy, ••-, xg,iy)y,..., (y)yl{y) ).

Hence / is 2I-search-computable.   Now suppose / is defined from F and H as

in part (b).   Let y be as above.   Then /(« p — ,72^, x,, • • •, x ) =

/V((y)0, B,, ..., b ) so / is 2I-search-computable.

8.  Computability and the constructible  L      ^ The infinitary language

"constructible L      J' (cf. [4]) has finitary quantification and infinitary disjunc-

tions   WO of nonempty, recursively enumerable sets 0 of formulas.  We consid-

er certain sublanguages of constructible  L       ,  An existential formula is a

formula of the language Fx of §6.   An   \U-formula is a formula of the form  Wfl,

where ß is a recursively enumerable set of formulas of QF all of the variables

of which lie in some finite set.   An    \ffi-formula is a formula of the form W Û,

where 0 is a recursively enumerable set of existential formulas all of the free

variables of which lie in some finite set.

Recall that a relation is called semi-2I-prime-computable (semi-2I-search-

computable) if it is the domain of an 2I-pnme-computable (2I-search-computable)

function.   By Theorems 1 and 3 (2 and 4), a a place relation R on A is semi-

2Lprime-computable  (semi-2I-search-compuable) if and only if there is a total

recursive function   F  into the formulas of  QF (Ex)   such that, for any

(x,, ... , x ) £ A(a>, R(xp .. •, x ) if and only if, for some k, F(k)[xy, ..., x ].

An immediate consequence is the next theorem.

Theorem 5.   (a) A relation on A is definable in 21 by an \b'-formula if and only
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if it is semi-U-prime-computable,   (b) A relation on A is definable in 21 by

an \Wi-formula if and only if it is semi-W-searcb-computable.(l)

Remark.   There are many "pathological" cases that might be considered.

For example, if 21 has no "given" relations, then, writing n for »,,..., w

and x for xv ..., x , (a) the 2l-prime-computable functions /: N^' x A q) —*N

ate those of the form fin, x) = g(n), for some partial recursive g, and (b) the

2Lprime-computable functions /: N'*' x A(<?) —♦ A   are those of the form

fin, x) = g(n)[x], for some partial recursive function g into the terms of QF.

Hence an 2I-prime-computable function /: A(*' —» N is nowhere defined or con-

stant and an 2I-prime-computable function /: A(q'—> A  is nowhere defined or is

a composition of "given" functions.   If, on the other hand, 21 has no "given"

functions, then (a) the 2I-prime-computable functions /: Aiq' —* A ate those

which can be defined by cases:

if <£j[x],

if cpq[x];

where 4>\' • ' ' » <P    afe formulas of QF and if i < j then "<£ . =» ~l<£(." is valid

and (b) the 2I-prime-computable relations R CA('' are those definable by for-

mulas of QF.   Other such special cases are left for the amusement of the reader.
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closely related to results of Daniel Lacombe and Yiannis Moschovakis.   Lacombe asserts
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only if both it and its complement areW3 definable from  fip • • •, R , =.   Moschovakis
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