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@

CARL E. GORDON

ABSTRACT. The prime computable (respectively, search computable) rela-
tions of an arbitrary mathematical structure are shown to be those relations R
such that both R and its complement are definable by disjunctions of recursively
enumerable sets of quantifier free (respectively, existential) formulas of the
first order language for the structure. The prime and search computable func-
tions are also characterized in terms of recursive sequences of tems and formu-
las of this language.

1, Preliminaries. Let ¥ = (4, R, ..., R, 15 +++s [, ) be a structure with
each R, an a; place relation on A and each f, a b, place function from A to
A. Let 0 be an object not in A, let A® = A U{0} and let A* be the closure of
A® under ordered pair formation. For each i=1, ..., a define g’: on A* by:

0 if {ul,---, uai}CA and Rl.(ul, ceey uai),

g:(up cesyu )=
a; (0, 0) otherwise.

Foreach i =1, ..., b define /t on A* by

* [lug eeesuy) if tug, oee, 2, }CA4,

/i(“l’”" ub)= i . i
i (0, 0) otherwise.

The extension of A to A* is essential to the definitions of the classes of prime
and search computable functions (cf. [3]). As in[3], we let # and & be respec-
tively the left and right predecessor functions, corresponding to the ordered pair
function Axy(x, y). The natural numbers are identified with elements of A via
the correspondence: 0 =0, n + 1 = (n, 0). The set of natural numbers will be
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denoted by N. Note that NN A = . Given any set C, let C®) denote the
cartesian product of C with itself & times. We will be particularly interested in
partial functions from sets of the form N®) » AD into N orinto A. Such func-
tions which are restrictions to N?) x A‘@) of functions on A* which are absolutely
prime or search computable in g’:, ceey g:, /’:, ceey /: will be called respectively
U-prime-computable ot U-search-computable. The domain of an U-prime-computable
or U-search-computable function will be called respectively a semi-U-prime-comput -
able or semi-U-search-computable relation. Among other results, it will be shown
that a relation on A is semi-U-prime-computable if and only if it is definable by

an infinite disjunctionof a recursively enumerable set of quantifier free, finite
formulas of the language of ¥, It will also be shown that a relation on A is
semi-U-search-computable if and only if it is definable by an infinite disjunction

of a recursively enumerable set of existential, finite formulas of the language of ¥,

2, The languages QF and QF* Let U* be the structure
<A*, Ao, )\xy(x, }'), s 8, 0, Rlv b Ra' /T’ ) /;:)'

QOF and QF* will be the quantifier free, finite languages for ¥ and u* respec-
tively. We will not distinguish between the elements of these languages and
their “‘gédel numbers’’. Given natural numbers ny, -++, 7, _, let (ng, <o, m,_1)
denote the product Il,_, P "', where P\ =2 and, for >0, P, is the ith odd
prime, If x=(n,, ---, n,_,) then x will be called a sequence number of length
k and we write lh(x) = & and (), =n, ((=0,.-, k- 1). Incase k=0, x =1,
If y € N is not a sequence number of length greater than i, let (y)i =0,

QF is defined as follows.

(1) Variables. For each natural number m, (0, m) is a variable (denoted by Vm).

(2) Terms. The set of terms of QF is defined inductively by:

(i) Variables are terms.

(ii) If 1<i<b andif t, -, t, are terms then (1,7, ¢, ---, tb,-) is a term
(denoted by fi(tl’ cee, tbi))'

(3) Formulas. The set of formulas of QF is defined inductively by:

(i) (2) is a formula (denoted by T and representing ‘‘true”’).

(i) f1<i<a andif ty, .-+,  areterms then (3,4,¢), .-, tai) isa
formula (denoted by R (¢), «--, ¢, ))

(iii) If ¢ and ¢ are fotmulas then so are (4, ¢, ¥) (denoted by ¢ A ¢),
(5, b, ¥) (denoted by ¢ V ) and (6, ¢) (denoted by 71 ¢).

QF is extended to QF* as follows.

To the inductive definition of “‘term’’, add the clauses:

(iii) 0 is a term (denoted by 0).

(iv) If s and ¢ are terms then so is (7, s, t) (denoted by p(s. t) and repre-
senting the ordered pair of s and ?).
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(v) If ¢ is a term then so are (8, ¢) and (9, ¢) (denoted by nt and &t
respectively).

To the inductive definition of ‘‘formula’’, add the clause:

(iv) If ¢ is a term then (10, t) is a formula (denoted by A%(¢) and representing
“t e A"),

Satisfaction of formulas of QF in the structure ¥ and of formulas of OF* in
the structure U* is defined in the natural way, in light of the denotations used.
In particular, the formula T is true under all interpretations of variables. If ¢ is
a term of QF (ot QF*) with variables from V, -, Vq and if x, -0, % isa
sequence of elements of A (or A*) then tlx,, ---, xq] will be used to denote
the interpretation of ¢t determined by the interpretation of each Vi as x.. If ¢
is a formula of QF (or QF*) and if Xpp ey X, is a sequence of elements of
A (or A™), then ¢["l’ cony xq] will mean '‘the variables of ¢ are from Viseess Vq
and ¢ is satisfied in ¥ (or A*) by the interpretations of each V, as x.”.

Notice that if ¢ is a term and ¢ is a formula of QF and EITREED x'q is a
sequence of elements of A then t[xl, oo, xq] and qS[xl, oo, xq] have the same
meanings with respect to U* as they have with respect to ¥. If y is a term or formula of
QF* and ty, +++, t, are terms of QF*, let yltl, ooy, tkl be the term or formula
resulting from simultaneous substitution of ¢, -+., ¢, for all occurences of
Vi»+ee, V, respectively in y. As afunction of y, £y, ooy ty; ¥ Lyseeey |
is the restriction of a primitive recursive function to a primitive recursive domain.

3, The main lemma. It will be shown (1) that prime and search computable
relations and functions are definable by certain forms and (2) that relations and
functions definable by those forms are prime or search computable. The latter (2)
will probably be immediate to anyone conversant with the notions of prime and
search computability, The former (1) is apparently somewhat surprising, The
most difficult part of the proof is the proof of the main lemma (Lemma 1).

Lemma 1. For every q place function [ on A* into A* which is absolutely
primitive computable in g’:, cees 82 /"1‘, cee, /’;, there are total recursive functions
F and G such that, for each k € N, F(k) and G(k) are respectively a formula
and a term of QF* with variables from Voo Vq and such that, for any
. € A¥
(i) there is a unique k such that F(k)[xl, ey xq] and,

(ii) if F(k)[xl, e, xq] then f(x, -+, xq) = G(k)[xl, cee, xq].

Xy ooy X

The proof is by induction on the length of a primitive computable definition
of f.” The designations COypyvevy CO‘”b, C2, ..., C7 refer to clauses of the
inductive definition of the class of primitive computable functions. If f, G and F
are as above then we say that (F, G) defermines f. In most cases we indicate a
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function { and define functions F and G, leaving it to the reader to verify that
F and G are recursive and that (F, G) determines f.

Coi(lsisa)’/(tl’...’tai'xl’.‘.’xr)=gr(t1’...’tai)'
FO) =RV, -+, V), FD=1RNV ...,V ), Fk+2="T.
1 1
G0 =0, Glk+1)=p(0,0).
Coa‘fi(lsisb)’/(‘1’"”’b~'"1""”‘,)=/:‘(‘1’---,‘b'.).
? 1

FO=T, Flk+D=T. 6B =£V, -, V,).

C2, f(y, %y5 +esx) = y.

FO=T, Flk+1)=1T. Gk=V,
C3, f(s, 8, x5 one,y x)=(s, 1)

FO=T, Flk+1)=TT. GA=p(V,V,

Cdy, [y, xy5 0eey x) = my.

A0 =T, FAk+1)=TT. Gk =aV,
Cdy, fly, x5 oeepx) = By

FO=T, Ak+1)=TT. Gk)=25V,

Cs, /(xl, ceey xr) =glh(xy, -en, xr), Xppeee, x'). Assume, by the induction
hypothesis, that there are functions F, G, F, and G, such that (F, G,)
determines g and (F,, G,) determines b.

Letting k; = (&),

Folkg) A (FkDIG ), V yeee, V) if k= (kg k),

AT if % is not a sequence number of length 2,

ma={

GUB) = G (R )IG ko), Vyyoeey V1o

C:7, /(xl’ soey, xr) = g(x]-+l: xp coe, xj' xj+2’ soe, X')- C7 and CS5 are handled
similarly,

This completes all cases but C6 (C2 can be omitted when considering
*‘absolute”” computability).

C6, /(y, xl, ey x’)=8(y’ X19 00 x') if y € Aon /((sn t)a X1s ooy x')=
b(f(s, xyseee, xr), /(s X500 xr), Sity Xy eee, xr). Assume, by the induction
hypothesis, that there are recursive functions F, G, F, and G, such that
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(F 5 G,) determines g and (F, G,) determines h. Before proceeding with the
definitions of F and G, some development is required.

By a definition or proof by A™*induction we will mean a definition or proof by
induction with respect to the well-founded partial ordering on A* defined by:

(i) x <(x, y) and y < (x, y);
(ii) if x <y and y <z then x <z;

(iii) x <y only as required by (i) and (ii).
This ordering will not be referred to again.

Given a sequence number w =(xy, +++, %), let wh = (%15 +++» %, k) and
Fw={_k x ITREEE xk). By a 0-1-sequence is meant a sequence number w such
that (w); € {0, 1} for all i < Ih(w). By a bush is meant a finite, nonempty set
B of 0-1-sequences such that, for any w,

(i) w0 € B if and only if w1 € B, and

(ii) if w"0 € B then w € B.

Notice that 1 is a member of every bush. An element w of a bush B will be
called an endnode of B if w 0 ¢ B. If B isa bush, then a definition or proof
B-induction is a definition or proof with respect to the well-founded (in fact finite)
partial ordering < on B defined by:

(i) w 0<wand w 1 <w if w 0 € B;

(ii) if x <y and y <z then x <z;

(iii) x <y only as required by (i) and (ii).

This ordering will not be referred to again. If B is a function whose domain is a
bush B then B-induction will mean B-induction.

We associate with each 0-l-sequence w, a term #(w) of QF *. The definition
of t(w) is by induction on lh(w).

(3.1) D)=V, (w 0)=atw), dw1)=5w).
It is easy to show that, for each 0-1-sequence w,

(3.2) A0 = dw)|aV,|, A17w) = tw)|8V .

Given a function B from a bush B into N, we assign to each w € B a term n(w)
and a formula ¢(w). The functions 7 and ¢ are defined simultaneously by
B-induction. Write B and qS'B to indicate the dependence upon . Recall that
(F, G,) determines g and (F,, G,) determines 5. If w is an endnode of B,

#w) = A%Lw) A F (Bw)|dw)| and dw) = G,(B(w))|dw)|.
If w is an element of, but not an endnode of B,
Hw) = plw 0) A $lw” 1) A 1A dw))
A F (B |Aw”0), dw” 1), dw”0), {v" D), Ve Voo
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and

Aw) = 6 ,(B)|Aw " 0), dw" 1), Kw"0), dw 1, V,, oo, V|

Lemma 1.1. For i =0, 1,2, let B, be a function from a bush B, into N.
Let ¢, =¢ﬁi and 1, =1 i, Assume that B,={l}u{0Tuw:we Byl yllTw:we B},
B07w) = By(w) and B,(1I"w) = B,(w). Then:

(a) for each w € B, ¢,(07W) = ¢ (w)|aV | and r,(07w) = ry(w)|aV |, and

(b) for each w € B, ¢,(I"w) = ¢y w)|8V | and r,(17w) = r,(w)|8V,].

Proof of (a) by B, induction. If w is an endnode of B, then 0"w is an
endnode of B, and ¢,(w) = A%(w)) A F(Byw))|t(w)|. Therefore, ¢ (w)|aV,| =
A%(tw)]aV 1) AF (B |tw)|nV | So, by (3.2),

bV | = AALGw) A F (8w))|Ad )|
Since B,(w) = B07W), ¢,w)|nV,| = ¢,(07w). Similarly, ry(w)|aV,| = r,(0Tw).

If w is an element of but not an endnode of B, then w 0 and w” 1 are elements
of B, and, by the B -induction hypothesis, ¢ (w” i)|7V,| = $,(07% 1) and
ro(w“i)lﬂvll = rz(O’\whi), for i =1, 2, By (3.2), tlw” )|aV,| = #(0"w" i) and
tw)|nV,| = d07w). Herice

Bol)aV | = ¢,(0%70) A ¢ (0w 1) AIAAL0 @)
N F{Ba|r 00 0, r(GwD, @0 0), (027D, Vypoee, V, .

Since B,(w) = B,(07), ¢y W)|7V,| =¢,(07w). Similarly, r,@)|7V,| = r,(07w).
This completes the proof of part (a). The proof of part (b) is similar, Now let

K be any effective one-one enumeration of functions 8 into N whose domains are
bushes and define functions F and G by: F(&) = ¢X®), G(&) = #<*)(1). By
Church’s thesis, F and G are recursive,

Lemma 1.2, Let x= X5 +++, x, be a sequence of elements of A% Then
(a) for each y € A* there is a unique number k such that F(k)y, x| and (b) if
F(k)y, x] then G(k)ly, x] = f(y, x).

Proof by A*inductionon y. If y € A® choose % such that (k) is that
unique function B with domain {1} such that F,(B(1))ly, x}. Then F(k) =
A1) = A%V ) A F (B(1)) and G(&) = A1) = G,(B(1). Therefore F(k)y, x] and
G(k)y, x] = gly, x) = f(y, x). Suppose F(k'My, xl. Let «(k') =B’ so F(k') =
¢'B'(1). If 1 is not an endnode of B' then ¢'3'(1)[y, x] implies that TJA%(V Dy x],
which implies that y £ AC. Therefore 1 is an endnode of domain (ﬁ'),(i.e.,
domain (B’) = {1}) and ¢ﬁ "MmI y, x]=F I(B'(l))[ y, x). This uniquely deter-
mines B'(1) so B = 3'. Now assume y = (s, b} Let ko and kl be the unique
numbers such that F(ky)ls, x] and F(k,)z, x] and assume, by the induction
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hypothesis that G(kg)s, x] = f(s, x) =« and G(k )¢, x] = f(t, x) =v. Let j be
that unique number such that F,()u, v, s, £, x]. Let «(k)) = By, «(k;) = B, and
let B, be that function such that 8,(1) = j and B, B, and B, are related as in
Lemma 1.1, Choose & such that «(k) = B,. Letting ¢, =¢Pi and 7= P
(i=0,1,2), we have

F(B) = ¢,(1) = ,((ON A ¢,({1)) A 1AAV )
A Fz(l)lfz((o»’ 72((1»1 ”vp 8V11 v29 ccy v,.+1|

= ¢oDlaV | A ¢, (DI8V | A A%V

A Fz(j)ho(l)‘"vll’ ’l(l)lavlly ”vp svp sz cey v'+1|~

Similarly G(k) = G ()7 (1)|nV,]|, 7, (D)|8V |, nV,, 8V, V,, -.-, V. .1l- Nowitis
easy to verify that

(a) F()y, x] if and only if F(ky)s, x), F(k)t, x], y ¢ A® and
F,(u, v, s, t, x], and that

() Gy, x1 = G, (N, v, s, &, x] = b, v, s, 8, x) = fly, x).
To show the uniqueness of such &, assume that F(k')ly, x]. Let «(&)=B’. If 1
is an endnode of domain(B), then F(k')My, x] implies that ¢”'(1)ly, x] which
implies that y € A?. Hence 1 is not an endnode. Let B; () = B'(0"w) and
Biw) = B'(17w), forall w in the appropriate domains. Then f;, B; and B’ are
related as in Lemma 1.1, Choose k; and k; such that k(ky) = B and «(k;) = ]
From the assumption that F(&')y, x], it can be concluded that F(ko‘ s, x1,
F(k)(, x] and F(B'(Mu, v, s, &, x] and hence that ky = ko ki =k, and
B'(1) = B(1). Therefore B = B’. This completes the proof of Lemma 1.2 and
hence the proof of Lemma 1.

4. Embedding QF in QF* Let Tm™ be the smallest set of terms of QF*
containing all the terms of QF, the term 0 and containing p(s, t) whenever it

. * . .
contains s and t. Tm" contains a numeral m for each natural number m, i.e.,

0=0, m+1-=p(m,0).

Lemma 2. There is a total recursive function 7 such that if t is a term and
¢ is a formula of QF* with variables from Vpees Vidandif x1,000,%, isa
sequence of elements of A then

(i) 7(¢) is a term of Tm™ with variables from {Vl, ceey Vk},

(i) nt) € QF if and only if tlx, ..., x,1 € 4,

(iii) for m € N, 7(t) = m if and only if tlx}, «++, xk] =m,

() tlxyy ooey 2, )= p(0)lx gy o oey %],

(v) 7(@) is a formula of QF with variables from {Vl, vee, Vk} and

(vi) ¢lx, ---, xk] if and only if n(p)xy, -+, xk]‘
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Proof. If z is neither a term nor a formula of QF¥, let 7(z) = 0. Define Ul
on the terms of QF* by recursion and the following cases:

T,. n7(0)=0.

T,. 7(V,)=V,, for each variable V.

1 if 7(8) € QF,
T3. n(at) =
u if n(8) = p(z, v),
0 otherwise. (This case never occurs.)
0 if n(»=0
1 if o() € Qf,
T, n(d)=)
v if () = p(w, 0),
0 otherwise. (This case never occurs.)

Ts. 7(p(s, ) = pln(s), n(A).

£n(e), o oey nlz, ) if n(t)), <oy 0z, ) € QF,
Te ALty eee,2,)) =

otherwise.

Define 7 on the formulas of QF * by recursion and the following cases:

T ifnd=0 (#) € QF,
Fl. n(Ao(t))= if or nlt) € 0

AT otherwise.
Ri(n(tl)’ ceay, T'(ta.)) if n(tl), ceey n(ta‘) € QF,
Fp nRft;ee, )= ’ '
2 : % aT otherwise.

F, #D-T.
Feo 108) = 0@, 1(b A ) =1 A 7(0) and 1l V) = 2 V 7.

That 7 is recursive follows from the recursive definitions of QF and QF *. Parts

(i) and (v) of Lemma 2 are immediate by induction over the definitions of term
and formula respectively.

Lemma 2.1. If t is a term of Tm™ X1s ey X, is a sequence of elements of
A and t(xl, ooy xk) € A then t € QF.
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Proof. If t € Tm™ and ¢t ¢ QF then either £ =0 or ¢ is of the form pl, v).
In either case f[x, .-, xk] € A.

Lemma 2.2, If t is a term of Tm™, x,, «++, x, is a sequence of elements o
1 k k!
A, meN and t[xl, ---,xk]=m. then t = m.

The proof is easy by induction over the inductive definition of Tm™

Now part (iv) of Lemma 2 can be proved by induction over the definition of
1. The proof is straightforward except that, in case Ty (¢ =f(¢,--, tbi)),
Lemma 2.1 is needed. Parts (ii) and (iii) follow immediately from parts (i) and (iv)
and Lemmas 2.1 and 2.2, Part (vi) can be proved by induction over the definition
of 7. Incases F, and F,, Lemmas 2.1 and 2.2 are needed.

5. Prime computable functions. Let p be the minimalization operator.

Theorem 1(a). If { is an U-prime-computable function from N®) x A9 into
A then there are total recursive functions F and G from N®*1) into the sets of
formulas and terms respectively of QF such that, for any bal, SRR EOVIE SPELL xq)
eN® 4@

/(np K] np: xp *rYy xq)

= G(”'kF(k' s %%y np)[xp R xq]a LUK "p)[xl’ °c°y xq]'

(b) If { is an U-prime-computable function from N®) x AD im0 N then
there is a total recursive function F from N®*1) into the set of formulas of QF
and a total recursive function H from N®*D into N such that, for (n

l,-oo,n
X0, ...,xq) eN®) x AlD)

p’

/(721, Cte My, Xpp*os xq)= H(IlkF(k: Mgy ovey np)[xp cecy xq], gy =%y np)o

Proof. Let / be an U-prime-computable function from N®) x A@) jnto A or
into N. By Remark 10 of [3], there is a function U and a relation T, each
absolutely primitive computable in g";, ces, g:, f"{, ceey /:, such that, for any
SURIITE VI SPRTTIR SF & J(CIPRTR My Xpseees xq):z if and only if there is
some m € N such that T(m, (STRRETE NI PR xq) and Ulm, 7y, «.., 7,
Xyseres xq) = %. Furthermore, there is such a relation T with the property that,
for each ny, ««., N STRRETEN there is at most one m such that
T(m, nyy -, Mys Xpseees xq). Let (Fy, G;) and (F;, G;)) determine the
representing function of T and the function U respectively as in Lemma 1. Now

T(m, nyy oo, My Xps oees xq) if and only if, for some £, €N,

FT(kl)[m‘ sy np. Xppooey xq] and GT(kl)[m, LSURARE ”po Xty xq] =0.
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Also U(m, n, ..., Mys Xpp voes X ) = z if and only if, for some &, € N,
Fu(kz)[m, My eoes My Xy vees xq] and Gu(kz)[m, My sees My Xpseee, xq]:z.
Let Z be the formula AO(VI) A AO(nVl). If z € A* then Z[z] if and only if

z = 0, Now define recursive functions F, and G, on N +3) by:

Folm, ky, kyongyeeeyn )= [Frlk) A Z|Grlk )| A Fylk)]

N lm9 nly"'r n‘,,Q vls"'vvqir

Go(m, kpo by myyeee, np) = GU(kz)lm, n,cee,n L STRERY Vq|.

_P’
Now /("1’ RO STRRLY xq) = z if and only if there are natural numbers

m, k; and k, suchthat F(m, ky, ky 75«0y nﬂ)[xl, ceey xq] and

Go(m, kyy kyy mypsoees np)[xl, cee, xq] =z. Let F(k, nyy ---, "p) =
U(FO((k)O’ (k)17 (k)Z’ ”l’ MR ] ﬂp)). If n(GO((k)O’ (k)19 (k)27 n17 M} ”p)) is

a term of QF, let G(k, n, -+, ”p) = G ((R)y, (R, (R)yy 7y, oo,y "p))‘ Other-
wise, let G(k, n, -+ -, np) =V,. Let 6 be some total recursive function such
that, for any m € N, 6(m) = m and let

H(kl ”1 2% np) = o(n(GO((k)O’ (k)l’ (k)zy nl’ MR ) np)))-

Notice that F, G and H are recursive and that, for all &, LPURREPR O

Flk, nyye--, np) and Gk, n,**+, n,) are respectively a formula and a term
of QF. Let (ny,---, UE STREED xq) e N® » A@_ | f(rys +ees L ..-,xq)=z
then there dre unique m, k; and k, such that Folm ky, ky mpseees ”p)["l’ ceey xq]
and, for those m, k| and k,, G (m &k}, ky gy oo, "p)[xl’ cee, xq] = z. By
Lemma 2, using the fact that each x; is an element of A, 1{F (m, k,, k, n ,--, np))

. [xl’.“’ xq]. In fact, letting k= (m, kl’ kz), k= ka(k, CIPRTEN np)[xl, B xq].

If [ is into A then z € A so, by Lemma 2, 7(G(m, k), kp. nyy -5 1))

is a term of QF and n(Gy(m, k), kpy nyy --e,s "p))["l’ ceey xq] =z, i.e.,

s Xy ey X ;z)

Gk, nyy eeeyn Nxyyeee,s xq] =z. To summarize, if (ny, -+, 7 a

4
€ N® A(q"lp) and if f(n}, «-., 7

b xlv ey xq)=z then
G(ukF(k, nyyeee, np)[xl, cea, xq], nyy e, np)[xl, ceey xq] =z
Now suppose that [ is into N. Then z € N so, by Lemma 2,

WG olm, &y, ky myy eees m)) = 20

Therefore, H(k, n, "’”p) = z. To summarize, if (z, sttty My xl,---,xq)
€ N(p"'l)xA(q)and /(nl,...’ np, xl’oo.’ xq): z then

H(;lkF(k, 721, ] ”p)[xl’ ey xq]y ”p ey ”p) = Z

Now if/ is into A and G(F-kF(kp ”1""’”p)[x1’""xq]’"l’""”p)[xl""’xq]='z’
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then there is some k such that F(k, n, +--, rzp)[xl, ceey "q]‘ It follows that,

letting m = (k)g, T(m, ny5 -2y m,, %15 -2+, %) and hence that f(n,, +-+, Ty

Kyseees X ) is defined and equal so some z,. But, as has just been shown, it
follows that

G(ku(k, n, ee, "p)[xl’ ceay, xq], My 1vy "p)[xl’ ceay, xq] =2z

‘Hence z = z,. This concludes the proof of part (a) of the theorem. Similarly, if f is into A
and H(ukF(k, n,, ceam e x dimyy e ) =z then flng, ceey By, xpy ey %))
is defined and must equal z. This concludes the proof of part (b) of the theorem.

The converse to Theorem 1 will be proved in §7. It follows from the prime
computability of (i) all recursive functions and (ii) the satisfaction relation for
formulas of QF.

6. Search computable functions. Given a term ¢ of QF* with variables from
Vq“, Y g+, 2nd given elements x, ..., x, of A%, let theyy eee,y "k] be

that element of A* which the term ¢ represents when \) . Vq+k are

JISTES
interpreted as x, - .-, x, respectively.

Lemma 3. There are total recursive functions a and B such that, for
natural numbers q and n, alq, n) is a term of Tm™ with variables from
Vq+l, , V‘”ﬁ( ) (or alg, n) =0 if Bln) = 0) and such that, given any w € A*,
there is some n € N and some %, -+, X,y € A such that, for any q € N,
a(q) ”)[xl’ sty xﬁ( )] = w.

Proof. Define a and B as follows:

Vq””l if n=k,

alg, n) = {plalq, w), alg + B(x), v)) if n= (4, v),

0 if n is not a sequence number of length 1 or 2,

k+1 if n=(k),
B(n) = { B(u) + Blv) if n=(u v),

0 if 7 is not a sequence number of length 1 or 2.

The functions a and B are clearly recursive, in fact, both o and B are primi-

tive recursive. By induction on 7, it is immediate that alg, n) is a term of Tm™
. . * . .

with variables from Vq+l’ ceey Vq+ Bin)* We show by A™-induction that, for
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w € A*; for any g € N there is some 7 € N and some X5+ X5, € A such
that a(q. n)lx,, s X ] =w. If we A, let n=(0) so alg, n) = v,

B®) =1 and a(q. n)[w] _w. If w=0, let 2=0 so alg, n)=0 and B(n) 0.
Suppose w = (s, ¢) and the induction hypothesis holds for s and t. Let g be
fixed, Choose , %y, +++, %, such that alg, «)lx}, .-+, %4,)] = s and choose

U Y15 +++s ¥ g, Such that alg + B@), vy s - yﬁ‘v)]“ﬁ(u) =y. Let n=(u, v).
Now

alg, ﬂ)[xl, tee XYt Ypuyg T (s", 1)

where

s = olg, dlxps e e on Sgy Yo o ts Yplg

and
t'= alg+ Blady Mxyp <+ s %y Yo *s Ypilge

But the variables of alg, #) are from V15 +++5 V | ) and the variables of
olg + B(")’ v) are from Vo gy 4y ‘"’Vq+ﬁ<u)+ﬁ( ysos =alg allxp -ees 2l =5
and t' = alg + B), W)y s -+ yﬁ(v)]q+,3(u) = t. Therefore (s', t') =w. This
concludes the proof of Lemma 3.

Theorem 2. There is a recursive function y such that: (a) if f is an
U-search-computable function from N @) A9 into A, then there are total
recursive p + 1 place functions F and G such that, for any (k, n,0ee, ,,p) €
N®+D Fk, nyy.ee, ”p) and Gk, nys +++, n,) are respectively a formula and
a term of QF with variables from V, - -2, 1?'”("') and such that, for any
(nl,...,np,xl,...’xq' z)eN(P) Alat /’(nl,...,np,xl,...,x)_z 1/
and only if there is some natural number k and some sequence y, +++, Yoy (k)
of elements of A such that

F(k, LSRR np)[xl’ s X Yttt yy(k)]
and
G(k, nl’ oo, np)[xl’ veq, xq, yl’ cae, y'}’(k)] = Z

(b) if f is an Wesearch-computable function from N® 5 A@ into N then there
are total recursive functions F and H such that, for any (&, Nyyeeeym ) €
N@®*D | F, Nyseeesm ) is a formula of QF with variables from Vs «+«,

V 4y ) @nd such that, /or any (2, myyeeeympy Xyyeee, X ) € N % A(@D),
fing,eee, By Xppeees X ) z if and only z/ there is some natural number k and
some sequence y i, s y,},(k) of elements of A such that Flk, s+, n, ).

["l"“’x Y1 Yy and H(k, nl,...,n) z.
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Proof. Let 7 be as in Lemma 2. Let a and 8 be as in Lemma 3. Let 6
be a total recursive function such that, for each z € N, 60(z) = z. Let (k) =
B((k),). If [ is any U-search-computable function into A or into N, then, by
the normal form theorem for search computable functions, there is a relation T
and a function U, each absolutely primitive computable in g"{, seey g:, /’;, ceey f:,
such that, for all 7, ..., 7 "1’ XEPR SO 2 (CHRTEN Myy Xppeees X ) z if
and only if there is some w € A* such that T(n, ---, My X ees X w) and
Ulngs eees my %p5 ooy % w) =z Let (Fp, Gp) and (Fy, G)) determine the
representing function of T and the function U respectively as in Lemma 1, Define
functions F\) and G on N®+3) by

: !nl’ Tty np’ v 12 vq7 a(q: m)ly
Go(m,k kz,ﬂ "',n)—G (k )|nl,-u,n vl,"t,vq, a(q, m)|.

p’
Now if
FO(m' k kZ' LSRR np)[xl’ ceey xq' Ypor y,B(m)]
and
Go(m. k kZ: 121, (XK np)[xl, cee, xq, yl’ ceq, yB(m)] =2z

then, letting w = alg, m)ly s -+, yﬁ(m)]q’

FT(kl)[nl’ ceaey, np, xl’ e, xq, w], GT(kI)[nl’ caay, np, xl, ey, xq’ w] =0

F (k )[7111 ceny, npy 1P xqu w], Gu(kz)[ﬂl, cany,

Ty Xps 2%y X, w] = z.

Therefore, T(nl, ooy m

p X120+ 02 % w) and U(”l"”’”p Xppeeor Xy W=z

o xl,---,x ) = z. On the other hand, if f(n,, - PN T )=z
then there is some w € A* and some natural numbers k; and k, such that

F (k )[ﬂl, DRIPS () xl, ceey, xq, w], G (k )[ﬂl, 'OO,ﬂp, xl, ---,xq. III] =
Fu(kz)[”l’ Cees Ty Ky eees X, w] and Gu(kz)[”l’ seea My, s eees X, w] = z.
Pick some m € N and some sequence ys ««+5y Blm) of members of A such that
alg, m)b’lv coey }'ﬁ(,,,)]q =w, then

so [(nl, ceey

Fo(m, kl' k.zl nl,...,np)[xl’...’ qu yl"..!yﬁ(m)]
and

Go(m, kl) kz: 711, “',ﬂp)[xly"'qu: y1,°°’, Yﬁ(m) =z,
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Now let

F(k, 7119 M ] np) ='77(F0«k)09 (k) 1° (k)za nl’ MR ] np))
and

G(kl ﬂl’ ey, np) = "(Go((k)()’ (k) 1° (k)z, ”1, ey, np))o

For each (k, #}, -+, np) e NO+D F(g, mys ey np) is a formula of QF with

variables from V,, ..., V ) Incase [ is a function into A then, for each

q+Y(
(B, 2y5 oees np) e N+ "G(k, myseees np) is a term of QF with variables from
®)
V(l, o V‘H,y(k). Furthermore, for each (7, ..., My ps vovs Xp z) € N'P)
Ala+ ), /("1’ EETEN

some Sequence ¥y, ++s Yoy of elements of A such that

RETTREES xq) =z if and only if there is some k& € N and

F(k: "1’ MR ] np)[xl’ "”xq: )/p ] y-y(k)]

and

G(k, nys vy np)[xl’ e, xq, yl"”’y‘y(k)]=z'

In case [ is a function into N then, for each (k, 7, -+, np) e N@+D),
G(k, ny5 «++, n ) is a numeral of Tm*, Furthermore, for each (z, LITRTRRE
Xy eees xq) e NO*D L AD, f(n ..., Moy Xps e xq) = z if and only if there
is some k € N and some sequence y, ---, Yy (x) of elements of A such that
Flk, nyyeee, np)[xl, TR S PURTED y‘y(k)] and Gk, n}, +--, np) =z Letting
Hk, 75 .en, np) =0Gk, nyp,y .., np)) and leaving the reader to verify that F, G
and H are recursive, the theorem is proved.
Define the language Ex as follows:
(1) The terms of Ex are just the terms of QF.
(2) The formulas of Ex are defined inductively by:
(i) Every formula of QF is a formula of Ex.
(ii) If ¢ is a forumla of Ex and x is a variable then (11, x, ¢) is a

formula of Ex (denoted by 3x¢ and having the corresponding interpretation).

Corollary to Theorem 2. If { is an U-search-computable function from
N®) » A9 into N then there are total recursive functions F and H such that,
forany (k, ny, ..., np) e N®+D F, Mys ey "p) is a formula of Ex and, for
any (nl’ Ceea T, Xy eee, xq) € N(p)xA(q), /("l’ N

» xl, ooo,xq)=
H@kF(k, myy eeeyn xps cees x gy eensn).

4

7. The converses to Theorems 1 and 2. Putting aside our use of
“(xgs ++ s x,_1)"" to denote I, ., P7i, we now let “(xy, -+, x, )"’ denote

that element of A* which codes g eees 2y 1) asin B I x=(xp5 o0 0y X1
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let lh(x)= & and (x)l. =x; (i=0,...,k~1). Let Val be the partial function on
A* defined by

fxp, e xq] if ¢t is aterm of QF and x = (xp ooy xy),
Val(t, x) = where each x, is an element of 4,

undefined otherwise.

Let Sat be the relation on A™ defined by: Sat(¢, x) if and only if ¢ is a formula
of OF, x is of the form (x, ---, xq), with each x, € A, and ¢["1’ ceey xq].
It is a consequence of the recursion theorem for prime computable functions that
Val and Sat are absolutely prime computable (cf. [3]). Every recursive function
is prime computable (cf. [3]), and the set of prime computable functions is closed
under the minimalization operator. This is sufficient to give us

Theorem 3. (a) If F and G are p + 1 place total recursive functions and if,
for any (k, nyseee, rzp) € N("*l), Fk, ny «ev, np) and Gk, ny, - -+, rzp) are
respectively a formula and a term of QF with variables from V|, «.., Vq, then
the function [ from N®) x A@ ino A defined by

/(nl,..., np, Xppeeey xq)
= G(ku(k, nl,..., np)[xl,..., xq], nl, ceey np)[xl’ ceey xq]

is W-prime-computable.

(b) If F and H are p + 1 place total recursive functions and, for every
(B, 2y5een,y rzp) e No+D E(p My e, np) is a formula of QF with variables
from Vi ooe, V,» then the function [ from N® « AD into N defined by
/(nl, ooy np, Kysvees xq) = H(p.kF(k, My eee, ny)[xl, ooy xq], My eeny np) is
U.prime-computable.

Theorem 4. (a) If F and G are p + 1 place total recursive functions and
Y is a total recursive function and if, for any (k, My een, "p) € N+,

F(k, Myyoens np) and G(k, My ooy np) are respectively a formula and a term of

QF with variables from Viseen, quk) » then the (partial, multiple valued)
function [ from N®) x AD into A defined by:

/("l’ Sty By, Kpyeee, xq) =z if and only if, for some k € N and some
Yp oo y‘)’(k) €A, F(k, Ny oeey np)[xl’ cee, xq, Yp ooy y’)’(k)] and
G(k' Ty oy ”p)[xla'”s xq' Ypeotes y-y(k)]=z9

is ?I-searcb-computable. (b) If F and H are p + 1 place total recursive functions,
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and y is a total recursive function, and if, for any (k, Nyyseeym ) e N("‘*l),
F(k, nys seesn ) is a formula of QF with variables from V5 +«.., V
the function //rom N®) « AD into N defined by:

a+7(k)? then

/("1"'" n,

some yl’ ceey, yk € A such that F(k, Tll, sy, ”p)["p ey xq: )'1, sy, )’y(k)]
and H(k, My eeey np) =z

» Xy ey xq) = z if and only if there is some k € N and

is U.-search-computable.

Proof. Let v be the search operator of [3]. Let f be defined from F and
G as in part (a). Define y = y(ny, «+esm, x5 o o0, x_ ) = vulsequence (w) &
(w)y € N & (Vi < Ih(w) - (W), € A & Ih(w)=y{(w)y) +1 x Fw) sy, seeymy)
cleppeesx, @ een, (w),y((w)o)]). Now y is U-search-computable and

/(7119 sey My, Xy ey xq)

b
= G((y)oo 711, M | np)[xv 00y xq’ (y) L] (y)y((Y)o)].

Hence [ is Y-search-computable. Now suppose [ is defined from F and H as
in part (b). Let y be as above. Then f(n}, «ceyn

N xl, ey, xq):
H((y)gs nys o oes np) so [ is U-search-computable,

4

8. Computability and the constructible L ;o' The infinitary language

“constructible L, )’ (cf. [4]) has finitary quantification and infinitary disjunc-
tions WQ of nonempty, recursively enumerable sets Q@ of formulas. We consid-
er certain sublanguages of constructible L & An existential formula is a
formula of the language Ex of §6. An W formula is a formula of the form WQ,
where Q is a recursively enumerable set of formulas of OF all of the variables
of which lie in some finite set. An W3-formula is a formula of the form W Q,
where {) is a recursively enumerable set of existential formulas all of the free
variables of which lie in some finite set.

Recall that a relation is called semi-U-prime-computable (semi-¥-search-
computable) if it is the domain of an U-prime-computable (¥-search-computable)
function. By Theorems 1 and 3 (2 and 4),a g place relation R on A is semi-
Uprime-computable (semi-U-search-compuable) if and only if there is a total
recursive function F into the formulas of QF (Ex) such that, for any
Geppeeenx ) e AD, R(xpyeenyx o) if and only if, for some &, F(k)xys «-v, x 1.
An 1mmed1ate consequence is the next theorem,

Theorem 5. (a) A relation on A is definable in U by an \{/-formula if and only
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if it is semi-W-prime-computable. (b) A relation on A is definable in U by
an \W1-formula if and only if it is semi-U-search-computable.(1)

Remark. There are many ‘‘pathological’’ cases that might be considered.
For example, if U has no “‘given’’ relations, then, writing n for LITREE
and x for x5 «++, %o (a) the U-prime-computable functions f: N®) x AlD) SN
are those of the form f(n, x) = g(n), for some partial recursive g, and (b) the
%-prime-computable functions f: N #) x A(?2) — A are those of the form
f(n, x) = g(n)[x], for some partial recursive function g into the terms of QF.
Hence an U-prime-computable function f: A'® — N is nowhere defined or con-
stant and an U-prime-computable function f: A, A is nowhere defined or is
a composition of *‘given’’ functions. If, on the other hahd, ¥ has no ‘‘given”’
functions, then (a) the U-prime-computable functions f: AD = A are those
which can be defined by cases:

x, if ¢,x],

f(x) =

xR

if ¢q[x];

q

where @, e, qS are formulas of OF and if i <j then "t;b = "¢, is valid
and (b) the u-pnme-computable relations R CA@ are those definable by for-
mulas of QF. Other such special cases are left for the amusement of the reader.
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(1) For the case that ¥ is a relational structure with equality, Theorem 5(b) is
closely related to results of Daniel Lacombe and Yiannis Moschovakis, Lacombe asserts
in [1] that a relation is “recursive in Rys++«, R " in a sense defined by Fraisse, if and
only if both it and its complement are\{3 definable from R, ..., Ra’ =, Moschovakis
shows in [2] that a relation is Fraisse recursive in Rl’ ceey R if and only if it is search
computable in R P R



