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ABSTRACT. A quantitative majorization-subordination result of Goluzin and Tao

Shah for univalent functions is generalized to H„, the linear invariant family of locally

univalent functions of finite order or. If f(z) is subordinate to F(z) in the open unit disc,

/'(0) > 0, and F(z) is in U„ 1.65 < a < oo, then f'(z) is majorized by F'(z) in

\z\ < (a + 1) - (a2 + 2a)vi. The result is sharp.

I. Introduction. Let <S denote the set of all normalized analytic univalent

functions in the open unit disc D. Let/(z), F(z) and <p(z) be analytic in |z| < r.

We say that/(z) is majorized by F(z) in \z\ < r, if |/(z)| < |F(z)| in |z| < r. We

say that/(z) is subordinate to F(z) in |z| < r if f(z) = F(q>(z)) where |<p(z)| < |z|

in |z| < r.

Let tla be the set of all locally univalent (f'(z) ¥= 0) analytic functions in D

with order < a which are of the form f(z) = z A- •••. The family U„ is known

as the universal linear invariant family of order a [4]. A concise summary and

introduction to properties of linear invariant families which relate to the

following material is contained in [1]. The present paper concludes the proof of

results announced in [1].

Majorization-subordination theory begins with Biernacki who showed in 1936

that if/(z) is subordinate in D to F(z) (F(z) G <S), then/(z) is majorized by F(z)

in |z| < 1/4. In the succeeding years Goluzin, Tao Shah, Lewandowski and

MacGregor examined various related problems but always under the stipulation

that the dominant function F(z) is in <S (for greater detail see [1]).

In 1951 Goluzin showed that if f(z) is majorized by a univalent function F(z),

then f'(z) would be majorized by F'(z) in |z| < 0.12. He conjectured that

majorization would always occur for jz| < 3 - yß and this was proved by Tao

Shah in 1958.

In this paper we show that the result is actually true for functions in 11. and

obtain the sharp radius of majorization as a + 1 - (a2 + 2a)^2 for 1.65 < o

< oo. This yields 3 - yß for the case a = 2.

Our investigation shows that the important datum for majorization-subordina-

tion theory is not univalence, but the order of a linear invariant family. In

particular, many classically derived estimates for univalent functions are true for

functions of infinite valence.
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The method of proof uses a considerable number of estimates. Because of

these estimates it remains an open question as to whether the result of Theorem

1 is true for 1 < a < 1.65. We conjecture that Theorem 1 is true in this range,

and therefore conjecture that for convex univalent functions (F(z) G U,) the

radius of majorization of the derivative should be 2 - y/5.

II. Statement and proof of the theorem. We first state and prove an improved

form of the Schwarz lemma for unimodular analytic functions which is due to

Tao Shah [5]. We then state a weaker form due to Goluzin.

Lemma 1. Let <p(z) = az + • • •, a > 0, \tp(z)\ < 1, be analytic in \z\ < 1. Then

(1) <p(z)
a + u{z)

1 + au(z)'

where u(z) is analytic and satisfies |<o(z)| < |z| in \z\ < 1. Moreover, for any z0 in

\z\ < 1, if we let w(z0) = c, then

(2) W(zo)\ <
a + 2c 4- ac2

(1 + ac)2
+

I-a2

\l+ac\2

Uo\2-\c\2

1 - Uol2 '

Proof. Since \<p(z)/z\ < 1 in |z|< 1, the function

(3) w(z) = ^f±
1 - a<p(z)/z

satisfies the Schwarz lemma. Solving (3) for <p(z) yields (1).

Fix a point z0 in D and let w(z0) = c. The derivative of tp(z) at z0 is

(4) <p'(z0) = (ZQU'(Z0) -C)fz-r^ + T-7-
(1 +acf '  1 +ÛC     (l +ac)2'

It therefore suffices to show

|zoW'(z0)-c|<(|z0|2-|c|2)/(l-|z0|2).

The function

satisfies the Schwarz lemma in |£ | < 1 and/(-z0) = -c. Letg(f) = /(?)/? and

M?) = (g(0 -/'(0)) • (1 -f'(0)g(£))~l. Since h(£) also satisfies the Schwarz

lemma we obtain

(5) |A(-*o)l =
c - z0f'(0)

< kol-
zo-c/'(0)l

However,/'(0) = (1 - |z0|2)(l - |c|2)_1w'(2o)and therefore upon squaring both

sides of (5) and noting that
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|z0|2|<o'(z0)|2 + kP - \zo<¿'(zo) - c\¡ = u'(z0)z0c + cz0u'(z0),

we obtain

(1 - |z0|2)2(|z0<o'(z0) - c\2 - k|2) < (1 - |c|2)(|z0|4 - |c|2).

Hence

(l-|z0|2)2(|zoW'(z0)-c|2)<(|z0|2-k|2)2,

or, equivalently,

|z0<o'(z0) -c\< (\z0\2 - k|2)/(l - |z0|2),

which toncludes the lemma.

Lemma 2. Under the condition of Lemma 1,

tpiz)-z

1 — zrjp(z)
<

|z|(l - a)

i + M2-M(i + a)'

and

\<p'(*)\ <
a(l + |z|2) + 2|z|    1 - |<p(z)|2

1 + |z|2 + 2a|z|       1 - \z 2    '

z G D,

z G D.

Proof. The proof of this lemma can be found within a proof by Goluzin [3, pp.

331-332].

Theorem. Let f(z) be subordinate to F(z) in D with f'(0) > 0. // F(z) G Ua,

1.65 < a < oo, thenf'(z) is majorized by F'(z) in \z\ < a A- 1 — (a2 + 2a)1/2 and

the result is best possible.

Proof. Since f(z) is subordinate to F(z) in D with f'(0) > 0 we have

f(z) = F(<p(z)) where <p(z) satisfies Lemma 1. Choose and fix an arbitrary z0 in

\z\ < (a + 1) - (a2 + 2a)1/2. Our goal is to show that |/'(^o)/^'(^o)l < !•

Since/(z) = F(tp(z)) we have

(6) |/'(z0)/F'(z0)| = |F'(<p(z0))/F'(z0)| \<p'(z0)\.

For any a and b in D and any function F in Ua we have [4, Lemma 2.1]

F'(a)\      '-"-'2
(7) F'(b)

i-|/3|2/|i-¿T¿,| + k-¿7|y

- l-|a|2V|l-«/3|-|a-6|; •

We therefore obtain our fundamental inequality

/w    ,-u|2
(8)

F'(z0)

K    1 - Ifaj     /|1 -<p(z0)z0| + |rp(z0)-z0|.  . ,

^ 1 - \<ázo)\2 111 - <f>(zo)zo\ - k(zo) - «él
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Our proof now proceeds in two different directions depending on whether/'(0)

is large or small in relation to a. We first consider the case of small/'(0); namely,

0 < /'(0) < 3/20   (if 1.65 < a < 2),

0 < f'(0) < 1/6   (if 2 < a < 3),

0 < /'(0) < 1/10   (if 3 < a < oo).

If we apply Lemma 2 to our fundamental inequality (8) we obtain

.ba+l/b-a\a      ,7       ,.
< T+TU^tJ   =k(a,a,b)

where b = (1 + |z0|2)/2|z0| and a = /'(0). Note that b is always bounded below

by a + 1 since r0 = |z0| is bounded above by a + 1 — (a2 + 2a)^2.

It is quite easy to show that k(a,a,b) is the product of two positive decreasing

functions in b and hence is itself a decreasing function in b. We now show that

k(a,a,a + 1) is increasing in a. Since

dk(a,a,a + 1) ^ (a + 1 - a)""'      P(a,a)

3a (a)a (a+l+a)2'

where P(a,a) — -a(a + \)a2 - (a3 + 3a2 + Aa)a + a(ct + I)2, we are reduced

to establishing P(a, a) > 0. But P(a, a) is a quadratic in a with negative leading

coefficient and F(0, «) > 0. Therefore, if F(.4, a) is greater than 0, P(a, a) will be

greater than zero for any a in [0, .4] which will conclude the argument that P(a, a)

is nonnegative for small f'(0).

A computation shows F(.4,a + 1) = a(.6a2 + .64a — .76) > 0 which there-

fore concludes the demonstration that k(a,a,a + 1) is increasing in a. Thus

|/'(z0)/F'(z0)| < k(a,a,b) < k(a,a,a + 1), and, since k(a,a,a + 1) is increas-

ing in a, in order to conclude the proof of the theorem for 'small' values of a, it

suffices to show that

(a) k (3/20, a, a + 1) < 1 when 1.65 < a < 2,

(b) ¿(1/6, a, a + 1) < 1 when 2 < a < 3,

(c) £(1/10, a, a + 1) < 1 when 3 < a < oo.

Subcase a. Since

(d/da)k (.15, a, a + 1)

= /q + i-.i5yr çis)2 — i

\ « ) \_(a + .15 + l)2

(a+ 1).15+ 1/,     a+ 1 -.15 ,      .15-1    \"|
+   « + .15+1   V'°g-»-+ «+l-.15jJ

fa+ 1 -.15YT   C-15)2 — 1        (1.65+ 1).15+ 1/      1.65 + 1 - A5\

~\        « / L(2 + .15 + l)2       1.65 + .15 + 1   V°g 1.65 )

/(2+l).15+l\/    .15-1    \1

+ V 2+ .15+ 1   )\2+ 1 — -15/J

<0

(9)
fU)
F'(z0)
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for 1.65 < a < 2, therefore k(.15,a, a + 1) is a decreasing function of a in this

range. It therefore suffices to check by a routine computation that k(A5,1.65,

2.65) < 1.

Subcase b. Since [(a + l)a + l]/(a + a + 1) is decreasing with a, and ((a

+ b)/a)a is an increasing function of a for all a > 0 and all b > 0, we can state

Hlft zv zv + 1. <(2+ 00/6) +1/3+1-1/6V*(l/6,«,« + 1) <   2+1/6 + 1   I-3-) ■

It is easy to verify that this latter quantity is indeed less than one.

Subcase c. This is the easiest case since, as above,

,,..        . .* .   /(3 + l).10+l\
k(.10,a,a+l)<e{  3 + -10+1   j < 1.

Thus for small values of/'(0) we have shown that f'(z) is majorized by F'(z) in

\z\ < (a + 1) - (a2 + 2a),/2.

We now consider the case that f'(0) is large. Returning to our fundamental

inequality (8), we note that in the language of Lemma 1

<p(z0) = z0(a + c)/(l + ac),       c = re", |z0| = r0, and

(1 - |z0|2)(l - |<p(z0)|2)

(10)       = |1 + ac|-2(|l +ac- ri(a + c)\ + r0(l - «)|1 - c|)

• (|1 + ac - r02(a + c)| -r0(l - a)|l - c\).

Therefore (8), (10) and Lemma 1 together imply that

l/W
(11)

FU)
.        2A\1 +ac- r02(a + c)\ + r0(l - a)|l - c|)-'

- V       ° ;(|1 + ac - r02(a + c)\ - r0(l + a)\l - c\)°+l

■ [\a + 2c + ac2\(l - r02) + (r02 - \c\2)(l - a2)].

Lemma 3, at the end of the paper, shows that when/'(0) is 'large' the right-hand

side of (11) as a function of c = ré9 has its maximum at 6 = 0. Noting that

1 + ar - r02(a + r) ± rQ(l - a)(l - r) = (1 ± r0)[l + or + r0(a + r)],

we infer

(12)

fU) I < /I + r0Y[l + ar - r0(a + /•)]-'

F'(z0) I - V1 - rj [l + ar + r0(a + r)]"+1

• [(1 - ri)(a + 2r + ar2) + (r02 - r2)(l - a2)].

Let L(r, r0, zz) denote the right-hand side of (12). The proof of majorization will

be concluded if we can show that L is an increasing function of a since

L(r,r0,l)= 1.
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However,

(l+r0\a[l+ar-r0(a + r)r2     (.

\l-r0) [1 + ar + r0(a + r)]a+2   *W

where

R(a) = [(1 + ar)2 - r0(a + r)2]. [1 - tfr2 - (2a + l)(r02 - r2)]

-[(1 - r02)(a + 2r + ar2) + (1 - a2)(r02 - r2)]

■ [2r(\ - r02) + 2ar0(\ - r2) - 2a(r02 " r2)].

The problem then is to show R(a) is nonnegative. Since

R'(a) = 2(r02 - r2)[2aar0(\ - r2) + (1 - r)2(l - r02)(a - 1)]

- 2ar0 ■ (1 - r02)(l - r4)

< 2ar0[2r02 - (1 - r02)(l - tf)],

we can conclude that R(a) is a decreasing function if we note that 2r02

- (1 - r02)(l - zo4) < 0 since r0 < (a + 1) - (a2 + 2a)l/2 < 1/2. Thus R(a)

> 7?(1). However,

F(l) = (1 + r)2(l - r02)(l - r)[(l - r)(l - r02) - 2«r0(l + r))

> (1 + r)2(l - r02)(l - r)(l + r0)[l - r02 - 2ar0]

>0,

since (1 - r02) - 2ar0 > 0 for r0 < (a + 1) - (a2 + 2af2.

Thus for large f'(0), \f'(z0)/F'(z0)\ < 1; that is, f'(z) is majorized by F'(z) in

kl < (a + 1) - (a2 + 2a)'/2.

We now show that this result cannot be improved. This means that for any real

number m! > m(a) = (a + 1) — (a2 + 2a)1/'2 we must find analytic functions

f(z) and F(z) such that/(z) is subordinate to F(z),/'(0) > 0, F(z) E Ua, but for

which |/'(z)| < |F'(z)| for all |z| < m' is false.

Let

F(z) = ¿{! " (tti)"} and /(«.«)-tfi*))

where tp(z) = z(a + z)/(l + az), 0 < a < 1. Then f(z, a) is subordinate to F(z)

in D for any a, 0 < a < 1, F(z) is in 11 „, and/'(0) > 0. A computation shows

o7/(z'a)

where 6 = (1 + r2)/2r, and

(1 - r2)"'1      a¿+ 1

2Va        * (¿, + fl)«+i
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(13) ±\±f(!a)\     II      = (1 " r2)"~' •[b - (a + 1)]w       a«LVu,a'L-JL-i     2-r«     (6+ir1 ■

Thus if we let z = r, m < r < w', then b = (1 + r2)/2r < a + 1 and (13)

implies that bf(z, a)/oz\z=r is a decreasing function of a for such a value of r.

Therefore for a sufficiently close to 1,

f'(r,a) = 3/(z, a)/oz\z=r> df(z, l)/9z|z=r= F'(r) > 0.

Therefore/' is not majorized by F' in |z| < m'.

This concludes the proof of the theorem.

Corollary 1. 7//(z) is majorized by F(z) in U2 and f'(0) > 0, then f'(z) is

majorized by F'(z) in \z\ < 3 — \/8 and the result is sharp.

Corollary 1 is an improvement on Tao Shah's result for F(z) in S since S is a

proper subset of 112. The same estimates therefore hold even for the functions of

infinite valence which lie in VL2.

III. Statement and proof of Lemma 3.

Lemma 3. If 1.65 < a < 2 and 3/20 < a < 1, or if 2 < a < 3 and 1/6 < a

< 1, or if 3 < a < oo and 1/10 < a < 1, then, as a function ofO, the maximum of

(|1 + ac - rj(a + c)| + r0(l - q)|l - d)-1

(14) (|1 + ac - ri(a + c)\ - r0(\ - a)\\ - c\)Tl

■ [\a + 2c + ac2\(\ - r02) + (r02 - \c\2)(l - a2)},

where c = re'e and 0 < r < r0 < a + 1 - (a2 + 2a)1/'2, occurs at 9 = 0.

Proof. Let 1(6) denote the quantity in (14). In order to compute dl/dO we first

write 7 as 7 = Aa~ lC/Ba+l  where

A = |1 - anf + c(a- rj)] + r0(l - a)\\ - c\ = D + E,

B m |1 - ar02 + c(a - r02)\ - r0(\ - a)|l - c| = D - E,

C = \a + 2c + ac2\(\ - tf) + (nf - r2)(l - a2).

Then

....       dl     A"-2[ f AndC    ^JEdE    DdD\\  , ^   A'DdE    EdD\~\
(15) Te-B^2[{ABT9 + 2C\AW-Aw)} + laC\AW-AW)\-

Since

dD     -rsinO, 2W        ,,
-Jg = —¿j—(1 - ar¿)(a - r02),

dE _ rsinfl
do ~~     E    '
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dC        -2arsin0   ,,       ÎW1       ,     _ ..

rf* = k + 2c + flc2|(1 - r°)(1 + '  + ^ C0S ̂

yíB = (1 - r02)[l - a2r02 + r2(a2 - r02) + (1 - ro2)2arcos0],

„¿/F     ndD        ,,       ,,,    .    .
E-^ - D-^ = a(l - r02)2r sm 9,

D§-E7¡- rr°SÍn^-fl2)(l - r02)(l - «tf + r2(a - r02)),

we can verify that

dl _ A<-2/-2arsin9(l-r02)2(l-a2)\ .

dl - B^A |a + 2c + ac2| r      2      3)'

where

/, = (1 - r2)(l + r2ri) - 2r2(\ - r¿) + 2ar(r02 - r2)cos 9,

h = "(/o2 - r2)\a + 2c + ac2|,

j -ar0    f      1 - az-o2 + r2(a - r02)      ^

h     a(\ - r$)\\l -c\\l- ar02 + c(a - i¡?)| j

• {(1 - a2)^2 - r2)\a + 2c + ac2\ + \a + 2c + ac2\2(l - r02)}.

Clearly it now suffices to verify that Ix + I2 + I} > 0 in order to prove the

maximum of 1(9) occurs at 0 = 0.

We first determine an estimate for I3. The expression in the denominator of />

satisfies

\l - c\\\ - ar02 A- c(a - r02)\ > (1 - r)(l - ar02 + r(a - r02)).

This is most easily seen by squaring both expressions, removing the common

factors and noting that 0 < (a — r02)/(l — an}) < 1 since a > .10 > (a + 1

- (a2 + 2a)'/2)2 > r02. Thus,

i,i < ar0[l - ar02 + r2(a - r02)](a + 2r + ar2)

(16) ' 3l -   «U - tf)0 - ')0 - «i? + r(a - r02))

• {(1 - û2)(/b2 - r2) + (a + 2r + ar2)(l - r02)}.

The denominator of (16) is a decreasing function of r and the numerator of

(16) is the product of three increasing functions in r. Consequently we obtain,

.   ,      ar0 (1 + r02)(l + r0) [a(l + r02) + 2r0]2

l3'       « 0-*b)       (l+r02 + rQ(l+a))     ■*'

However,
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r02) + 2r0   \ _ (1 - r02)[2 - a(\ + a)]     Qd(   a(l+r02) + 2r0   \ = (1 - r02)[2 -

dr0 V 1 + r02 + r0(l + a))       (\ + r02 + rQ 2    —(1 + a))

Therefore J3 is the product of monotone increasing functions in r0 and so

h ^ /} lr0=zn> where m = m(a) = a + 1 — (a2 + 2a)1/'2. Upon substituting this

value for r0 into J3 and noting that 1 + m2 = 2(a + \)m, we obtain

8(a + 1)     AA + rn) [1 + a(a + l)]2 _   ,
\h\ ̂  - a 1 - /w    (3 + a + 2a)        4

We now turn to a lower estimate on 7, + 72. Clearly,

h + h £ 4 - O - >-2)(l + 'o2'-2) - 2r2(l - r02) - (r02 - r2)(l + Ar + r2).

To obtain a lower estimate for J5 we note that

dJjdr = -AW + r(l -r2- r02 + r2r02 - 3r)]

< -A[r(l - 2r02 - 3r0) + r02].

Since 1 — 2z-02 — 3r0 > 1 — 2w2 — 3m > .03, it follows that J5 is a decreasing

function of r. Therefore upon noting (1 — m)2 = 2am and (1 — m2)2 = Am2(a2

+ 2a) we can conclude that

Mr) > J5(r0) = (1 - r02)3 > (1 - m2f - 8/*V + 2«2)|^-

Therefore,

r    .    r    .    r   -^   r r   \ 8a/H3(l + »l) ,       .
7, + 72 + 73 > 75 - 4i > (1 _ m)a{3 +a + 2a) ■ Qia, a),

where     Qia,a) = a2(-a3 - 2a2 - a - 1) + a(2a3 + 5a2 + 2a - 2) - (a + 1).

We are therefore reduced to showing Q(a, a) is positive for all possible cases of a

and a in the hypothesis of the lemma.

We first note that Q(a, a) is an increasing function of a since

U = a2(6a - 3a2) + a(10a - 4a2) - 1 + 2a - a2

> .57a2 + .96a - .81 > 0.

We next note that Q is a quadratic function in a with negative leading coefficient

and g(l,a) = a3 + 3a2 - 4 > 0. Thus if f2(a0,a) > 0 for a0 in (0,1), then

Q(a,a) > 0 for all a, a0 < a < 1. We thus need only show that ß(3/20,1.65),

(2(1/6,2) and g( 1/10,3) are each positive. This is true as a routine computation

indicates.

This concludes the proof of the lemma.
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