MAJORIZATION-SUBORDINATION THEOREMS FOR LOCALLY UNIVALENT FUNCTIONS. III

BY
DOUGLAS MICHAEL CAMPBELL

Abstract

A quantitative majorization-subordination result of Goluzin and Tao Shah for univalent functions is generalized to \mathfrak{n}_{a}, the linear invariant family of locally univalent functions of finite order α. If $f(z)$ is subordinate to $F(z)$ in the open unit disc, $f^{\prime}(0) \geq 0$, and $F(z)$ is in $\mathfrak{n}_{a,}, 1.65 \leq \alpha<\infty$, then $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z| \leq(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$. The result is sharp.

I. Introduction. Let \subseteq denote the set of all normalized analytic univalent functions in the open unit disc D. Let $f(z), F(z)$ and $\varphi(z)$ be analytic in $|z|<r$. We say that $f(z)$ is majorized by $F(z)$ in $|z|<r$, if $|f(z)| \leq|F(z)|$ in $|z|<r$. We say that $f(z)$ is subordinate to $F(z)$ in $|z|<r$ if $f(z)=F(\varphi(z))$ where $|\varphi(z)| \leq|z|$ in $|z|<r$.

Let \mathfrak{u}_{α} be the set of all locally univalent $\left(f^{\prime}(z) \neq 0\right)$ analytic functions in D with order $\leq \alpha$ which are of the form $f(z)=z+\cdots$. The family \mathfrak{U}_{α} is known as the universal linear invariant family of order α [4]. A concise summary and introduction to properties of linear invariant families which relate to the following material is contained in [1]. The present paper concludes the proof of results announced in [1].

Majorization-subordination theory begins with Biernacki who showed in 1936 that if $f(z)$ is subordinate in D to $F(z)(F(z) \in \mathbb{S})$, then $f(z)$ is majorized by $F(z)$ in $|z|<1 / 4$. In the succeeding years Goluzin, Tao Shah, Lewandowski and MacGregor examined various related problems but always under the stipulation that the dominant function $F(z)$ is in \subseteq (for greater detail see [1]).
In 1951 Goluzin showed that if $f(z)$ is majorized by a univalent function $F(z)$, then $f^{\prime}(z)$ would be majorized by $F^{\prime}(z)$ in $|z|<0.12$. He conjectured that majorization would always occur for $|z|<3-\sqrt{8}$ and this was proved by Tao Shah in 1958.
In this paper we show that the result is actually true for functions in \mathfrak{H}_{α} and obtain the sharp radius of majorization as $\alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$ for $1.65 \leq \alpha$ $<\infty$. This yields $3-\sqrt{8}$ for the case $\alpha=2$.
Our investigation shows that the important datum for majorization-subordination theory is not univalence, but the order of a linear invariant family. In particular, many classically derived estimates for univalent functions are true for functions of infinite valence.

[^0]The method of proof uses a considerable number of estimates. Because of these estimates it remains an open question as to whether the result of Theorem 1 is true for $1 \leq \alpha<1.65$. We conjecture that Theorem 1 is true in this range, and therefore conjecture that for convex univalent functions $\left(F(z) \in \mathfrak{U}_{1}\right)$ the radius of majorization of the derivative should be $2-\sqrt{3}$.
II. Statement and proof of the theorem. We first state and prove an improved form of the Schwarz lemma for unimodular analytic functions which is due to Tao Shah [5]. We then state a weaker form due to Goluzin.

Lemma 1. Let $\varphi(z)=a z+\cdots, a \geq 0,|\varphi(z)| \leq 1$, be analytic in $|z|<1$. Then

$$
\begin{equation*}
\varphi(z)=z \cdot \frac{a+\omega(z)}{1+a \omega(z)} \tag{1}
\end{equation*}
$$

where $\omega(z)$ is analytic and satisfies $|\omega(z)| \leq|z|$ in $|z|<1$. Moreover, for any z_{0} in $|z|<1$, if we let $\omega\left(z_{0}\right)=c$, then

$$
\begin{equation*}
\left|\varphi^{\prime}\left(z_{0}\right)\right| \leq\left|\frac{a+2 c+a c^{2}}{(1+a c)^{2}}\right|+\frac{1-a^{2}}{|1+a c|^{2}} \cdot \frac{\left|z_{0}\right|^{2}-|c|^{2}}{1-\left|z_{0}\right|^{2}} . \tag{2}
\end{equation*}
$$

Proof. Since $|\varphi(z) / z| \leq 1$ in $|z|<1$, the function

$$
\begin{equation*}
\omega(z)=\frac{\varphi(z) / z-a}{1-a \varphi(z) / z} \tag{3}
\end{equation*}
$$

satisfies the Schwarz lemma. Solving (3) for $\varphi(z)$ yields (1).
Fix a point z_{0} in D and let $\omega\left(z_{0}\right)=c$. The derivative of $\varphi(z)$ at z_{0} is

$$
\begin{equation*}
\varphi^{\prime}\left(z_{0}\right)=\left(z_{0} \omega^{\prime}\left(z_{0}\right)-c\right) \frac{\left(1-a^{2}\right)}{(1+a c)^{2}}+\frac{a+c}{1+a c}+\frac{c\left(1-a^{2}\right)}{(1+a c)^{2}} . \tag{4}
\end{equation*}
$$

It therefore suffices to show

$$
\left|z_{0} \omega^{\prime}\left(z_{0}\right)-c\right| \leq\left(\left|z_{0}\right|^{2}-|c|^{2}\right) /\left(1-\left|z_{0}\right|^{2}\right)
$$

The function

$$
f(\zeta)=\left\{\omega\left(\frac{\zeta+z_{0}}{1+\bar{z}_{0} \zeta}\right)-\omega\left(z_{0}\right)\right\} /\left\{1-\overline{\omega\left(z_{0}\right)} \omega\left(\frac{\zeta+z_{0}}{1+\bar{z}_{0} \zeta}\right)\right\}
$$

satisfies the Schwarz lemma in $|\zeta|<1$ and $f\left(-z_{0}\right)=-c$. Let $g(\zeta)=f(\zeta) / \zeta$ and $h(\zeta)=\left(g(\zeta)-f^{\prime}(0)\right) \cdot\left(1-\overline{f^{\prime}(0)} g(\zeta)\right)^{-1}$. Since $h(\zeta)$ also satisfies the Schwarz lemma we obtain

$$
\begin{equation*}
\left|h\left(-z_{0}\right)\right|=\left|\frac{c-z_{0} f^{\prime}(0)}{z_{0}-c \overline{f^{\prime}(0)}}\right| \leq\left|z_{0}\right| \tag{5}
\end{equation*}
$$

However, $f^{\prime}(0)=\left(1-\left|z_{0}\right|^{2}\right)\left(1-|c|^{2}\right)^{-1} \omega^{\prime}\left(z_{0}\right)$ and therefore upon squaring both sides of (5) and noting that

$$
\left|z_{0}\right|^{2}\left|\omega^{\prime}\left(z_{0}\right)\right|^{2}+|c|^{2}-\left|z_{0} \omega^{\prime}\left(z_{0}\right)-c\right|^{2}=\overline{\omega^{\prime}\left(z_{0}\right)} \bar{z}_{0} c+\bar{c} z_{0} \omega^{\prime}\left(z_{0}\right),
$$

we obtain

$$
\left(1-\left|z_{0}\right|^{2}\right)^{2}\left(\left|z_{0} \omega^{\prime}\left(z_{0}\right)-c\right|^{2}-|c|^{2}\right) \leq\left(1-|c|^{2}\right)\left(\left|z_{0}\right|^{4}-|c|^{2}\right)
$$

Hence

$$
\left(1-\left|z_{0}\right|^{2}\right)^{2}\left(\left|z_{0} \omega^{\prime}\left(z_{0}\right)-c\right|^{2}\right) \leq\left(\left|z_{0}\right|^{2}-|c|^{2}\right)^{2}
$$

or, equivalently,

$$
\left|z_{0} \omega^{\prime}\left(z_{0}\right)-c\right| \leq\left(\left|z_{0}\right|^{2}-|c|^{2}\right) /\left(1-\left|z_{0}\right|^{2}\right)
$$

which toncludes the lemma.
Lemma 2. Under the condition of Lemma 1,

$$
\left|\frac{\varphi(z)-z}{1-\bar{z} \varphi(z)}\right| \leq \frac{|z|(1-a)}{1+|z|^{2}-|z|(1+a)}, \quad z \in D
$$

and

$$
\left|\varphi^{\prime}(z)\right| \leq \frac{a\left(1+|z|^{2}\right)+2|z|}{1+|z|^{2}+2 a|z|} \cdot \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}, \quad z \in D .
$$

Proof. The proof of this lemma can be found within a proof by Goluzin [3, pp. 331-332].

Theorem. Let $f(z)$ be subordinate to $F(z)$ in D with $f^{\prime}(0) \geq 0$. If $F(z) \in \mathfrak{U}_{\alpha}$, $1.65 \leq \alpha<\infty$, then $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z| \leq \alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$ and the result is best possible.

Proof. Since $f(z)$ is subordinate to $F(z)$ in D with $f^{\prime}(0) \geq 0$ we have $f(z)=F(\varphi(z))$ where $\varphi(z)$ satisfies Lemma 1. Choose and fix an arbitrary z_{0} in $|z| \leq(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$. Our goal is to show that $\left|f^{\prime}\left(z_{0}\right) / F^{\prime}\left(z_{0}\right)\right| \leq 1$.
Since $f(z)=F(\varphi(z))$ we have

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right) / F^{\prime}\left(z_{0}\right)\right|=\left|F^{\prime}\left(\varphi\left(z_{0}\right)\right) / F^{\prime}\left(z_{0}\right)\right|\left|\varphi^{\prime}\left(z_{0}\right)\right| . \tag{6}
\end{equation*}
$$

For any a and \mathbf{b} in D and any function F in \mathfrak{u}_{α} we have [4, Lemma 2.1]

$$
\begin{equation*}
\left|\frac{F^{\prime}(a)}{\bar{F}^{\prime}(b)}\right| \leq \frac{1-|b|^{2}}{1-|a|^{2}}\left(\frac{|1-\bar{a} b|+|a-b|}{|1-\bar{a} b|-|a-b|}\right)^{a} . \tag{7}
\end{equation*}
$$

We therefore obtain our fundamental inequality

$$
\begin{equation*}
\left|\frac{f^{\prime}\left(z_{0}\right)}{F^{\prime}\left(z_{0}\right)}\right| \leq \frac{1-\left|z_{0}\right|^{2}}{1-\left|\varphi\left(z_{0}\right)\right|^{2}}\left(\frac{\left|1-\overline{\varphi\left(z_{0}\right)} z_{0}\right|+\left|\varphi\left(z_{0}\right)-z_{0}\right|}{\left|1-\overline{\varphi\left(z_{0}\right)} z_{0}\right|-\left|\varphi\left(z_{0}\right)-z_{0}\right|}\right)^{\alpha}\left|\varphi^{\prime}\left(z_{0}\right)\right| . \tag{8}
\end{equation*}
$$

Our proof now proceeds in two different directions depending on whether $f^{\prime}(0)$ is large or small in relation to α. We first consider the case of small $f^{\prime}(0)$; namely,

$$
\begin{aligned}
& \left.0 \leq f^{\prime}(0) \leq 3 / 20 \quad \text { (if } 1.65 \leq \alpha \leq 2\right) \\
& \left.0 \leq f^{\prime}(0) \leq 1 / 6 \quad \text { (if } 2 \leq \alpha \leq 3\right) \\
& \left.0 \leq f^{\prime}(0) \leq 1 / 10 \quad \text { (if } 3 \leq \alpha<\infty\right)
\end{aligned}
$$

If we apply Lemma 2 to our fundamental inequality (8) we obtain

$$
\begin{equation*}
\left|\frac{f^{\prime}\left(z_{0}\right)}{F^{\prime}\left(z_{0}\right)}\right| \leq \frac{b a+1}{b+a}\left(\frac{b-a}{b-1}\right)^{\alpha} \equiv k(a, \alpha, b) \tag{9}
\end{equation*}
$$

where $b=\left(1+\left|z_{0}\right|^{2}\right) / 2\left|z_{0}\right|$ and $a=f^{\prime}(0)$. Note that b is always bounded below by $\alpha+1$ since $r_{0}=\left|z_{0}\right|$ is bounded above by $\alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$.

It is quite easy to show that $k(a, \alpha, b)$ is the product of two positive decreasing functions in \mathbf{b} and hence is itself a decreasing function in \mathbf{b}. We now show that $k(a, \alpha, \alpha+1)$ is increasing in a. Since

$$
\frac{\partial k(a, \alpha, \alpha+1)}{\partial a}=\frac{(\alpha+1-a)^{\alpha-1}}{(\alpha)^{\alpha}} \frac{P(a, \alpha)}{(\alpha+1+a)^{2}}
$$

where $P(a, \alpha)=-\alpha(\alpha+1) a^{2}-\left(\alpha^{3}+3 \alpha^{2}+4 \alpha\right) a+\alpha(\alpha+1)^{2}$, we are reduced to establishing $P(a, \alpha) \geq 0$. But $P(a, \alpha)$ is a quadratic in a with negative leading coefficient and $P(0, \alpha)>0$. Therefore, if $P(.4, \alpha)$ is greater than $0, P(a, \alpha)$ will be greater than zero for any \mathbf{a} in $[0, .4]$ which will conclude the argument that $P(a, \alpha)$ is nonnegative for small $f^{\prime}(0)$.

A computation shows $P(.4, \alpha+1)=\alpha\left(.6 \alpha^{2}+.64 \alpha-.76\right)>0$ which therefore concludes the demonstration that $k(a, \alpha, \alpha+1)$ is increasing in a. Thus $\left|f^{\prime}\left(z_{0}\right) / F^{\prime}\left(z_{0}\right)\right| \leq k(a, \alpha, b) \leq k(a, \alpha, \alpha+1)$, and, since $k(a, \alpha, \alpha+1)$ is increasing in a, in order to conclude the proof of the theorem for 'small' values of a, it suffices to show that
(a) $k(3 / 20, \alpha, \alpha+1) \leq 1$ when $1.65 \leq \alpha \leq 2$,
(b) $k(1 / 6, \alpha, \alpha+1) \leq 1$ when $2 \leq \alpha \leq 3$,
(c) $k(1 / 10, \alpha, \alpha+1) \leq 1$ when $3 \leq \alpha<\infty$.

Subcase a. Since

$$
\begin{aligned}
& (d / d \alpha) k(.15, \alpha, \alpha+1) \\
& =\left(\frac{\alpha+1-.15}{\alpha}\right)^{\alpha}\left[\begin{array}{l}
\frac{(.15)^{2}-1}{(\alpha+.15+1)^{2}} \\
\left.\quad+\frac{(\alpha+1) .15+1}{\alpha+.15+1}\left(\log \frac{\alpha+1-.15}{\alpha}+\frac{.15-1}{\alpha+1-.15}\right)\right] \\
\leq\left(\frac{\alpha+1-.15}{\alpha}\right)^{\alpha}\left[\frac{(.15)^{2}-1}{(2+.15+1)^{2}}+\frac{(1.65+1) .15+1}{1.65+.15+1}\left(\log \frac{1.65+1-.15}{1.65}\right)\right. \\
\\
\left.\quad+\left(\frac{(2+1) .15+1}{2+.15+1}\right)\left(\frac{.15-1}{2+1-.15}\right)\right]
\end{array}\right.
\end{aligned}
$$

for $1.65 \leq \alpha \leq 2$, therefore $k(.15, \alpha, \alpha+1)$ is a decreasing function of α in this range. It therefore suffices to check by a routine computation that $k(.15,1.65$, $2.65) \leq 1$.

Subcase b. Since $[(\alpha+1) a+1] /(\alpha+a+1)$ is decreasing with α, and $((\alpha$ $+b) / \alpha)^{\alpha}$ is an increasing function of α for all $\alpha>0$ and all $b>0$, we can state

$$
k(1 / 6, \alpha, \alpha+1) \leq \frac{(2+1)(1 / 6)+1}{2+1 / 6+1}\left(\frac{3+1-1 / 6}{3}\right)^{3}
$$

It is easy to verify that this latter quantity is indeed less than one.
Subcase c. This is the easiest case since, as above,

$$
k(.10, \alpha, \alpha+1) \leq e\left(\frac{(3+1) \cdot 10+1}{3+.10+1}\right)<1
$$

Thus for small values of $f^{\prime}(0)$ we have shown that $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z|<(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$.

We now consider the case that $f^{\prime}(0)$ is large. Returning to our fundamental inequality (8), we note that in the language of Lemma 1

$$
\begin{aligned}
& \quad \varphi\left(z_{0}\right)=z_{0}(a+c) /(1+a c), \quad c=r e^{i \theta},\left|z_{0}\right|=r_{0}, \text { and } \\
& \left(1-\left|z_{0}\right|^{2}\right)\left(1-\left|\varphi\left(z_{0}\right)\right|^{2}\right) \\
& =|1+a c|^{-2}\left(\left|1+a c-r_{0}^{2}(a+c)\right|+r_{0}(1-a)|1-c|\right) \\
& \quad \cdot\left(\left|1+a c-r_{0}^{2}(a+c)\right|-r_{0}(1-a)|1-c|\right)
\end{aligned}
$$

Therefore (8), (10) and Lemma 1 together imply that

$$
\begin{align*}
\left|\frac{f^{\prime}\left(z_{0}\right)}{F^{\prime}\left(z_{0}\right)}\right| \leq & \left(1-r_{0}^{2}\right) \frac{\left(\left|1+a c-r_{0}^{2}(a+c)\right|+r_{0}(1-a)|1-c|\right)^{\alpha-1}}{\left(\left|1+a c-r_{0}^{2}(a+c)\right|-r_{0}(1+a)|1-c|\right)^{\alpha+1}} \tag{11}\\
& \cdot\left[\left|a+2 c+a c^{2}\right|\left(1-r_{0}^{2}\right)+\left(r_{0}^{2}-|c|^{2}\right)\left(1-a^{2}\right)\right]
\end{align*}
$$

Lemma 3, at the end of the paper, shows that when $f^{\prime}(0)$ is 'large' the right-hand side of (11) as a function of $c=r e^{i \theta}$ has its maximum at $\theta=0$. Noting that

$$
1+a r-r_{0}^{2}(a+r) \pm r_{0}(1-a)(1-r)=\left(1 \pm r_{0}\right)\left[1+a r \mp r_{0}(a+r)\right]
$$

we infer

$$
\begin{align*}
\left|\frac{f^{\prime}\left(z_{0}\right)}{F^{\prime}\left(z_{0}\right)}\right| \leq & \left(\frac{1+r_{0}}{1-r_{0}}\right)^{\alpha} \frac{\left[1+a r-r_{0}(a+r)\right]^{\alpha-1}}{\left[1+a r+r_{0}(a+r)\right]^{\alpha+1}} \tag{12}\\
& \cdot\left[\left(1-r_{0}^{2}\right)\left(a+2 r+a r^{2}\right)+\left(r_{0}^{2}-r^{2}\right)\left(1-a^{2}\right)\right]
\end{align*}
$$

Let $L\left(r, r_{0}, a\right)$ denote the right-hand side of (12). The proof of majorization will be concluded if we can show that L is an increasing function of a since $L\left(r, r_{0}, 1\right) \equiv 1$.

However,

$$
\frac{d L}{d a}=\left(\frac{1+r_{0}}{1-r_{0}}\right)^{\alpha} \frac{\left[1+a r-r_{0}(a+r)\right]^{\alpha-2}}{\left[1+a r+r_{0}(a+r)\right]^{\alpha+2}} \cdot R(a)
$$

where

$$
\begin{aligned}
R(a)= & {\left[(1+a r)^{2}-r_{0}(a+r)^{2}\right] \cdot\left[1-r_{0}^{2} r^{2}-(2 a+1)\left(r_{0}^{2}-r^{2}\right)\right] } \\
& -\left[\left(1-r_{0}^{2}\right)\left(a+2 r+a r^{2}\right)+\left(1-a^{2}\right)\left(r_{0}^{2}-r^{2}\right)\right] \\
& \cdot\left[2 r\left(1-r_{0}^{2}\right)+2 \alpha r_{0}\left(1-r^{2}\right)-2 a\left(r_{0}^{2}-r^{2}\right)\right] .
\end{aligned}
$$

The problem then is to show $R(a)$ is nonnegative. Since

$$
\begin{aligned}
R^{\prime}(a)= & 2\left(r_{0}^{2}-r^{2}\right)\left[2 \alpha a r_{0}\left(1-r^{2}\right)+(1-r)^{2}\left(1-r_{0}^{2}\right)(a-1)\right] \\
& -2 \alpha r_{0} \cdot\left(1-r_{0}^{2}\right)\left(1-r^{4}\right) \\
\leq & 2 \alpha r_{0}\left[2 r_{0}^{2}-\left(1-r_{0}^{2}\right)\left(1-r_{0}^{4}\right)\right]
\end{aligned}
$$

we can conclude that $R(a)$ is a decreasing function if we note that $2 r_{0}{ }^{2}$ $-\left(1-r_{0}^{2}\right)\left(1-r_{0}^{4}\right)<0$ since $r_{0} \leq(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2} \leq 1 / 2$. Thus $R(a)$ $\geq R(1)$. However,

$$
\begin{aligned}
R(1) & =(1+r)^{2}\left(1-r_{0}^{2}\right)(1-r)\left[(1-r)\left(1-r_{0}^{2}\right)-2 \alpha r_{0}(1+r)\right] \\
& \geq(1+r)^{2}\left(1-r_{0}^{2}\right)(1-r)\left(1+r_{0}\right)\left[1-r_{0}^{2}-2 \alpha r_{0}\right] \\
& \geq 0,
\end{aligned}
$$

since $\left(1-r_{0}^{2}\right)-2 \alpha r_{0} \geq 0$ for $r_{0} \leq(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$.
Thus for large $f^{\prime}(0),\left|f^{\prime}\left(z_{0}\right) / F^{\prime}\left(z_{0}\right)\right| \leq 1$; that is, $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z| \leq(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$.

We now show that this result cannot be improved. This means that for any real number $m^{\prime}>m(\alpha) \equiv(\alpha+1)-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$ we must find analytic functions $f(z)$ and $F(z)$ such that $f(z)$ is subordinate to $F(z), f^{\prime}(0) \geq 0, F(z) \in \mathfrak{u}_{\alpha}$, but for which $\left|f^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right|$ for all $|z|<m^{\prime}$ is false.

Let

$$
F(z)=\frac{1}{2 \alpha}\left\{1-\left(\frac{1-z}{1+z}\right)^{\alpha}\right\} \text { and } f(z, a)=F(\varphi(z))
$$

where $\varphi(z)=z(a+z) /(1+a z), 0 \leq a \leq 1$. Then $f(z, a)$ is subordinate to $F(z)$ in D for any a, $0 \leq a \leq 1, F(z)$ is in \mathfrak{n}_{α}, and $f^{\prime}(0) \geq 0$. A computation shows

$$
\left.\frac{\partial}{\partial z} f(z, a)\right|_{z=r}=\frac{\left(1-r^{2}\right)^{\alpha-1}}{2^{\alpha} r^{\alpha}} \cdot \frac{a b+1}{(b+a)^{\alpha+1}}
$$

where $b=\left(1+r^{2}\right) / 2 r$, and

$$
\begin{equation*}
\left.\frac{\partial}{\partial a}\left[\left.\frac{\partial}{\partial z} f(z, a)\right|_{z=r}\right]\right|_{a=1}=\frac{\left(1-r^{2}\right)^{\alpha-1}}{2^{\alpha} r^{\alpha}} \cdot \frac{[b-(\alpha+1)]}{(b+1)^{\alpha+1}} \tag{13}
\end{equation*}
$$

Thus if we let $z=r, m<r<m^{\prime}$, then $b=\left(1+r^{2}\right) / 2 r<\alpha+1$ and (13) implies that $\partial f(z, a) /\left.\partial z\right|_{z=r}$ is a decreasing function of a for such a value of r. Therefore for a sufficiently close to 1 ,

$$
f^{\prime}(r, a) \equiv \partial f(z, a) /\left.\partial z\right|_{z=r}>\partial f(z, 1) /\left.\partial z\right|_{z=r} \equiv F^{\prime}(r)>0
$$

Therefore f^{\prime} is not majorized by F^{\prime} in $|z|<m^{\prime}$.
This concludes the proof of the theorem.
Corollary 1. If $f(z)$ is majorized by $F(z)$ in \mathfrak{U}_{2} and $f^{\prime}(0) \geq 0$, then $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z| \leq 3-\sqrt{8}$ and the result is sharp.

Corollary 1 is an improvement on Tao Shah's result for $F(z)$ in \mathcal{S} since \mathbb{G} is a proper subset of \mathfrak{U}_{2}. The same estimates therefore hold even for the functions of infinite valence which lie in \mathfrak{U}_{2}.

III. Statement and proof of Lemma 3.

Lemma 3. If $1.65 \leq \alpha \leq 2$ and $3 / 20 \leq a \leq 1$, or if $2 \leq \alpha \leq 3$ and $1 / 6 \leq a$ ≤ 1, or if $3 \leq \alpha \leq \infty$ and $1 / 10 \leq a \leq 1$, then, as a function of θ, the maximum of

$$
\begin{align*}
& \frac{\left(\left|1+a c-r_{0}^{2}(a+c)\right|+r_{0}(1-a)|1-c|\right)^{\alpha-1}}{\left(\left|1+a c-r_{0}^{2}(a+c)\right|-r_{0}(1-a)|1-c|\right)^{\alpha+1}} \tag{14}\\
& \quad \cdot\left\{\left|a+2 c+a c^{2}\right|\left(1-r_{0}^{2}\right)+\left(r_{0}^{2}-|c|^{2}\right)\left(1-a^{2}\right)\right\}
\end{align*}
$$

where $c=r e^{i \theta}$ and $0 \leq r \leq r_{0} \leq \alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$, occurs at $\theta=0$.
Proof. Let $I(\theta)$ denote the quantity in (14). In order to compute $d I / d \theta$ we first write I as $I=A^{\alpha-1} C / B^{\alpha+1}$ where

$$
\begin{aligned}
& A \equiv\left|1-a r_{0}^{2}+c\left(a-r_{0}^{2}\right)\right|+r_{0}(1-a)|1-c| \equiv D+E \\
& B \equiv\left|1-a r_{0}^{2}+c\left(a-r_{0}^{2}\right)\right|-r_{0}(1-a)|1-c| \equiv D-E \\
& C \equiv\left|a+2 c+a c^{2}\right|\left(1-r_{0}^{2}\right)+\left(r_{0}^{2}-r^{2}\right)\left(1-a^{2}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\frac{d I}{d \theta}=\frac{A^{\alpha-2}}{B^{\alpha+2}}\left[\left\{A B \frac{d C}{d \theta}+2 C\left(\frac{E d E}{d \theta}-\frac{D d D}{d \theta}\right)\right\}+2 \alpha C\left(\frac{D d E}{d \theta}-\frac{E d D}{d \theta}\right)\right] \tag{15}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \frac{d D}{d \theta}=\frac{-r \sin \theta}{D}\left(1-a r_{0}^{2}\right)\left(a-r_{0}^{2}\right) \\
& \frac{d E}{d \theta}=\frac{r \sin \theta}{E}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d C}{d \theta}=\frac{-2 a r \sin \theta}{\left|a+2 c+a c^{2}\right|}\left(1-r_{0}^{2}\right)\left(1+r^{2}+2 a r \cos \theta\right), \\
& A B=\left(1-r_{0}^{2}\right)\left[1-a^{2} r_{0}^{2}+r^{2}\left(a^{2}-r_{0}^{2}\right)+\left(1-r_{0}^{2}\right) 2 a r \cos \theta\right], \\
& E \frac{d E}{d \theta}-D \frac{d D}{d \theta}=a\left(1-r_{0}^{2}\right)^{2} r \sin \theta, \\
& D \frac{d E}{d \theta}-E \frac{d D}{d \theta}=\frac{r_{0} \sin \theta\left(1-a^{2}\right)}{D E}\left(1-r_{0}^{2}\right)\left(1-a r_{0}^{2}+r^{2}\left(a-r_{0}^{2}\right)\right),
\end{aligned}
$$

we can verify that

$$
\frac{d I}{d \theta}=\frac{A^{\alpha-2}}{B^{\alpha+2}}\left(\frac{-2 a r \sin \theta\left(1-r_{0}^{2}\right)^{2}\left(1-a^{2}\right)}{\left|a+2 c+a c^{2}\right|}\right)\left\{I_{1}+I_{2}+I_{3}\right\}
$$

where

$$
\begin{aligned}
I_{1}= & \left(1-r^{2}\right)\left(1+r^{2} r_{0}^{2}\right)-2 r^{2}\left(1-r_{0}^{2}\right)+2 a r\left(r_{0}^{2}-r^{2}\right) \cos \theta, \\
I_{2}= & -\left(r_{0}^{2}-r^{2}\right)\left|a+2 c+a c^{2}\right|, \\
I_{3}= & \frac{-\alpha r_{0}}{a\left(1-r_{0}^{2}\right)}\left\{\frac{1-a r_{0}^{2}+r^{2}\left(a-r_{0}^{2}\right)}{|1-c|\left|1-a r_{0}^{2}+c\left(a-r_{0}^{2}\right)\right|}\right\} \\
& \cdot\left\{\left(1-a^{2}\right)\left(r_{0}^{2}-r^{2}\right)\left|a+2 c+a c^{2}\right|+\left|a+2 c+a c^{2}\right|^{2}\left(1-r_{0}^{2}\right)\right\} .
\end{aligned}
$$

Clearly it now suffices to verify that $I_{1}+I_{2}+I_{3}>0$ in order to prove the maximum of $I(\theta)$ occurs at $\theta=0$.

We first determine an estimate for I_{3}. The expression in the denominator of I_{3} satisfies

$$
|1-c|\left|1-a r_{0}^{2}+c\left(a-r_{0}^{2}\right)\right| \geq(1-r)\left(1-a r_{0}^{2}+r\left(a-r_{0}^{2}\right)\right) .
$$

This is most easily seen by squaring both expressions, removing the common factors and noting that $0<\left(a-r_{0}^{2}\right) /\left(1-a r_{0}^{2}\right) \leq 1$ since $a \geq .10>(\alpha+1$ $\left.-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}\right)^{2} \geq r_{0}^{2}$. Thus,

$$
\begin{align*}
\left|I_{3}\right| \leq & \frac{\alpha r_{0}\left[1-a r_{0}^{2}+r^{2}\left(a-r_{0}^{2}\right)\right]\left(a+2 r+a r^{2}\right)}{a\left(1-r_{0}^{2}\right)(1-r)\left(1-a r_{0}^{2}+r\left(a-r_{0}^{2}\right)\right)} \tag{16}\\
& \cdot\left\{\left(1-a^{2}\right)\left(r_{0}^{2}-r^{2}\right)+\left(a+2 r+a r^{2}\right)\left(1-r_{0}^{2}\right)\right\}
\end{align*}
$$

The denominator of (16) is a decreasing function of r and the numerator of (16) is the product of three increasing functions in r. Consequently we obtain,

$$
\left|I_{3}\right| \leq \frac{\alpha r_{0}}{a} \frac{\left(1+r_{0}^{2}\right)\left(1+r_{0}\right)}{\left(1-r_{0}\right)} \frac{\left[a\left(1+r_{0}^{2}\right)+2 r_{0}\right]^{2}}{\left(1+r_{0}^{2}+r_{0}(1+a)\right)}=J_{3} .
$$

However,

$$
\frac{d}{d r_{0}}\left(\frac{a\left(1+r_{0}^{2}\right)+2 r_{0}}{1+r_{0}^{2}+r_{0}(1+a)}\right)=\frac{\left(1-r_{0}^{2}\right)[2-a(1+a)]}{\left(1+r_{0}^{2}+r_{0}(1+a)\right)^{2}} \geq 0
$$

Therefore J_{3} is the product of monotone increasing functions in r_{0} and so $J_{3} \leq\left. J_{3}\right|_{r_{0}=m}$, where $m=m(\alpha)=\alpha+1-\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$. Upon substituting this value for r_{0} into J_{3} and noting that $1+m^{2}=2(\alpha+1) m$, we obtain

$$
\left|I_{3}\right| \leq \frac{8(\alpha+1)}{a} \alpha m^{3} \frac{(1+m)}{1-m} \frac{[1+a(\alpha+1)]^{2}}{(3+a+2 \alpha)}=J_{4}
$$

We now turn to a lower estimate on $I_{1}+I_{2}$. Clearly,

$$
I_{1}+I_{2} \geq J_{5} \equiv\left(1-r^{2}\right)\left(1+r_{0}^{2} r^{2}\right)-2 r^{2}\left(1-r_{0}^{2}\right)-\left(r_{0}^{2}-r^{2}\right)\left(1+4 r+r^{2}\right)
$$

To obtain a lower estimate for J_{5} we note that

$$
\begin{aligned}
d J_{5} / d r & =-4\left[r_{0}^{2}+r\left(1-r^{2}-r_{0}^{2}+r^{2} r_{0}^{2}-3 r\right)\right] \\
& <-4\left[r\left(1-2 r_{0}^{2}-3 r_{0}\right)+r_{0}^{2}\right]
\end{aligned}
$$

Since $1-2 r_{0}^{2}-3 r_{0} \geq 1-2 m^{2}-3 m>.03$, it follows that J_{5} is a decreasing function of r. Therefore upon noting $(1-m)^{2}=2 \alpha m$ and $\left(1-m^{2}\right)^{2}=4 m^{2}\left(\alpha^{2}\right.$ $+2 \alpha$) we can conclude that

$$
J_{5}(r) \geq J_{5}\left(r_{0}\right)=\left(1-r_{0}^{2}\right)^{3} \geq\left(1-m^{2}\right)^{3}=8 m^{3}\left(\alpha^{3}+2 \alpha^{2}\right) \frac{1+m}{1-m}
$$

Therefore,

$$
I_{1}+I_{2}+I_{3} \geq J_{5}-J_{4} \geq \frac{8 \alpha m^{3}(1+m)}{(1-m) a(3+a+2 \alpha)} \cdot Q(a, \alpha)
$$

where $\quad Q(a, \alpha)=a^{2}\left(-\alpha^{3}-2 \alpha^{2}-\alpha-1\right)+a\left(2 \alpha^{3}+5 \alpha^{2}+2 \alpha-2\right)-(\alpha+1)$. We are therefore reduced to showing $Q(a, \alpha)$ is positive for all possible cases of a and α in the hypothesis of the lemma.

We first note that $Q(a, \alpha)$ is an increasing function of α since

$$
\begin{aligned}
\frac{\partial Q}{\partial \alpha} & =\alpha^{2}\left(6 a-3 a^{2}\right)+\alpha\left(10 a-4 a^{2}\right)-1+2 a-a^{2} \\
& >.57 \alpha^{2}+.96 \alpha-.81>0
\end{aligned}
$$

We next note that Q is a quadratic function in a with negative leading coefficient and $Q(1, \alpha)=\alpha^{3}+3 \alpha^{2}-4 \geq 0$. Thus if $Q\left(a_{0}, \alpha\right)>0$ for a_{0} in $(0,1)$, then $Q(a, \alpha)>0$ for all $a, a_{0} \leq a \leq 1$. We thus need only show that $Q(3 / 20,1.65)$, $Q(1 / 6,2)$ and $Q(1 / 10,3)$ are each positive. This is true as a routine computation indicates.

This concludes the proof of the lemma.

Bibliography

1. D. M. Campbell, Majorization-subordination theorems for locally univalent functions, Bull. Amer. Math. Soc. 78 (1972), 535-538. MR 45 \#8817.
2.-_, Majorization-subordination theorems for locally univalent functions. II, Canad. J. Math. 25 (1973), 420-425.
2. G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 \#308.
3. Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen. I, Math. Ann. 155 (1964), 108-154. MR 29 \#6007.
4. Tao Shah, On the radius of superiority in subordination, Sci. Record 1 (1957), 329-333. MR 20 \#6531.

Department of Mathematics, Brigham Young Universtity, Provo, Utah 84602

[^0]: Received by the editors September 21, 1973.
 AMS (MOS) subject classifications (1970). Primary 30A36, 30A40.
 Key words and phrases. Linear invariant family, univalent analytic function, majorization, order of a linear invariant family, subordination.

