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ABSTRACT.   The Riemann Problem for a system of hyperbolic conserva-

tion laws of form

ut + f(u, v)   = 0,
(1) '

vt + g(u, v)x = 0

with arbitrary initial constant states

(2) (u0(*). «o<*»
í(«/. v¡),

\(.ur, vr),

x<0,

x > 0,

is considered. We assume that fv < 0, gu < 0. Let l¡ (r¡) be the left (right)

eigenvectors of dF ■ d(f, g) for eigenvalues \j < \2. Instead of assuming the

usual convexity condition d\¡(r¡) i* 0,1 « 1, 2, we assume that d\¡(r¡) = 0 on

disjoint union of 1-dim manifolds in the (u, v) plane. Oleinik's condition (E)

for single equation is extended to system (1); again call this new condition (E).

Our condition (E) implies Lax's shock inequalities and, in case d\¡(r¡) ¥= 0, the

two are equivalent. We then prove that there exists a unique solution to the

Riemann Problem (1) and (2) in the class of shocks, rarefaction waves and con-

tact discontinuities which satisfies condition (E).

Introduction. We consider the system

ut + fiu, v)r = 0,
(o.i) *Jy )x   - t>o,-~<x<oo,

vt+g(u,v)x = 0,

where u = m(x, f), v = u(jc, f) and /, g E C3(f7) for some open set U in P2.

The problem to be solved is the Riemann Problem  {(«;, v¡); iur, vr)} for

arbitrary constants iu¡v¡) E U, («r, vr) E U; i.e. solve the system (0.1) with initial

data

(0.2) (uix, 0), v(x, 0)) = iu0ix), v0ix)) = {¡£ ^
for jc<0,

for x > 0.
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Besides the physical meaning, the significance of the Riemann Problem is

that it is commonly served to solve the Cauchy Problem (0.1) with general initial

data. In fact, Riemann Problems are the building blocks in the proof of existence

theorems in Glimm [1], Smoller and Johnson [2], Nishida [4] and Nishida and

Smoller [5].

Since the solution to (0.1) is usually discontinuous, see e.g. [3], we make

the following definition.

Definition.  The bounded measurable function («, i>) is said to be a weak

solution to (0.1), (0.2) if

JI>o["0' +/("' vyf>x] dxdt+f^u^dx = 0,
{y.j)

fit>o[v<l>t +8(ji' U)0*] ** + ft=oV°<l>dx = °

for all smooth functions <¡> = <¡>(t, x) with compact support in t > 0.

Hereafter, we assume that, for (u, v) G U,

(0-4) /„ < 0,      gu < 0,

(0.5) fu > 0,      gv< 0.

Let F= (f,g), dF the Fre'chet derivative of F and d2F the Fréchet der-

ivative of dF.  Condition (0.4) implies that system (0.1) is hyperbolic, i.e. dF

has real and distinct eigenvalues Xj < X2. (0.5) implies that, for (w, v) G U,

(0.6) \ < 0 < X2.

Let r¡ (resp. /,) be right (resp. left) eigenvectors corresponding to eigen-

values X,-, i= 1,2. These can be taken in the form

(07) »t-O,^)*,     r2 = (l,a2)',

Iy = (-a2, 1),   /2 = (-a1,l),

where

Su        h-fu .    .  .

a2<0<a1.

If d\- rf # 0, then system (0.1) is said to be genuinely nonlinear in the

ith class.

Suppose (u, v) is a solution which is discontinuous across curve x = x(t),

then (0.3) implies the following Hugoniot condition (e.g. [3] )
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/["i,"i)-/("o'uo)    ä(«i.w1)-«(«o.üo) _    ,
s=-u~~~u-=-»—v-= a("0'ü0;"l.ül)

"l       "0 vl  ~ v0

where s = x(t), (w0, v0) = («, v)ix - 0, f), iux, vx) = («, u)(* + 0, f).

Definition.  For (h0, u0) G <7, the shock curve s(«0, u0) is the set

(«, !))£(/ which satisfies the Hugoniot condition

fiu,v)~ fiu0,v0)    giu,v)- giu0,v0)

u - ur V - Vri0 u - v0

The forward shock curve S2iu0,v0) and backward shock curve S,("o> v0) are:

5i("o> vo) = siuo> vo) n {("» u)l" > "o> " ^ vo  or " < "o> v < uo^>

S2("o> uo) = 5("o> uo) n {("> u)l" > Mo> u < vo  or " ^ "o> u > vo1-

Let («j, Uj) E S2iu0, v0), then we can define a weak solution («, v) to

(0.1) by

(m, u)(jc, t)= < , vv     yv     '     U"i»"i)

(m0,u0)      for jr<of,

for x > at,

where

o= aiul,vl;u0,v0)^
/("i,"i)-/("0'uo)    i("ii»i)-*("o»»o)

"i -"o

We call such solution a forward shock wave.  Similarly, for a S2 curve, we have

backward shock wave. We denote them by the following pictures.

slope = _

K»v»>

forward shook wave

Let

-7-X

(u„,v„)
0 '    0

backward shook wave

V2 = {(«, v) E U\dX2ir2) S 0},

Vl± = {(u, v) E UldX^r,) £ 0}.

Let (tij, Uj) ER2(u0, v0), ux > u0, be such that every point (m, v) on

R2iu0,v0) between («0, v0) and (u^tjj) lies in region Vz.. Then the Riemann

Problem  {(«0, v0); (»j, vx)} can be solved by (cf. [3])
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(M)

(«, v)(x, t) = (u, vyx/f),

X2(w, v)(x/t) = jf/i,

(u, v) G i?2(H0, u0), ux > u > u0.

We'call this solution, which takes values along a rarefaction curve R2, a

forward rarefaction wave.  We can also have a forward rarefaction wave when

«j < »0 and the corresponding region is  V\. The backward rarefaction wave,

which takes values on a Rx  curve can be treated similarly.  These can be pictured

as:

backward rarefaction wave forward rarefaction wave

Joel A. Smoller [7] and [8] solved the Riemann Problem in the class of

shock and rarefaction waves under the assumption that system (0.1) is genuinely

nonlinear and that the shock interaction condition holds.  The solution is required

to satisfy the following Lax shock inequalities, e.g. [3], across shocks:

(L) or

^i(«o>uo)>a>xi("i'i;i)   and a<\(uy>v\)

^■2("0',;o)>a>X2("l'Ul)     and   a>V"o>Uo)

where o= a(u0,v0;u1,vl).

The purpose of this paper is to prove the existence and uniqueness theorem

for the Riemann Problem in the class of shocks, rarefaction waves and contact

discontinuities, when we relax the genuine-nonlinearity condition and let d\¡(r¡) =

0, i = 1, 2, on a disjoint union of 1-manifolds in the (u, v) plane.  The solution

is required to satisfy, instead of condition (L), the following extended entropy

condition

(E) o(ui> vi ; "o> uo) < a("> v> "o> uo)

for every («, v) on S(u0;v0) between (u0,v0) and (ul,vl).

Condition (E) extends Oleinik's celebrated condition (E) (cf. [6] ) to systems

and reduces to condition (L) when the system (0.1) is genuinely nonlinear.

1. Preliminary results. In this section, we shall make some basic observa-

tions about the shock and rarefaction curves.

Let d/dp (resp. d/dv¡) be the derivative along curve S2 (resp. R¡). Thus,
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dp     du       2dv '

M  T. , ,    , *      (" - "o)g»  + (g - 4X» - »o)
(1.2)       h2 - /t2(Mo, u0; «, .) = (ü _ VoYv  + (ct _ ^ _ Mo) ,

flu, v) - flu0, v0)    giu, v) - giu0, v0)
o=o(u0,v0;u,v) =-—-=-—-;

where gu,gv,fu,fv and a¡, i= 1,2, are evaluated at iu,v).

Lemma 1.1.   For iu1,vl)ES2iu0,v0) iresp.  Sj(«0, v0)), we have

aiu1,vl;uo,vo)>0 iresp.  < 0).

Lemma 1.2.   The set 52(«0, v0) iresp. 5j(m0,u9)) is a smooth curve de-

fined for all u iresp.  v).

Lemmas 1.1 and 1.2 can be proved by using (0.4) and (0.5); we omit the

proofs.

Lemma 1.3.   Given («0, u0) E U, and supposing that for any («, v) on

S2iu0, v0), u > u0, \u - u0\ small, we have (m, v) E V2+.   Then, for such (w, v),

X2iu, v) < a(u, v; u0, v0) < X2(«0, v0);

o(«, v; u0, v0) = X2iu0, v0) +0\u - u0\;

h2iu, v; u0, v0) = a2iu0, v0) +0\u - u0\;

and a is decreasing along S2iu0,v0).

Proof.  See Lax [3].

Lemma 1.4.   For any («, v) E 52(ti0, v0), a = a(u0, v0;u, v), u> u0, the

following are equivalent:

(i) da/dp >0 iresp.  da/dp < 0).

(ii) a <X2  iresp.  a>X2).

If u<u0, then the following are equivalent:

(iii) da/dp > 0 iresp.  do/dp < 0).

(iv)  ó > X2  iresp.  o<X2).

Thus da/dp = 0 if and only if a = X2.

Proof.  We only consider the case u > u0. Thus, by Lemma 1.2, v < v0.

Case 1:  h2 > a2 at (w, v). Assume (i), fu + h2fv - a > 0; thus X2 =

/„ + a2fv >fu+ hih > ° which is 00-
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Assume (ii), then

da    8u + KSy - oh2 ^Su+ a2gv - °a2 ^ gu + ai% ~ V2 _ n

ÛU V — VQ V — VQ V — V0

which is (i).

Case 2: h2 < a2 at («, v). Assume (i), gu + h2gv - ah2 < 0, thus

0<gu+ h2gu - ah2 <gu+ a2gv - a2a = a2X2 - a2a = a2(X2 - a).

So X2 — a > 0 which is (ii).

Assume (ii), then

da u fu + h2fv -°      fu + Kfv ~\  Ju+ Kh ~ Vu + a2fv)
dp u - u0 u - u0 u - u0

(«2 - a2)/u
= -p> u

u-u0

which is (i).

The fact that da/dp < 0 and  a > X2  are equivalent can be proved similar-

ly.    Q.E.D.

Using Lemmas 1.3 and 1.4 we can easily prove the following:

Lemma 1.5.   If o=X2 at (u,v)G.S2(u0,v0), then h2 = a2 at (u,v).

Lemma 1.6.   Let (u, vy32(u0, v0) G V\ and X2 = a at (u, v).  Then

d(a — X2)ldp = d\2/dp > 0 and a has local maximum at (u, v).

Lemma 1.7.   Suppose (ux, vx) G S2(uQ, v0) and condition (E) is satisfied

for  {(u0,v0);(u1,v1)}.  Then, for a = o(u0,v0;u1,v1),

\(u0> vo) < a   and   X2("o>yo)>a>X2("i'üi)-

We have analogous lemmas as above for Sx(u0, v0); in this case, we use

d/dp = kd/du +d/dv,

,   ,, s   (p - gvyu - u0) + fu(v - v0)
k = k(un, vn;u, v)= -.-t~t,-r—-—-,-r-

v °   °       '    (P - /„)(" - v0) + gv(u - u0)

Theorem 1.1.   Condition (E) is equivalent to Lax's shock inequalities when

system (0.1) is genuinely nonlinear.
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Proof.   We only prove the necessity part of the theorem for forward

shocks.  The other cases can be treated similarly. Thus we assume that iu1,vl)E

S2iuQ,v0) and  {(m0, v0); (m1 , Uj)} satisfies condition (E). Without loss of

generality, assume dX2ir2) < 0.

If ul > u0, then, by Lemma 1.3, X2 < a at all points on 52(«0, v0)

between («0,u0) and (u0,u0) and close to («0, v0).  For such points, by

Lemma 1.4, we have da/dp < 0. We claim that, for all points on S2iu0, v0)

between (ii0,u0) and iul,vl), we actually have do/dp < 0.  Indeed if («, v)

is the first point on «S2(«0, u0), u > u0, such that da I dp = 0, then, by Lemma

1.6, a < X2 at some point (u, v) on 52(«0, vQ) between (m0, v0) and («, v).

Thus, by Lemma 1.4, da/dp > 0 at (w, 3").  But since da/dp < 0 at points

close to («0, v0), we then have da/dp = 0 at some point between (u0, u0) and

iu, v). This contradicts the fact that («, u) is the first point with da/dp = 0.

So we have da/dp <0 at all points on 52(«0, u0) between («0,u0) and

(«j, Uj).  In particular, a(«!, Uj ; w0, v0) < o(«0, u0; u0, u0) = X2(«0, ü0) and

a(u1,v1;u0,v0)>X2iul,vl) by Lemma 1.4.  Since a > 0, Xj<0<X2, we

have condition (L).

If «j < u0, a similar argument gives that a is increasing as (a, v) moves

from (w0, v0) to iul,v1) along S2iu0, v0). This would contradict condition

(E).  Hence u1 > u0 and we are done.    Q.E.D.

2.  Existence. In this section, we want to solve the Riemann Problem in the

class of shocks, rarefaction waves and contact discontinuities.

We make the following assumption:

(2 1)    If dX'(r,) = ° at P°int ("' W)' then ^A^/))/^/ * °> '= !» 2»

where d/dv¡ = d/du + a¡d/dv.

Lemma 2.1.   77ze set V*0 ■ {(«, ̂ Ic/X^r,) = 0} is union of disjoint l-mani-

folds and transversal to integral curves of dv/du = a¡, i= 1,2.

Lemma 2.2   Given iu, v) E 52(«0, v0) <^V\,o= aiu0, v0; u, v) =

X^ii, v) = X2, u > u0, we have, at iu, v),

da    d*2    d2a    n       .   d2^ .  _
-r = -j— =-= 0   and   —— > 0
dp    dp     d(i2 dß2

and a is increasing at iu, v) if immediately to the right of iu, v) along

R2iu,v) is region   F2., d2X2/dp2 < 0 and a is decreasing at iu,v) if immedi-

ately to the left of iu, v) along P2(w, v) is region   V\.
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Lemmas 2.1 and 2.2 are easy consequences of (2.1) and Lemma 1.5; we

omit the proofs.

Before we state and prove our rather long existence theorem, we sketch the

construction of the solution.

Given a fixed point («0, v0) in U, we first construct a curve y(u0, v0) = y

so that points (u, v) on y, u > u0, v < v0, can be connected to (u0, u0) on

the right by forward waves.

Suppose («0, v0) G V\ ; we then let the first segment of y be S2(u0, v0)

and so the solution can be pictured as

« *

vfi! ",v>

which is a forward shock, (where light lines denote characteristic lines).

As («, v) moves further to the right along S2(u0, v0), the picture becomes

at some point («j, ux),

c ♦

i.e.  a(«0, d0; «j, Wj) = X2(t/j, u,). We then continue y by R2(u1,vl), so that

the solution is a shock connecting (u0,v0) and (WpUj) followed by a rare-

faction wave connecting (kj.Uj)  and  (u,v) on /?2(«j,Uj). The diagram is

When R2(ui,vl) leaves region  V\_  at (u2,v2), we continue y so that
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the point (it, v) can be connected by shock to some (u*,v*) on R2(ux,vx)

between (ul,vl) and (u2,v2) and \2(u*,v*) = o(u*,v*;u,v). This can be

pictured as

(u*,v*)

Continue 7 until some point (u3, v3) so that 0(11%, uj; u3, v3)

X2(M3> u3)- We then continue y by R2(u3,v3) and point (u,v) on

R2(u3, v3) is connected to (u3, v3) by rarefaction wave:

(ui'V

>*

Continue these processes so that 7 is defined for all u > u0.  During the

process we must always make sure that condition (E) holds for any discontinuity.

To be precise, we construct the curve 7 as follows:

Step 1.  By Lemma 2.1, we know that any curve in  V\ is transversal to

7?2 curves, so we have two cases:

(i) Immediately to the right of (»0, u0) along R2(u0, v0) is region V\:

The curve yx, the first segment of 7, is S2(u0, v0) starting at (u0,v0)

and extended until there exists a point (ult vx) which is the first point on

S2(u0, v0) suchthat X2(m1, vx) = o(uQ, v0; ut, vx) and immediately to the

right of (t/j,^) along R2(u1,vi) is region  V_. The point (u, v) on yt  is

connected to (m0, u0) by a forward shock.  Analogous to the proof of Theorem

1.1, with the aid of Lemma 2.2, we can show that a is decreasing between

(uQ,vQ) and («pUj).  Thus condition (E) is clearly satisfied for   {(uQ, vQ),

(u,v)},(u,v)Gyl.

(ii) Immediately to the right of («0, v0) along R2(u0, v0) is region V2_:

The curve yx  is R2(u0,v0) starting at (w0, v0) and extended to (ul,vl),

the first point at which R2(u0, v0) leaves  V2_. Point (u, v) on yx  is connect-

ed to (w0, v0) by a forward rarefaction wave.
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Step 2. if) For case (i) of Step 1:

Since immediately to the right of (u,, v¡) is region  V2_, we proceed as

in case (ii) of Step 1, i.e. continue the curve from (u1, vx) by R2iux, v¡) until

there exists a point iu2,v2) at which R2(ul,vl) first leaves region  V2_. The

point (w, v) on R2(u1,v1) between (ut,vi) and («2,u2) is connected to

(«j, Uj) by a forward rarefaction wave. The diagrams look like:

(ii) For case (ii) of Step Is

We continue the curve from (ul,v1) by a mixed curve y* defined as

follows:  iu, v) E y* if there is a point («*, v*) E yl  such that (u, u) is the

first point on S2iu*, v*), u > u*, at which a(«*, v*, u, v) = X2(w*, v*).  Such

a yf exists at least when  \u* — ux\ is small.  In fact, since immediately to the

right of iul,vi) is region  V\, we know that a{ux,vx;u,v) is decreasing.  By

continuity of a, we then have, for (u*, v*) E yt  and near («j, vx), the follow-

ing diagram:

AO(S*,v*;u,v)

Q-1-1-».u

Ü* Ù

The reason do/dp > 0 near (u*, v*) is that (u*, Í7*) lies in region  Vt.

We then connect («*, v*) on yx  to iu, v) on yj by shock wave. Since

iu*, v*) E 7j C v}_t by definition of y*, condition (E) is satisfied for

{(«*, v*); iu, v)}. Indeed, the diagrams look like the following:
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a(u*,v*;u,v)

->U

u*

H    ¿/"o.V
(u*,v*)

(».»v.)// ul'vl>

We continue the curve by 7J starting at (u1,v1) until point (h2,i>2)

defined as follows:

(ii) (a) There exists point (u2,V2) on 7J such that the corresponding

point («J, uf) = («0, v0). In this case we continue the curve from (u2, v2) by

S2(u0, v0) and point (u, v) on S2(u0,v0) is connected to (u0,v0) by a for-

ward shock.  Condition (E) is clearly satisfied for those («, v) G S2(u0, v0) and

close to (u2, v2). We have diagrams like the following:

o(u0, u0; u, v)

<vV

».(■..v.)/   8  (u   v
ÎU.V)

(ii) (b) There exists a point (u2,v2) on 7J and a corresponding point

(«f, u|) on 7X  suchthat a(«|, u|, m, u) attains local minimum at (u2,u2).
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For this case, we know, by Lemmas 1.4, 1.6 and 2.1 that a(«|, w|; u2, v2) =

X2(«2, v2) and (u2, v2) E V2_. We then continue the curve from (w2, v2) by

R2iu2,v2) and the point («, u) ER2(u2, v2) is connected to («2, u2) by a

forward wave.  The diagrams look like the following:

The discontinuous part of the solution («£, u|), (u2, u2) has the property

that the shock speed a coincides with eigenvalue X2  on either side. We call

such discontinuity a contact discontinuity.

Remark.   Lemma 2.3-Lemma 2.5 to be presented later will show that a

mixed curve is continuous and decreasing as a function of u.

Step 3.  (i)  For case (i) of Step 2:

We continue the curve by the mixed curve 7f starting at iu2, v2) where

72 is the rarefaction curve R2iu1,vl) between (uj,Uj) and (u2,u2). The

process is exactly the same as in case (ii) of Step 2.

If there is a point   (u3, v3)   on   yj, («|, v*)   on   72,   such that

ofjuf, uf, u, v) attain a local minimum at («3, v3), we then continue the curve

starting at (h3, v3) by P2(«3, u3).

If there is a point (w3, v3) on 7| such that (uf, uf) = («j, vx), we then

continue the curve starting at (u3, v3) by 52(w0, u0).  In fact, in this case we

have  a(ii0, vQ; ux,vt) = Xliu1, ux) = a(tt1,v1; u3, v3) which then implies that

(«3, v3)ES2iu0, v0) and oiu0,v0;u3,v3) = X2iul,vl). We have to check
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condition (E) for  {(w0, u0); («3, v3)}. Suppose condition (E) fails, then since

{(Mo> uo); ("i> üi)} satisfies (E), we would have a picture like the following:

o-(u0,v0;u,v)   *

i.e. there is a point (u, v) on S2(u0, v0), ux < u< u3, and a(«0, v0;u,v) =

A2(ui' ui) = a("o> vo' "1 ' ui)- The last equalities imply that  (u, ÍT) G S2(ux, vx)

and o(ux,vx;u,v) = X2(ux,vx). But we have (ux, vx) - (u^, vf); that is,

(u3,v3) is the first point on S2(ux,vx) with a(ux, vx; u3, v3)= X2(«1, vx).

This is a contradiction because  ux < u < u3. So condition (E) is satisfied for

{("o> uo)> (M3> u3)}- ^e nave diagrams like the following:

**?¿<m¡ (»..v.)
K»vo>

->*

i> v

(u.v)

(ii)  (a)  For case (ii) (a) of Step 2:

We extend S2(u0, v0) until there exists a point («3, u3) which is the first

point on S2(u0,v0),u3>u2 suchthat a(u0, v0; «3, v3) = X2(«3, v3) and that

immediately to the right of (u3, v3) along R2(u3, v3) is region  V2,. Then as

in case (i) of Step 2, we continue the curve from («3, v3) by R2(u3, v3) until

it leaves region  V2_.

(ü) (b)  For case (ii) (b) of Step 2:
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We continue R2iu2, v2) until there exists a point («3, v3) at which

R2iu2,v2) first leaves region  F2.. Then we continue the curve by 7J, where

72 is actually the curve R2iu2,v2) between (w2,i>2) and («3,v3). The

diagrams look like the following:

We need not describe how to continue the curve 7; it is analogous to the

above steps.  Thus the solution to the Riemann Problem  {(u0, u0); (a, v)} for («, v) E

y takes the form

i.e.   {(«0, v0); («j, Uj)} and   {(«", i>"); (w, u)} are connected by one-sided con-

tact discontinuities; {(«,, i>f); («', u')}> 1 < í < », are connected by rarefaction

waves and  {(«', u'); (ti/+ x, üí+ j)}, 1 < í < n - 1, are connected by two-sided

contact discontinuities.  Of course, we might have (ult v¡) = («", u")  and

{(«0, u0); (ti, u)} are connected by a single shock.

To prove that y* is continuous and defined for « and that condition (E)

is satisfied for all discontinuities, we need some lemmas.

Lemma 2.3.   Let y be a curve with corresponding mixed curve y*, that

is, y is a segment of an R2 curve in the region   V2^, and for every point («, v)

on 7*, there is a point («*, v*) on y such that («, u) E S2iu*, v*), u > u*,

->•»
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and (u, v) is the first point on S2(u*, v*) such that o(u*, v*; u, v) = X2(m, u)

77ze«, along the curve y*,

dv    (u-u*)gu+(k*-fu)(v-v*)

du    (v - v*Yv + (X* - guXu - u*)

where gv,fv,fu,gu and dv/du are evaluated at (u,v) and X* = X2(t/*, v*).

Since X* = a, we thus have dv/du = h2(u*, v*; u, v).

Proof.  Use the Hugoniot condition for {(«*, v*); (u, v)} along with

equalities:

dv*       #_ ~ dv = vi + v2dv*ldu*

du*      a   - a2l" . v )>       du    ui+ u2dv*/du* '

u, =
bu

bu* (u,v)
U~ =

bu_

bv* (u.u)
, etc.

Lemma 2.4.   Let (u*, u*) G 7, («*, uf) G 7, (ux, vx) G 7*, (u2, v2) G 7*,

and u*>u*, then u2>ux.

Proof.  We have only to prove the lemma when  \u* — u*\ is small.

Suppose, otherwise, we have u2 <ux, and the picture looks like:

v        (u*,v*)

S2(u*,v*)

(u,,v.)

S.U^Vj)

By continuity of a, we have  \ux - u2\ small. Pick points (u3,v3)e.S2(u2¥,v2<)

and  («4, u4) G S2(ux, vx), u3 = ux, «4 = «J.  By Lemma 2.3, we know

S2(m|, uf) is tangent to 7* at (u2,u2); thus  \v3 - vx\ = 02\ux - u2\.  By

Lemma 2.3 and continuity of a, we have  02\ux - u2\ = 02|«^ - «Jl.   So

|u3 - vx\ = 02|wjc - w£|.  The definition of 7* gives  a(ux, vx; u*, vf) =

\2(u*, v*), and thus, by Lemma 1.5, h2(ux, vx ; u*, uf) = a2{u*, ujf),  so

|u4 - ufl = 02l«î -«||.
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The last equality along with  |u3 - uj = 02\u* - u*\ gives o(ult ux; u4, u4) =

o(u3, v3; «|, u|) + 02|u* - u*\.

Since condition (E) is satisfied for the pair   {(«}, u|); («2, u2)}, we know

that da/dp <0 along 52(«|, u|) at the point (u2,u2).  This implies that

a(«|, u|; ti2, u2) > o(wf, u|; w3, u3) + 02\ul - u2\.

Since  a(«j, ux ; «f, uj) = X2iu*, v*), we have, by Lemma 1.4, da/dp = 0

along S2iux, Uj) at (u*, u*); thus a(«j, vl; tvf, u*) = a(«j,vl;u4, u4) +

£>2l«i - w2l.

Since 7 C V2_, we have  X2(uJ, uf) > X2(wf, uf) + fcli/j - w2|  for some

k>0.

Using the inequalities just derived, we have

X2(«|, vf) = a(u%, uj; u2, v2) > a(w|, u|; «3, u3) + 02\u* - «||

= a(w1,u1;ii4, u4) + 02|wf - u£|

= o(u1,v1;u*, v*) + 02\u* - u*\

= X2iu*,v*) + 02\u* -u*\

> X2iu*, v*) + k\u* - u*\ + 02|u* - u*\,      k>0,

which is a contradiction.  The lemma is proved.    Q.E.D.

Similarly, we can prove

Lemma 2.5.   Let iu*, v*) E y, (ul,vl)E y*, and suppose that

0Q4*, v*; u, v) attains a local minimum at iul, ut).  Then, for iu*, v*) E y,

\u* — u*| small, we have

(i)  There is no point (u,v)ES2(u*,v*),\u-ui\ small or u*<u <ux,

so that condition (E) is satisfied for   {(«*, v*); iu, v)}, provided u* < u*.

(ii)  There is point iu, v) E S2iu*, v*), \u - ul |  small, u*<u < «p so

that condition (E) is satisfied for   {(«*, v*); iu, v)}, provided u* > u*.

Using Lemmas 2.4 and 2.5, we can prove

Lemma 2.6.   Let iu3,v3)ES2iu1,v1),u2> ul,oiui,v1;u3,v3) =

X2("i>ui) and suppose that   {(«1( u1);("3, u3)} satisfies (E).  Take any iu*,v*)E

R2iu1,v1),u* <«!, such that any point on R2iul,vi) between  iu*, v*) and

(«j.iij) lies in region   V2_.   Then there is no point iu, v) on S2iu*,v*),u*<

u < u3, such that condition (E) is satisfied for   {iu*, v*); iu, v)}.

Remark.   Part (i) of Lemma 2.5 implies that the curve 7*  cannot be ex-

tended beyond (Mj,Uj); and part (ii) implies that there are points on y* left

of («j,Wj).  Lemma 2.6 extends the results globally.

Using Lemmas 2.4, 2.5 and 2.6, we finally have
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(2.2)

Lemma 2.7.  Any mixed curve is a smooth and decreasing function of u.

We make the following assumption:

Either (i) gu  is finite for finite   u,

| or (ii) the integral curve of dv/du = gu  does not escape along any

I vertical line and every finite-width vertical zone contains only finite

many curves in   V\.

Theorem 2.1.   Under the assumptions (0.4), (0.5), (2.1) and (2.2), the

curve y(u0,v0) constructed is defined for all u and is a decreasing function of

u. Here y(u0, u0) is such that points (u,v) on y(u0,v0) can be connected

to («0, u0) on the right by forward waves.

Proof.  The fact that the curve 7 is a decreasing function of u is ob-

vious by now. We have only to show that 7 does not have vertical asymptotes.

With Lemma 1.1 and Lemma 2.3, we need only to treat the cases when 7 is

composed of a single rarefaction curve R2(u, v ) or when 7 is composed of

infinitely many mixed and rarefaction curves eventually.  In the first case,  X2 is

increasing along R2(u, v), and thus dv/du = a2 = gJX - gv<gj\2(u, v) <

gj\2(u, v). By (2.2), we know R(u, ÍT) does not have vertical asymptote.  In

the case 7 is composed of infinitely many rarefaction and mixed curves, and

7   has vertical asymptote, we show this is impossible by using (2.2).    From

(ii) of (2.2), this cannot happen, since the intersection of a rarefaction curve with

the adjacent mixed curve is a point in  V\. We treat the case when (i) of (2.2)

is assumed. With Lemma 1.1, we may assume that S2(u0, v0) does not appear

in 7 eventually, thus the solution to the Riemann Problem   {(«0, u0); («, u)},

u close to u  and (u, u) G 7 is of the form that («0, u0) is connected to a

fixed (ux, vx) on 7 by a contact discontinuity and (ux, vx) is connected to

(«, u) by contact discontinuities and rarefaction waves. With the preceding argu-

ment, in order to have 7 escape along u = u, there must be sequences  {(«„,

«„)} and   {(«", u")} on 7, suchthat («„, u„) is connected to («", u") by a

two-sided contact discontinuity and lim(un - v")/(un - un) = - °°.  However,

since gv <0,gu< 0, the last equality implies

,n    „ .    S(un, vn) - g(un, vn)     gju", u„) - g(un, u„)
a(un, v ; u„, v„) =-=-<-j.-

v    '     '   "'  nJ v" — vn if -vn

(»" - un)Zu(»> »n)
=-ñ-► 0    as «. ^ «.

v" -vn "
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But since

o(u", v"; un, vn) > X2iul,vl) > 0,

this is a contradiction. We have finished the proof of the theorem.    Q.E.D.

Similarly, under the assumptions (0.4), (0.5), (2.1) and the following:

The integral curve of dv/du = a does not have horizontal asymptote

(2.3)   and any finite-width horizontal zone contains only finite many curves

in  K¿,

we have

Theorem 2.2.   Given any (ti0, v0) E U, there is a curve ßiu0,v0) = ß

defined for all v and contained in the quadrants   {iu, v)\u >u0,v>v0} and

{iu, v)\u < u0, v < u0} such that point iu, v) on ß can be connected to

(«0, v0) on the right by forward shock, rarefaction waves and contact discon-

tinuities.

From Theorems 2.1 and 2.2, we finally have the following theorem.

Theorem 2.3.  Suppose that (0.4), (0.5), (2.1), (2.2) and (2.3) hold.   Then

the Riemann Problem   {(«,, v¡); iur, vr)} for general data can be solved in the

class of shocks, rarefaction waves and contact discontinuities, and condition (E)

is satisfied across discontinuities.

Proof.  Divide the region  U into four quadrants as shown in the diagram

that follows

t-<vv
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Suppose, say, (ur, vr) E III. Construct a curve a(«r, vr) from (ur, vr) such

that a point (u, v) on a can be connected to («r, vr) on the left by forward

waves.  An analogy of Theorems 2.1 and 2.2 yields that a is defined for all u <

ur. Since ß is defined for all v, a intercepts ß at some point («m,um). We

then solve the Riemann Problem   {(«/; v¡); (iir, vr)} by connecting («,, v¡) to

ium,vm) by backward waves and ium,vm) to («,., ur) by forward waves, as

shown in the picture below

This completes the proof of the theorem.    Q.E.D.

3.  Uniqueness. In this section we shall prove that the solution to the

Riemann Problem is unique, provided condition (E) is satisfied.

Theorem 3.1. Under the assumptions (0.4), (0.5) and (2.1), // (w/; v¡) is

connected to iur, vr) on the right by finite number forward shocks, rarefaction

waves and contact discontinuities and condition (E) is satisfied across discontinu-

ities, then  iur, vr) E y(u¡, v¡) and the solution is the one constructed in §2.

Proof.  By simple geometric consideration, using Lemma 1.7, we know

that the solution must be of the form

("o,v„)

S^-^V.v1)

(u2,v2)

vV
-Cu\vn)

->-x

where   {(«', v'); («i+ v vi+ j)}, 1 < í < n — 1,  are connected by contact discon-

tinuities,   {(«,-, v¡); iu', v')}, 1 < i<8 — 1,  are connected by rarefaction waves,

and   {iu¡,vl);iu1,vl)} and   {(«", v"); iur, u,)} are connected by shocks or

contact discontinuities.



108 TAI-PING LIU

We assume that u ¥= ui+ x, that is, there is a real discontinuity between

(«', v') and (u¡+y,v(+l). Suppose that ux>u¡. The case ux<:U¡ can be

treated similarly.  The proof is based on several claims.

Claim 1.   (u(, v¡) G V2_ and u¡ < u', u'' < ui+ x, i = 1, 2, • • • , n.

Proof.  We shall show that (ux, u,)G^UFj  is impossible.

If («pUjJGF2, then since o(ul,vl;ux,v1)=\2(ux,vx), we have, by

Lemma 1.6, that a(w/; u;; w, u) has a local maximum at (ux,vx). This contra-

dicts the condition (E) for   {(u¡, v¡); (ux, vx)}.

If («j, Uj) G F2,, and immediately to the left of (ux, vx) is region V\,

then, by Lemma 2.2, a(u¡, v¡; u, u) is increasing at (ux, u,). This again contra-

dicts condition (E) for   {(u¡, v¿); (ux, vx)}.

If («j, Uj) G V\, and immediately to the left of (ux> vx) is region  F2.,

then, by Lemma 2.1, immediately to the right of (ux, vx) is region   V\.  How-

ever, we have (u1, v1) GR2(ux, vx) and   {(ux, vx); (ux, u1)} are connected

by forward rarefaction wave. This implies that, if «1>w1, then the R2 curve

between (ux,vx) and (a1,»1) lies in  F2., and, if m1<«j, then the 7?2

curve between (Hj.Uj) and (w^u1) lies in  V\. In our present case, this is

impossible.

In any case, we have (ux> vx) G V2,. Thus, by Lemma 1.3, since  {(«*, u1);

(m2, u2)} satisfies condition (E), we know that «2 > ul. It is clear that Claim

1 can be proved by induction.

Claim 2. (i) Let u1' ' = max {h|(w, u) G 52(u'-!, v'~ '), «*"' < " < "r,

{(«'" ', vf-1}; («, u)} sarts/ïes (E)}, 1< i < n + 1; r«ew u, » S'-1.

(ii) 1er (m, u) G R2(u¡, v¡); (u, u) G 52(w, u), m, <«<«', m < ÍT < wr;

then   {(u, u); (¡T, u)} does not satisfy (E),  1 < i < n.

Proof   (by induction). Part (i) is clearly true for i = n + 1.  By Lemma

2.6, (ii) is true for i = «.  Suppose that (i) fails for i = «.  Pick («, u) G

S2(u"-1,vn-1),un<ü<ur, suchthat a(u"~l, u""1; U, v) = X2(t/,-1,u"-1).

Since, by Claim 1, («„, u„) G V2_, we know that  a(un~l, vn~l;u,v) attains

a local minimum at (w„, u„)  and a(wn_1, u"-1; «„, vn) = X2(w"_1, u"_1) =

X2(î/„, un). The last equalities together with the fact that ofu"-1, u"_1; w, v) =

X2(«"_1, un_1) implies that (¿7, v) GS2(un, vn) and o(un, u„; ¿7, u) =

X2(w„, u„).

Since («n,u„)GI^.) we have do/dp >0 along S2(un,vn) at points

close to (un,u„). Thus there exists («, u) G 52(«n, u„), «„ < « < U, suchthat

{(u„,u„), («, u)} satisfies (E).
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Aa(unVu,v)

This contradicts (ii) of this claim for i = n.  Thus (i) holds tor / = n.  We then

prove (ii) for i = n - 1   by using Lemmas 2.5 and 2.6.  This completes the proof

of Claim 2 by induction.

We now return to the proof of Theorem 3.1.

Claim 2,  (i) implies that u1 = u¡. Since iul,vl)E S2iu¡,v¡), we know

that (tij.Uj) is uniquely determined by  iu¡,v¡)  and ur.

Suppose that there exists iu1, v'), and («,-, v¡), i = 1, 2, • • • , «' # u1,

and that

K.v,)
'-(u'.v1)

(u2,v2)

(vV

solves the Riemann Problem   {(wz, v¡); iur, vr)}. Without loss of generality, assume

<«.  By Claim 1, u1 <u2<ur and   {(« , vl); (u2, v2)} satisfies condi

tion (E). This contradicts part (ii) of Claim 2 for i = 1. Thus u1 = u1. Since

iu1, v1) E R2iul, Uj), it follows that  (u1, v1) is uniquely determined by

iu¡,v¡) and ur. The proof of Theorem 3.1 is complete by induction.    Q.E.D.

Theorem 3.2. Assume (0.4), (0.5), (2.1), (2.2) and (2.3). Take («0,u0)G

U, («,, Vj) and («2, v2) on j3(«0, v0), Uj # v2. Then yiu{, ux) n y(u2, v2)¥=

0. Here ß and y are defined in Theorems 2.1 and 2.2.

Proof. Suppose, otherwise, there is («3, u3) E yiux, vf) n 7(«2, v2).

Assume that u3>ul,u3>u2. The case u3 < ul, u3 < u2 can be treated

similarly.

Choose  (w1, u1) E j3(u0, u0), (u1, v1)  lying between  (u1,v1) and iu2,v2).

Then iul,vl) intercepts 7(11,-, v¡), i = 1  or 2, at, say (w1, vl), ul < ul < u3.
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Next choose  (w2,u2) on ß(u0, u0) between (ul,vl) and  (u¡,v¡).  Then

y(u2,v2) intercepts y(u¡, v¡) or y(ul,vl) at say  (u2, v2), u2 < U2 < u3.

Continuing the process, we then get a sequence   {(«', u')}. Without introducing

a new notation, by passing to a subsequence, we may let (ux,vx) be the limit

point of the sequence   {(«', v1)}. Thus we can assume that (w2,«2) is arbitrarily

close to (Mj,Uj). We consider only the case vx~>v0,v2>vQ. The other cases

can be treated similarly.

Let a(u3, v3) be a curve such that any point (u, v) on ot(u3, v3) can be

connected to (u3, v3) on the left by forward waves.  An analogue of Theorem

3.1 says that (w2,u2) and (ux,vx) are both on a(w3,u3) and that a(u3,v3)

is composed of shock, rarefaction and mixed curves.

By choosing (u2,v2) close enough to (ux,vx), we have

(3.1)

...       du\ -dv
either   -H > -r-

dvUu3,u3)    du

dv
or  T

du a(u3,u3)      du

>0   at (u2,v2);
ß(u0,v0)

< 0   at («2, u2).
0(uo,uo)

We only prove the theorem for the second case; i.e. we assume (3.1).  The

first case can be treated similarly.

Since ax > 0, by (3.1), we have dv/du\&^u      j ¥= aj  at (m2, u2). Hence,

by the construction of j3(«0, u0), there exists («°, u°) G ß(u0, u0) suchthat

{(w°, u°);(«2,u2)} satisfies (E) and dv/du\ß(uoVo) = h2(u°,v°;u2,v2) at

(w2, u2).

If du/dv\aiU3V3) = a2  at («2,u2), then by (3.1), 0 > h(u°, u°; u2, v2) >

a2(u2, v2). This would then lead to a - X2 > 0, which is a contradiction,

since o<0 and X2 > 0.  So there exists (u3, u3) on a(w3,u3) suchthat

{(»2'v2);("3>ü3)j satisfies (E) and dv/du\a{U3V3) = «2(«3, u3; u2, v2) at

(u2, u2).  (3.1) then gives

(3.2) h2(u3, u3; u2, v2) < h2(u°, u°; u2, v2) < 0.

By condition (E) for   {(«2, u2); («3, u3)} and   {(t/°, u°); (w2, u2)}, using

Lemmas 1.4, 1.5 and 1.7, we have

da 1    •j
(3-3) ^7>0 ÚOD* 52(" >«) at ("2» "a)»

(3.4) -T^<0 alonS 5i("°>ü°) at (w2,u2).
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Pick points (m4,u4) on S,/«0, v°) and («5,u4) on 52(«3, v3),

\v4 - v2\ small, v4 > v2. We have the following picture:

(u2»v2)
K»VJ

(u3,v3)

M5 ^M4 +ö,|ü 2|U4 ml.

By (3.2), we know

(3.5)

Since gu < 0, (3.5) implies

(3-6) gius, v4) < giu4, v4) + 02 \v4 - v21

Since a = Ag/AM, (3.3) implies that

gius, v4) - giu3, v3)     giu2, v2) - giu3, v3)
>

u4 — v v2 — v

,.3

+ fcj|u2 -u4|,      kl > 0.

(3.7)

Since u4 > v2 > v3 and <J|u,(h3iU3) > 0, the above inequality gives

Ç("s> v¿)-gi"3> v3)>giu2, v2)-giu3, v3) + k2\v2 - u4|,      k2 > 0,

gius,v4)>giu2,v2) + k2\v2 -v4\,     k2>0.

Similarly, (3.4) gives

(3:8) giu2, v2) >giu4, v4) + k3\v2 -u4|,      /:3>0.

Now (3.7) and (3.8) imply that gius, v4) > giu4, v4) + k\v2 - v4\, k =

*2 + ^3 ^ 0; this contradicts (3.6).

This completes the proof of Theorem 3.2.   Q.E.D.

Finally we have the main result of this section.

Theorem 3.3. assume (0.4), (0.5), (2.1), (2.2) and (2.3). There exists at

most one solution to any Riemann Problem   {(«,, v¡); («r, vr)} in the class of

finite number shocks, rarefaction waves and contact discontinuities; such that

condition (E) is satisfied across discontinuities.
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Proof.   Suppose the Riemann Problem   {(«;, v¡); (tir, vr)} can be solved

by connecting iu¡,v¡) to i"m,vm) by backward waves and ium,vm) to

iur, vr) by forward waves; and can also be solved by connecting iu¡, v¡) to

(«m,t7m) by backward waves and  (wm,tJm) to  («r, vr) by forward waves.  Then,

by Theorem 3J, we have yium, vm) n y(um, vm) 3 {(ur, vr)} and^ («„,, vm) E

ßiu,, v¡); (ûm, vm) E ß(u,, v¡). Thus by Theorem 3.2, (um, vm) = («m, vm).

Also Theorem 3.1 says that both   {(«,, v¡); (iim, vm)} and   {(um, um); (zir, vr)}

have unique solution.  This finishes the proof of Theorem 3.3.    Q.E.D.

Combining Theorems 2.3 and 3.3, we finally have the following main the-

orem.

Theorem. Assume (0.4), (0.5), (2.1), (2.2) and (2.3).  There exists a unique

solution to any Riemann Problem in the class of shocks, rarefaction waves and

contact discontinuities, such that condition (E) is satisfied across discontinuities.

The author wishes to express his gratitude to Professor Joel A. Smoller for

his encouragement and also for the inspiration he received from their many stim-

ulating conversations, all of which contributed to the completion of this work.
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