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BY

J. L. CORNETTE

ABSTRACT. It is shown that a Hausdorff continuum S is the con-
tinuous image of an arc (respectively arcwise connected) if and only if each
cyclic element of § is the continuous image of an arc (respectively, arcwise
connected). Also, there is given an analogue to the metric space cyclic chain
approximation theorem of G. T. Whyburn which applies to locally connected
Hausdorff continua.

1. Introduction. Metric locally connected continua are continuous images
of metric arcs and are metric arcwise connected. However, in 1960, S. Marde§ic
[3] gave an example of a Hausdorff locally connected continuum which is not
the continuous image of a Hausdorff arc and which is not Hausdorff arcwise con-
nected. A more simple example with the same properties is described in [2]. A
very important concept in studying the structure of metric locally connected con-
tinua is the cyclic element theory of G. T. Whyburn [4], and with some differences,
most of this theory can be carried over to and is useful in the study of Hausdorff
locally connected continua (see, for example, [5]). The primary purpose of this
paper is to present a proof of

THEOREM 1. The Hausdorff locally connected continuum S is the contin-
uous image of an arc if and only if each cyclic element of S is the continuous
image of an arc.

We also give the comparatively easy proof of

THEOREM 2. The Hausdorff locally connected continuum S is arcwise con-
nected if and only if each cyclic element of S is arcwise connected.

Theorem 1 has an important corollary, Corollary 1.1, and it may be useful to
the reader to consider the special case of this corollary when first reading the proof
of Theorem 1.
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COROLLARY 1.1. Every dendron is the continuous image of an arc.

An arc is here meant to be a Hausdorff continuum which has only two non-
cut points. Equivalently, an arc is a linearly ordered set which, with the order
topology, is compact and connected. A dendron is a Hausdorff continuum M
such that each two points of M are separated in M by a point of M. Each cyclic
element of a dendron is degenerate and is therefore trivially the continuous image of
anarc. Hence, Corollary 1.1 is an immediate consequence of Theorem 1.

We use generally, the definitions, notation and statements of theorems as in
[4, Chapter 4, §§1—6, 8]. With standard modifications, these can also be used
in the context of locally connected Hausdorff continua, as initiated by Professor
Whyburn in [5]. In §3 there is suggested an analog for compact Hausdorff spaces
to the cyclic chain approximation theorem of §7, Chapter 4 of [4].

Henceforth it is assumed that S is a locally connected Hausdorff continuum.

2. Proof of Theorem 2. If S is arcwise connected and @ and b belong
to the cyclic element E of S, then there is an arc [a, b] in S with endpoints
a and b. Now [a, b] N E is connected and contains ¢ and b, so [a, b] is
a subset of E.

Suppose each cyclic element of S is arcwise connected and @ and b are
points of S. Then C(a, b) = E(a, b) + a + b + C where C is the union of
the collection H of true cyclic elements # of S which contain two and only
two points of E(a, b) +a + b. For h in H, let x, and y, be the two
points of & in E(a, b) + a + b, denoted so that x, precedes y, in E(a, b)
+a + b.and let [x,, y,] beanarcin h with endpoints x;, and y,. We
show that

M=E@,b) +a+b+ U{lx, y,]l h € H}

isan arc in S with endpoints @ and b.

(1) M C C(a, b),so if P € M— M, P belongs to an element 4 of H.
But [x,, y,] is closed and the only possible limit points of C(a, b) — h, which
contains M — h, are x, and y, which belong to M. M is compact.

(2) If M =M, + M, isa separation, each of M, and M, intersects
E(a, b) +a + b, and if a € M, there is a first point d of M, in E(a, b) +
a +b and alast point ¢ of M; in E(a, b) +a + b that precedes d. Then
c and d are respectively x, and y, of some member A of H, and M; N
Ixn, v, + My 0 [x,, ,] isa separation of [x,, y,] which is a contradic-
tion. M is a continuum.

(3) Suppose x EM —a —b. If x € E(a, b), x separates a from b in
S, so x separates ¢ from b in M. If for some h € H, x is a cutpoint of

[xh: yh] ’
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{IM N C(a, x)] + [xp, )} +1{(x, y,] + [M O C(yy, DI}

is a separation of M — x. M is an arc.

3. Retracts and inverse limits. We use the following lemma.

LEMMA 1. Suppose X is a compact Hausdorff space, D, is a collection of
retracts of X, for o € Dy, p,: X — « isa retraction, and

(1) with the inclusion order (o < f if and only if a C ), D, isadirected
set;

V)] U Do =X,

(3) if &, BE Dy, a <P, then py ° pg = p,.
For a,BE D, with o <, let p,g = pylB (p, restricted to B). Then
{a, Po,ps Dy} is an inverse limit system whose limit space ¢, is homeomorphic
to X.

ProOOF. Suppose a, 8, Yy €ED and a <<y and x €. Then
Pa,5(Pg,4(X)) = Pe(Pg(X)) = po(X) = po (%)
{&, py g Do} is an inverse limit system. Define H: X — a_ by
HE) = (03 Vaep,-

For X € Dy, let P, be the projection of the product space X {a: @ € Dy}
onto A;then P, o H = p, and therefore H is continuous. If x and y are
distinct points of X, there are members § and n of D, such that x € { and
Y €n,and there is a in D, such that § <& and 7 < a Then both x and
¥ belongto a and p,(x) = x # y = p,(»). Consequently H(x) and H(y)
differ in the ath coordinate and H is one to one.

The sets {P;'(0,): @ € Dy, O, openin o} form a base for the topology
of a_. Suppose o € Dy, O, isanopensetin a and x € 0,. Then H(x) €
P;1(0,). Consequently H(X) isdense in a_ and since X is compact, H is
onto. H is the desired homeomorphism.

For any A-set A of S, we define the continuous retraction p,: § — 4
by

pax)=x if x €A,

= boundary point of the component of S — A
that contains x if x € S — 4.

We let e denote a specific point of a specific node of S which is a non-
cut point of S. We let D, denote the collection of A-sets of S which have
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only a finite number of nodes (of themselves) and which contain e . With rou-
tine arguments of cyclic element theory, one can establish that, for X = S, D,
and p,, @ € D, as just defined, the hypotheses of Lemma 1 are satisfied, and
we see that S is homeomorphic to the inverse limit space of {a, Po.g> Dy}

REMARK. It may be observed that this provides an analogue in Hausdorff
spaces to Whyburn’s cyclic chain approximation theorem. The analogy can be
even more closely drawn by observing Lemma 2, which is not used otherwise in
this paper.

LEMMA 2. If G is an open cover of S, there is a member o of D, such
that every component of S — a is contained in a member of G.

4. The steps in the proof of Theorem 1. If 7 is a map of an arc / onto
S and E isa cyclic element of S, then pg © 7 isa map of I onto E. This
“half” of Theorem 1 is complete.
With the notation of §3, the strategy in the proof of the other “half” of
Theorem 1 is
I. For each a € D, define an arc I, and amap m, of I, onto a.
Il. For a, B € Dy, define a monotone map ¢, z of I; onto I, such
that m, °© Pa,g = Pa,g ® Mg
IIl. Show that for a, B, ¥ € Dy, with a KB <7, ¢,, = Pa,8° D6y
It will follow then, that {I,, ¢, g, Do} is an inverse limit system whose
inverse limit space I, is an arc and that the inverse limit map «_ maps I, onto
S. That I is an arc follows from Theorem 4.4 and Lemma 4.7 of [1]. The
arguments for steps I, II and III follow a common pattern and are induction argu-
ments.

5. Some notation. It is necessary to consider a class D which properly
contains D,. Welet D denote the collection of all A-sets in S which have
only a finite number of nodes. For a € D, we let a* denote e  if e €aq,
and if e, & a,let a* denote the boundary point of the component of § — «
that contains e,. If E isa cyclic element of a € D, the order of E in a is
(a) the number of boundary points of E if E is a true cyclic element of - a,
and (b) the number of components of a — E if E is a degenerate cyclic ele-
ment of a. Then E will be called a vertex of a if (a) the order of F in «
is not two, or (b) o* is a cutpoint of a of order two and F is {a*}, or (c)
a* is a noncutpoint of a and E is the unique cyclic element of a which
contains a*.

If a € D, atype-0 edge of a is a true cyclic element of a which is a
vertex of @, and a type-1 edge of a is cyclic chain C(g, b) of a such that
a and b belong to nonintersecting vertices and no point of C(a, b) —a — b
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belongs to a vertex of a. Note that each type-0 edge of a may be written as
C(a, b) for any two distinct points @ and b belonging to it. If &« € D and

n is a positive integer, the height of « is < n if and only if for each point x
of a, there is a sequence C(ay, a,), C@,, a,),***, Clay_y,a,) of k <n
edges (type-O or type-1) of a such that a, is a* and x belongs to

C(ay_y, a;). Using standard arguments from cyclic element theory, one can prove
the following:

PROPERTIES OF VERTICES AND EDGES. Suppose a € D. Each cyclic ele-
ment of o is of finite order. The cyclic element E of « has order one if and
only if E isanodeof o All but a finite number of cyclic elements of o have
order two. If two edges of « intersect, their intersection is a cut point of o
Every point of a belongs to an edge of a and o has only a finite number of
edges. There is a positive integer n such that the height of a is < n. Fach
edge of a belongsto D and if C(a, b) is a type-1 edge of o, aand b are
the boundary points in a of a — C@, b), and if C@a, b) =1, y* is a or b;
furtherif ¥* =a and BED and B C vy and B* = y*, there is a member c
of E@ b) +a + b suchthat § = C(, c).

Let W denote the collection to which w belongs if and only if for some
cyclic element E of S, w is a component of S — E. We assume henceforth
that there is a prescribed wellorderon W. If a« € D and E is a cyclic element
of a,then E isa cyclic element of S, each component of a — E is contained
in a component of S — E, and no component of S — E contains two compo-
nents of a — E. Consequently, the well-order of W induces a unique well-order
on the.components of a — E (the component U of a — E precedes the com-
ponent V of a — E if and only if the component of S — E that contains U
precedes the component of S — E that contains ¥). This unique order on the
components of a — E then induces a unique order on the closures of those com-
ponents (U precedes V if and only if U precedes V). We say then that the
closures of the components of a — E are ordered in the order relative to W.
Furthermore, if a is a subset of a member f§ of D, the well-order on W induces
an order on the components of 8 — £ which in turn induces the same order on
the components of « — E as does the well-order of W.

If [Py, Q41,°°°, [P,, Q,] are oriented arcs, then

[Py, Q1 <« [P}, Q3] <> [P, 0,]

(< is read “joined to”) will denote the oriented arc [P, @] obtained from the
disjoint union of {[P;, Q;]}Z, by the equivalence P; = Q; ,,i=1,*+*,
n —1,and with P = P, Q = Q,,. If, further, there are maps m; with domain



258 J. L. CORNETTE

[P, Q),i=1,"c*,n,and 7(Q) = m;, {(P;y,), i =1,2*+,n—1,then

([Pla Qll: 771) «> ([Pz, Qz], 7’2) D ([P", Qn], "n)

will denote the pair ([P, @], m) such that [P, Q] isasabove and = is the
map with domain [P, Q] such that n(x) = m(x) if x € [P, Q;],i=1,"*",n
Note that degenerate intervals [P}, Q;] and pairs ([P}, Q;], ;) can be inserted
in or deleted from {[P, Q;]}., and {[P; Q;], m}L, without changing
[P, Q] or ([P Q], m).

By hypothesis of this “half” of Theorem 1, every cyclic element of S is
the continuous image of an arc. We assume that for each cyclic element E of S,
there is selected a specific pair (Ig, mg) such that I is an arc with a fixed
orientation (Iz = [Pg, Qg]) and that mg is a map of Iz onto C such that
1g(Pg) = mg(Qp) = E*. If E is degenerate, it is assumed that I is degener-
ate. If a isa point of E,welet (@) (or (@) where necessary) denote the
first point of mgl(@) in I.

6. Step I, the pairs (I,, m,).

6.1. The pairs (I,, m,) for a anedge. If o isa type-0 edge of a mem-
ber of D, a is a true cyclic element of S and the pair (/,, m,) is already
determined.

Suppose « is a type-1 edge C(a, b) of a member of D;then a € D, a*
is either @ or b and we assume a* = a. Now

a=C(a,b)=E@ab)y+a+db+C

where C is the union of the collection H of true cyclic elements of S which
contain two and only two points of E(@, b) +a + b. If h € H, h also be-
longs to D and A* is one of the two points of A that belong to E(e, b) +

a + b; we let A** denote the other one. Note that A* precedes A** in

E@, b) +a +b. Welet J, (respectively K,) denote the disjoint union of the
open intervals {(P,, (h**),)| h € H} (respectively, {((h**),, Q,)| h € H}) and
let

J,=E@ab)+a+b+J,, and K, = E(a,b) +a +b +K,.

Define the order < on J, (respectively K,) by x <y if and only if

(1) x, y EE@ b) +a +b and x precedes (respectively, follows) y in
that set, or

(2) for some h € H, x € (P, (h**) (respectively, x € ((h**), Q,)) and
YEE@m b)+a+b and h** is y or precedes y in E@, b) +a +b (h*
is y or follows y in E(@, b) + a + b), or
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() x€ E@, b) +a +b and forsome h €EH, y € (P, (h**) (y €
(h**), Q,)) and x is h* or precedes h* in E(@, b) +a +b (x is h**
or follows A** in E(g, b) +a + b), or

(4) for some h,, h, EH, x € (P"l’ (hT*) and y € (th, h3*) (x €
«nE®, th) and y € ((h3%), th)) and either £, = h, and x precedes y
on (P, (h}*) (x precedes y on (hF"), th)) or hy # h, and hf pre-
cedes hf on E(g, b) +a + b (hf precedes hf on E@a, b) +a +b).

With these orders, and the topologies induced by these orders, J, and K|,
are oriented arcs. Welet I, =J, «—> K, = [P, O, ] where P, is the first
point of J, and Q, is the last point of K, and define =,: [, = a =
C(@, b) by

mT,(x) = x if x € E(a, b) +a +b,
= m,(x) if x € (P, (h**) + (h**), Q).

It is fairly routine to check that =, isa map of I, onto a and that 7 (P,) =
1,(Q,) =a = a*.

6.2. The pair (I, m,) for o« of height <1. Suppose a isa member
of D of height <1. If a — a* is connected, @ must be its own only edge
and (I, m,) is already defined. If a — a* is not connected, we let a;,--,
o, denote the closures of the components of a — a*, ordered in the order rela-
tive to W. Then a; 1 <i < p,isanedge of a, of = a* and the pair (I“i’
ﬂai) is already defined. We define (7, m,) to be

(Ial’ ﬂal) «> (Iaz’ "az) H'“(_)(Iap’”ap)

and let P, and Q, be respectively the first and last points of I,; then m,(P,)
=af = a* = af = 7m,(Q,)

6.3. The induction step for the pairs (I, m,). Suppose n is a positive
integer and the pairs ([, m,) have been defined so that I, = [P,, Q,] and
T, (P,) = m,(Q,) = o* for every member a of D of height <n Let a be
a member of D of height <n + 1.

Suppose first that o — a* is connected. Then there is a unique edge e
of a that contains a* (since each two edges of « intersect at only a cut point
of a).

(i) Suppose first e isa type-1 edge of a. Then e= C(a*, b) for some
point b of a,and b isthe only boundary point in a of a —e Let o,
***, a, be the closures of the components of a — e (which are also compo-
nents of a — b), ordered in the order relative to W. Then @;, 1 <i<p,isa
member of D, af = b and the height of «; is < n; the pair (I"‘i’ Ty,) has
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been defined and ”“i(P“z) = ﬂai(Qai) =b. Recall J,, K, and =, from §6.1
and define (my, 1) to be

(S, mJ,) < (I"‘l’ 7ra1) PEEGRNPIIN (Iap, 1rap) - (K,, mlK,).

(i) Suppose now e isa type-0 edge of . Let x;,*<+, x, denote the
boundary points of e in o, ordered so that on [, {x;) < (xy) <e -+ <Axp),
and for 1 <i<gq,let 01575 O i) denote the closures of the components
of a —e which have x; as their boundary point, ordered in the order relative
to W. Thenfor 1 <i<gq,1<j<p(), o; isamemberof D, of; = x;
and the height of a;; is <n Let I, be the interval [P,, (x;)] of I, I;
be the interval [(x), (x;. )] of I,,i=1,q —1,and I, be the interval
[x,) Q] of I, andlet m; = m,|[,0 <i<gq. Wedefine (,, m,) tobe

Uo» M) < Uy s Moy ) 77> oy s Ty ) < o ™)

)

> oo 0> (]q_l, Trq—l) S d (Io‘q,l’ ﬂ"‘q,l

e (] s <~ (I, .
("‘q,p(q) "“q,p(q)) > ma)
For I, = [Py, .1, mo(Py) = m(P,) = a* = 7m,(Q,) = ,(Qy)-

For o any member of D of height <n + 1 such that a — a* is con-
nected, we have defined (f,, m,) and have that m,(P,) = m,(Q,) = a*. Sup-
pose now a € D of height <n +1 and a — a* is not connected. Let a,,
«++, @, denote the closures of the components of a — a*, ordered in the order
relative to W. Then for 1 <k <7, a; isa member of D of height <n + 1,
of is o* and o — o is connected. The pairs (Iak’ 1rak) have been defined
and "“k(Pak) = ﬂak(Qak) = of = o*, 1 <k <r; we define ([, m,) tobe

Uas o) < Uy Tay) >0 Uy s o)
For I, = [Py, Gl T(Py) = my (B, ) = 0* = 7, (0, ) = To(Q,).
This completes the induction step and the descriptions of the pairs (7, 7).

7. Step II, the maps ¢, 5. We define in this section, for any two members
o and B of D suchthat « C§ and o* = $* a monotone map ¢, of Ig
onto I, and show that m, ° ¢, s = p, g ° mg. There are two degenerate cases:
a =B and a = {§*}. In the former, Pop IS the identity map and in the latter
¢, g is the only possible map (I, is degenerate). In either case, ¢, 4 is mono-
tone and onto and m, °© Pap = Pa,g ® Mg Henceforth it is assumed that o, FED
and « is a nondegenerate proper subset of §,and ao* = g*.

7.1. The map ¢, for B anedge. If B isa type-0 edge of a member of
D, the two degenerate cases are the only possibility for a.
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Suppose: § is a type-1 edge C(a, b) of some member of D. Then €D
and B* is @ or b;weassume f* is a so that 8 is C(8*, b). There is a
point ¢ of E(B* b) such that a is C(B*, c¢) = C(a*, ¢). Referring now to
the procedure for constructing (Ig, mg), one sees that the point ¢ belongs to
JB and to Kﬁ, and hence occurs exactly twice in IB; we let ¢, and ¢, denote
those occurrences of ¢ in Ig, in the order of Ig. It can further be seen that J,
is identical to the interval [Pg, ¢;] of I; and K, is identical to the interval
[ez, Qg] of Ig, and that

(Iaa ‘"a) = ([Pga c]]a ﬂpI[Pm cl]) > ([02, Qp]a ﬂpl[cz’ Qﬁ])
We define P g by

By, 6() = x if x € [P, c;] or x € [c, Qg

={c;, ¢} if x € [¢g, c,].

Each point inverse of ¢, 4 is either degenerate or the interval [c;, ¢,]; &g g

is monotone and also onto. There is only one component of § — a (and it is
C(c, h) — ¢) and that component has ¢ as its only boundary point in . There-
fore, p, g(x) = c if x EB—a. If x € [P, ¢;] or x € [c,, O], then
mg(x) = my(x) is a point of a and b ,6(x) = x, and

Ty (Po, 5 = 7, (x) = mg(x) = Py, g(ma(x)).
If x € [c,, c,],

773(") €EB-a, ¢a,3(x) = {¢;, 3}
and
ﬂa(%,p(x)) =n,({ep, ) =c= Po,gB— @) = pa,ﬁ(ﬂp(x))-
We conclude that m, © ¢, s = p, g ° 7.

7.2. The map b8 Jfor B of height < 1. Suppose 8 is a member of D
of height <1. If B — f* is connected, § must be its own only edge and Pos
is already defined. If B — §* is not connected, let §,,+- -, Bp denote the
closures of the components of B — *, ordered in the order relative to W. Then
B 1 Si<p,isanedgeof 8 and welet a; = @ N B; and observe that o, €D,
of = B = * and the maps ¢°‘i’ﬁi have been defined. It may be that o; is
degenerate for some or several i’s, 1 <i < p, and that they consequently were
not considered as part of (Z,, m,); however for such o, Iai is degenerate and
we may write

Uar ) = Uy o) <00 Uy T ),

l,

(IB’ 7’,3) = (Ipl, 7731) A g (Ipp, ”pp)-
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It is important to note that, excluding the degenerate cases mentioned, a;,**, o,
is ordered in the order relative to C. We define ¢, 5 by

o, 5X) = ¢°‘i’ ﬁi(x) if x € If’i'

Then ¢Q,B is monotone and onto because ¢ai’5i’ 1 < i < p, is monotone and
onto. If x € B, there is an integer i such that x € §;, and p, 4(x) = pai’ﬁi(x).
Because L ¢°‘ivﬁi = Pa;p, ° gy 1 <i<p, wehave m, ° ¢, 5= p,g° T

7.3. The induction step for ®,,5- Suppose n is a positive integer and
¢,,5 has been defined, is monotone, onto and satisfies m, © ¢, 5 = Py g ° g,
forall o, B in D such that o C 3, o* = §* and f has height <n. Let §
be a member of D of height <n + 1.

Suppose first that § — * is connected; then there is a unique edge e of
B that contains S*.

(i) Suppose first that e is a type-1 edge of 8. We further suppose that
e C a. Then e is C(B*, b) where b is the only boundary point in § of
B—e Let By,°--, Bp be the closures of the components of § — e, ordered
in the order relative to W, and let oy = a N B;, i = 1,°++, p. Then for 1 <
i<p,o €D, ; €D, o; CB;, af = ff = b, the height of ; < n and the
map ¢°‘i’ﬁi is already defined. If z is a or B, the pair (/,, m,) is defined to
be

(Iz’ “z) = (‘Ie’ ”el‘,e) g (Izl’ "zl) e (Izp’ Trzp) hind (Ke’ "elKe)-

We define ¢, ; by

B, 5X) = X if x€J, or x €K,

= ¢°‘i’ B,-(x) if x€ IB;‘

Then, ¢, is monotone and onto because ¢°‘i’ﬁi is monotone and onto. If
x € f, there is an integer i such that x € §; and p, 4(x) = pai,ﬁi(x). Because
To;° a8, = Pays; ° Moy i=1°*,p,we have m, ° @, 5 = Py ° Mg

If a is a proper subset of e, there is a point ¢ of E(8*, b) such that «
is C(B*, c). The preceding paragraph defines ¢, 5: Iy — I, and since e isan
edge, ¢, o: I, — I, was defined in §7.1. We define ¢,z tobe ¢, ,° ¢, 5
Since D e and ¢.,p are monotone and onto, [ is monotone and onto.
Since Py 5 = Pye® Pep aNd Mo © G 5= P, p° Mg and M, ° Gy o = Py e © Mes
we conclude that m, © ¢, 5= p, g° mg.

(ii) Suppose now e isa type-0 edge of B. Since we are considering a to be
nondegenerate, it must be that e Ca. Let x,,°-°, Xq denote the boundary points
of e in B, ordered so that on I, (x;) <(x,) <:--< (xq), and for 1 <i<g,
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let B; 1,2, B; p(;y denote the closures of the components of 8 —e which
have x; as their boundary point, ordered in the order relative to W. For 1 <
i<q,1<j<p(@)let o;; =aNp, ;then o;; and B;; belongto D, of;=f; = x;
and the height of ; j s < n and the map ¢°‘i 8y 7 is already defined. Let I,
be the interval [P,, {x,)] of I,, I; be the interval [(xp, (x; )] of I,,i=
1,q —1,and let I, be the interval [{x,), Q.] of I,,andlet m, = ml|L,i=
0,°++,q Thenif z iseither a or B, (I,, m;) is

(10’ 7r0) > (Izl’l’ ﬂzl’l) hnddidand (Izl,p(l)’ ﬂzl’p(l)) « (Il’ ‘n’l)
> 0 0 &> (I —1s ™ _1) > (]zq’l’ ﬂzq,‘)

> e o o &> I , «> I N .
(zq,p(q) "‘q,p(q)) > mg)

Then Gop I8 defined by

By, p(x) = x if xe€l,i=0,--+,q,

= ¢°‘i,1" Bi,i(x) if x€ Iﬁi,i’ 1<i<q,1<j<p().

That p, g is monotone, onto and satisfies m, © ¢, 5 = p, g ° Mg follows from
the analogous properties of ¢°‘i,i"3i,i’ 1<i<gq,1<j<p()

This completes the definition of Pop for B — f* connected. Now sup-
pose B — B* is not connected. Let B;,<*+, B, denote the closures of the com-
ponents of B — B*, ordered in the order relative to W, and for 1 <k <, let
o, =aN . Thenfor 1 <k <r, o and B, belongto D, af = fF = f*,
B, isof height <n +1 and B, — B is connected and the map P 8 has
been defined. If z is & or B, (I, m,) is

@7 ) < Uy
We define Do by
¢a’ﬁ(x) = ¢a

1]’22) > e oo &> (Izr, ﬂz’)

k’ﬁk(x) if x€ ]ﬁk’ 1<k<r

As before, ¢, is monotone, onto and satisfies m, ° bap = Pop® Tp because
of the analogous properties of ¢°‘k'ﬁk’ 1<k<r

This completes the induction step, and step II, the definition of the maps
P 6°

8. Step III, the transitivity ¢, z° ¢, = ¢, ,- The last property to be
established is to show that for o, 8, Y ED, a < B <7y and a* = f* = y*,
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that @, 5 ° Bpy = o,y In the event that a = {a*} or a =8 or § = v, the
result is immediate, and henceforth we assume that a, 8, v € D, a is a nonde-
generate proper subset of § and  is a proper subset of v, and that o* = f* = *,

8.1. P08° Py = Pary for v an edge. If v is a type-0 edge of a mem-
ber of D, v is a true cyclic element of S, and we must have one of the degener-
atecases a=f or f=17.

Suppose 7 is a type-1 edge, C(z, b) of some member of D. Then y € D
and y* iseither @ or b;assume y* =g sothat v is C(y*, b). Then there
exist points ¢ and d of E(y*, b) such that ¢ precedes d in E(y*, b) and
a is C(y*, c¢) and B is C(y*, d). Each of ¢ and d occurs twice on I,
and we let ¢, and ¢, and d, and d, denote those occurrences, in the order
of I,. Then I, I, and I; can be written

I'y = [P‘y’ cl] <> [ch dl] «> [dl’ d2] > [dzs cz] > [02, Q'y]
Ia = [P'p c]] « [czs Q'y]
Ig = [P), d;] < [dy, Q]

= [Py, ¢l <« ey, d] < [dy, c,] < [ess Q»y].

If x € [Py, ¢;] or x € [c,, Q»,],

¢a,'y(x) =x= ¢p,7(x) = ¢a,ﬁ(¢p,7(x))’
If x € [c;,d,] or x € [d,, c,],

¢a,'y(x) = {cls 02} = ¢a,B(x) = ¢a,ﬁ(¢ﬁ,'y(x))’
If x € [d,,d,],

¢a,7(x) = {cl’ c2} = ¢a,ﬁ({d1’ d2}) = ¢a,ﬁ(¢ﬁ,7(x))°

We conclude that @, ., = ¢, 5 ° ¢

82. @yp° bgy = Sa,y for v of height <1. Suppose 7y isa member
of D of height <1. If vy — v* is connected, o is its only edge and the result
is established in §8.1. If y —* is not connected, let 7,,**, Yo denote the closures of
the components of <y —v*, ordered in the order relative to W. Then v, 1 <i <p,isan
edge of y,andwelet ¢y =aNy, and ;=P Ny, Nowif z is o, f or v,

I, = 121 > Iz2 o> Izp.

For 1 < i <p’ ¢°‘i’7i = ¢ai’ﬂl ° ¢ﬁi’7i and if (y’ Z) is (¢’ ﬁ)s (6’ 7) or
(o, 7), Oy M = ¢J’i’zi’ From these equations, we conclude that Py = Do ° Poy
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8.3. The induction step for ¢a,,y =0y p° Py Suppose n is a positive
integer and @, , = @y 5 ° P54 has been established for all «, 8, ¥ € D such
that @ < B <7, a* = f* = 4* and the height of v is <n. Let y bea
member of D of height <n + 1.

Suppose first that y — 4* is connected. Then there is a unique edge e of
v that contains y*.

(i) Assume e isa type-1 edge of ¥ and that e C a. Then e is C(y*, b)
where b is the only boundary point in ¥ of y —e. Let v;,*-*, Yp be the
closures of the components of y — e, ordered in the order relative to W, and let
og=aNny and f;=PN7v,1 <i<p. Then, for 1 <i<p,q,p; and
7; belong to D, off = B¥= v} = b and the height of v, is < n; therefore
¢°‘Mx = ¢°‘i’3i° ¢Bi’7i' If zis a B8 or 7,

L=J, < << Izp <~ K,.
If xe€J, or x€K,
Ga 7 ) = X = 8, 50) = 0y (65, 0)).
f x€l,1<i<p,
Ba®) = B,y ) = 5. B, 0N = G 05,40

We conclude that ¢, , = ¢, 5° ¢5,-

Now suppose a C e and suppose first that § C e also. Then from the
last paragraph of §7.3(), @5,y = @4, © Pe,y and g, = g, ° P, Since e
is an edge, from §8.1 ¢, , = ¢, 5° ¢5 .. Consequently,

Sary = Pae®Pesy = 9a,6°98.e° Pesy = Pa,p° Bg,y-

Now suppose @ C e and e C § and that e is also an edge of B. From §7.3(),
Payy = Pu,e © Pe,y 20d 6, 5=, . ° & g From the first paragraph of this
section (§8.3(1), $e,y = G5 ° $5,4- Consequently,

Py = Pa,e®Pery = Poe® Pe,s°Ppy = %a,6° %,y

Finally, suppose & C e and e C § and that e is not an edge of 8. In
this event there is a type-1 edge f of B which contains e. Now, from §7.3(i),
Pay = Pae © ey and ¢, 5 = be.r © P10 from the first paragraph of this sec-
tion (§88.3()); e,y = Ger © bfy and Gp, = @1 5° G5 ,,and from the second
paragraph of this section (§8.3(1)), ¢y,5 = ¢,,. © .- These five equations
yield

Payy = Pa,e® Pepy = ue® Perr© Py
= a,e°%e,r°05°%5,y

= 00,e°%e,6° P,y = Pa,5° %,y
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(ii) Suppose now e is a type-O0 edge of 7. Since we are considering «
to be nondegenerate, e C a. Let x,,°-, Xq denote the boundary points of
e, ordered so that on 1, (r;) < (x,) <+ +<{xp)and for 1 <i<gq,lety,,
***, Y,pq) denote the closures of the components of y — e which have x;,
as their boundary point, ordered in the order relativeto W. For 1 <i<gq, 1 <
i < pQ@) let o =aNqy; and B;; = B N7, then o ;, B;; and 7v;; belong
to D, a;’:,- = B;."’]- = 7;.':]. = x,, the height of ;,j is < n, and it has been estab-
lished that

¢°‘i.l"7i,j = ¢°‘i,j'ﬁi,io ¢Bi,i’7i,}'

As before, we let I, be the interval [P,, (x,)] of I, I, be the interval [{x),
(el of I,,1 <i<q—1,and I, be the interval [(x,), Q] of I,,and
let m,=m,ll,0<i<gq. Thenif z is a, § or v

Iz = Io (—)Iz‘,l > o o 0 &> Izl,p(l) (—)Il e

] -] LR 2 § «—].
q-1 2.1 24,p(q) q

If (y, z) isoneof (&, B), (B, 7) or (&, 7),
6,0 =¢ if tel,0<i<g

= ¢yi,1”i,i(t)’ if t€L;1<i<q,1<j< p(@).
The result ¢, . = &,5° ¥,y follows from the analogous result on the subinter-
vals of L.

The argument for the case y — y* connected is complete. Now suppose
v — 7* is not connected, and let 7,,***, v, denote the closures of the compo-
nents of vy — 4*, ordered in the order relative to W, and for 1 <k < 7, let
o =aNqy, and B =B N7. Thenfor 1 <k <7, ap, B and 7, be-
long to D, of = Bf = 7§ = v*, 7, isof height <n +1, v, — v is con-
gected, and it has been established that Poririe = Pogby © Porove: If zis a

or v,

1 =Izl (—’Izz e

and if (¥, z) is one of (a, ), (6, 7) or (& 7)
by, 0) = ¢, . @) if XEL ,1<k<r

r

Then Pay = Doy ® Ps,y follows from the analogous results on the subintervals
of L.
v
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This completes the induction step, and step III, the transitivity @, z° 5.,
= @,y and the argument for Theorem 1.

REFERENCES

1. C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233-245. MR 15, 976.

2. J. L, Cornette and B. Lehman, Another locally connected Hausdorff continuum not
connected by ordered continua, Proc. Amer. Math. Soc. 35 (1972), 281—-284.

3. S. Mardefié, On the Hahn-Mazurkiewicz theorem in nonmetric spaces, Proc. Amer.
Math. Soc. 11 (1960), 929-937. MR 22 #8464.

4. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer.
Math. Soc., Providence, R. L., 1942. MR 4, 86.

s. , Cut points in general topological spaces, Proc. Nat. Acad. Sci. U. S. A. 61
(1968), 380—-387. MR 39 #3463.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50010



