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THE UNITARY REPRESENTATIONS OF THE

GENERALIZED LORENTZ GROUPS

BY

ERNEST A. THIELEKER

ABSTRACT.   For  n > 2,  let   G(n)   denote the two-fold covering group of

SO.(l,n).   Incase   n > 3,  G(n)   is isomorphic to   Spin(l, n)  and is simply con-

nected.   In a previous paper we determined all the irreducible quasi-simple repre-

sentations of these groups, up to infinitesimal equivalence.   The main purpose of

the present paper is to determine which of these representations are unitarizable.

Thus, with the aid of some results of Harish-Chandra and Nelson we determine all

the irreducible unitary representations of  G(n),   up to unitary equivalence.   One

by-product of our analysis is the explicit construction of the infinitesimal equiva-

lences, which are known to exist from our previous work, between the various sub-

quotient representations and certain subrepresentations in the nonirreducible cases

of the nonunitary principal series representations of  G(ri).

1. Introduction.  For n>2, let G(n) denote a two-fold covering group

of SOe(l, k). The latter group is the identity component of the orthogonal group

of a real nondegenerate quadratic form of signature  (+, — •••—)  and of di-

mension « + 1.  Incase « > 3, G(ri) is isomorphic to Spin(l,n) and is simply

connected.  For « = 2, G(«)  is isomorphic to SL(2, R). In a previous paper we

determined, up to infinitesimal equivalence, all the irreducible quasi-simple repre-

sentations of G(n).  The main purpose of the present paper is to determine which

of these representations are unitarizable.  Thus, with the aid of some results of

Harish-Chandra [3a, b]  and Nelson [6], we determine all the unitary representa-

tions of G(n), up to unitary equivalence.

Before explaining the results and methods of this paper in more detail, we

make some remarks concerning the notation.  For any unexplained notation we

refer the reader to [10].  One major change, however, is that C7(«)  refers here to

the group Spin(l, «), rather than to the group SOe(l, «). A similar change in

Presented to the Society, in part, January 14, 1974 under the title On the explicit de-

termination of Kunze-Stein intertwining operators with applications; received by the editors

November 10, 1972.

Key words and phrases.   Generalized Lorentz groups, unitary representations, intertwining

operators, nonunitary principal series, universal enveloping algebras, modules over universal

enveloping algebras, complementary series, classification of irreducible unitary representations.

Copyright © 1974, American Mathematical Society

327



328 E. A. THIELEKER

notation applies to the various subgroups of Spin(l,n) under consideration.  In

dealing with the nonunitary principal series representations here, it will be more

convenient to use the so-called compact picture, rather than the induced picture

extensively used in [10]. Thus, let   [H, p]   be an irreducible finite-dimensional

representation of the subgroup M(n),  and let  A be a complex character of the

subgroup S(n). Then Ap is a finite-dimensional irreducible representation of

the parabolic subgroup S(n)M(n). Let pK  denote the restriction-to-/\(n) map

which takes functions in the space  CAfi(G(n), ii) onto their restrictions to K(n).

Then pK  is a linear isomorphism, and a AT(n)-module isomorphism from the

£(n)-module   [CAu(G(n), ff), R]   to the ^(n)-module   [Cß(K(n), H), R]. Hence

pK  extends to an isometry PK  from the Hubert space completion L2A¡1(G(n), H)

to the Hilbert space completion L2(K(n), H). As in [10, §8] we denote by  fIA

the action of G(n) on Ll(K(n),H) defined by  UA(g) = fig(g)R(sW¿1   for all

g E G(n). As in [10], let   [dCß(K(n), H), dUA]   denote the  i/(G(n))-module of

K(n)-fmite vectors of  [L2ß(K(ri), H), X\A]. (Of course, this  U(G(n))-module is

also the  C(G(n))-module of ^(n)-finite vectors for the Banach space representa-

tion   [CM(*(«),H),nA].)

By using some results of [10], in particular Theorem 1 of that paper, we

construct the possible  f/(G(n))-module homomorphisms (intertwining maps) from

the  t/(G(n))-module   [dC^Kty), H), dUA]   to the  C/(G(n))-module [dC¡fK(n), H),

dñA'], where   p   is the irreducible representation of M(n)   corresponding to

the character of M(n) which is complex conjugate to the character of p. A'  is

the Weyl conjugate character of S(n) defined by A' = A-1P2, where we recall

that P2  is the character of S(n) defined by P2(s) = det Adiáis), for s G

S(n).  Equivalents, P2  is determined by the condition d?2(H) = 2d?(H) =

(n - I). Note also that p is the representation of M(ri) which is conjugate to

p by the automorphism of M(ri) determined by the nontrivial element of the

Weyl group of G(n)jK(n). Similarly, A'  is the conjugate of A determined by

this Weyl group element in the usual way. In more detail, we use the formula in

Theorem 1 of [10] to obtain a recursion relation for the Fourier components of

the intertwining operators. These recursion relations can be solved completely in

terms of certain rational functions of dA(H) (essentially ratios of T-functions).

It follows, incidentally, from our main result that the  i/(G(n))-module homomor-

phisms constructed here must be proportional to the restrictions to the space of

K(n)-fínite vectors of the integral operators of Knapp and Stein [5], or of those

of Schiffmann [8], in the cases where these integral operators are defined. We

point out however that our methods yield intertwining operators for all characters

A, even for those which correspond to the poles of the meromorphically continued

Knapp and Stein operators.  For these "singular" characters A  our intertwining

homomorphisms have nontrivial kernels.  Thus one by-product of our analysis is to
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construct explicitly the isomorphisms which exist between quotient representations

and certain subrepresentations in the nonirreducible cases of the nonunitary

principal series.  The existence of these isomorphisms was pointed out by us in

[10] by using some results on characters of Harish-Chandra.

Because of the explicit form of the  t/(G(«))-module homomorphisms con-

structed here, it is relatively easy to determine which of these homomorphisms

lead to positive definite inner products.  By using these results, we get a complete

classification of the infinitesimally unitary representations.  By using a result of

Nelson [6], one can then get a complete classification of the irreducible unitary

representations of G(n). However, in the case of the complementary series that

Knapp and Stein get for G(n), we can construct such a globalization explicitly.

Although the details of the results on unitary representations appear in §7,

let us make some general remarks on these results.  For the purposes of discussing

unitary representations, it is convenient to use the complex parameter v de-

fined by v = dA(H) + (n - l)/2. Then the principal series correspond to imagin-

ary v. In addition, there are certain complementary series corresponding to cer-

tain overlapping intervals on the real  i>-axis.  These have been constructed by

Knapp and Stein in [5] for the groups under consideration here, as well as for

the other split-rank one classical groups.  In addition to the complementary series

there are also unitary representations corresponding to the right end points of the

Knapp and Stein complementary series intervals, as well as unitary representations

corresponding to certain isolated points on the real i>-axis.  These end point and

isolated point representations correspond to some of the nonirreducible cases of

the nonunitary principal series.  For the latter unitary representations the inter-

twining operators define positive (indefinite) inner products on the spaces of  K(n)-

finite vectors.  The radicals of these forms are just the kernels of the correspond-

ing intertwining homomorphisms, and the corresponding unitary representations

can be defined on the Hilbert space completions of the quotients of the induced

representations modulo these kernels.  It is known that in the special case of

SL(2, R), the discrete series representations arise in this manner.  This fact can

easily be established for this group by the computations of Bargmann [1].  In

the general case, however, the kernels are not finite dimensional, in general.  For

« = 4, the square integrable representations of Dixmier can also be obtained in

this way. A formal analogy with the Dixmier representations allows us to guess

which of these isolated point representations correspond to square integrable re-

presentations in the case of general even «.  However, we do not prove square

integrability of these representations in this paper.

The following is an outline of the paper. In the next section we derive the

recursion relations for the Fourier components of the intertwining operators. In

§3 we construct the various candidates for these intertwining operators and state
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the main result for them (Theorem 1).  In §4 this theorem is proved, along with

some lemmas which are also needed for the remaining results of the paper. We

remark incidentally that the form of these Fourier components of the intertwining

operators reduce in the case of class 1 representations, to some formulas for

Fourier components of intertwining operators announced by Johnson and Wallach

in [4].   However, Wallach's formulas are valid for more general real-rank 1

groups.   (See also [11].)   In §5 we apply the results on the intertwining

maps to obtain an explicit construction of the isomorphisms between the sub-

quotient representations in the nonirreducible cases of the nonunitary principal

series, and certain subrepresentations. These isomorphisms were already known

to exist from our work in [10], but there we based our argument on some results

of Harish-Chandra's character theory.  In §6 we discuss infinitesimally pseudo-

unitary representations as a preliminary step in the discussion of the unitary re-

presentations. The unitary representations are classified in §7, and the results of

the arguments in that section are summarized in Theorem 3.  In §8 we compare

our results with some known results and offer some conjectures.

We gratefully acknowledge some encouraging comments made by N. Wallach

concerning the methods and the problems under consideration in this paper.

2.  Basic recursion relations for the Fourier components of the intertwining

operators. We make some preliminary remarks and recall some notation from

[10].  If L  denotes a compact group, then £2(7,) denotes the set of equivalence

classes of finite-dimensional irreducible representations of L.   Of course, this set

is equal to the set of equivalence classes of irreducible unitary representations of

L.  If  [p] G £2(M(«)), we denote by  £2M(X"(«))  the set of classes in  H(K(n))

whose restrictions to the subgroup M(n) contain the class   [p], under complete

reduction.  The elements of the subset Slß(K(n)) are called the p-admissible

classes in  £l(K(n)). As in [10, §3], we define an Hermitian inner product on

G(«)c, given by (X, Y) = - cB(X, QY), for X and  YGG(n), and where B

is the Killing form on G(«)c, and 0 is the Cartan involution corresponding to

the Cartan decomposition G(«) = K(«) + P(«), and c = '/£(« - 1).  Then let H

denote the element of P(«) given in matrix units by H = YQX = Eox + Exo;

so that we may, and do, take A(«) = RH. Then also a(H) = 1, where a is

the unique restricted positive root with respect to some Weyl chamber in A(«).

We let H(«) be some Cartan subalgebra of K(n), such that the intersection

H(«) n M(«) is a Cartan subalgebra of the subgroup M(n). Let p be the rank

of K(«), and let (iex, • • • , iep) be an ordered orthonormal basis of H(«)c;

so that ef,  1< i < p, are real forms on i'H(n). (We identify  H(«)c  with its

dual via the form ( , ).) Then, for each class   [co] G l~l(K(ri)), the highest

weight Aw  can be expressed in the form Au = SÇA^e,, where the components
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Au¡  are all integers or half odd integers which satisfy the inequalities:   Aw x >

Ao;2 >•> IAwp|  in case n = 2p, and Aw, > Aw2 > ■ • ■ > A^p > 0,

in case n - 2p + I. When n = 2p > 4, we chose the basis (iex, ■ • • , ie )

such that (iex, - • • , iep_{) is an ordered basis of H(n) n M(n).  (In case  n =

2p + 1, rank(M(n)) = p; so that M(n) D H(n).) When it is convenient to do

so, we identify the elements of Sl(K(n)) with their highest weights.

Let us realize the Weyl group of G(n)/K(n) as the factor group

NK(Mfn))lM(ri), where NK(M(n)) is the normalizer of M(n) in K(n). Then there exists

an element  w in the coset other than M(n) such that Ad (w)e¡ = e¡, for i &

p, and Ad(w)ep = -ep. It follows easily that if n = 2p and if  [p] E Sl(M(n)),

then the Weyl conjugate representation:  m —► pw(m) = p(Ad (w)m) is equal to

p, while for n = 2p + 1, and   [p] E Sl(M(n)), the Weyl conjugate representa-

tion pw has highest weight A w. whose components are A w. = A ¡ for

i^p, and A w   =_A„_. Thus this Weyl conjugate is equal to the representa-
_ u    p Pr

tion  p whose character is the complex conjugate of the character of p. We note

finally that Ad (wyH = -H.

As in [10] we define for each  YE P(n)  the function 4>y  on the sub-

group K(ri) by k—> $Y(k) = (Ad (k)Y, H), and let  S denote the pointwise

algebra of functions generated over C by these functions.  Then  S  is the point-

wise algebra generated by the polynomial functions on the sphere (Ad K)h.

Now let  T be a  C(G(n))-module homomorphism from the  U(G(n))-

module   [dCß(K(n), fi), dïlA]   to the  í/(G(n))-module   [dC-¿K(n), H), dïlA>],

where for each complex character A(S(n)), A'  denotes the character A_1P2.

We also write  v = dA(H) - dP(H) = X - (n - l)/2. Then we have for the param-

eter   v,   defined by  v = dA'(H) - dP(H), v = -v. We remark that p = p, if

and only if n = 2p or n = 2p + 1   and the component AM_  is equal to zero.

More generally, let  U be any intertwining map from the  C(G(n))-module

[dCß(K(n),H),dnA]   to the  C(G(n))-module   [dC^(K(n\ H"), <fflA»], where

[H", p"]   is not necessarily equal to   [fï, p],   and A"  is not necessarily equal to

A'.  Let Ew  denote, for each class   [to] G Sl(K(n)), the Hermitian projection on

the Hubert space direct sum: © {L2(K(n), f/T): [t] E Sl(M(n))} which projects

onto the subspace of elements which transform under   [co]. (For any class   [t] ,

L2(K(n), fiT) is identified with its canonical projection in this direct sum.)  Since

U intertwines the action of right translations by elements of K(n), it follows

from a standard argument that  U commutes with the operator Eu  for each

class   [co] G Sl(K(n)). We denote by  U^  the operator  UU=ELJU= UE^,

which maps £2(A:(n), fi) into L2^(K(n), H").  For each class   [co] G Sl(K(n)\

i/*w  is called the Fourier component of U belonging to the class   [of]. Clearly,

by the Frobenius reciprocity theorem for compact groups,  Uu = 0, if  [co]   is

not p-admissible.
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Now, let us assume that   [H", p'] = [H, p]. Then  U must intertwine the

action of K(n) on dC (K(ri), H), which is the action of right translations.  It

follows easily from Schur's lemma, and from the fact that each class in  £2(rv(«))

occurs with multiplicity at most one in the complete reduction of the K(ri)-

module L2(K(n), H), that  Uu = un(p, v, ooyE^, where un(p, v, co) is a com-

plex number which is different from zero only if  [co]   is p-admi$sible.  If p =

p, then we can similarly write for the Fourier components of T, T^ =

tn(p, v, co)Ew, where  f„(p, i>, co) is a complex number, which is different from

zero only if  [co]   is a p-admissible class.

The first lemma applies to the situation when p. = p.. We write  v" =

dA(H) - (n - l)/2.

Lemma 1 (basic recursion relation).  Assume that for some index i

with   1 < i < p,  that A^  and Aw + et are both highest weights of ¡i-admis-

sible classes in  £2(AT(«)).  77ie« the following statements are true.

(1) 77ie numbers un(p, v, Aw), and un(p, v, Aw + e¡) must satisfy the

pair of equations (here we identify the elements of £l(K(n)) with their highest

weights):

(u" + A», -/ + (« + 1)/2>i„0u, p, AJ-(v + Art-i + (n + l)/2>i„(p, u, A^ + e,) = 0,

(v - A«, +/-(« + l)/2)unQi, v, AJ - (v" - A0Ji + i-(n + l)/2)un(p, !>, A^ + e¿ = 0.

(2) The map  U is nonzero only if either v"=-v, or u" = v. In the

latter case  U is a scalar map.

(3) Let T be an intertwining map from   [dC^fKfr), ff), dUA]   to

[dCß(K(n), H), dïlA-].  Then the complex coefficients tn(p, v, Aw + e,) must

satisfy the recursion relations

(Awi -! + (« + l)/2 - v)tn(p, v, Aw)
1)

= (Awi -i + (n + l)/2 + v)tn(p, v, Aw + ef).

Proof.   Let   [co']  denote the class in  î~l(K(n)) corresponding to the high-

est weight Aw + e¡.  It follows from Theorem 1 in [10], and from the explicit

calculation in the proof of Theorem 2 in [10], that for all elements  Y G P(«)c,

and fGEwLl(K(n),H) we have

(a) E„'dTlA(Y)f m (X + Awi + 1 - tyB„*yf

where  X = dA(H).  From the same results we also have for /' G E^L^Kty), H),

(b) EwdTlA(Y)f = (X - Aw< - « + QEu*Yf.

Now set  X" = dA"(H), apply  U to equation (a) and use the intertwining prop-

erty of U. We then obtain:
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un(p, u, Aw + e,)(X + Aw< + 1 - t)EUi-*Yf = Eu.U<mA(YV=Eu.(mA'{Y)Uf

= un(p, v, Aw)E0J.dnA.iY)f=un(p, v", AU)(X" + Awi + 1 - QE»*rf,

where in the last step, formula (a) is used again with X replaced by X" = dA"(H).

Now, if /# 0,  then for some element  Y E ?(n) we must have Eu>$Yf

+ 0. Assume indirectly that ECJ'$Yf= 0 for all  YEP(n).  By taking linear

combinations of right translates by elements of K(n), it follows that EW<$YFW =

0, where  Fw   is the subspace given by Fw = E^L^Kty), H), which by hypoth-

esis is different from zero.  Let D denote the projection given by D = E^ +

Ew'. This projection satisfies the hypothesis of Lemma 5 in [10]. Hence by that

lemma we have DL2(K(n), fi) = DSFU = SDFU, where SD  is the operator

algebra generated by the operators D$Y, with  Y E P(n).  On the other hand, by

the indirect hypothesis we have D^yF^ = F^.  It follows by an induction argu-

ment based on the filtration of SD  that 5DFW = Fu. This result leads to a

contradiction, since by hypothesis of the lemma, DF^ ¥= Fw. Thus the assertion

is proved.

The first equation of the lemma now follows immediately by the substitu-

tion:  v = X - in - l)¡2, and v" = X" - (n - l)/2.  By applying an argument

similar to the above one to equation (b), we obtain the second equation.  Thus

statement 1 is proved.

The conditions v = u", or v = -v"  in statement 2 result from the usual

determinant condition for the existence of nontrivial solutions of a linear system.

First, assume that v" = v. Then both of these equations of statement 1 result in

the equation un(p, v, Aw) = un(p, v, Aw + e,). Assume that  U # 0. Then

un(p, v, Aw) # 0 for some class   [cj] G í2M(rv(n)). Now, apply induction in each

of the p-directions e¡, with  1 < i < p.   Thus, we find that un(p, v, u>) =

un(p, v, t) for all classes   [r] G Slß(K(n)). Hence the second statement follows.

Statement 3 follows by the substitution v" = —v in either of the two

equations in statement 1.   Q.E.D.

Next, we assume that the character of p is not real, so that p¥= p.  As

pointed out above, this situation only occurs when n = 2p + 1, and the com-

ponent Aßp  is different from zero. In order to deal with this situation we must

modify the considerations connected with Lemma 1.  For this case the unitary

induced representation theory of semidirect product groups is helpful.

Lemma 2.   (1) For n>2, there exists an isometry   I from the Hubert

space L2(K(n), H) to the Hubert space LjfK(n), ff) such that   I  intertwines

multiplication by 4>r, for all  YEP(n) as follows.  Let f E dC^Kin), H).

Then
l*Yf=-*ylf.
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Moreover,   I  intertwines the action of right translations by elements of K(n).

(2) Assume that n # 2p + 1  and that p^p.  Let T be a  U(G(n))-

module homomorphism from   [dCß(K(n), H), dUA]   into   [dCjfjiQi), f/), <7iIA'].

Assume that Au  and Aw + e¡, for some i,  with   1 < i < p, are both high-

est weights of p-admissible classes in  £2(rv(«)).  77ze« if I  denotes an isometry

whose existence is assured by statement 1 and which has the properties stated

there, then the Fourier components  T.,  and 7\    . _   are given by
to     i

Tu = wnfc> »> ̂ ^w Ï-    and    TAU+; = W«(M. ", Aw + et)EA^ + eJ,

where wn(p, v, AJ) and wn(p, v, Aw + e¡) are complex numbers which satisfy

the equation:

(\ñ -'+(" + l)/2 - v)wn(p, v, AJ
(lb)

= - (A^. -/ + (« + l)/2 + p)wnQx, v,Aw+ e¿).

Proof.   Let G0  denote the motion group associated with the Cartan de-

composition  G(«) = P(n) + K(m).  Thus G0  is isomorphic to a semidirect prod-

uct of K(n) and the vector addition group of P(«).  Accordingly, the multi-

plication on G0  can be given by:

((X, k), (X', k')) —► (X + Ad(k)X', kk')

with X,X'G?(n), and k, k' G K(n). For each element  7GP(«) let rY  de-

note the character of P(«) defined by ty(Y') = et(-Y ,Y\ Since P(«) isa

normal subgroup of GQ, GQ  acts on these characters in the usual way. In partic-

ular, if   k G K(n), ty = TAd(k-y\Y- Then (P(«), M(n)), is the stabilizer sub-

group of the character th under this action. Moreover, the characters th  and

t_h  are conjugate under the Weyl group element w. Let THp denote the

finite-dimensional irreducible representation of this stabilizer subgroup defined by

(THp)(Y',m) = TH(Y')p(m), with  l"GP(«),  and mGM(n). Similarly t_hp

denotes the finite-dimensional irreducible representation of this stabilizer subgroup

defined by (t_hp)(Y', m) = r_H(Y')p(m), for  Y'G?(n), and mGM(n).

These two representations are therefore conjugate under the action of the element

w. It follows from a celebrated theorem of Mackey_[7, Theorem 14.1], that the

unitary induced representations  ifH    and  UT~Hß are unitarily equivalent.

Now, the representations  U H    and  U ~H    may be considered as acting on the

Hubert spaces L2(K(n), H)  and LjfKfy), fi), respectively.  Let   I   denote an

isometry from the first to the second of these Hubert spaces.  The restriction to

K(n) of each of these two induced representations is the action of right translations

by elements of K(ri), while the action of P(«) is given by

lfH\Y)f(k) = rH(Ad(k)Y)f(k)   and    l/-^(Y)g(k) = r_H(Ad(k)Y)g(k),
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for almost all k E K(n), f E L2ß(K(n), H), g E LJ(K(n), ff),  and  YE¥(n).  By

Mackey's theorem, we may assume that the isometry   I   intertwines these actions.

Hence,

(IrH(Ad( • )Y)f)(k) = T_H(Ad(k)Y)(Jf)(k),

for almost all   k E K(n).   Now restrict  /  to lie in the linear subspace

dC^KQi), H). The latter subspace consists of differentiable, even real-analytic

functions.  Hence, by differentiating along the one-parameter subgroup of G0

given by  f —► (f Y, e), statement 1 follows.

Now we make the assumptions of statement 2 in the lemma.  Let   I0   de-

note, for each class   [a] E Sl(K(n)), the Fourier component of  I; that is,   la =

EaJ = \Ea. If  [a]   is a p-admissible class, then   I0  is a one-to-one map from

EaL2(K(n), H) to the subspace EgLjJ(K(n), ff).  Let   I"1   denote the inverse

map of  la. Then both   la  and   I"1   are /v(n)-module isomorphisms.  Hence

the map   l~lTala  is a linear transformation on the finite-dimensional space

EaL2(K(n), H) which commutes with the action of K(n). Since this action is

irreducible, it follows from Schur's lemma that   l~lTala = tn(p, v, a)la, where

10  is the identity map on EaL2(K(n), H) and where  tn(p, v, a) is a complex

number. The remainder of the proof now follows the pattern of proof as Lemma

1, with the exception of some obvious modifications, by applying the intertwining

map  T to each of the equations (a) and (b) in the proof of Lemma 1.  The de-

tails are left to the reader.   Q.E.D.

Statement 1 of the last lemma has a useful corollary which we state as

Lemma 3 below. This corollary has some implications for the theory of spherical

functions on the  (n - l)-sphere.  For n = 3,  it is known, and "explains" the

fact that these functions obey three-term recursion relations, rather than four-term

recursion relations.

Lemma 3.   Let  YEP(n),   [co] G Sl(K(n)), and fEEwLl(K(n),H). If

p=p, then E^Yf= 0.

Proof.  If  [co]   is not a p-admissible class, the result is immediate.  Assume

that   [co]   is p-admissible.  Since p = p, the isometry in statement 1 of Lemma

2 must be a scalar.  This fact follows, either from the irreducibility of the unitary

representation  U H    (another celebrated theorem of Mackey) or from the density

of the linear subspace SEwL2iKin), H) (Lemma 5 of [10]).  It follows that for

some scalar c with  |c| = 1, we have

cE^Yf= lE^Yf=-E^Ylf = -cE^Yf,

for all   7GP(n).    Q.E.D.
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3.  The infinitesimal intertwining maps. Fix a finite-dimensional irreducible

representation   [fi, p]   of the subgroup M(n). We will now construct all the

intertwining maps from the  t/(G(«))-module   [dCß(K(n), H), ̂ nA]   to the

t/(G(«))-module   [dCj^Kty), H), ̂ fIA].  Let  T denote such a map.  The Fourier

components of T can then be computed from the recursion relations in Lemma

1.  In order to facilitate this computation, we define some auxiliary rational func-

tions, depending on the class   [p]   and some integer parameters.

Let Aw  be the highest weight of a class   [co] G Q,(K(n)), and if n > 3,

let AM  be the highest weight of a class   [p] G £2(M(«)). We will assume that the

class   [co] G £2(>v(«)) is p-admissible. Then it follows from the branching rule

that Aw = SÇA^j-e,, where the components Aw/ can be expressed in the fol-

lowing form:

If « = 2p + 1, then A^ = SÇAM/ef, where the components Aßi are all

integers or half odd integers which satisfy the inequalities:

(2a) AllX>All2>--->\Aßp\.

Then we may write Aw/ = m¡ + |A   I, for  1 < / <p, where m¡ is a nonnega-

tive integer which satisfies one of the inequalities:

(3a) mi > 0,      0<m,< \Aßi\ - Aßi_ x      (2 < i < p).

If « = 2p, with p > 2, then AM - 2p_1AM,.e,. where, for  1 < i <p - 1,

the components AM/ are all integers or half odd integers which satisfy the in-

equalities:

(2b) AMl >Ali2>--->Alip_x >0.

In this case we may write for the components of Au, Awi = m/ + AM/ for  1 <

i'<p-l, and Awp = «ip - AMp_j, where mi is for each index i anon-

negative integer which satisfies one of the conditions:

(3b) 0<iWp   0<m/<AM/-AM/_1,   2</<p-l,   0 <mp < 2AJip_1.

Now assume that n = 2p, for p > 1.  For each class   [p.] G £2(Af(«)),

index i,  1 < i < p, and integer m¡ satisfying (3b), we define a rational function

Tni(p., -, m¡) on C as follows:

mi-1(A • +p-i + Vi+j-v)

(4)     Tjp, V, 0) = 1,      Tnffi, v, m,.) =   fi  rAix¡+p.i + xÁ+í + v)

if 1 < i < p - 1  and m¡ > 0, and

-i  (-uV1 (-AJtJ,_,+%+/-«0
(5) rnp(ß, v, mp) = n    (_AMpi +%+/ + „) •

if mp > 0.
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In case  v is a pole for one of the meromorphic functions defined above,

we define additional complex numbers as follows.

For some index i with  1 < i < p  assume that there exists a nonnegative

integer nt which satisfies condition (3b) and such that n¡ + 1   also satisfies con-

dition (3b).  Assume also that v is given by  v = ~(Aßi + p - i + Vx 4- n¡). Then

v is a pole for all Tni(p, -, m¡) with m¡ > n¡ + 1.  For this value of v we set

rni(p, v, m¡) = 0,   for 0 < m, < n¡,

Tni(p,v,n, + 1)= 1,

mül Au;+p-i + tt+f-p

(6)    Tni(p,u,mi)= n
j=n-*+lAui+P-Í+1Á+Í + V

/2Aßi + n-2i + mi + ni\

Now, suppose Aiip_1=5t0, and there exists a positive integer n    suchthat

0 < np < 2AMp_j, and such that  v = n   - Aßp_x - %,  In this case there

must also exist a positive integer n'p  such that 0 < n   < 2A   _j   and such that

v = AMp_j 4- % - n'p. We must distinguish between two cases:

Case 1. «p < n'p.

Case 2. n   > n .

In Case 1 we have v = (n   - n')/2 < 0. We define two functions on the

set of integers mp  which satisfy the inequality  0 < m   < 2A    _ j.

TñpiP-' "» 0) » 1,

(7a)

T„p(p, ^, mp) - r„p(p, v, mp)

mp-t(j+ l-n)

=   Il   (,+ ,-„<^   .    for  0<mp<n'
/4 o + i-«P)

= 0,     for np<mp <2AMp_j.

T+p(ju, v, mp) = 0,   for 0 < mp < np,

2Amp-i_1 (/'+!-"„)

(7b) -       n       (/+!-„)   >   forHp<mp<2AMp_„
j=mp      V T "p'

T+p(p,i;,2Aiip_1)=l.

In Case 2 we have  v = (np - np)/2 > 0, and we define one function on

the set of integers which satisfy the inequality  0 < m   < 2A      j.
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T^pQx, v, mp) = 0,   for 0 < mp < n'p - 1,

Tnp(f*> v> »p) " 1.

(8)

TFnpQx, v, mp) =     T\ J   ,   for ri < mp < 2A      ,.
/=np+lv     "p-*

Now suppose that n = 2; so that p = 1. Then for all   [co] G £2(K(2)),

Aw = A^e,, where A0)X   is either an integer or a half odd integer, depending

on whether p is the trivial or the nontrivial representation of M(2), respectively.

In the latter case, we write p = -, and A^, = % + m, with mGZ, while in the

former case we write p = +  and Aw x = m G Z.  For each integer m  we de-

fine a rational function t2x(+, v, m) on C  as follows.

r2x(+,v, 0) = 1,

r2y(+,v,m)=   J]    J-     *      ;.      for m±0.
,=0    (] + 1â + v)

For each m G Z we also define a rational function on C by

T2y(-,V,0)= 1,

m ~ '  (/' + 1 - irt
(10) r21(-, * «i) =   n   fr + i + „)   >   if "« > 0,

-m-l /.• _ v\

t2x(-, v, m) =   p fri) > If « < 0.

We now consider the poles of these functions.  If p = +, a zero for

r21(+, i>, «i) occurs for some m  if there exists an integer «  such that v =

« + ri.  In this case there exists an integer «'  such that v = -(«' + V4).  This

value of i> is a pole for some r21(+, v, m). Then also « + «' + 1 = 0. We

must distinguish between two cases:

Case 1. -(« + 1) = ri > n.  Then u = (n- n')/2 < 0.

Case 2. -(« + 1) = n < « - 1.  Then u = (n - n)/2 > iL

In Case 1 we define two functions on Z  as follows.

t~[2(+, v, m) = 0,   if « + 1 < m,

(11) T2i(+> * ") = li

%     "-^1/-2«       /-«-«i-l\     , .
t21(+,p,«)=    n7Tl~=V    B-m    /'   form<"~1;
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rtx(+, v, m) = 0,   if m < n = -(n + 1),

(12)   T2i(+'I''~M)=: 1>

+ ,a.        ^     "+^~1 0"-2n)       (m-n-l\     , .

In Case 2, we define only one function on Z:

7-f x(+, v, m) = 0,   for m > n 4- 1  and m < -n - 1,

rf |(4-, », - w) - 1,
(13)

T2X(+,v,m)- ii   / + 1  -(i)    ^HI + fI;.

for - n + 1 < m < n.

Similarly, if p = -, a zero occurs for some t2x(-, -, m) when there exists

an integer n such that v = n + 1. In that case one must also have v = -(«' + 1)

for some integer n'. We again distinguish between two cases:

Case 1. -(n + 2) = n> n.   Then v = (n - n')/2 < 0.

Case 2. -(n + 2) = n < n - 1. Then i> = (n - n')/2 > &

In Case 1 we define two functions on Z, as before.

t21(-, i>, m) = 0,   for m > n + 1,

(14) T2i(~~> "« ") = *>

t21(-, v, m) = 0,   for m<n = -(n + 2),

(15) r+,(- p,-n-l)=l,

In Case 2 we define one function on Z:

T2i(-' "»m) = 0.   if m < «' = ~(n + 2) or m > n + 1,

(16) Tfi(-,!>,-n-l)=l,

T2l(,v,m)- n /+2-( »   ^+„;.

- n < m < n.
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Now, let « = 2p + 1. Let i be an index with  1 <i <p,  and let m¡ be

an integer satisfying condition 3a.  Then we define a rational function v —►

Tni(p, v, m¡) on C  as follows.  (The absolute value sign is needed only in the

case when  i = p.)

r„fyi,v,0)= 1,

(1?) mr->   IAJ-Í+P+ 1+/-»
rni(ß, v, m¡) =   n    |A„.|-i+p + l+; + ,   if m' > °'

Suppose there exists an index í and a nonnegative integer n¡ which satis-

fies condition 3a, and such that v = -(|AM,| + 1 - i + p + «,•).  Assume also that

n¡ + 1   also satisfies condition 3a. Then v is a pole for some function Tmip, v, m¡).

For these values of v we define the function Tni(ß, v, m¡) as follows.

Tnfyx, v, m¡) = 0,   if 0 < m¡ < n¡,

rnfyi, v, n¡+ 1)= 1,

(18) "r1    |AJ-i + p+1+i-v
Tni(p,v,mi)=   U

/="+i IAM/|-i+p+l+/ + ,

/2AM +n-2i + m¡ + n¡\

~ \ m¡- n¡ - 1        /'

if m¡ satisfies condition 3a and m¡ > n¡ + 2.

We now write down some candidates for intertwining operators from the

t/(G(«))-module   [dCß(K(n), H), dñA]   to   [dC^K(n), H),dUA_Xp2].  First, if

n = 2p we impose the following condition:

(C) If n = 2p  and n> 4, and if A^.^O,  then v¥=-Aßp_x +

m + Vi for all integers m  such that  0 < m < 2AMp_j.  If « = 2, and p = -,

then véZ + yL If « = 2, and if p = +,  then vGZ.

For each p-admissible class [co]  we define a linear map Tn(p\, v, co) as follows:

Tn(p, v, co) = tn(ji, v, A^)EU,   if p = p,

= wn(p, v, AW)IW, if p # p,

where the complex numbers tn(p, v, Au) and wn(p, v, AJ) are given by

p
tn(p, v, Aw) = JJ rnfyi, v, m¡);

(20) 'V
w„(ß, u, Aw) = J!(- 1)   'Tni(ß, v, m¡)

í=i

with the integers m¡ defined in terms of  [co]   at the beginning of this section.

Remark.   For each class  [co] G i~lß(K(n)), v —► tn(p, v, Aw) is a uniquely
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defined complex valued function on  C.  In fact, if v is not a pole for any of the

rational functions r„,(p, v, m¡), then these functions are defined by formulas (4),

(5), (9), (10), or (17).  On the other hand, if v is a pole of one of these functions,

then the number Tni(p, v, m¡) is defined by one of the formulas (6) or (18).

Condition C precludes the possibility that  v is a pole of the rational functions

Tnpip, v, mp), when n - 2p.

We may now write the formal sum:

(21) Tnip, v) = T,{T„(p, v, w): M G S2M(/¡:(n))}.

Note that, for each element / G dCß(K(n), H),  T„(p, v)f is a finite sum.

Hence,  Tn(p, v) defines a linear map from dC^fKty), H)  to dC^Kfy), ff).

Now let n — 2p. Assume that A    _ x # 0, if p > 1, and that condition

C is violated.  Then there exists a pair of integers np  and n'p  such that

v = np~Anp-i ~1Á = Anp-i +1¿-n'p    îfP>l.

= nx + Vi = -n\ -Vi if p = + and p = 1,

= nx + 1 = -n\ - 1 if p = - and p = 1.

We again distinguish two cases:

Case 1. n'p>np. Then  v = (np - np)/2 < 0.

Case 2. n'p<np. Then v = (np - np)/2 > 0.

In Case 1 we define for each class   [co] G Si (K(n)), two linear operators

T^fp, v, co) and  T^(p, v, co) by the formula

(22) T±niM, v, co) = tnip, v, co)Ew,

where  f*(p, i>, to) is defined by the product:

p-i
t„ip, v, co) = T-p0z, v, mp) H rni(p, v, m¡),   if p > 1,

(23)

= t|,(p, i', nij), if p = 1.

Again, we define the formal sums  Tn(p, v) = 2{7^(p, i>, co): [p] G í2M(/v(n))},

and note as before that this sum defines a linear map on dCß(K(n), {-!).   In Case

2 we define the linear operator  T%(p, v, co) by

(24) TfO. v, co) = f£(ju, "> <¿fiu >

where  t%(p, v, co) is given by the product:

'«CM, v, co) = t£p(p, P, mp) J] r^(p, p, wf),   if p > 1,
/=i

(25)

= T^xip,v,mx), ifp=l.
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Again, we write the formal sum  T%(p, v) = 2{7^(p, v, co):   [co] G £2M(A:(«))},

and point out that this sum defines a linear map on dCß(K(n), H).

Theorem 1. Let  [H,p]   be an irreducible finite-dimensional representation

of the subgroup M(n). Let A be a complex character of the subgroup S(n).

We write v = dA(H) - (« - l)/2; so that -v = dA'(H) - (« - l)/2, where A'

is the Weyl conjugate character A' = A_1P2.

(1) If condition C holds, then the space of intertwining maps:

V=UOMU(G(n))([dCß(K(n), H), dUA], [dCß(K(n), H), cfflA.])

has complex dimension 1, and is spanned by the linear map Tn(p, v).

(2) Assume n = 2p, and that if n > 4, Aßp_x ¥* 0. Assume also that

condition C does not hold.   Then in Case 1, the complex dimension of V is equal

to 2, and is given by the span:

V = spanc {T+Qi, v), T~(p, v)}.

In Case 2 the space of intertwining maps has complex dimension equal to 1 and is

given by  V = CT^(p.,v).

4. Proof of Theorem 1. We state and prove some simple lemmas which will

be needed in the proof of Theorem 1, as well as in the subsequent discussion.

Again,   [H, p]   is a finite-dimensional irreducible representation of the subgroup

M(n), and v is the parameter defined in terms of the character A in the last

section.

Lemma 4.  If n = 2p + 1, let i be an index with  1 < i < p. If n = 2p,

and n> 4, let i be an index with   1 < i < p.

(a) Assume that for all integers ni such that n( and n¡ + 1  both satisfy

condition 3a or 3b, we have v =£ ~(AM/ -/ + (« + l)/2 + n¡). (In order for such

integers n¡ to exist, we must have i=l, or Aßi_x>Aßi.) Then for any com-

plex number a,  the sequence:

{z(m¡) = ûTni(p, v, m¡): m¡ satisfies 3a, b}

is the unique solution sequence of the difference equations la such that z(0) = a.

(b) Assume the hypotheses of (a). Assume moreover, that there does exist

an integer n¡ such that both n¡ and n¡ + 1  satisfy the conditions 3a, b.  Then

the solution Tni(p, v, m¡) is equal to zero for all m¡ >n¡ + 1, where m¡ sat-

isfies 3a, b, and this solution is different from zero for all 0 < m¡ < n¡.

(c) Assume that there exists an integer n¡ such that both n¡ and n¡ + 1

satisfy conditions 3a, b, and such that v = ~(Aßi - i + (n + l)/2 + «,).  Then

for any complex number a, Z(-) = aTni(}i, v, • ) is the unique solution of the
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difference equation la such that Z[ni + 1) = a. In this case r„,(p, v, m¡) = 0

for all m¡ such that 0 < m¡ < n¡.

Proof.  If i>l,  and Aßi = Aßi_x, then  0  is the only integer which

satisfies conditions 3a, b.    Then by the definition in equations (4) and (18),

<X7niip, v, 0) = a, and there is nothing to prove.

The equations (1) can be written in the following form, if m¡ is an integer

such that m¡ and mi + 1  both satisfy conditions 3a, b:

(A;,, + mt -/ + («+ l)/2 - c>(m;) = (AM,- + m¡ - i + (n + l)/2 + v)z(m¡ + 1).

The condition of statement (a) guarantees that the coefficient on the right-hand

side of this equation is never equal to zero.  Hence statement (a) follows by a

simple induction argument.  Statement (b) is obvious from the explicit formula

for rni(p, v, m¡). If the hypothesis of statement (c) holds, then the coefficient

of the left-hand side of the above equation is never equal to zero.  Hence, the last

sentence follows by downward recursion, while the remaining conclusion follows

by upward recursion, and substitution of the value of v.    Q.E.D.

Lemma 5.  Assume that n > 3. Let i be an index with   1 < i < p.

Suppose n{ is an integer such that n¡ and n¡ + 1  both satisfy conditions 3a, b,

and such that

v = ±(AM/ + n, -/ + («+ l)/2),   or   v = ±(Aßp_x + np + Yz)

in case n = 2p and i = p.   77ien this index is unique.

Proof.  The proof of this lemma is contained in the proofs of Theorems

3,4,-andSof [10].   Q.E.D.

Lemma 6.   Suppose n = 2p > A. Assume that Aßp_x =£ 0, and assume

that there exists an integer n    such that 0 < n   < 2AMp_ x, and such that

v — np- Aßp_x - lA.  Then there exists an integer n'p  such that v = A    _x +

Vi - n'p.  In Case I, n'p> np, and every sequence   {z(mp): 0 < m   < 2AMp_j}

wni'cn satisfies the difference equation:

i-\P-i +mp + 1Á- vfzimp) = i~Aßp_x + mp + tt + vyz(mp + 1)

lies in the two-dimensional sequence space

{ar+pip, v, mp) + ßT-p(p, v, mp): 0 < mp < 2AMp_!, a, ß G C}.

In Case 2, n'<n , and every sequence   {z(/n ): 0 <mp < 2A    _j} which

satisfies the above difference equation must be proportional to the sequence

{TnpiM, v, mp): 0 < mp < 2AMp_x}.
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7« Case 1,  T~p(p, v, mp) = 0 for all integers mp  such that n   < m   <

2AMp_j  a«c7 T*p(p, v, mp) = 0 for ail mp  such that O < mp < n'p.

In Case 2,  r^p(p, v, mp) = O for all integers mp  such that  O < m   < n

and np <mp<2Aßp_x.

Finally, suppose  « = 2p> 2, and condition C holds; then for i =p, vG C,

the sequence   {z(m )} = {cvrnp(p, y, m )} is l«e unique solution sequence of

(la) wi'I«  «i    satisfying 3b, a«cf z(O) = a.

Proof.   The first remark of the lemma was already indicated in the discus-

sion preceding equation (7), and is trivial.  Next note that by eliminating the param-

eter  v,  one can write the equation of the lemma in the form:

(*) (~np + 1 + ;>(/) = (j + 1 - n'p)z(j + 1).

Let   {z(j): 0 </ < 2A    _ j} be a solution sequence to this equation.  In Case 1

we write a = z(0), and ß = z(2A   _x). By upward recursion one can solve

equation (*) for all integers m    such that  0 < m   < n'p, since for those integers

the coefficient of the right-hand side of (*) is never equal to zero.  For those

integers we get z(m ) = ar~ (p., v, m ).  By downward recursion, one can solve

equation (*) for all integers m    such that «   < mp < 2AMp_1;  since for those

integers the left-hand side of (*) is never zero.  In this case we have z(m ) =

ßr„p(p, v, mp).  Now it is obvious from the explicit formulas in equation (7), that

r*p(p, v, mp) = 0  for m   < «p,  and that T~p(p, v, mp) = 0  for all «ip   such

that «p<«2   <2A    _j. Hence,

z(«ip) = cw-p(p, v, mp) + ßr^p(p, v, mp)

for all integers mp   such that  0 < mp < 2AMp_t. We have also proved, by the

last remark, the last statement of the lemma concerning the function  r*p(p, v, • ).

In Case 2, let a = z(n ). Since the right-hand side of equation (*) is equal

to zero when j = n'p - 1, it follows by downward recursion, that z(mp) = 0 for

all integers mp  such that  0 < mp <«' — 1.  On the other hand, mp-n'p +

1 # 0 for all «îp   such that «p < «ip < 2AMp-1.  Hence, by upward recursion,

we must have z(mp) = aT^p(p, v, mp) for all integers mp  such that «p <

m   < 2AJup_1.  Hence, by the definition in equation (8), the last equation is true

for all integers m    which satisfy the inequality  0 < mp < 2AMp_j. The last

statement of the lemma concerning the function T„p(p, v, • )  is now obvious

from the explicit formula in equation (8).

The proof of the last statement is similar to the proof of statement 1 of

Lemma 4. The details are left to the reader.    Q.E.D.

The singular cases for « = 2 are treated in the following lemma.
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Lemma 7.   Suppose p = + and vEZ,  or p = -,  and v Ê Z + $4.  77ten

for any complex number a,  the sequence   {z(m) = t21(±, v, m): m E Z}  is the

unique solution of the recursion relation (la), with  i = p = 1, and A^x = m

if p = +,  or Au)l = m + M. if p = -, and such that z(0) = a.

Suppose that  v-VzEZ.  If p = +,   set n = -n - 1. If p= -  set n =

-n - 2. Vh Case 1, t» == (n — n')/2 < 0. In this case every sequence   {z(m):

m E Z}  which satisfies the difference equation

(26) (m + Vi- vfzim) = (m + % + i/)z(m + 1)

wwsf be in the two-dimensional sequence space:

{oalx(+, v, m) + ßr2x(+, v, m): mEZ,a,ßE C},

and every sequence   {z(m): m E Z}  which satisfies the difference equation

(27) (m + 1 - v)z(m) = (m + 1 + i/)z(m + 1)

lies in the two-dimensional sequence space:

{ût21(- v, m) + pV21(-, v, m): mEZ,a,ßE C}.

In Case 2 we have v = (n - n')j2 > 0. In this case, every sequence   {z(m)}

which satisfies equation (19) must be proportional to the sequence   {t2x(+, v, -n)},

and every sequence which satisfies equation (20) must be proportional to the se-

quence  {t2x (-, v, -n)}.

Finally, in Case 1, the factors t2x(±, v, m), t2x(±, v, m) are zero on the

following sets of integers m:

t$x(+, v,m) = 0 for m<-(n + 1),        t%x(-, v, m) = 0 for m<-(n + 2),

t21(+, v, m) = 0 for m>(n + 1), t2x(-, v, m) = 0 for m > n + 1.

In Case 2 the factors t2X(±, v, m) are zero for the following integers m:

r^x(+, v, m) = 0    for m > n + 1  or m <- n - 1,

rfji-, v, m) = 0    for m <-(n + 2)   or m>n + 1.

Proof.  The proof of this lemma is similar to the proof of Lemma 6, with

some obvious simplifications.  The details are left to the reader.    Q.E.D.

We now turn to the proof of the theorem in the case when n = 2p.

The following result is known from Theorem 1 in [10].  Let   YE P(n), [co],

[co'] G Siß(K(n)) and /G dCß(K(n), H).  Then E^dflA(Y)ElÁ}f= 0, unless

a = Aw' - Aw  is a weight in the  K(n)c-module   [P(«)c, ad].  If a is such a

weight, then we have  o = ±e¡,  with   1 < i < p,  and
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E„.dflA(Y)EJ= [Awi + v + (n+ l)/2 - í\E„.<bYEJ,   if a = e„

(28)
Eu.dïlA(Y)EJ = [- Awi + * - (« - l)/2 + í\Eu.9YEuf,    if o = -e,-.

Now suppose condition C is true. Then the operator  Tn(p, v) is defined.

Assume now that / lies in the subspace EwdCß(K(ri), H). We then have from

equations (19) and (21), the following expression for  Tn(p, v)df\A(Y)fi  with

YGP(n):

Tn(p, vymA(Yy

= t Tn(p, vyEA        dflA(Y)f+ t Tn(p,u)EA        dTlA(Y)f
i=i w    ' i=i w    '

(29)

- £ i„(p,.», Aw + e,XAwi + (« + 0/2 - i + v)EA       $Yf
í=i w    '

+ L f»(M. f. Au, - aAwí - (n - D/2 + i + «OffA   _e.*y/.
«=i w    '

If  [co'] is a class in  £2(rv(«)) which is not p-admissible, then by the

Frobenius reciprocity theorem, Ew'dCß(K(n), H) = 0.  On the other hand, if

[co'] = [A^ieJ G SI (K(n)), then by equation (20) and the last statement of

Lemma 6, if i = p, or Lemma 4 if i < p, we have

(v + (n + l)/2 -1 + ^^„(p, », A^ + e¡) = (A^ -1 + (« + l)/2 - vjtjp, v, AJ,

(v-(n + l)/2 +1 - A^tndx, v,A„- e,.) = (- A^ + / + («- l)/2 - u)tn(p, v, AJ.

Hence for all  Y G P(«), and fGEwL2ß(K(n), H),

TnQx, »ymA00f = tn(t*> »> AJ £ {EA  +ei(Awi -/ + (« + l)/2 - vytYf
i= i       "    '

+ ̂ A    -. X" K* +i~(n- D/2 - lO*y/).
CO       I

By equation (28) and the definition of the Fourier component  Tn(ßy v, co),

Tn(p, V)d\iA(Y)f= c7nA_lp2(y)r„(p, vy.

Hence r„(p, v) is an intertwining operator, that is, a £/(G(«))-module homo-

morphism. The statement concerning the dimension of the space of homomor-

phisms follows immediately from the dimensionality of the sequence of factors

t„j(p, v, m¡) as stated in Lemmas 4 and 6.

Now suppose n = 2p, and that condition C is violated.  In Case 1 the two

operators T^Qx, v) are defined. An argument formally identical to the above
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argument shows that these operators have the intertwining property. If 1 < i < p,

then the sequence of factors  {r„,(p, v, m¡)} is unique up to a constant, by Lem-

ma 4, while by Lemma 6, the sequence spaces spanned by the factor sequences:

{rnp(p, v, m )} has dimension 2.   (In case n = 2, Lemma 6 in the last state-

ment must be replaced by Lemma 7.)  It follows that for each p-admissible class

[co], the space spanned by  Tn(p, v, co) has dimension 2.  Hence, the space

spanned by the operators  Tn(p, v) also has dimension 2.

In Case 2, the operator T^(p, v) is defined. An obvious modification of

the above argument shows that this operator is unique up to a complex constant

multiple. Hence the theorem follows for the groups with even n.

Now we turn to the case with n = 2p + I.  In this case, a = 0 is also a

weight in the K(n)c-module   [P(")c> acH > in addition to the weights o = e¡,

with  1 < i < p.   Then by Theorem 1 of [10], there is in addition to the pair of

equations (28), also the equation

(28a) EwdflA(Y)EJ=vE^YEJ,

for fEdCß(K(n), H),  and  YEP(n).

Again, let / G EudCß(K(n), H), and let  YEP(n).  First assume that p =

p. Then by Lemma 3, and by equation (28a) we have E^dfl^YpE^ = 0.  As

before, we compute  Tn(p, v)dflA(Y)f, and obtain a sequence of equations iden-

tical to (29).   Hence the intertwining property of Tn(p, v) follows as before.

Next, assume p=t p.  Then we have by the second formulas in (19) and

(20),

T„(p, u)cmA(Y)f= ¿ w„(p, v, Aw + efXAw/ + (n + l)/2 -1 + vfE^IQyf
i=i '

+ wn(p, v, Au - eiXA^ - (n - l)/2 + i + v)EA^_e^Yf

+ W„(p, V, offEJ^yf-

Now apply Lemmas 2 and 4, as before.  It follows that wn(p, v, Aw) and

wn(p, v, Ajj + ef) satisfy equation (lb). We also use, in particular, statement 1

of Lemma 2, and obtain:

Tn(p, vymA(Y)f

= wn(p, v, Ajij: EA   .   (Aui-i + (n + 1)12 - vpylf
\i=i     u    '

+1 EAw-et Kt+<•-(»- m - vyt>yif-Ewv*Yih

= dïiAiY)Tn(p, »y.
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where again we apply equations (28) and (28a).

The theorem now follows in this case also.

5. Subrepresentations and subquotients.  In this section we point out how

the results of [10] can be interpreted in terms of the kernels and images of the

intertwining maps constructed here.  One by-product of this analysis is the result

that every subquotient  C(G(n))-module in the induced representation modules

considered here is equivalent to a submodule of an induced representation module.

As before, let   [H, p]   be a fixed finite-dimensional irreducible representation

of the subgroup M(n). Let A denote a complex character of the subgroup S(n),

and let A'  denote the Weyl reflected character X' = dA'(H) = -dA(H) + n -

1 = -X + n - 1. The parameter v is defined in terms of X by the formula

v = X - (n - l)/2.  Expressed in terms of the parameter v, a necessary and suf-

ficient condition for the irreducibility of the  t7(G(n))-module   [dCß(K(n), H),

dUA]  is the following one (see [10, Theorem 6]):

(D) If i  is an index such that  1 < í <p, then v + Au¡ + (n + l)/2 -

i ¥= 0, for all   [co]'G Siß(K(n)) such that   [A^, + et]   is also in  Siß(K(n)), and

v-Awi-(n- l)/2 + i ¥> 0 for all   [co] G Siß(K(n)) such that   [Au - e,]   is

also in Siß(K(n)).

We remark that this condition implies the condition C stated in §3.  The

following theorem "explains" this irreducibility criterion in terms of intertwining

homomorphisms.

Theorem 2. (1) Assume that n>3, and that i iß an integer index with

1 < i < p.  Assume also, that if n = 2p,  then i # p.  Assume that there exists

a p-admissible class  [co'] G Siß(K(n)) such that 0 = X - Au'¡ - n + i, and

such that [A^' + e¡]   is also a p-admissible class.  Let s = A^.   77ien, with

v = X - (n - l)/2, we have ker(Tn(p,v)) = D£dCß(K(n), H), where Z>£ is the

projection defined as in [10] by the sum:

Dt = Z{E„: [co] G Siß(K(n)), Aui > s}.

We recall from [10] the definition of the projection DX'  by

DI' = Z{£w: [co] G Siß(K(n)), Awí < s}.

77ien we have Dx< = 1 - Dx.   Then also,

range (Tn(p, v)) = D^dC^n), H),

ker(r„(p, - i0) = D-x.dCß(K(ri), H),

range (Tn(p, - v)) = D+dC-ß(K(n), H).
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(2) Now assume that « = 2p.  Assume also that there exists a p-admissible

class [co'] G Slß(K(ri)) suchthat [Aw- + ep]   is also p-admissible, and such

that X + Au'p - p + 1 = 0, or equivalently,  v + Aw'p + ]i = 0. Set s =

A  - .  We distinguish two cases:

Caseï:  -s>s.   Then  u = -s~%>0.

Case 2':  s<s.   Then  v = -s~iA<0.

As in Theorem 5 of [10] we define the following projections:

Dtp = 1,{E„: [co] G Slß(K(n)), Awp > - s},

Dlp = T,{E„: [co] G Slß(K(n)), Awp < s},

D^'p = 1 - D^p,  and D^>p = 1 - Z)£p.  7« addition, in Case Ï we define as in

[10], 7#p = 7VpZ)+.p = D+.pDyp,  and in Case 2', lfXp = D^pD+p = 7J+p7^p.

Then in Case l' the linear map  7^(p, -v) is defined, and we have:

ker(7>, - v)) = D^pdCß(K(n), H),

range (7>, - p)) = D+pdCß(K(n), H),

ker(r-(p, - „)) = D+.pdCß(K(n), ff),

range (T'Qi, - v)) = DlpdCß(K(n), H).

In Case 2' the linear map  T^(p, -v) is defined, and we have:

ker(7^(p, - v)) = (D+.p + Dyp)dCß(K(n), ff),

range (7^(p, - v)) = DlpdCß(K(n), H).

(3) 77te map  Tn(p, v) is a linear isomorphism from dCß(K(ri), fí) onto

dCß(K(n), ff)  if and only if condition D holds.

Remarks.   Under the Weyl reflection:  A—>A'=A-IP2  the equation

X + s - p + 1   goes over into the equation  X' + s - p + 1 = 0,  where  s   is

given by s = -s - 1.  Hence the equalities between the projections: D\p = 1 —

D^>p  follow from the definitions of the projections D\p  by replacing X by X'

and s by s   in those definitions.  A similar remark applies to the projections

defined in statement 1.

Next we remark that in case p>2, the condition in statement 2 implies

that the component Aßp_x   is positive.

Finally, we remark that the above theorem may be deduced from Theorem

6 of [10]. However, we shall now show that this theorem follows easily from the

results established in the last section.

Proof of the Theorem.   First, we note that if there does exist an index
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i, with  1 < i < p, and such that condition D is violated, then by Lemma 5 this

index is unique. Assume now that the condition of statement 1 holds; so that we

have  v = s + (n + l)/2 - i  for a unique index i.  Write s = Aßi 4- n¡. Then

n¡ is a nonnegative integer, and by the condition of statement 1, both n¡ and

n¡ + 1  satisfy conditions 3a, b.  From the definition of the functions Tni(p, v, m¡)

in equations (4) or (17), it follows that rní(p, v, m¡) = 0 for precisely those

integers m¡ which satisfy the conditions 3a, b and the condition ml > n¡ + 1.

Moreover, the factors t  (p, v, mi)  which occur in the definition of Tn(p, v),

are different from zero when / ¥= i. The last fact follows from the explicit form-

ulas for these factors and from the uniqueness of the index i. Hence the kernel

of Tn(p, v) is spanned by those subspaces EwdCß(K(n), tí) such that Aw/ >

n¡ 4- 1 + Aßt. Since such classes exist, this kernel is nontrivial.  Since the map

Tn(p, v) commutes with the projections Ew, the range of this map is spanned

by the complementary set of subspaces:   {E^dCß(K(ri), tí): [co] G SißiKin)),

Au¡ < s}. Hence, the first conclusion of the statement follows.

By the last remark of statement c in Lemma 4, the factor Tni(ß, -v, m¡) is

equal to zero for precisely those m¡ which satisfy 3a, b and the condition m¡ <

n¡. Hence by reasoning in a manner similar to the above argument, we have

ker(r>, - i>)) = span {EwdCß(K(n\ tí): Aw/ < n, + Aßi] = DydCß(K(n)M),

and this kernel is nontrivial. The statement concerning the range of the map

Tn(p, -v) follows in a similar manner as the statement concerning the range of

the map  Tn(p, v). Hence, statement 1 is proved.

Under the assumptions of statement 2 of the theorem, condition C of §3 is

violated. Hence, condition D is violated for the unique index i = p.  First, let us

assume that p > 2. Then t„aji, v, mf) ¥= 0 for all indices / such that  1 <

/ < p,  and integers w;- which satisfy conditions 3b. Hence the kernel of the

map  Tn(p, -v) may be read off from Lemma 6.  First assume Case 1' of state-

ment 2. This case corresponds to Case 1 of Lemma 6 with the parameter in that

lemma replaced by the parameter v = -v. Write  X' = np - Aßp_x - Vi = s + Vi.

Thus, in terms of np  and n'p  of Lemma 6, we have s = -AMp_! + np - 1,

and -s = -AMp_| 4- n'p. Then the factor Tnp(p, v, mp) is defined for all in-

tegers mp  which satisfy the inequality:  0 < mp < 2AMp_j. If n > A, it follows

from Lemma 6 that T^p(p, », mp) = 0 if and only if -Aßp_ x < -Aß     x +

mp <-s - 1.  Hence, the map  Tn(p, v) is defined, and its kernel is correctly

indicated in the conclusion of statement 2. It also follows from Lemma 6 that

T~p(p, v, mp) = 0, if and only if s + 1 = ~Aßp_x + np <-AMp_x + mp <

\p-1 • I* follows that the kernel of the map  T~(p, v) is the range of the pro-

jection L>X'p. The statements concerning the ranges of the maps T„(p, -v) again
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follow from the fact that these maps commute with the projections Eu, [co] G

Slß(K(n)), as before.

Assume Case 2' holds. This case corresponds to the Case 2 of Lemma 6,

when the parameter  v in that lemma is replaced by the parameter  v = —p.

Hence the factor r^p(p, -v, mp) is defined for all mp  which satisfy the in-

equalities in 3b.  Hence the map  T„(p, -v) is defined.  By arguing as above, it

follows from Lemma 6 that the kernel of this map consists of the span of

EwdCß(K(n), H) with -Aßp_x < A«   < s - 1   or with s + 1< Awp <

A    _,. Hence, the kernel of T„(p, v)  consists of the subspace

(D^p+Dt'p)dCß(K(n),H).

The statement concerning the range of the map  T„(fi, v) follows from

an argument similar to one used above.

In case « = 2, and p — 1,  statement 2 follows from Lemma 7, by mod-

ifying the above argument in an obvious manner.

By the proof of statement 1 the map  Tn(p, v) has a nontrivial kernel, if

and only if statement D is false.  Hence, if statement D is true, the map  Tn(p, v)

exists and is one to one.  Moreover, since this map is onto each of the subspaces

E^dCß(K(ri), 'i), in this case,  Tn(p, v) maps dCß(K(n), ff)  onto dCß(K(n), H).

Q.E.D.
The following facts are known from [10, Theorem 6].

If the assumptions of statement 1 of the last theorem hold, then the

i/(G(«))-modules   [DtdCß(K(n),\\),dXlA]  and   [D^dCß(K(n), H), dUA-]  are

proper irreducible submodules of the  £/(G(«))-modules   [dCß(K(n), H), dX\A],

and   [dCß(K(n), H), ̂ nA-]  respectively.  If the assumptions of statement 2 in the

above theorem hold, then   [D\pdCß(K(n), H), dUA]  are both  £/(G(«))-submod-

ules. These submodules are both irreducible if condition 1' holds.  If Case 2'

applies, then the submodule   [DXpdCß(K(n), ff), dñA]  is irreducible.  Similarly,

under the assumptions of statement 2, the subspaces D\> dCß(K(ri), ff)  are sub-

modules under the action dïlA<, and are irreducible in Case 2'.  In Case l',

[DypdCß(K(n), ff), £?nA']  is irreducible.  Finally, if condition D holds, then the

t/(G(«))-modules   [dCß(K(n), H), dïlA]  and   [dCß(K(n), H), ífflA>]  are both

irreducible.

Now, let  T be an intertwining map from the  i^G(«))-module  [dCß(K(ri), H),

dUA]   into the   t/(G(«))-module     [dC-ß(K(n), H), düA-]. From a standard

theorem on homomorphisms of modules, we may identify the quotient module

[dCß(K(n), ff), dílA]/[kex(T), dïlA]  with the submodule of  [dCu(K(n), H),

dïlA'] given by  range (T). Hence, by combining the above results with Theorem

2, we obtain with a slight abuse of terminology, the following result.

Corollary 1.  If condition D holds, then  TnQi, v) is an isomorphism
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from the  U(G(n))-module   [dCß(K(n), tí), cfflA] onto the  U(G(rí))-module

[dCß(K(n),H),dUA.].

If the assumptions of statement I hold, then  Tn(p,v) isa  U(G(n))-mod-

ule isomorphism from the quotient module

[dCß(K(n), H),dTlA]l[D+dCß(K(n), H),dUA]

onto the submodule   [DxdCjí(K(n), tí), dUA<].  Under the same assumptions,

Tn(p, -v) is a  U(G(ri))-module isomorphism from the quotient module

[dCß(K(n), tí), dnA.]l[DydCß(K(n), tí), dUA^]

onto the submodule   [DxdCß(K(n), tí), dUA].

As in [10], the subquotient theorem of Harish-Chandra [3b], Theorem 4,

leads immediately to the following corollary.

Corollary 2. Every irreducible quasi-simple representation of G(n) is

infinitesimally equivalent to a subrepresentation of a nonunitary principal series

representation.

6. Infinitesimally pseudo-unitary representations. A preliminary step in the

classification of the irreducible unitary representations is the study of the infinites-

imally pseudo-unitary C(G(n))-representations. This study, which is undertaken

in this section, involves some remarks on linear algebra.

We continue the notation of the last section.  Let [H, dïlA]  be a nonzero

C(G(n))-submodule of the  C(G(n))-module   [dCß(K(n), tí), cfTIA].  Let A  be

an Hermitian (not necessarily positive definite) bilinear form on H; so that

A(x, y) = A(y, x), for all x   and  y E H. The  <7(G(n))-module   [H, dllA]  will

be called infinitesimally pseudo-unitary with respect to the Hermitian form A,

or if A  is understood, infinitesimally pseudo-unitary, provided the following re-

lation holds for all  F G G(n), and x, y E H:

A(dïlA(Y)x, y) = -A(x, dTlA(Y)y).

In other words, for each  Y E Gin), the linear transformation dllA(Y) is skew-

Hermitian with respect to the form A.

Following Harish-Chandra, we call the  U(G(n))-module infinitesimally uni-

tary, if it is infinitesimally pseudo-unitary with respect to some positive definite

Hermitian form.

As in [10], we let < , >  denote the standard inner product on Lß(K(n), tí)

defined by means of the Haar integral

(f'¿= fK,n)<Ak),gik))dk,

for all /, and g E L2(K(n), tí), where ( , ) is an inner product on  tí with
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respect to which   [H, p]  is a unitary representation of M(n).

Note that the restriction of the form ( , > to the linear subspace H is non-

degenerate since < , > is positive definite.

Finally, as in [10], we denote complex conjugations on L2(K(n), H) by

Let H*  denote the linear dual space of H, and let HF  denote the sub-

set of 77*  defined by HF = {/G 77*: f(EwH) = 0 for all but a finite number

of classes   [co] G Slß(K(n))}. It is clear that HF is a linear subspace of H*.

The next lemma will justify calling this subspace the subspace of £(«)-finite

vectors in H*.  If fGH*, let / denote the conjugate linear functional defined

by fix) =/(x). Then let HF denote the linear space of conjugate linear func-

tionals defined by the expression:  HF= {/: fGHF}.

Lemma 8.   If fGHF,  then there exists an element x, G 7/ such that

f(y) = {y, x,> for all y G H  If fG HF,  then there exists an element x, G 77

such that f(y) = <x,, y), for all y G H.   The map f—»■ x,, / G HF, is a con-

jugate linear isomorphism from HF  onto H.   The map f —*■ x,, fG HF  is a

linear isomorphism from HF onto H.

Proof.  Let fGHF, and let 33, denote the linear span:

», = span {EJfi fiEwH) # 0, [co] G Slß(K(n))}.

Then 35, has finite dimension and is a Hilbert space under the restriction of the

Hermitian form < , >.  Consequently, by the standard Riesz representation theorem,

there exists an element x, G 35, C H, such that fij) = {y, xi for all y G 35,

However, for all y G 35, G H we have f(y) = 0 = (y, x,>. Hence f\y) = {y, x,>

for all y G H. The fact that the map /—► x, is conjugate linear and one to

one follows from a standard calculation. The fact that this map is onto follows

in a standard way from the nondegeneracy of the Hermitian form < , >.

The second half of the lemma follows by an analogous argument.    Q.E.D.

Corollary 3.   77ie spaces H, HF, and HF are all linearly isomorphic.

Lemma 9.   Let A  be an Hermitian form on H.   Then there exists a linear

map  T: H—* H such that A(x, y) = (Tx, y), for all y and xGH.

Suppose moreover, that   [H, dllA] is an infinitesimally pseudo-unitary

U(G(n))-module with respect to A.   Then  T is an intertwining map from this

U(G(n))-module into   [dCß(K(n), ff), dîlA_ Xp2].

Remark.   Note, that the character Ä_1P2  is equal to the Weyl-conjugate

character of A only if A is real.

Proof of the lemma. Fix xGH.  Then the map fx: y —*■ A(x, y) is

conjugate linear.  It is obviously AT(«)-finite, and hence in HF. Therefore, we
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may apply Lemma 8. Accordingly, the map fx —► x*    is linear, and writing

x —► Tx for the composition of the linear maps x —► A(x, ■ ) = fx  with fx —►

Xf , we get a linear map  T: H —* H. Thus from Lemma 8 we have

A(x, y) = fx(y) = (xfx, y) = {Tx, y),

for all x.yEH.

Next, we prove the second statement of the lemma.  By Theorem 8 of [10],

we have for all x, y EH and gE Gin),

mK_Xp2ig)x,y) = (x,UAig-1)y).

Let  Y G G(n). Then by differentiating the above equation along the one param-

eter subgroup  f —► exp tY, we obtain:

(¡ffl__lp2(y>, y) = - <x, df\AiY)y),

for all x  and y EH.

Now assume that   [H, dUA]  is infinitesimally pseudo-unitary with respect

to A.   Then we have for all x, y E H and   YE Gin),

<TdïlA(Y)x, y) = Aid\lAiY)x, y) = -A(x, dUA(Y)y)

= -(Tx, dUA(Y)y) - <aTI__li>2(y)7x, y).

By the nondegeneracy of the form ( , >, we have for all x EH,    TdUAiY)x =

dUA_Xp2iY)Tx.   Q.E.D.

Corollary 4. In order that [H, dîlA] be infinitesimally pseudo-unitary

it is necessary that either Ä~1P2 = A, or that Ä = A ancf p = p. In the first

case v is imaginary, and in the second case v is real.

Proof.   The proof is immediate from the definitions, the above lemma,

and Lemma 3.

It now becomes a routine matter to list all the pseudo-unitary representations

by making use of Theorem 1. We will not do this here, but turn now to the

classification of the unitary representations.

7. The unitary representations. Let A  be an Hermitian form on H.   Sup-

pose that the  t/(G(n))-module   [H, dTlA] is infinitesimally pseudo-unitary with

respect to A.  A key point in our argument is the following simple observation.

Lemma 10.   Under the above assumptions, A   is positive definite, if and

only if A  is positive definite on each nontrivial subspace E^H, [co] G Siß(K(n)).

Proof.  The "only if part is obvious. The "if part follows immediately
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from the following observation.  If xGEwH, and yGEw*H, and if  [co] ^

[co'], then A(x, y) = 0. However, this observation follows from the fact that

the AT(«)-representation k —* R(k) = ïlA(k) on H is unitary with respect to

A, and the following computation:

Let xGE^H, and yGE^H with   [co] =£ [co']. Then

A(x, y) = A(E„x, E„,y) - fK{n)^(k)A(R(k)x, E^y)

We call an infinitesimal intertwining map  T positive definite, if the corre-

sponding Hermitian form:  (x, y) —► <7x, y) is positive definite.  It is clear from

the above lemma that an infinitesimal intertwining map is positive definite, if and

only if the coefficient in each of its Fourier components is positive.

The next lemma is basic and concerns the positivity of the factors which

occur in the definition of the maps  Tn(p., v, co).  In accordance with Corollary 4,

we need only consider the case of v real. Hence we now assume that v is real.

Lemma 11.   Let i be an integer index with   1 < i <p.

(1) First, assume that « > 3, and that if n = 2p,  then i^p.   Then the

factor rni(p, v, m¡) is positive for all positive integers m¡ which satisfy condi-

tions 3a, b, i/a«ci only if

0 < JjH < \Aßi\ + (n + l)/2 -1.

(Recall that the integer m¡ satisfies conditions 3a, b if and only if m¡ + Aßi is

the ith component of a \i-admissible highest weight of K(n).) Suppose n¡ and

n( + 1  satisfy condition 3a, b, and suppose that v = ~(Aßi + (n + l)/2 - /+ n¡).

Then Tni(p, v, m¿) > 0, for all m¡ which satisfy 3a, b.

(2) Let n = 2p, and i = p. Assume condition C of §3 is satisfied.   Then

the factor rnp(p, v, mp) is never zero for any integer mp  satisfying condition

3b. Moreover, this factor is positive for all mp  satisfying 3b, i/a«cf only if

2AMp_ j  is an even integer, and 0 < \v\ < Vi, when n> 4, and if and only if

p = + and 0 < \v\ < xh, when « = 2.

(3) Let n = 2p and i = p.  Assume condition C is violated.   Then as

usual, we consider two cases:

Case 1.  v = (np - «p)/2 < 0.  (We use the notation of §3.)  77ze« the fac-

tors Tnp(p., v, mp) are defined, and are positive or zero for all m    satisfying 3b.

(77ie zeros are given by Lemma 6, or Lemma 7 i« case p = 1.)

Case 2. v = (np - np)/2 > 0.  Then the factor r£p(p, v, mp) is defined

for all mp  satisfying 3b. It is positive or zero for all such mp,  if and only if
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n   = n   + 1; hence v = Vl and Aßp_x   is an integer.  In case n = 2, the last

condition must be replaced by the condition that p = +, and v = Yi.

Proof of statement 1.  If i > 1, and if A¡ii_1 = Aßi, then every p-admis-

sible class   [co]  must have the property that  AM/ = Aui.  Consequently, in this

case m¡ = 0 is the only integer for which rni(p, v, m¡) is defined. This factor

is by definition equal to 1.  Now, if i = 1,  or if AM1- J= Aßi_ x, then there is

more than one integer m¡ which satisfies the conditions 3a, b.  It follows from

equation (17) that for all these integers, rni(p, v, m¡) > 0,  if and only if

|AM,-| + (n + l)/2 - / + m, - v

\Aßi\ + (n+ l)/2 - / + mt + V  ^ U'

for all integers mi  which satisfy the conditions 3a, b.  (We remark again, that

the absolute value sign is needed only in the case where n = 2p + 1   and í = p.)

The condition (*) is equivalent to the condition that

(**) (|AM¿| + (n + l)/2 - i + m,-)2 > v2.

The left-hand side of the last inequality attains its minimum for ml = 0.  Similar-

ly, the condition that r„,(p, v, m¡) > 0 for all m¡ > n¡, and satisfying 3a, b is

equivalent to the condition that

(|AM/| + (n + l)/2 - i + m,.)2 > v2,

which under the second hypothesis of statement 1 is satisfied automatically for

m¡ > n¡ + 1.  For m¡ < n¡, rni(p, v, m¡) — 0, by Lemma 4.  The statement

follows.

Proof of statement 2.   Let n = 2p and i = p.   First suppose that

n> A. If A    _ j = 0, then m   = 0 is the only integer for which the factor

rnp(p, v, m ) is defined, and by definition, this factor is equal to 1. Now suppose

that AMp_ x > 0. Then it follows from equation (5) that r„p(p, v, mp) > 0,

for all mp  for which this factor is defined (inequality 3b) if

(***) (- AMp_ ! + Vl + mp)2 > v2

for all integers m    which satisfy the inequalities 3b.  Now if 2Aßp_x   is an odd

integer, then one possibility for mp  is mp = AMp-1 - Yi. For this integer we

have 0>i>2, which is impossible.  Hence, 2AM     x   must be an even integer.

In this case the minimum of the left-hand side of inequality (***) is attained

when mp = Aßp_x. Hence statement 2 follows for this case.

Next assume that n = 2.  If p = -, we find from equation 10 that

t21(-,p,—1) = (-v)Ip = -1, for all ^#=0. Hence, we must have p = +.  On
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the other hand, we see that r21(+, p, m) > 0 for all m G Z, if and only if

(j + Vl)2 - v2 > 0 for all / G Z. Hence, the statement follows in this case as

well.

Statement 3 follows easily from the explicit formulas given in equations (7)

and (8), in case « > 4, and from equations (12), (13), (14), and (15), in the

case when « = 2.

From our point of view the irreducible unitary representations fall into two

broad classes I and II:

I. 77ie principal series.   These representations are the representations on

L2(K(n), H) with   [H, p]  an arbitrary irreducible finite-dimensional representa-

tion of M(ri), and  v pure imaginary or zero.  Note that it follows from the

irreducibility conditions of [10, Theorem 6], or in §5, that the only nonirreduc-

ible case of the principal series occurs if v = 0, n = 2p > 4,  and the component

Aßp_x   is a half odd integer, or in case « = 2, v — 0, and p is the nontrivial

representation of M(2). In these cases the principal series splits into two irre-

ducible components.

II. Representations with a redefined inner product on dCß(K(ri), ff). In

this case one defines an inner product on dCß(K(ri), ff)  such that for some

character A on S(n) the representation   [dCß(K(ri), ff), dflA]  is infinitesimally

unitary with respect to this inner product.  Then the unitary representation of

G(n) is supposed to act on the Hubert space completion, with respect to the

norm defined by this inner product, of the quotient space dCß(K(ri), fO/(radical (A)),

where A  is the inner product.  This second class of representations splits up into

two subclasses:

IIA. Irreducible complementary series.   In this case the radical of the inner

product A  is equal to the zero space.

IIB. Nonirreducible case; the end point and isolated point representations.

In this case the radical of A  is nontrivial.

First, we discuss the class IIA in more detail.  For this class there is no sub-

stantial difference between the case « = 2p  and the case n = 2p + 1.  By

Corollary 4, we must have p= p, and v a real number, where  v = dA(H) -

(n - l)/2.  By Lemma 9, the inner product A  which makes   [dCß(K(n), ff), dfIA]

infinitesimally unitary can be given as follows:

(x, y) -+ An(p, v; x, y) = (Tn(p, v)x, y).

By Lemma 10, this Hermitian form is positive definite provided that the scalar

tn(ji, v, co) is positive for each p-admissible class   [co].  By formula (20) in §3,

this last condition is equivalent to the condition that each of the factors

Tni(p.,v,m¡) is positive for l</<p, and m¡ given by m¡ = Awí- Aßt, if



358 E. A. THIELEKER

1 < i <p, and mp = Awp - |AMp|, if n = 2p + 1, or mp = A^ - Aup_lt

if « = 2p.

Now assume first that n = 2p 4- 1. Then the condition that p = p im-

plies that the component A     = 0.  Suppose that there is an index / such that

1 </ <p, and such that AMp = 0. Then 0 = Aw. = AM/+1 = • • • = Aßp.

Then only the integers m+ ,=••• = m   = 0 are possible.  In this case, the

factors Tj+ j(p, p, 0) = • • • = Tp(p, v, 0) = 1.  Let / be the first integer such

that Aßj = 0. Then by statement 1 of Lemma 11 we find that the positivity

condition becomes

/
(29) \v\ E H [0, Aßi + (n + l)/2 - Í) = [0, (n + l)/2 -f).

i=l

This condition is both necessary and sufficient for the component tn(p, p, co). to

be positive for each p-admissible class   [co] G Siß(K(n)).

Now let n = 2p.   If AMp_! = 0, then as before, we let / be the smallest

integer such that AM;- = 0, and we have as before, the positivity condition:

\p\ G Q [0, Aßi + (n + l)/2 - 0 = [0, (n + l)/2 - j).
f=i

That is, the above condition is both necessary and sufficient for the Hermitian

form An(p, p; • , •) to be positive definite. Now assume that Aßp_x # 0.  Then

by statement 2 of Lemma 11 and the above reasoning we must have that 2AMp_x

is an even integer and that  \v\ E [0, Vi). Now this interval is contained in the

interval

H   [0, Aßi + (n + l)/2 - 0.
/=i »

Hence, the condition that  \p\ E [0, Yi) and AMp_t G Z  is both necessary and

sufficient for the positiveness of An(p, p\ •, - ), when   Aßp_ x + 0.

Remark 1.   If n = 2p, then the above analysis implies that one cannot

have a complementary series if  [tí, p]  is a faithful representation of M(n).

Now assume that the above conditions for positive definiteness are satisfied.

Thus we assume that An(p, p; • , ■ ) is a positive definite inner product on the

space dCß(K(n), tí).  Let HßV denote the Hubert space completion of this space

with respect to the Hubert space norm defined by this inner product. We wish to

argue that there exists a globally defined unitary representation of G(n) whose

differential is the infinitesimally unitary representation   [dCßiKin), tí), cfIlA].  For

this purpose, we may invoke a theorem of Nelson (see the discussion below). How-

ever, we shall give a simpler argument which is valid in the case of the complemen-

tary series, and which generalizes an argument due to Bargmann [1, p. 619].
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Proposition 1. Let v~>0, and assume that v satisfies one of the above

conditions for the positive definiteness of the form An(p, i>; • , • )■  The  Tn(p., v)

may be extended to a bounded positive operator on L2(K(n), ff) with operator

norm   \\Tn(p, v)\\ < 1.  The last inequality is strict unless v = 0. Hence,

L2(K(n), H) may be embedded as a dense subspace of HßV.

Proof.  An examination of the formulas (17), or the formulas (4) and (5)

shows that tn(p, v, co) < 1  for all   [co] G Slß(K(ri)). The inequality is strict un-

less v = 0. Now   {Eu : [co] G £2M(AT(«))}  is a complete orthogonal family of

projections on the Hubert space L2(K(n), ff).  Hence, the proposition follows

directly from the definition of the operator Tn(p, v).   Q.E.D.

Now since the action of G(ri) is already globally defined on the space

L2(K(n), ff), by  nA, this action extends, by continuity, to an action of G(n)

on the Hilbert space completion HßV.

If the conditions for positive definiteness of the form An(p, v) are satisfied,

but now v < 0, then we note that   [L2(K(n), ff), nA-]  is infinitesimally equiva-

lent to the representation   [L2(K(n), ff), nA].  Hence, by the above argument,

this case is unitarizable as well.

Next, we turn to a discussion of the case IIB. Again, by Lemma 9, we may

assume that the inner product A  is given by:

(x, y) —► An(n, v; x, y) = <7/„(p, v)x, y),

where now the radical of An(p., v;- ,• ), which is the same as the kernel of

T„(p, v), is assumed to be nontrivial.  (In case « = 2p,  and in case the operators

7^(p, v) of T^(p, v) are defined, we use the notation An(pt, v; ■ , ■) or

A%(p, i»;*.") to denote the corresponding inner products.) By the discussion of

Theorem 2 in §5, and by the fact that p = p, we have that  Tn(p., v) is one to

one on its range.  Hence, if Tn(p, v) is positive semidefinite, then An(p, p;• ,•)

is positive definite on range (Tn(p, v)). Now, by Theorem 2, condition D of §5

must be violated. Accordingly, we first assume that

v = (AM/ + (« + l)/2 - i + «,),

for some index i  such that   1 < i < p,  and we first assume that if « = 2p,

then í =£ p.  (The case with n = 2p and i = p  will be handled separately.)

Here n¡ is a nonnegative integer such that Au¡ = n¡ + Aßi for some p-admis-

sible class   [co], and  1 + «,- + Aßi is also assumed to be the ith component

of some p-admissible class.  By Lemma 11, statement 1, if j > i, then the factors

t  (p., ±v, m¡) cannot all be positive, unless there is only one, namely Tn¡(p, ±v, 0).   i

Thus,  0 = AMJ- = AMI-+1 = • • • .  On the other hand, if /# 1, then we must

have A • ¥= 0, for /' < i.  (Otherwise, we would have Aui = 0 for all p-admissible
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classes   [co].)  For such indices /, the condition of statement 1 in Lemma 11 is

satisfied automatically.  Hence, the positivity of tn(p, ±v, co) hinges upon the

positivity of the factor rni(p, ±v, m¡) for each integer mt for which this factor

is defined.

Now by Lemma 11, statement 2, and Lemma 4c, we have  rni(p, -v, m¡) -

0, for 0 < m¡ < n¡, while Tni(p, -v, m¡) > 0, for n¡ < m¡. On the other hand,

assume that n¡ > 0. Then we have Tni(p, p, 0) = 1. However, rni(p, v, 1) =

-nj(n + 1 - 2i + n{) < 0, as can be established by substitution into the formula

(4) or the formula (17).  Hence,  Tn(p, v) is not positive unless n¡ = 0.  By

Theorem 2, ker (Tn(p, -p)) = range (Dx), while  ker (Tn(p, p)) = range (Dx).

Thus we have established the following result.

If p = (n 4- l)/2 - i + n¡, and the above stated conditions on the index i

and the integer n¡ hold, then the quotient  i/(G(n))-module

[dCß(K(n), H), dnA.]/[DA.dCß(K(n), H), dïlA>]

is infinitesimally unitary with respect to the inner product (x,y)—>An(p,-v;x, y)

= (T„(p, -p)x, y). While the "supplementary" quotient module

[dCß(K(n), H), dl\A]l[DtdCß(K(n), H), dUA]

is infinitesimally unitary with respect to the inner product (x, y) —► An(p, p; x, y)

= (Tn(p, ppc, y), if and only if n¡ = 0.

Remark!   The quotient module  [dCß(K(ri),H),dnA<]l[Dx>dCß(K(ri),H),dnA']

is infinitesimally equivalent to the submodule   [DxdCß(K(n), H), dïlA]  (see [10,

Theorem 6] ).  This infinitesimal equivalence can be implemented directly with the

map  Tn(p, —p) (see Theorem 2). This submodule can be made infinitesimally

unitary directly with the inner product defined by (x, y) —► Bn(p, -p; x, y) =

(Tn(p, -p)~1x, y), where x, v G range (D+), and  Tn(p, -v)-1   is the inverse of

Tn(p, -p) defined only on this range.  It is clear that Bn(p, -p; • , • ) is positive

definite. Moreover, it follows from the intertwining property of Tn(p, —p) that

for all  y G G(n), and x G range (Z)£),

Tn(p, - py'dñ^Yyx = <mA-(Y)Tn(ii, - »y1*,   modulo(1 -Dl - D&.

The skew-symmetry of the representation follows as in the calculation in the proof

of Lemma 9.

Similarly, if n¡ = 0, the  C(G(n))-module   [range (DX'), dflA>]  can be

made infinitesimally unitary directly by defining on the range of Dx>  an inner

product Bn(p, p; • , • ) by the formula

B„(p, v; x, y) = <Tn(p, p)  lx, y),
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for all x, y G range(Dy).  Again, the map   Tn(p, v)"x   is the inverse of Tn(p, v)

defined only on the range of Tn(p, v),  namely D^.

Remark 3.   In the nonsingular cases, namely when  ker (Tn(p, v)) = {0},

we have the following simple formula for the inverse of Tn(p, v): Tn(ß, v)~! =

Tn(p, —v). This formula can be established easily from the definition in formulas

(19) and (20), and from the definitions of the factors rn/(p, v, m¡).

Remark 4.   In case n¡ = 0 we have explicitly:

Dl- = {Ew: [co] G Slß(K(n)), AMt = 0}.

Now, if i=l,  then  A^ = 0.  Hence,   [ff, p]  is the trivial representation of the

subgroup M(n)  on C.  In this special case, D^<   reduces to the projection onto

the subspace of constant functions, and the corresponding unitary representation

is the trivial unitary representation of G(n).

Now we turn to the case when « = 2p,  and i = p. The discussion is sim-

ilar to the above one, except now we must use statement 3 of Lemma 11 to deter-

mine the positivity conditions for the factors Tnp(p, v, mp) which occur in the

definition of the intertwining maps.

First, we assume that Case 1' of Theorem 2 holds. This case is equivalent to

the Case 1 in Lemma 11 for the parameter —v. Thus, we have  p = — s — Vi > 0,

and -s> s. If « > 4, then all the factors Tn¡(p, v, mj) for / < p are positive

because of statement 1 of Lemma 11, and because of the estimate:

0<H = \s + K\<Aßp_l +%

< AMp_, + (« - l)/2 -/ < AM/ + (n + l)/2 -/.

It follows from Lemma 11 and from Theorem 2 that  Tn(p, -v)  are positive

operators with kernels given by  range (D^> ). Hence, these operators are positive

definite on the ranges of the projections D\p. Hence, in particular, the inverses

7*(p, -v)~x   are defined on the ranges of the projections D\p. Now, from The-

orem 2, the quotient modules   [dCß(K(ri), ff), c7IIA']/[range (Dyp), dñA]  are

isomorphic, via the maps T„(p, -v), to the submodules   [range (D\p), cfIIA].

(Throughout this discussion the upper signs go with upper signs, and the lower

signs go with the lower signs.)  By an argument similar to the above one, the above

quotient modules are infinitesimally unitary with respect to the inner products

(x, y) —► An(p, -v) = (Tn(p, -v)x, y). Then it follows from an argument similar

to the one in Remark 2, that the above subrepresentations are infinitesimally uni-

tary with respect to the inner product (x,y) —*Bn(p,-v;x,y) = (Tn(p., ~v)~1x, y).

Now let us assume that Case 2' of Theorem 2 holds.  Equivalently, Case 2

with v replaced by -v holds. Then, by the above discussion and by statement

3 of Lemma 11, TF(p, -v) is a positive operator if and only if there is precisely



362 E. A. THIELEKER

one factor rf¡p(p, -p, mp) different from zero. This situation can only occur if

p = -Yz, and np = n'p + I  (see §3). We must then have Aßp_x = n'p, in case

n> A. Thus AMp_j   must be a nonnegative integer.  If n = 2,  this last condi-

tion must be replaced by the condition that p is the trivial representation of

M(2).

Now assume that these conditions hold. Then  T„(p, -p) is positive, and

is positive definite on range (D^p). Moreover, by Theorem 2, we have

ker (T„(p, -p)) = range (Dx>p + Dx>p). Then by arguments similar to the above

ones, we have that   [dCß(K(n), tí), d!lA>] /(range (D^p + Dx-p), cfflA-]  is infin-

itesimally unitary with respect to the inner product (x, v) —► A^(p, -p; x, y) =

(Tn(p,-p)x,y). Then the subrepresentation   [range (£rf), <zTiA], which is

equivalent to the above quotient module, is infinitesimally unitary with respect to

the inner product (x, y) —* Bn(p, -p; x, y) = <T„(p, -p)~ 1x, y).

In order to prove that there exist globally defined unitary group representa-

tions for each of the infinitesimally unitary representations listed above for Case

IIB, one could argue as with Proposition 1 above.  A modification of this argument

is valid for the above representations in the subrepresentation picture rather than

in the quotient picture.  However we shall instead apply a theorem of Nelson [6,

Theorem 5]. According to the hypotheses of that theorem it will be sufficient to

show that for each of the representations listed above, the differential operator

cfflA(V), with

V = ¿^¿+//2+"¿1 ¿4 = S2 + S2X,
i=2 1=1   /=2

is essentially selfadjoint.  Here  Í2  and  SiK  are the Casimir operators of G(n)

and  K(n), respectively, in the normalization of [10, Lemma 6].  However, this

fact follows immediately from the fact that this operator is symmetric for any

infinitesimally unitary representation, and from the fact that the ranges of the

projections Eu, [co] G Siß(K(n)), are eigenspaces of this operator.

By Theorem 8 of Harish-Chandra [3a], every infinitesimal equivalence class

of quasi-simple representations contains at most one unitary equivalence class of

unitary representations.  Second, every irreducible unitary representation is quasi-

simple. Third, every irreducible quasi-simple representation is infinitesimally

equivalent to a subrepresentation of a principal series representation (possibly non-

unitary), by Corollary 2. If we combine the above analysis with the computation

of the eigenvalues of the Casimir operator in [10, Lemma 6], we have proved the

following result.

Theorem 3. Every irreducible unitary representation of G(n) is unitarily

equivalent to one of the following unitary representations.
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I.  77ie irreducible principal series.  Let   [ff, p] be an irreducible finite-

dimensional representation of the subgroup M(n). Let v = dA(H) - (n - l)/2.

77ze representations in this class are the representations   [LA(K(n), H), UA]  with

v pure imaginary, with  i> ¥= 0, in case n = 2p,  and p is a faithful representa-

tion of M(n). (The last condition is equivalent to the condition that 2AMp_j  is

odd, if « > 4, and p is nontrivial if « = 2.)  We also have

cfflA(£2) = v2 -(""1)2  + P¿ (A"'' + " " 2i ~ 1)A"'''   if " = 2P > 4'
4 i=i

= v2 - %, if « = 2,

= v2_(n-l)    +£ (A^ + n_2i_ m if n = 2p + i.
w i=i

IIA.  77ie irreducible complementary series. Again, set v = dA(H) - (n - l)/2.

Let  [H, p] be an irreducible finite-dimensional representation of the subgroup

M(n). If n = 2p + 1  then we must have Aßp - 0. Let j be the smallest

integer such that A ■ = 0.  Then v is real and v G (-(« + l)/2 + /, (« + l)/2 -

/). Similarly, if n = 2p > 4, and if Aßp_x = 0, let j be the smallest integer

such that Aß]- = 0.  Then  v must be real and v G (-<« + l)/2 + /, (« + l)/2-j).

If AMp_ j ¥= 0, then this component must be an integer, and v is real and in

the interval (- xh, Vi). If n = 2,  then p must be the trivial representation of

M(2) and v is real and in the interval (- *A, V¿).  With the above conditions the

form (x, y)—* An(p, v; x, y) = (Tn(p, v)x, y) is positive definite on dCß(K(n), ff).

Let HßV denote the Hubert space completion of dCß(K(n), ff), with respect to

the above form.   There exists a unique unitary representation  U on this com-

pletion, and dU = cfnA.  Moreover,

p-i
<fflA(£2) = i,2 - (« - l)2/4 + X (AM/ + « - 2i - l)AMi,   if n > 3,

i=i

= v2 -1, if « = 3,

= v2 - Va, if « = 2.

77ie representations corresponding to the pairs (p, v) and (p., -v) are uni-

tarily equivalent. Moreover, the complementary series as defined here overlaps with

the principal series in case v = 0. Here, the operator Tn(p, 0) reduces to the

identity, and Hß0= L2ß(K(n), ff).

HB. Nonirreducible cases; end point and isolated point representations.

(1) Suppose n = 2p + 1, and the irreducible representation   [ff, p] has highest

weight components 0 = Aß/- = Aß)-+ x = • • • = AM, or suppose n = 2p > 4,

and the representation   [ff, p] has highest weight components 0 = AM/- = • • •  =
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A j. Assume that j is the smallest integer such that A • = 0. Let n- be a

nonnegative integer such that Aßj_ x > n -, in case / # 1. 77ien the inner prod-

uct (x, y) —* Bn(p, -v; x, y) = (Tn(p, -v)~ 'x, y) is positive definite, with p =

dA(H) - (n - l)/2 = (n + l)/2 -/ + njt  on the space:

D+dCß(K(n), tí) = span {E„Lß(K(n), tí): Aw/ > »,}.

£eí //*„ denote the Hubert space completion of the above space with respect to

the norm defined by this inner product.   Then there exists a uniquely defined

unitary action of G(ri) on this space, and dU = cfTIA.   77ie eigenvalue of Si is

dllA(Si) = (n, + 1 -j)(n}. + n-f) + Z(Aßi + n- 2i - l)AMi
/—-»

i=i

(2) Make the assumptions in 1 above.  In addition, assume that n- = 0.

Let H~v be the Hubert space completion of the space

D~X'dCß(K(ri), tí) = span {E„L2ß(K(ri), tí): Aw, = 0},

with respect to the norm defined by the inner product Bn(p,p;- , ■ ).   77ie latter

is positive definite, and is given by  (x, y) —*■ Bn(p, v; x, y) = (Tn(p, p)~ *x, y).

The unitary action is uniquely defined, and for this action  U we have dU =

dflA',  where A'  is determined by dA'(H) = -p + (n - l)/2 =/- 1.  The eigen-

value of Si is obtained by substituting n¡ = 0 info the last formula for this

eigenvalue.   We remark that in case j = 1,  then p is the trivial representation

of M(n), and U is a one-dimensional representation on the space of constant

functions.

(3) Now assume that n = 2p and v = -Yi. If n> A assume that Aßp_x

is a nonnegative integer.  If n = 2 assume that p is the trivial representation of

M(2). (Thus, in both cases,   [tí, p] is not a faithful representation of the sub-

group M(n).) Let Hßl/2  be the Hubert space completion of the space

L^_i<pdCß(K(n), tí) = span {EwL2ß(K(n), tí): Awp = 0}

with respect to the norm defined by the inner product Bn(p, Yz;- , • ).   77ie latter

is positive definite, and is defined by (x, y) —* Bn(p, p; x, y) = <.T^(p, Yz)~ xx, y).

Then there is a uniquely defined unitary action  U on this space with dU =

dflA,  with dA(H) = -Yz + (n- l)/2 = n/2 - 1, and

p-\
df\A(Sï) m Yzn(Yzn - 1) + £ A^A^ + n - 2i - 1),   if n = 2p>A,

i=i

= 0, if n = 2.
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We remark that in case « = 2, this representation is the one-dimensional repre-

sentation of G(2) on the space of constant functions.

(4) If « = 2p,  let   [ff, p] be an irreducible representation of M(n) such

that, in case « > 4, Aß     x ¥= 0.  Write v = -s - V¡. Assume v> 0, and that

s is a number such that -Aßp_x < s < A    _ 1(  and s - Aßp_x GZ,  if n>

4, and if n = 2, 2s is an even (odd) integer if p is trivial (nontrivial).  Then

let HßV be the Hilbert space completions of the spaces

D+pdCß(K(n), H) = span {E„Lß(K(ri), H): Awp > - s},

D~XpdCß(K(n), ff) = span {E„Lß(K(n), ff): Awp < s}

with respect to the norm defined by the inner products B*(p, -v; • , • ).  The

latter is positive definite on space D\pdCß(K(ri), ff), and is defined by (x, y) —►

Bn(p, -v; x, y) = (Tn(ji, -v)~ lx, y).  There Is a unitary action  U defined on

each of these spaces which is unique and has the property that dU = cfnA,  with

dA(H) = v + (n- l)/2. Moreover,

p-i
<fflA(£2) = (s + «/2)(s - b/2 + 1) + £ AMi(AM/ + « - 2i - 1),   if n > 4,

<=i

= (s + 1>, if n = 2.

8.  Concluding remarks. As indicated in the introduction, the irreducible

complementary series were first given completely by Knapp and Stein [5].  A

different parameter is used in [5], amounting to a change in the logarithmic base,

and is given in terms of ours by the formula (« - l)z/2 = v. The existence of

the isolated point and end point representations in the general case seems to be a

new result. There are of course some known special cases which we now point out.

For n = 4,  the class of representations given in IIB(3) correspond to the

representations nm0, in Dixmier [2], where m = AßX. Also, the representations

in IIB(4), namely   [DX2dCß(K(4), ff), ^nA], correspond to the representations

n^_s in Dixmier's notation, where m = AßX. These facts were already pointed

out in [10], although we did not prove unitarizability there for the case of gen-

eral n.

We remark next that the one case of the reducible principal series is contain-

ed in the cases IIB(4). This situation occurs when v = 0, and p is a faithful

representation of M(n). In this case we have s = ~îé; so that the projections

DXp  and DXp  have the property that DXp + D\~p « 1. The inner products

B„(p, 0; • , • ) reduce to the restrictions of the inner product < • , • >  to the

ranges of these projections.  Hence, we have for this case:  L2(K(ri), ff) = HßV ©

HßV. This is a precise generalization of what happens in the case of SL(2, R).
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Because of the last remark and because of the formal analogy of the cases

IIB(4) to the known cases of n = 4,  and n = 2, we conjecture that IIB(4) com-

prises the square integrable representations for Spin(l, 2p). These square inte-

grable representations are known to exist, because of Theorem 16 in [3c]. We

hope to present a proof of this conjecture in a later paper. Knapp and Okamoto

[5] have discovered generalizations of the split principal series in the case of the

isometry groups of the Hermitian symmetric spaces.  IIB(4) provides such a general-

ization in the direction of the Lorentz groups.  A proof of the above conjecture

would also provide a similar generalization of the limits of the holomorphic dis-

crete series of Knapp and Okamoto.

For general n, the existence of the representations in IIB(l) were pointed

out in Takahashi [9], for the special case when / = 1, and A„ = 0. In the

quotient realization of these representations, (Remark 2, of the last section) these

representations are the quotient representations of nonunitary principal series by

the finite-dimensional representations having A'(n)-fixed vectors.  Takahashi noted

in [9] that for n = 3,  these representations are equivalent to certain principal

series representations.  More precisely, if / = 1, « = 3, the representation in IIB(l)

is unitarily equivalent to the irreducible principal series representation [L2(K(3), H),

nA]    with   p = 0, dA(H) = -1, and AßX = nx + 1.  This result can also be

verified by computing the eigenvalues of an element in the center of U(G(3))

algebraically independent of Si, and noting that the £(3)-module structures of

the two representations are the same.

The last observation of Takahashi brings us to the question of coincidence

of the unitary representations listed in Theorem 3. An examination of the K(n)-

module structure and the eigenvalues of Si  shows that if there are any coincidences

other than those indicated in the statement of Theorem 3, they must occur in the

Takahashi representations cited above.  It should be possible to settle the question

of coincidence then by computing the center of ¿7(G(n)) in this case.  However,

we have not done this yet.
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