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ABSTRACT.   A right-bounded factor is an element in a ring that gen-

erates a right ideal which contains a nonzero two-sided ideal.   Right-bounded

factors in an LCM domain are considered as a generalization of the theory of

two-sided bounded factors in an atomic 2-fir, that is, a weak Bezout domain

satisfying the ace and dec for left factors.   Although some elementary prop-

erties are valid in a more general context most of the main results are obtained

for an LCM domain satisfying (M) and the dec for left factors; the condition

(M) is imposed to insure that prime factorizations are unique in an appropriate

sense.   The right bound   b*   of a right bounded element   b  is considered in

general, then in case   b  is a prime, and finally in case   b  is indecomposable.

The effect of assuming that right bounds are two-sided is also considered.

0. Introduction. The theory of bounded factors in a principal ideal domain

is well established [11]. More recently, this was generalized to 2-firs (i.e. weak

Bezout domains) satisfying the ace and dec for left factors [6].  Our purpose

here is twofold: (i) to study ng/zr-bounded factors, and (ii) to carry this out in

the more general context of right LCM domains (intersection of any two principal

right ideals is principal), a class of rings which was described in [2] and [3].

It was shown in [2] that for right LCM domains satisfying an additional

mild hypothesis (M) factorization into primes is unique up to order of factors

and projective factors.  In § 1 we collect this and other related facts that will be

needed.  Right-bounded factors in a ring R  are considered in §2; their right

bounds exist if R is a complete right LCM domain (intersection of any collection

of principal right ideals is principal).  In §3 we consider right-bounded primes.

The right bound p* of a prime p is described in some detail.  For example, it

is shown that if R is an LCM domain satisfying (M) and the dec for left factors

then p* can be factored into primes that are projective (in fact transposed) to

p. The possibility of factoring p* which is right invariant into further right

invariant factors is also discussed.  In §4 we consider right bounded elements
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that are indecomposable; their right bounds are shown to be indecomposable in

an appropriate sense if 72  is an LCM domain satisfying (M) and having the ace

and dec for left factors.  In §5 we show how the results in the preceding sections

can be improved if right bounds are assumed to be two-sided.

1. Preliminaries. All rings considered here have no proper divisors of zero

and have a unity.  A ring 7?  in which the intersection of any two principal

right ideals is again principal is a right LCM domain.  In contrast, a 2-fir is a

right LCM domain in which the sum of two principal right ideals having nonzero

intersection is also principal.  The most immediate example of a right LCM domain

that is not a 2-fir is the ring of polynomials in (more than one) commuting in-

determinate over a field.   Additional examples of right LCM domains that

need not be 2-firs can be found by considering rings of formal power series over

a principal right ideal domain (cf. [7, Theorem 9]).  In this section we gather the

prerequisite facts related to right LCM domains some of which may be found in

[2]. In particular, any proofs that are omitted below are given in [2].

If 7?  is a right LCM domain and if aR n bR # 0 then the least common

right multiple, [a, b] r, of a and b exists and in fact generates aR O bR.  The

highest common left factor, (a, b) ¡, need not exist.  However, if ab' = ba # 0

then (a', b') r does exist and satisfies

(1) ab'= ba = [a. b]r(a', b')r.

In a left LCM domain the left-right analogue of (1) is

(2) ab' =ba' = (a,b)i[a',b']i .

In particular, if R is an LCM domain (i.e. both right and left) then (a, b) ¡

exists whenever aR d bR ¥= 0. In this case the set   [x7?, 7î] = {yRlxR Ç yR

Ç R}  which is partially ordered by inclusion will be a lattice whenever x =£ 0;

for this reason we occasionally write aR V bR  for (a, b), R.

If [a, b]r exists then x[a, b]r = [xa, xb]r for any x + 0; the corres-

ponding result for the greatest common left divisor is obtained by applying (2)

to the equation xab' = xba'. We summarize in the following.

Proposition 1.1. Let R be an LCM domain. If aR CibR =£ 0 and x

is any nonzero element of R then

(i) x[a, b]r = [xa, xb]r,

(ii) x(a, b)t =(xa,xb)¡.

A ring in which the intersection of any family of principal right ideals is

again principal will be called a complete right LCM domain. In this case the

poset   [x7?, R] (x =£ 0) is a complete semilattice and hence a lattice.  In addition,
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the least common right multiple and highest common left  factor of any family

of elements a¡ exist provided D a¡R =£ 0.

For two elements a, a'  in a ring 7?  we define a tr a' if there is a relation

ab' = ba' in which (a, b)t = 1  and   [a, b]r = ba'; in this situation a  and a'

are said to be transposed since the posets   [aR, R]   and   [ba'R, bR]   (= [a'R, R])

are transposed intervals.  If 7?  is commutative then a tr a' is equivalent to aR =

a'R, and if R is a 2-fir then a tx a' is equivalent to R/aR = R/a'R, i.e. a  and

a' are similar (cf. [8] where a 2-fir is called a weak Bezout domain).

Proposition  1.2. In an LCM domain the relation  tr is transitive.

Proof.   Let atta' and a'ira". Thus ab' = ba' = [a, b]r and a'c =

ca" = [a', c]r with (a, b\ = (a', c), = 1. Using Proposition 1.1 we have

(ab', bc)¡ = b  and putting this together with (a, b)¡ = 1  we obtain  (a, bc)l = 1.

Considering the relation a(b'c) = (bc)a", we shall have shown a tr a"  once we

show that   [a, be] r = (bc)a". Now a'R D cR = ca"7?  and so Z>a'7? n &c7? =

bca"R; replacing ba'R  by aR CibR  in the last equation we obtain aR n bcR =

oca"7?  as desired.

In an LCM domain the relation tr is left-right symmetric because of (1)

and (2); however it is not a symmetric relation (see Example 2.9 below). We

therefore define a and a'  to be projective, and write a pr a', if there is a

sequence a =al, a2, • • • , an = a'  in 7?  in which either a,tra/+1   or

ai+i tr af Projectivity is an equivalence relation in any ring and is left-right

symmetric in an LCM domain.

By a prime ( = atom) we understand a nonunit p =£ 0 in a ring 7?  that

has no proper factors; this is equivalent to   \pR, R] = {pR, R}. Maximal finite

chains in   [«7?, R]   correspond to complete factorizations of a into primes. We

shall say that a ring 7?  has the ace (dec) for left factors if the poset   [aR, R]

of "left factors"  of a has the  ace (dec)  for each a =£ 0 in R ; one also says

that 72 has the ace (restricted dec) for principal right ideals.   Since the posets

[aR, R]   and   [Ra, R]   are dually isomorphic [4] the  ace (dec) for left factors

is equivalent to the  dec (ace) for right factors. If 7? has the ace and  dec

for left factors then each nonunit a ¥= 0 in R has a complete factorization in-

to primes.

Uniqueness of prime factorizations may be established if 7? is a right LCM

domain satisfying the following condition which is left-right symmetric in an LCM

domain and which automatically holds in a 2-fir:

(M) [x, y] r = [x, yz] r, (x, y), = (x, yz), implies z is a unit.

We note in passing that if 7? is either an LCM domain or a complete right LCM

domain then the lattices  [aR, R] are modular precisely when 7?  satisfies (M).

The following uniqueness theorem is proved in [2].
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Theorem 1.3. Let R be a right LCM domain satisfying (M).  If

P1P2 ' " Pn ~ QyQi ' " Qm  wnere Pi and Q¡ <we pûmes then n = m and

Pf pr 4 a (0 for some permutation -n of the subscripts.

The proof of Theorem 1.3 uses the fact that the relation tr preserves primes

as well as units.  Although these properties follow from the fact that transposed

intervals are isomorphic if 7?  is an LCM or a complete right LCM domain satis-

fying (M) they can be obtained more generally.  Since the proofs are not given

in [2] we include them here.

Proposition 1.4. Let R be a ring in which a tr a'.

(i) a is a unit if and only if a' is a unit.

(ii) 7,er 7? satisfy (M); if a is a prime then a' is prime, and the con-

verse holds if, in addition, R is a right LCM domain.

Proof.  The proof of (i) is easy and shall be omitted.  To prove (ii) let

ab' = ba' = [a, b]r with (a, b)¡ = 1.  Assume that a  is prime and let a' = zy.

Then aR nbR= bzyR = aR n bzR.  We consider two cases.  First, if a7? Ç dR

and bzR Ç dR  for some nonunit d; then a7? = dR  since a is prime; thus

bzR CaRCibR = bzyR  which implies y is a unit.  On the other hand if a

and bz  do not have a common left factor other than units then (a, bz)¡ = 1 ;

thus (a, b)¡ = 1  also, and we may apply (M) and conclude that z is a unit.

This shows that a' has no proper factors and is therefore prime.

To prove the converse let a = zy.  Then (z, b)¡ ■ 1  because  (zy, b)t = 1.

Now zyR fi bR Ç z7? n bR  and we again consider two cases.  First if the con-

tainment is equality then y  is a unit by (M).  In the other case we may put

zR CibR = bz'R (since 7? is a right LCM domain) so that ba'R S¡ bz'R. Since

a'  is prime we must have z'  a unit, and since z tr z, z must also be a unit.

Thus a  has no proper factors and is therefore prime.

We shall also need the following result (cf. [2, Theorem 5]).

Theorem 1.5. Let R be a right LCM domain satisfying (M) and let

a tr a'.  If a = ala2  then a = a\a2   where af tr a'¡.

If 7?  is a right LCM domain satisfying (M) then because of Theorem 1.3

we may define the dimension of a nonzero element a in 7?, dim (a), to be «

if a is the product of «  primes and °° otherwise.  Thus dim (a) = 0 if a is

a unit and dim(a) = 1  if a  is prime.  Using Theorem 1.5 we see that if a tr a'

then dim (a) = dim (a').

We conclude this section with the following proposition which will be need-

ed later.

Proposition 1.6. (i) Let R be a right LCM domain. If q is a prime
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left factor of ab then either q is a left factor of a or qxrq   and q   isa

left factor of b.

(ii) Let R be an LCM domain satisfying (M). If q is a prime left factor

of a product of primes pxp2 • • • p„  then q tr p¡ for some j.

Proof.   Let q be a prime left factor of ab  and suppose that q is not

a left factor of a.   Then (a, q)¡ = 1; putting  [a, q]r=aq' we find q tr q   and

q   is a left factor of b.

To prove (ii) write a =pltb =p2 • " pn; letting q  be a left factor of

ab we find by (i) that either q is a left factor of pv in which case qR = pvR

(and so q tr px), or q tr q   where 17' is a left factor of p2 • • • pn   and is

also prime. The result now follows by Proposition 1.2 and induction on

dirnö»! • • • pn).

2. Right-bounded factors. A right ideal 7 in a ring 7?  is said to be

bounded if R/I is a bounded 72-module, that is, if (R/I)r = {xGR\Rx CI}

is nonzero.  A nonzero element b G R is said to be right bounded if bR  is a

bounded right ideal (cf. [10, p. 226]). We shall use the notation

Ib = (R/bR)r = {x GRlRx C bR}.

Thus b is right bounded if and only if bR  contains a nonzero two-sided ideal

of 7?, the largest such being Ib.

If b,cGR, let Ib(c) = {x G7î|cx G bR}. Thus Ib(c) is a right ideal of

7? and is related to Ib by

o) /,- n ib(c).
ceR

Now Ib(c) has the form Ib(c) — b'R if and only if bR C\cR = cb'R. In

particular 7? is a right LCM domain if and only if each Ib(c) is a principal

right ideal.

Let R be a right LCM domain and let b G R be right large (i.e.  bR an

essential right ideal).  Thus for any cGR  there exists b'GR  suchthat Ib(c) =

b'R¥=0. If d = (b, c)¡   exists then writing b =dbl,c = dcl   we have

(bv cx)j = 1  and  [bv cl]r = cfi'R; thus bi tr b' where bt  is a right factor

of b.  This shows that Ib= n#>'7?|£>j trô'  for some right factor bt   of b}.

More generally, if bGR where 7?  is any ring and b1trb' for a right

factor ôj   of b, say b =ab1, then choosing cl GR  such that bxR f) CjT? =

c^'R  (by the definition of bï tr b') We have bR C\acxR = ac^b'R, i.e. b'R =

7&(aCj) 3 Ib. We have established the following.

Theorem 2.1. Let b be an element in a ring R. Then
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76Ç C\{b'R\b1trb' for some right factor bx of b}

The containment becomes equality if b is right large and if R isa right LCM

dommn in which (x, y\ exists whenever xR n yR ¥= 0, and in particular if R is

either an LCM domain or a complete right LCM domain.

Let 7? be a complete right LCM domain and let b be a right bounded element

of 7?. According to (3), Ib has the form Ib =b*R; in general, b* is called the

right bound of b. Rephrasing Theorem 2.1 we may describe the right bound of an

element as follows.

Theorem 2.2. Let R be a complete right LCM domain and let b be a

right-bounded element of R. Then b has right bound b* given by

(4) b*R = Diô'TÎIft, tr b' for some right factor bl of b}.

From another point of view we have b*R = f\eÄ7ft(c) where Ib(c) = b'R

if and only if bRdcR = cb'R. The last equation defines the monomorphism 0

of 7?-modules given by

0: R/b'R -+R/bR,     l+b'R\-+c + bR

and vice versa. Thus if 7? is a complete right LCM domain and b GR is right

bounded then the right bound b* of b may be described by

b*R = f\{b'R\3 monomorphism 0: R/b'R—+R/bR}

However this last equation turns out to be less useful than (4).

We recall that a nonzero element b GR is right invariant if bR is a two-

sided ideal of R (i.e. Rb ÇbR). Thus b is right invariant if and only if b GIb.

If b is right invariant then any factor of b is actually a left factor, for if b — xay

then choosing x  such that xb = bx' we find that b = ayx'.

Let Z>G7? have right bound b* as in (4). Then b is a factor of b*, and

b* is right invariant because Ib is a two-sided ideal. Conversely, if a is right in-

variant and if b is a factor of a then, since b is actually a left factor of a, b will

be bounded by a. We have established the following characterization of right

boundedness.

Theorem 2.3. An element in a complete right LCM domain is right bounded

if and only if it is a factor of a right invariant element.

We note several other consequences of Theorem 2.2.

Proposition 2.4. Let R be a complete right LCM domain. If a and b

are right invariant then so are [a, b] r and (a, b)¡. In particular the set of right invar-

iant elements of R forms a lattice.
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Proof. Let m = [a, b]r and d = (a,b)¡. Clearly m is right invariant since

mR =aR C\bR. Now since a7? ÇdR, bR ÇdR, and a and b are right invariant

we must have aR Cd*R, bR Çd*R and consequently dR Cd*R. This shows that

dR=d*R and so d is right invariant.

Proposition 2.5. Let R be a complete right LCM domain satisfying (M).

If a tr a' and if a is right invariant and finite dimensional then aR = a'7?.

Proof. By Theorem 2.2,aR =a*R Ç a'7?; also dim(a) = dim(a') and since

this number is finite we must have a7? = a'7?.

Corollary 2.6. Let R be a complete right LCM domain satisfying (M).

If a is right invariant and finite dimensional and if (a, b)¡ = 1 then a7? n W? =

baR.

Proof. Let ab' = ba' be a generator of aR O bR. Then atra' whence

a'7? = a7? and so ba'R - baR.

We recall that the quotient ring RS'1 = {rs-1 |r G 7?, s G S} of 7? with

respect to S is defined provided that 5 is a right Ore system in 7?, i.e., a submon-

oid of 7?* (the monoid of nonzero elements of 7?) satisfying bRCicS¥:0 for

each b G S.cGR*. It is not difficult to prove that the set of all right invariant

elements together with all of their factors is a right Ore system in any integral do-

main (cf. [5]). Hence the set of all right bounded elements in a complete right

LCM domain is a right Ore system by Theorem 2.3. We can prove this more gen-

erally for any right LCM domain as follows.

Theorem 2.7. Let R be a right LCM domain. The set B of all right-

bounded elements of R is a right Ore system in R.

Proof. Let b.dGB so that 0¥^IbCbR and Oi=IdÇdR. Weihen

have 0 # 767d Ç bRId Ç bld Ç bdR. It follows that IbId Ç Ibd and in particular

bd G B. Therefore B is a submonoid of 7?* (and contains all of the units of 7?).

Let b GB and c G7?*. Then 0±Ib Ç Ib(c) = b'R for some b'. Hence b'GB,

and since cb'R = bRCtcR we may choose c'GT? suchthat bc' = cb'. This shows

that bR ncB¥^0.

Example 2.8. Let 7? = F[x, o] be the skew polynomial ring, where F is

a commutative field, o is a monomorphism of F into a proper subfield of itself,

and multiplication in 7? is defined by the formula ax = xo(a). Clearly x and

therefore each nonzero monomial is right invariant. In fact, it is not difficult to show

that the set of right invariant elements of 7? is precisely the set of nonzero monomials

(cf. [11, p. 38]). On the other hand the only left invariant elements of 7? are

the units. For, if f=x"bn +•" +xbl+b0 is left invariant then choosing
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a GF\a[F] we have fa =a'f for some a' G F which leads to bna = o"(a')bn

forcing « = 0 (by the choice of a) and therefore fGF.

Since 7? is a principal right ideal domain (PRI domain) it is a complete right

LCM domain. It follows from Theorem 2.3 that 7? has no nonunit left bounded

elements while the set of right-bounded elements is precisely the set of nonzero

monomials.

Example 2.9. Let F and a be as in Example 2.8 and let 77 = F[[x, a]]

be the ring of (skew) formal power series in an indeterminate x over F in which

coefficients are written on the right of x and multiplication is determined by

ax = xo(a). We extend a to 77 by defining o(x) = x.  Let 7? = H [ [y, a] ]

be the ring of formal power series in y over H in which coefficients are written

on the left of y and multiplication is defined by the formula yh = o(h)y.  Thus

each element of 7?  has the form f ='Lxiaijy, where a« G F  Since H is a

PRI domain [12] it follows that 7? is a right LCM domain [7, Theorem 9] ; on

the other hand if we view 7?  as the ring of formal power series in x  over the

PLI domain F[[y, a]]   it follows that 7?  is a left LCM domain.

It can be shown that each lattice   [/7?, 7?]   (f^Q) is of finite length.

Thus 7?  is an LCM domain having both the ace and dec for left factors.(2) Note

however that 7?  is not a 2-fir.

We observe that xy = yx is central in 7?  since for any a G F, axy =

xo(a)y = xya.  Also, x is right but not left invariant and y is left but not

right invariant (a is not an epimorphism). The right bound of y is y* = xy

while x* = x; thus the right bound of a prime need not be the right bound of

each of its prime factors. We consider the right bound of primes more closely in

the next section.

Finally we show that y tr x.  For, if a G F\a[F]   then yR D ayR = ayxR

and yR V ayR = 7?; in fact the equation y(xa) = (ay)x is left and right co-

prime, i.e., (y, ay)¡ = (x, xa)r = 1. However, it is not true that x try; otherwise

Theorem 2.1 yields x7? Ç^ Ç^T?  which is not possible.

3. Right-bounded prime factors.  Let 7?  be a right LCM domain having the

dec for left factors. Thus 7?  is a complete right LCM domain. If b G R is

right bounded then the intersection in (4) may be taken to be finite and irredun-

dant, that is,

(5) 6*7? = b\R n • • • n b'nR

where b¡ tr b\ for right factors b¡ of b and where no b'¡R can be omitted.

Let us assume that 7?  is an LCM domain satisfying (M) and that b  is finite

dimensional; thus each b\ and therefore   b*   is finite dimensional.   If

(2) ADDED IN PROOF. It can be shown that  R  does not satisfy   (M).
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m7? = b\R O • • • n b'n_lR  then b* = [m, b'n]r, say b* = ma'n = b'nc. If

d = (m, b'n)¡ with «2 = dm'', b'n = db"n then b'n tr a'n. Since b"n  is a right

factor of b'n   and bn tr ôj,  we may apply the left-right analogue of Theorem 1.5

to find a right factor a„  of bn  such that an tr b"n. Thus 6* = ma'n  where

a„ tr aj,  (Proposition 1.2) for some right factor an   of è.  By induction on

dim(i*) we obtain

(6) b* = a\ • " a'n, a¡ tr a'¡ for right factors a¡ of b.

This result has a number of consequences.

Theorem 3.1. Let 7? be an LCM domain satisfying (M) and having the

dec for left factors.  If b  is right bounded and a product of primes then its

right bound b* is a product of primes that are transposed to prime factors of

b. All prime factors of b* are projective to prime factors of b, and if q  is a

prime right factor of b* then p tr q for some prime factor p of b.

Proof.   All assertions except the last one follow directly from (6), Theorem

1.3, and the left-right analogue of Theorem 1.5.  Turning to the last statement

let q  be a prime right factor of b*. By the left-right analogue of Proposition

1.6(ii) we have p tr q where p   is a prime factor of some a'j, and since

a;- tr a'j there is a prime factor p of a¡ such that p tr p (again by Theorem 1.5).

Hence p tr q by Proposition 1.2 and p is a factor of b.

Up is a prime with right bound p*  then equation (4) has the form

p*R = Hip'Rlptrp'}.

Applying Theorem 3.1 in this case we obtain the following explicit description of

P*.

Theorem 3.2. Let R be an LCM domain satisfying (M) and the dec

for left factors.  If p is a right-bounded prime in R then its right bound p*

can be factored

(7) P*=p\ •" p'n   with p tr p\.

All prime factors of p* are projective to p, and if q is a prime right factor

of p* then p tr q.

Under the hypotheses of Theorem 3.2 the right bound of a prime has finite

dimension. At the end of this section we give examples of primes whose right

bounds have infinite dimension. We note the following criterion for distinguishing

the right bounds of primes in a 2-fir (cf. [6] for the case of a (two-sided) bounded

prime).
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Corollary 3.3. Let R be a 2-fir having the dec for left factors.  If p

and q are primes with right bounds p* and q* respectively then p*R = q*R

if and only if p and q are similar.

Notwithstanding the last result we have seen in Example 2.9 that for primes

p and q  in a ring 7?, p tr q  need not imply that p*R = q*R; we must also

assume q tr p.  We now turn to the question of factoring p* into right-invari-

ant factors.

Proposition 3.4. Let R be an LCM domain. If q is a prime right

factor of be where b is right invariant then q is either a left factor of b or

a right factor of c.

Proof. Applying the left-right analogue of Proposition 1.6(i) we find that

either q is a right factor of c or p tr q for some right factor pofb. In the

latter case we have bR Ç Ib Ç qR by Theorem 2.1, i.e. q  is a left factor of b.

Theorem 3.5. Let R be an LCM domain and let p GR be a prime

with right bound p*.  If p* is the right bound of some prime right factor

then p* has no proper factorization into right invariant elements.

Proof. Let  q  be a prime right factor of p* such that p* = q*. If

p* = be where b  and c are right invariant then by Proposition 3.4, q  and

therefore q* is either a left factor of b  or of c.  Since b  and c are left

factors of q* the proof is complete.

The hypothesis on p* in Theorem 3.5 cannot be dropped as an example

at the end of this section shows.  Under the hypotheses of Theorem 3.2 we can

show that p* cannot be factored into the product of two right-invariant elements

that are relatively prime; this is due to the fact that p   is indecomposable, a

topic which we take up in the next section. We can sharpen Theorem 3.5 a bit

but first we note the following whose proof is obvious.

Proposition 3.6. Let 7? be a complete right LCM domain and let a G 7?

be right invariant.   Then a has no proper right-invariant factor if and only if a

is the right bound of each of its factors.

Theorem 3.7. Let R be a complete right LCM domain having either the

ace or the dec for left factors and let p be a prime with right bound p*.   Then

p* has no proper right-invariant factor if and only if p* is the right bound of

each of its prime factors.

Proof.   Let p* be the right bound of each of its prime factors and sup-

pose that b  is a factor of p* which is right invariant; thus p* = be for some

c.  Using either the ace or the dec we may select a prime factor q  of b  which
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will be a left factor. Then p*7? CbRCq*R= p*R. The converse follows from Prop-

osition 3.6.

Corollary 3.8. Let R be a 2-fir having the dec for left factors and let

p be a right-bounded prime in R.   Then p* is the right bound of each of its

prime factors; thus p* has no proper right-invariant factor.

Proof. If q is any prime factor of p* then q is similar to p by

unique factorization and hence p* = q*  by Corollary 3.3. Thus we may apply

Theorem 3.7 to complete the proof.

Example 3.9.  The following example is taken from [9].  Let 7/ =

E(t{)[y, o]   where F(t¡) is the commutative field generated by an infinite

number of indeterminates tt over a field F, a is the monomorphism of F(t¡)

defined by o(t¡) = t¡+ j, and multiplication in H is defined by ay = yo(a).

Then H is a PRI domain to which  o may be extended by defining  a(y) = tl.

Thus o maps H into F(t¡).  Let R=H[x, a]   where multiplication is deter-

mined again by «x = xo(h). Then R is also a PRI domain [12] and consequently

an LCM domain satisfying (M) which is right complete.

The ring R  does not have the dec for left factors as the following sequence

of equations shows:

(8)  x = hxo(h)~l = h2xa(h)~2 m h3xo(h)~3 = • • •      («a nonunit in H).

It can be shown just as in Example 2.8 that the right invariant elements of 7?

are just the nonzero monomials x'y'a^ while the only left invariant elements

of R  are the units.  The first equation in (8) shows that each nonzero element

of H is bounded by x; consequently the nonzero polynomials in H that are

not monomials all have right bound x.   For example x is the right bound of

the prime  1 + y  but not of the prime y (which is its own right bound).  Thus

x is not the right bound of each of its prime factors.  Since (1 + y)* = x, equa-

tions (8) with « = y show that the right bound of a prime can have proper

factorizations into right invariant elements.  In contrast to the hypothesis in

Theorem 3.5 it is easy to see that x has no prime right factor; in the language

of[l],x is an inf*1 aprime  (an infinite dimensional  "prime"). This example

also shows that the dec is essential in Corollary 3.8.

Finally we note that if K = HB~1   is the right quotient ring of H with

respect to the set B of right bounded elements of H then K is a simple PRI

domain [5].  Extending a to K in the natural way we can then define 7? =

K [x, o]   rather than 77 [x, a]   as above.  The result is a PRI domain in which

x is the right bound of every nonzero constant polynomial in x (i.e. every non-

zero member of K); thus x is the right bound of each of its factors.

4. Right-bounded indecomposable elements. A nonzero element b GR is

said to be decomposable if bR = aRC\ cR  with (a, c)¡ = 1. This definition
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is left-right symmetric in an LCM domain by equations (1) and (2). In a 2-fir

this definition is equivalent to the condition that the 7?-module 7?/Z>7? be decompos-

able as the direct sum of the factors 7?/a7? and 7?/c7?. If a, ft, and c are all right in-

variant in the definition above then b  is said to be RI-decomposable.   As usual

indecomposable means not decomposable.

Using Corollary 2.6 we obtain the following characterization of 7?7-decom-

posability.

Proposition 4.1. Let R be a complete right LCM domain satisfying

(M) and let b GR be finite dimensional and right invariant.   Then b is RI-

decomposable if and only if b = ac where a and c are right invariant with

(a, c), = 1.

In proving the main result of this section we use the following.

Lemma 4.2. Let R be an LCM domain which is right complete.  If a

is right invariant and a product of primes and if (a, c)¡ = 1  then (a, b)¡ =

(a, be), for any b GR

Proof.   First we assume that (a, b)¡ = 1.  If (a, bc)fi Ç pR  where p

is prime then p cannot be a left factor of b.  Consequently p tr q  for some

left factor q  of c by Proposition 1.6(0. Thus a7? Ç p*7? Ç ¿77?  and this

contradicts (a, c)¡ = 1.  In general let d = (a, b)l   with a— day,b = dbx   so

that (al,b1)l = 1.  Clearly (av c)l = 1  since ax   must be a left factor of the

right-invariant element a.  Applying the first case we have  (av b1c)l = 1; multi-

plying this on the left by d (Proposition 1.1) we obtain the desired result.

Theorem 4.3. Let 7? be an LCM domain satisfying (M) a«c7 the dec

for left factors. Let b be finite dimensional and right bounded. If b is in-

decomposable then its right bound b* is RI-indecomposable.

Proof.   The dec assures that   dim(Z»*) is finite (cf. Theorem 3.1).  Sup-

pose b*R = aR C\ cR where a  and c are right invariant and (a, c)¡ = 1;

thus ô*7? = acR = caR.  We claim that

(9) bR = (a,b)iRn(c,b)lR.

First we show that (a, b)¡RcR Ç bR.   For,

(a, b\RcR C (a, b)¡cR = (a, b\R n cR (by Corollary 2.6)

= (a, bc\R n c7?        (by Lemma 4.2)

= (a7? V Z>c7?) n c7?

= (a7? n c7?) V bcR   (by (M), i.e. modularity)

= (acT? V bcR) Ç bR.
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Similarly (c, b)¡RaR Ç bR.   Thus if x G (a, b)¡R n (c, b),R  then x7? =

x(a7? V cR) = xaR V xcT? Ç bR.  This establishes (9).  Clearly  (a, b)¡R V

(c, b)¡R =7?  so by indecomposability of b  we have  (a, ¿>);7? = bR  or

(c, b)¡R = bR; this yields respectively aR Ç b*R  or c7? Ç ô*7?  contradicting

the hypothesis.

Theorem 4.3 may also be stated in the following form (cf. [6] for the case

of a bounded element in an atomic 2-fir):

Corollary 4.4. Let R be an LCM domain satisfying (M) and having

the ace and dec for left factors. If b is right bounded and indecomposable

then its right bound b* is RI-indecomposable.

5. Two-sided bounds.  An element b GR  which is a factor of a (right

and left)-invariant element is said to be bounded.  In this case both annihilators

(R/Rb)1 and (R/bR)r are nonzero.  In an atomic 2-fir these two annihilators

are equal [6, p. 5]   so that

(10) Rb# = (R/Rb)' = (R/bRj = b*R

where b# and b* are the left and right bounds of b  respectively.  In general

however the left and right bounds of a bounded element need not be equal (i.e.

up to unit factors): referring to Example 2.9 we have y* = xy (which is central)

but v* = y.  In general it can be shown (cf. [6, Proposition 3.2]) that if aR =

7?a' then aR = a'R.  Thus if b  is bounded and if (10) holds then b*R = b#R;

this common generator is called the (two-sided) bound of b.

Since the two-sided bound b* of an element b  is invariant we see that

under the hypotheses of Theorem 3.1, q is a prime factor of b* if and only

if p tr q  for some prime factor p of b.  We shall elaborate for the case of a

bounded prime.  First we observe the following improvement of Theorem 3.5

in this case.

Theorem 5.1. Let R be an LCM domain and let pGR be a prime

with two-sided bound p*.   Then p* has no proper right-invariant or left-invariant

factor.

Proof.   If p* = ac then using the invariance of p* one may check that

a is right (left) invariant if and only if c is left (right) invariant.  Let us assume

that a is right invariant and apply Proposition 3.4; we find that p is either a

left factor of a  in which case p*R = a7?  or p is a right factor of c in which

case Rp*(= Rp*) = Re.

Theorem 5.2. Let R be an LCM domain satisfying (M) and the dec for

left factors.  Let p GR be a prime with two-sided bound p*. The following

conditions are equivalent for any prime q GR:
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(i) q has (two-sided) bound p*,

(ii) q is a factor of p*,

(iii) p tr q.

Proof.   Obviously (i) implies (ii).  Conversely if q  is a factor of p* then

q is bounded by p* so that both q*  and q# divide p* whence q*R =

p*R = Rp* = 7?c7# by Theorem 5.1. The equivalence of (ii) and (iii) follows

by Theorem 3.2 and the invariance of p*.

Before considering the question of decomposability of two-sided bounds we

need a bit more information on invariant elements.  Since there is no distinction

between "left" and "right" for multiples and divisors of invariant elements we

omit the subscripts that appear in the notation of equations (1) and (2).

Proposition 5.3. Let R be an LCM domain. If a and b are invariant

elements of R then so are (a, b) and [a, b]. In particular the set of invariant

elements of R is a lattice.

Proof.   If a and b  are invariant in 7?  then we may write

0¥=mR=aRr\bR=Rar\Rb= Rm

from which it follows that mR = m'7?  so that m = [a, b]   is invariant. There-

fore if m = ab' = ba' then a'  and b' are also invariant and hence so is

[a', b'].  Referring to equation (2) we conclude that (a, b) is invariant.

An invariant element which has no proper invariant factors will be called

an I-prime.  In an LCM domain every two-sided bound of a prime is an 7-prime

by Theorem 5.1.  In general the converse need not hold:  the 7-prime xy in

Example 2.9 is the right bound of y, the left bound of x, but the two-sided

bound of neither. Of course this situation cannot arise in an atomic 2-fir because

every bounded element has a two-sided bound in this case.

We need the following analogue of Theorem 1.3 for invariant elements

(cf. [10, p. 115]).

Theorem 5.4. Let R be an LCM domain having the dec (or equiv-

alently the ace) for invariant factors.  Each invariant element of R that is

not a unit is the product of I-primes; this factorization is unique up to order of

factors and unit factors.

Using the last two results we deduce that if 7?  is an LCM domain having

the dec for left factors and if an invariant element in 7? is 7?7-indecomposable

then it must be a power of an 7-prime. Applying this with Theorem 4.3 we

obtain the following theorem which describes, as a special case, an indecompos-

able element having two-sided bound.
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Theorem 5.5. Let R be an LCM domain satisfying (M) and the dec for

left factors, and let b GR be indecomposable with invariant right bound b*.

Then b* is a power of an I-prime; if this I-prime is the right bound of a prime

p then all prime factors of b are transposed to p.

Proof.  As we have remarked b* is the power of an 7-prime.  Let us

assume that b* = (p*)n  where p is a prime.  If q is a prime factor of b

then q  divides (p*)n  and so q  divides p* (e.g. by Proposition 3.4); thus

p tr q by Theorem 3.2 and the fact that p* must also be invariant.  This con-

cludes the proof of the theorem.

Referring to Example 2.9; we find that y"  is indecomposable and has in-

variant (in fact central) right bound given by (yn)* = (xy)n = (y*)".

Let b G R  be indecomposable with b* = (p*)"  as in Theorem 5.5.  If

R is an atomic 2-fir then it can be shown that  dim(Z>) = « [6, Theorem 5.2].

Although we have not been able to prove this in the more general context of

Theorem 5.5 the converse can be established.  First we shall need the following

generalization of Theorem 5.1 in this case.

Lemma 5.6. Let R be an LCM domain satisfying (M) and the dec for

left factors. If p* is the two-sided bound of a prime p then the only right-

invariant (or left-invariant) factors of (p*)k are the powers of p*.

Proof. First we observe that every prime factor q of (p*)k has bound

p*; this follows by Theorem 5.2 and the fact that q must divide p*. Let a be

a right-invariant factor of (p*)k. In view of Theorem 5.1 we assume k > 1 and

proceed by induction. If (p*)k = ax then x must be left invariant. Assuming

that a is not a unit we may write a = p*y; putting this into the previous equa-

tion and cancelling we obtain

(ii) (P*)*-1 =yx

which shows that y must be right invariant.  Applying the induction hypothesis

to (11) we find that y is a power of p* (possibly a unit). Therefore a is a

power of p*.

Theorem 5.7. Let 7? be an LCM domain satisfying (M) and the dec

for left factors.  Let p GR be a prime with two-sided bound p*.  Then

(i) there exist primes p¡ with p trpi (i = 1, • • • , k) such that

(Pi ' ' ' Pk)* " (*>*)*»
(ii) any such product of primes pt • • • pk is indecomposable.

Proof.   First we note that if p tr p( (i = 1, • • • , /) then (p*)'R ç

Pj • • • p-R since pf = p* by Theorem 5.2; in particular
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(12) (Pl  - . - pj)* = (p*f,        h<j,

by Lemma 5.6.

To prove (i) we assume that (px • • • pn)* = (p*)n  and proceed induc-

tively.  If there is no prime q  satisfying (pt • •• Pnq)* = (p*)n+1   where

ptrq  then (p*)nRC(p1 • • • pnq)*R  for each q  for which p tr q (by (12)).

Therefore

(p*)"R Ç    Q    (Pl - • - pnq)R = pj • • • pnq*R = Pl • • • pnp*R

which leads to (p*)n~1R Cp1 • • • pn7? contradicting the inductive hypothesis.

To prove (ii) let b =px • • • pk where p tr p¡ and b* = (p*)fe. If b is

decomposable then bR=aRC\ cR where a and c are each products of less

than k prime factors all of which are transposed to p (Theorem 5.2); equation

(12) shows that (p*)k~1R Ç a*R n c*R Ç b*R which is a contradiction; thus

b  is indecomposable.
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