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EXTENDING CONTINUOUS LINEAR FUNCTIONALS

IN CONVERGENCE VECTOR SPACES

BY

S. K. KRANZLER AND T. S. McDERMOTT

ABSTRACT. Let (E, t) be a convergence vector space, M a subspace

of E, and <p a linear functional on M continuous in the induced conver-

gence structure. Sufficient and sometimes necessary conditions are given that

(1) <p has a continuous linear extension to the T-adherence M of M; (2) ip

has a continuous linear extension to E; (3) M is T-closed; (4) every T-closed

convex subset of E is o(E, i?')-closed. Several examples are included illus-

trating the extent and limitations of the theory presented.

Introduction. Through introduction of an appropriate notion of local con-

vexity, necessary and sufficient conditions are given in order that a subspace M

of a convergence vector space  (c.v.s.) (E, r) (H. R. Fischer, Limesräume, Math.

Ann. 137 (1959), 269-303) have the Hahn-Banach Property (H.B.P.), namely:

Every continuous linear functional if on M has a continuous linear extension

to E. This yields an extension of the Hahn-Banach Theorem to a class of c.v.s.

satisfying a local convexity condition.  Conditions are given insuring that the

T-closed and weakly closed subsets of E coincide and, in a c.v.s. where this is

the case, that a subspace will have the H.B.P.   Prerequisite to this last result is

the determination of when every continuous linear functional, ip, on M has a

continuous linear extension to M, the T-adherence of M.  The notion of a

nearly closed subspace M of (E, t) is introduced, and it is shown that for

nearly closed subspaces, one can always extend v> on M continuously to M

and that M is T-closed.  Subsequently, it is demonstrated that in a strict con-

vergence inductive limit of Fréchet spaces, M is nearly closed if and only if

every such <p on M extends continuously to M if and only if M is T-closed.

The final section consists of examples illustrating the extent and limitations

of the theory presented.  In particular, we (1) provide an example of a locally

convex convergence space with a closed subspace which does not have the H.B.P.;

(2) provide a characterization of those subspaces M of a strict inductive limit of

metrizable spaces in which every continuous linear functional on M has a con-

tinuous linear extension to M; and thus (3) characterize those subspaces of a
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strict inductive limit of reflexive Banach spaces which enjoy the H.B.P. by

appealing to an extension result for spaces with boundedness    [7, p. 66].

We have included in § 1, a brief exposition of the parts of the theory of

convergence structures given in [5] by Fischer that we use in this paper. This

hopefully will be a convenience to the reader and at the same time allows the

easy introduction of notation as well as the opportunity to make some simple

observations not explicit in Fischer's paper but useful in our work.

1. Preliminaries.   Let   F(£")   denote the set of all filters on a nonempty

set  E.   If   {f„: v E 1}   is an indexed family of filters in   F(E), we denote

by hpëïK   ¡ne fllter   {H C.E: HE F„Vi> G /}.   A mapping   t   from   E

into the power set of  F(E)   is called a   convergence structure   for  E  if

(c.s. 1)   Vx G E, F G t(x)   and   G G r(x) => F A GE t(x).

(es. 2)   Vx G E, F G t(x)   and   G G F(E)  with   G 2 F => G G r(x).

(c.s. 3)   Vx G E, x   (the ultrafilter of all supersets of x)   is in   t(x).

When   t   is a convergence structure for  E, we call the pair   (E, r)   a   con-

vergence space.   In a convergence space   (E, r)   the filters in   t(x)   are said to

be   convergent to   x.   A partial order is defined on   F(E)   by   F > G *

F D G.   If  Tj   and   t2   are two convergence structures for a set  E, then we

write   Tj > t2   provided   F G tl(x) => F G t2(x) Vx EE, and, in this case,

we say   rx   is  finer   than  r2   or   t2   is   coarser   than   Tt.   A convergence

space   (Tí, t)   is said to be Hausdorff if  t(x) n t( v) =£0   implies  x = y.

Let   T   denote the class of all convergence structures on  E.   If r G T,

we henceforth denote by   A(x)   the filter    A F eT(;c) F.   The class of all t E T,

satisfying

(as. 4)   Vx G £", A(x) E t(x)

will be denoted by   Tx.   We call   A(x)   the  generating filter   of  r(x)   when

r G Tj.   Observe in this case,   F G t(x)   if and only if  F > A(x).   By   T0,

we denote the class of elements of  T  that satisfy (c.s. 1) through (c.s. 4), and

in addition m

(c.s. 5)   For each  x E E, V E A(x)   implies   W G A(x)   such that

y G W => V G A( V).
Fischer [5] points out that   T0 C Tj C T  and that   T0   is exactly the class

of topologies for  E.

In a natural way, to each   r G J  is associated an element   i//t   of   Tj

and an element   cor   of   T0.   i//r   is defined by   $t(x) = {r~E¥(E): T> A(x)}

for each  x E E.   cjr   is the class of all r-open subsets of E, where  ACE

is   T-open if  Vx G ^4, F G t(x) => 4 G F.   The   T-closed   sets in  /?   are those

whose complements are open in the topology cor. It is easy to see that ¿or = ¿3i//r,

and hence the terms cör-closed, i/r-closed and r-closed are synonymous. The operators

^ and ¿5 on  T preserve order.  That is, if t, a ET and t <o, then  \¡jt < \¡jo
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and  cot < coa.   For a given  t G T, cot is the finest topology weaker than r  and

^/t is the finest   T,   convergence structure weaker than  t.  Consequently, if

t G T0, ¿ÖT = t  and if t G Jl, \¡>t = t.

Let  (E, t), (F, a) be convergence spaces, ip: E —> F.  We say  \p is  con-

tinuous at x e E if VF G t(x), <^(F ) G a(p(x)), where (¿>(F) is the filter gen-

erated by the filter-base   {¡p(F): F G F}.  If v? is continuous at each x G E, we

say (¿> is continuous.

If (F, t) is a convergence space and 0¥=ACE,we can define the induced con-

vergence structure ta on A by rA(x) = {F G F(,4): FE(V) G r(x)} where FE(V) is

the filter in E generated by the filter base (in E)   F. rA   is the weakest limit

structure on A  under which the natural injection iA : A —► E is continuous. If

x e A, F G t(x), and F n A ±0 VF G F, then the filter  ¥A = {F n A: F G F}

is defined and belongs to ta(x), and every   V erA(x) = GA   for some  G G t(x).

The use of the notation  VA   will be understood implicitly to imply that the filter

F4  is defined.

If (Ev, tv), v e I, is a family of convergence spaces the product convergence

structure Utv  is defined to be the coarsest convergence structure for  UEV  under

which the natural projections are continuous.

In this paper, we focus attention on convergence structures defined on a

vector space E over the reals, R.   Let  V = {(- e, e): e > 0}, F, G G F(F), and

X G it   By   F + G, XF, V • F  are meant the filters generated respectively by

{F + G: F e F, G C G }, {XF: F G F}, and   {G = U|X|<eXF: e > 0, F G F}.

If t is a convergence structure for F, we denote by t(0) + t(0), X • t(0) and

V • t(0) the collections of filters, respectively, {F + G: F, G G t(0)}, {X • F:

F G t(0)}, {V • F: F G t(0)}. A convergence structure t for E will be said

to be translation invariant if Vx G E, t(x) = x + t(0) = {G G F(E): G =

x + F, F G t(0)}  where x + F = {x +F: F G F}.  If t is a convergence

structure for E such that addition and scalar multiplication are continuous, we

say t is compatible with the algebraic structure of E, or, simply, t is com-

patible.  In this case (E, t) is called a convergence vector space (c.v.s.).

Fischer [5] shows that t is compatible if and only if

(c.v.s. 1) t(0) + t(0) C t(0).

(c.v.s. 2) X • t(0) C t(0) VX G R.

(c.v.s. 3)  V - t(0) C t(0).

(cv.s. 4) Vx G E, V • x (= V • x) e t(0).

Note that if (E, t) is a c.v.s., t is translation invariant.  Fischer and Cook [3]

observe that even if (E, t) is a c.v.s., (E, \¡jt) may not be.  Indeed (E, cot)

may not be a c.v.s. either.  It is comforting and useful to note, however, that

every compatible convergence structure   t   for a vector space  E   such that

t G Tj   is, in fact, a topology.

If (E, t) is a c.v.s., we associate with t the locally convex, compatible
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topology    \jj r   determined on E by the family of continuous seminorms on

(E, r).  It is the finest locally convex vector space topology for E coarser than

T.  Moreover, if o < r  are two compatible convergence structures for E, i//°o" <

\¡/°t.   If   E is a v.s. and r a convergence structure for E, we denote by (E, r)'

the vector space of T-continuous linear functionals for E.   Fischer showed that

(E, i//°r)' = (E, r)'. It follows from the easily verifiable inequalities    \¡j°t <

cor < i//T < r that   (E, \¡j°t)' = (E, ¿or)' = (E, i//r)' - (E, r)'. We will denote

by  o(E, E') the weak topology induced on E by   (E, \p°r)'.

Finally, we observe that in a convergence space  (E, r) every   F G r(x) is

finer than a filter  G G r(x) having the property that x G G for all  GEG. In-

deed, we may take  G = F A x G r(x).  Consequently, in many cases one may

assume without loss of generality that when   F G r(x), F   has the property in-

dicated for  G above. We shall take advantage of this from time to time.

2. Local convexity.  The notion of local convexity is a familiar and useful

tool in the study of vector space topologies and bornologies [7].  As was observed

in the introduction, the concept of a general locally convex convergence vector

space has neither been defined nor studied. In this section we give some basic

definitions and results surrounding the notion of a locally convex convergence

structure for a vector space. Throughout the remainder of the paper all vector

spaces are over the real number field, R. •

Definition 2.1.   Let E be a vector space, r a convergence structure for

E.  t is locally convex if Vx G E, F G r(x) implies   3G G r(x) with  F > G

such that  G has a filter base of convex sets.  In case r is locally convex, and

compatible, (E, r) will be called a locally convex convergence vector space

(l.ccv.s.).

Definition 2.2.  Let E be a vector space and  F G F(£).  If ACE,

denote the convex hull of A by TA. We define TV to be the filter generated by the

filter base {IM:.4GF}.

Definition 2.3.  Let E be a vector space, and r a convergence structure

for E   For each x G E, we define  Tt(x) = {F G F(E): 3G G r(x) such that

F > TG}.

Proposition 2.1. If E is a vector space and r a convergence structure

for E, then x r—> Tt(x) defines a locally convex convergence structure Tt

for E such that Tt < r. Moreover, Tt is the finest locally convex convergence

structure for E coarser than r.

Proof. To see that  Tt is a convergence structure is easy. (c.s. 2) and

(as. 3) are obvious, while (c.s. 1) follows readily from the fact that, if  Fx   and
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F2  are in F(F), then TFj A TF2 > r(Ft A F2).  That  Tt is locally convex

is immediate from the Definitions (2.1) through (2.3).  Suppose  a^r, where  a

is a locally convex convergence structure for E.   If  F G Tt(x), then   F > TG

for some  GGt(x).  ct<t implies G G o(x) and therefore  rG G o(x).  Hence,

by (c.s. 2)   F G a(x) and thus o<Tt.   D

Proposition 2.2. If E isa vector space, T preserves order in F(F)

and T. Specifically, if F1( F2 G F(F) and Vl > F2, then TF, > T¥2;if

t, a e T and t> a then  Tt> To.

Proof.   Let A G TF2, then A D TB for some B G F2.  But   F! > F2

implies 5 G Fls and hence  TB G rFt. Thus A G TFj   and  TVX > TF2. Now

since t > a > Ta, it follows from Proposition 2.1 that  Tt > To.   D

Before stating our next result, we observe that it follows from Proposition

2.1 that t is a locally convex convergence structure for a vector space E if and

only if Tt = t.

Proposition 2.3. If (E,r) is a cv.s., then (E,Tt) isacv.s.

Proof.   In view of what has preceded, we need only show that compatibility

of t implies compatibility of Tt.  For any   F, G G F(F), X G R, x G E, we

observe:

(1) TF + TG = T(F + G) since, if FG F, G G G, TF + TG = T(F + G).

(2) X • TF = T(X • F) since if FG F, X • TF = T(X • F).

(3) V ' T¥ > T(V ' F) since if F G F, e > 0, then T((- e, e)F) D

(-e,e)TF.

(4) T(V • jc) = V • x since (- e, e) • x is convex  Ve > 0.

The compatibility conditions (c.v.s. 1) through (c.v.s. 4) follow respectively from

(1) through (4) above without difficulty.   D

Proposition 2.4. If t is a convergence structure for a vector space E,

then (E, r)' = (E, Tt)'.

Proof.   By Proposition 2.1 it is clear that   i//°t < Tt < t, and since

(E, \¡j°t)' = (E, f)' the result is immediate.   D

Definition 2.4. Let F be a vector space,  F G F(F). We say  F is

stable if F G F, X > 0 implies XF G F. A translation invariant convergence

structure  t  for E is said to be a stable convergence structure if VF G t(0),

3GGt(0) suchthat G  is stable and   F > G. If (E,t) is a c.v.s. such that

t is stable, we will say (E, t) is a stable cv.s.

Theorem 2.1. If (E, t) isa stable c.v.s., then T(\¡jt) = T(cot) = i//°t.

Proof.  Since t is translation invariant, it follows from
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x + MO) = x+   A    F =    A   (* + F) =    A    G = M*)
F£t(0) FSt(O) Ger(x)

that  i//r also is translation invariant.  Let  A(0) be the generating filter for

i//r(0). We shall show that (1)  A(0)  is stable, (2) X • A(0) > A(0) VX G R,

(3)   K-A(0)>A(0) and (4)  V- x > A(0) VxG£  It then follows that  \¡jt

is stable and satisfies (c.v.s. 2), (c.v.s. 3)  and (c.v.s. 4).  Let A E A(0).  Since

for each  F G r(0), a • F G r(0)  for all a G R and, in particular, a > 0, it fol-

lows that AEl/X' F  for all X > 0.  Hence X4 G F  for all X > 0.  Since

F G r(0) was arbitrary, A(0) is stable.  Now given F G r(0), X • F G r(0) VX G R.

Hence, A EX' FVXGR, and therefore for each X G R 3Fp G F  such that

XFF C A   Let Bx = Upe,-«,)^-  Then ¿ D B\ = xUf<=t(0)*>-  Letting

A' = Uperio)^. we see ii' G A(0)  and ¿3X4'. Hence, X • A(0) > A(0)

for each X G R. It is easy to see that if  F G r(0)  is stable, then   F > V • F.

Let A E A(0).  For each stable   F G r(0), then, 3FF G F  such that for some

e > 0, (- e, e)Ff C A.   Let Ff = (-e, e)FF.  Let A' be the union over all

stable   F in r(0)  of the sets Ff. A', then, is balanced and consequently

[-1, l]A' =Ä EV- A(0).  By construction, Ä CA  and therefore  V • A(0)

> A(0).  (4) above is trivial. We now observe that (c.v.s. 2), (c.v.s. 3) and

(cv.s. 4) all carry over to  T(\¡jt) according to (2), (3), and (4) in Proposition

2.3.  It only remains, then, to show (cv.s. 1) for T(ipr) in order to deduce that

T(\¡jt) is compatible.  Since it is clear that T(ipT) is stable, if A' G rA(0), 3

a convex A E A(0) with A C A'.  But then  ViA E A(0).  Consequently A =

xhA +KAE TA(0) 4- TA(0) and (c.v.s. 1)  follows. The foregoing proves that

T(\¡jt) is a locally convex, compatible  Tj   convergence structure for E.   But

compatible  T,   convergence structures are topologies and hence  TQpr) < \j/°T.

But   i//°r = T(\}/0t) < T(\¡jt)   since    \¡/°t < i//r.   Hence    T(i//r) = tf/°r.   The

remainder of the assertion in the theorem follows now by applying T through

i/>°r < cor < ^r.   D

Remark 2.1.  Theorem 2.4 is of considerable interest since it gives a con-

structive description of   i//°r for a large class of convergence structures. The

definition of   \¡j°t  in terms of continuous seminorms on (E, r) is rather un-

wieldy by comparison as, in general, it would be difficult to identify those semi-

norms.  Moreover, we observe the simple corollary that if r is a stable c.v.s. and

^r is locally convex, then i//r is   ^°r   and therefore a locally convex topology

for E.

3.  Let (E, r) be a convergence vector space.  In this section, we are pri-

marily concerned with the relationships of the various convergence structures tm,

$(tm), co(rM), (Í>t)m and (cor)M  for a subspace M of E and some conse-

quences of these relationships.  Importantly, we provide a sufficient condition
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under which the continuous linear functional on M are the same for every con-

vergence structure listed.  In  §4 (Example 4), we show that in fact this condi-

tion is also necessary in a wide class of convergence vector spaces.  Finally, we

give conditions on (E, t) under which extension of continuous linear functionals

from every subspace of E is possible and under which the T-closed convex sets

coincide with the weakly closed convex sets.

Definition 3.1.  Let (E, t) be a c.v.s., ACE. The T-adherence A of

A  is defined by 1= {xeE: 3F G t(0) 3 VFG F, (x + F) n A ¥• 0}. We

remark that .4 need not necessarily be T-closed. It is the case, however, that A is

T-closed if and only if A = A. This phenomenon is discussed somewhat in [7]. If

(E, f) is a c.v.s., M a subspace of E and FGT(x),we will say that ¥ leaves a trace on

M to describe the situation that for all F G F, F n M # 0. Let (E, t) be a c.v.s. and

{r~v}v<EI C t(0). We say that {Fv]ueI is a fundamental family for t if for each FG

t(0) there exists a GI such that F > Fa.

Definition 3.2. A subspace M of a c.v.s. (E, t) is said to be nearly

closed if there is a fundamental family   {r~u}vei for t such that for each

v e I there exists ß GI and F G F„ such that if X6ÍT1JI/ then x + FM

leaves a trace on M (without loss of generality it may be assumed   ¥ß < F„).

Theorem 3.1. Let M be a nearly closed subspace of a cv.s. (E,t) and

ip a TM-continuous linear functional on M. Then there exists a t^-continuous

linear functional \¡j on M suchthat  \¡j\M = i¿>.

Proof.   Let jcgJÍ?. Then   3FGt(x) suchthat  FmGtm(;c) is defined.

Moreover, FM - ¥M G tm(0) and since ip is TM-continuous, the filter vî(Fm - FM)

converges to 0 in R. But <p(fM)-<p(r'M)><p(FM- r~M), and hence «^(F^) isa

Cauchy filter in R. The limit of <p(FM) will be called \p(x), and for brevity we

write lim ip(VM) = \¡j(x). It is a straightforward verification to show that  i//  is

well defined and linear. To show that  \j/ is tm -continuous we note  (see §1)

that it is no restriction to assume   OGF   for all   FGpG t(0).   Since

M   is nearly closed, there exists a fundamental family   {Fv}veI   satisfying

Definition 3.2.   Let   F G t(0)   and   e > 0.   Choose   a G I   such that

F > Va. Let Fl G Fa  and ß G / be such that   Fa > F^j and y G Fx n M

implies y + ¥ß leaves a trace on M. Choose G G t(0) such that G < Fg + Vß.

Since <p is continuous, one can find G eG   such that z G G ni implies

I0OOI < e- Choose F2 G F^ such that F2 + F2 C G.  Then F2nf,G Fa

since   Fa > Va, and thus there exists F G F  such that F C F2 n Ft.  Let

x eFnM. Then xGF, njf, and consequently Jt + Fß leaves a trace onM.

If j G (x +F2) PiAf, then j> Gx +F2 CF2 +F2 C G, and thus  M»l < e.

Thus, x + fa converges to x, leaves a trace on M, and there exists F2 G F^
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such that y G (x 4- F2) n M implies  \<fi(y)\ < e. Hence   |^(x)| < e.  But x

was arbitrary in FE F, and thus  \¡j  is continuous.   D

Theorem 3.2. If M isa nearly closed subspace of a cv.s.  (E, r) then

M is T-closed.

Proof.  It suffices to show that M = M. Let   {F„}uG/ be a fundamental

family for r satisfying Definition 3.2.  If x G Af there exists  U E r(0)  such

that x 4- H leaves a trace on Af.   Let   F = V • [(V • x) A H] G r(0). Then

there exists   ra < F 4- F, ß G / and Ft G Fa  such that   Vß < Va  and

y EF2 DM implies V + F« leaves a trace on M.  Choose a balanced F2 E V

such that F2 4- F2 C F2.  Since V • x > F, fix  1 > X > 0 such that Xx G F2.

Now x 4- F leaves a trace on M, and thus for all balanced F G F, F1 D F2 G F,

and so (x 4- [F n F2]) n I# 0.  Therefore, for each balanced F" G F, there

exists b'FEF O F2   such that x 4- b'F G M, and since M is a subspace, Xx 4-

Xb'pEM.  But, since X < 1, \b'F = bF EFC\F2, and so Xx 4- bF G M. More-

over Xx 4- bF C (F2 4- F2) D M C F2 n Af, and therefore since   F has a base of

balanced sets, for all F G F there exists bFEFDF2 such that Xx 4- bF 4- F^

leaves a trace on Af. Hence Xx 4- f 4- F^ leaves a trace on Af. Choose G G r(0)

such that V +Tß>G. Then Xx 4- G leaves a trace on Af and thus Xx G Af. Since

Af is a subspace, x G Af.

Theorem 3.3. Let (E, r) be a convergence vector space, and M a non-

empty subspace of E. Then (1) i//rM = QJ/t)m and (2) if in addition M is

T-closed, ütm = (cor)M.

Proof.   Let r(0) = {F„: vEI}. That (1) is valid follows from the fact

that if A(0)  is the generating filter for  \¡/t then

A(0) = |U/Fl,:FuGFu},   and

AJli(0)={y(F„nTli):Fl,GFl)}.

To show (2) note that  cor < r and thus (cor)M < rM.  Hence,

(w7")m " w[(w)m] < w0m)-

Now, let  W C M be open for co(rM). We need to show that it is open for

(cör)M.  Let  V = W U Afc, where Mc is the complement of M in G.   If

x G V, then x G W or x G Afc.  In the first case, if  F G r(x)  such that xEF

for all F G F, then   ¥M is defined.  But  W E FM and, hence, F G F. If

x G Mc, then, since Mc is r-open, each  F G r(x) contains Afc  and therefore

V.  Thus, f is open for cor.  However  W = V n Af and consequently is

(cör)M-open.   D
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Corollary 3.3.1. Let (E,t) be a cv.s. and M a subspace of E. Then

(M, tm)' = (M, HrM))' = (M, (Í>t)m)' = (M, cJrM)'. If, in addition, M is nearly

closed, then (M, tm)' = (M, (cjt)m)'.

Definition 3.3. Let F be a vector space with convergence structure t.

A subspace M of E is said to have the Hahn-Banach Property (H.B.P.) if every

ip e (M, tm)' has a T-continuous linear extension to E. We say that (E, t) has

the H.B.P. if every subspace of E has the H.B.P.

Remark 3.1. It is evident from Theorem 3.1 and Theorem 3.2 that a

nearly closed subspace M of a c.v.s. (E, t) has the H.BP. if the T-closure of

M has the H.B.P.

Theorem 3.4. Let (E, t) be a cv.s. Then a subspace M of E has the

H.B.P. if and only if

(M, T[Wt)m])' = (M, [r#T)]M)'.

Proof.   Assume that a subspace M of (E, f) has the H.B.P. Then by

Theorem 3.3 and Theorem 2.1, T[(\pT)M] = T(\¡jtm) = \p°TM.   Also    [T(\¡/t)]m

= (y¡/°T)M.   Set   (F, t)'|m = {<p\M: <p G (E, t)'}.  Then the H.BJ». implies

(M, TMj = (E, t)' \m, and thus

(M, T[Wt)m])' = (M, *°tm)' = (M, tm)' = (E, t)'\m

= (E, i,°r)'\M = (M, W0t)m)' = (M, [r(^/T)]M)'.

Conversely, assume the equality holds for a subspace   M   of   F.    By Theorem

2.1, T(4>t) = \p°(T), and by Proposition 2.4, (M, T[(\¡jt)m])' = (M, (^t)m)'.Buí

Corollary 3.3.1 yields (M, QPt)m)' = (M, iA(rM))' = (M, tm)'. But the hypothesis

of this proposition, then, (M, tm)' = (M, QP°t)m)'. Hence if ip G (M, tm)', <p

has a  i//°T-continuous linear extension <ï> to E according to the Hahn-Banach

Theorem for locally convex topological vector spaces.   But   (E, f)' = (E, i/>°t)',

so $ is T-continuous as well.   D

A trivial but interesting consequence of this theorem is

Corollary 3.4.1. Let (E,t) be a stable cv.s. such that \¡jt is locally

convex.  Then (E, t) has the H.B.P.

Definition 3.3. Let (E, t) be a cv.s. We will say (E, t) has the Geo-

metrical Hahn-Banach Property (G.H.B.P.) if the T-closed, convex sets and the

o(E, F)-closed convex sets of E coincide.

Proposition 3.1. If (E, t) isa cv.s. having the G.H.B.P., then every

nearly closed subspace M of (E, t) has the H.B.P.
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Proof.   Let Af be a nearly closed subspace of E.   By Theorem 3.1 and

Theorem 3.2 we may assume without loss of generality that Af is r-closed in E.

Suppose  (¿>G (Af, tm)'. By Corollary 3.3.1, <p is in (Af, (cöt)m)'. <p— * (0) there-

fore is (cör)^-closed, hence rM-closed in Af.   But, since Af is r-closed, <p~ ' (0)

is r-closed and convex.  Hence y~l(Q) is weakly closed.  But this implies ip is

continuous on Af under the topology induced by  a(E, E'). Hence  ip may be

extended to a a(E, F')-continuous functional  $  on E.   So 0 E (E, r)', and

the proposition is proved.    D

Theorem 3.5. If (E, r) is a stable, Hausdorff c.v.s. and \pT is locally

convex, then  (E, r) has the G.H.B.P., and (E, r)' separates points of E.

Proof.   Let  0¥= x EE.   Since (E, r) is Hausdorff, for each  F G r(0),

3FF G F  such that x £ FF.  Let A = Ufst(o)Ff ■ Then A G A(0) and

x £ A.   Hence there is an absolutely convex A' C A   such that  VL4' G A(0),

since  i//r = T\¡/t = i//°r  is a locally convex topology.  But x£A' = ViÄ 4-

ViÄ. Hence (x 4- VtA') n lAA' = 0 and therefore  \pT is Hausdorff.  Since i//r

then is a Hausdorff locally convex topology, and (E, i//r)' = (E, r)', the theorem

follows.

4. Examples.  In this section, we will (1) exhibit a large class of convergence

vector spaces (E, r) which are not topological vector spaces (t.v.s.), but for which

in is locally convex and which therefore have the H.B.P. and the G.H.B.P.; (2)

show that if (E, r) is a locally convex c.v.s., it does not necessarily follow that

\}/t is a locally convex convergence structure for E, and thus the convexity

hypothesis on  ij/T in theorems of § 3  could not in general be replaced by con-

vexity of r; (3) exhibit a locally convex, Hausdorff c.v.s. that does not have the

H.B.P., and in doing so provide an example of a closed subspace of an ZF-space

that is not an ZF-space (see [4]) and a counterexample to Theorem 4 of [11,

p. 76] ; (4) show that in a wide class of convergence vector spaces (E, r)  a sub-

space M being nearly closed is equivalent to the extendibility of every ^-con-

tinuous linear function on M to a rjfj-continuous linear function on   Af;

and   (5)   exhibit conditions on a subspace   Af   of an inductive limit of

topological vector spaces to insure that the hypothesis of Theorem 3.4 is

satisfied.   The consequence is that every nearly closed subspace   Af   for

which the   r-adherence   satisfies these conditions has the H.B.P.   More

importantly, we characterize those subspaces of a strict inductive limit of reflexive

Banach spaces which enjoy the H.B.P.

Example (1).  Consider a locally convex t.v.s. (E, T), and define a con-

vergence structure  Tg by
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Tß(0) = {F G F(E): 3 an absolutely convex bounded

(4.1) set B in F with   F > V • B},   and

Tß(x) = x + Tß(0).

One can easily show that (E, Tß) is a stable locally convex convergence vector

space. A set A  is in the generating filter for \¡j Tß if and only if it absorbs

every bounded subset of (E, T). We have, however, the following result whose

proof is obtained by a standard argument (e.g. see [9, p. 222]).

Proposition 4.1. If (E, T) isa t.v.s. which has a countable fundamental

system of neighborhoods for 0, then every bomivore (i.e. a set which absorbs

every bounded set) is a neighborhood of 0.

One may now easily verify

Proposition 4.2. If (E, T) is a metrizable locally convex topological

vector space, then

(i) $Tß = T, hence is locally convex,

(ii) (E, Tß) has the G.H.B.P. and thus also the H.B.P.

We will now show that the convergence structures, Tß, are in general not

topologies.

Proposition 4.3. Let (E, T) be a t.v.s. where  J is theMackey topology

for E  Then

(i) (E, Tf = (E, Tß)' if and only if (E, T) is bornological, and

(ii) if (E, T)  is bornological, then  Tß   is a topology if and only if (E, T)

is normable.

Proof, (i) Suppose (F, T)' = (F, Tß)'. If v is a linear functional on E

and maps bounded sets to bounded sets, then clearly tp G (E, Tß)' = (E, T)' and

(F, T) is bornological.

Conversely, if (F, T) is bornological, and >p G (F, Tß)', then for each

bounded set B of E, \ip(}B)\ < 1  for some X > 0. Thus, ¡p(B) is bounded

and ip G (E, T)'.  Hence, (E, Tß)' C (E, T)'. The reverse inclusion follows from

T<Tr
(ii) If (E, T) is normable, then  F G T(0) if and only if  F > V • B,

where B is the unit ball of E under some norm.  Since B is bounded, T = Tß.

Conversely, suppose  T0 is a topology.  Since it is locally convex, Tß =

\¡/°Te.   But since   (F, Tß)' = (E, T), we see that Tß = ip°Tß < T because  T

is the Mackey topology. However, T<Tß and hence  T= Tß. Thus, T has a

bounded neighborhood of 0.   D
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Example (2).  Let F be a vector space and (En, r„) be a sequence of

convergence vector spaces such that (a) En C En + v n = 1, 2, • • • , (b)  r„  is

finer than the convergence structure induced on En  by Tn + l, and, (c) E =

U~=1F„.  A convergence structure r on E may be defined by   F G r(x)  if

and only if 1n>\   suchthat xGF„  and   3F„ G rn(x)  suchthat   F  is finer

than the filter in E generated by  F„. This convergence structure r is called

the convergence inductive limit of the structures r„.  Fischer [5] introduced this

notion and showed that r is the finest convergence structure inducing on each

En  a convergence structure weaker than r„  and is compatible with the algebraic

structure of E.

In this example, we let each (En, r„) be a normed linear space with closed

unit ball Bn  and norm   ||« ||„.  We assume Bn + 1 C\En= Bn   for all n>\.

Then  ||x||m = \\x\\n   for n> m and x EEm. The convergence inductive limit

structure r on E = \J"=1En  is defined by

r(0) = {F EF(E):  3 an integer n 3 F> V • Bn),

where   V • Bn  denotes the filter generated by the filter-base of sets  {(-e,e)Bn:

e > 0}.  In other words a filter, F, converges to x EE if and only if for some

integer n,x EEn  and   F  is finer than the neighborhood filter of x in En. Thus

$t(Q) consists of exactly those sets A  in E which absorb every Bn, n =

1, 2, • • • . The collection  B of sets   {\J~=l\nBn: X„ > 0} is clearly a filter

base for A(0).  To see that  \jjt is not locally convex, it suffices to show that

there exists no B E B such that

IX*) C   \Jj:Bn=A.
n = l

Suppose on the contrary that  35 = \J^=1\nBn  such that  T(B) C A. Then

clearly X„ < \\n.   Choose m such that Xj > 3/m.   Also choose x EBl   such

that Hxllj = 1  and choose v G Bm\Em_l  suchthat  \\y\\m = l/m.  Then we

see that

z = %\lx+tt\tnyET(B).

However, we also note that

(a) z ^Em_1 (for if so,y = (2/Xm)(z - &Xxx) EEm_l   which contradicts

the choice of y), and

(b) for n> m,

M„ = IP¿X,x 4- K\my\\n > '¿IX, | Hxll,, - fclXJ ||v||„

= ^|X1|-^|Xm|>M(X1-l/m)>l//n
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by the way m was chosen. But l/m > 1/« and so z fi (l/n)Bn for n> m.

Consequently z^B (contradiction). Thus, in is not locally convex, though t

clearly is.

Example (3).  In Example (2) the notion of a convergence inductive limit

of a sequence of c.v.s. was introduced. We say such an inductive limit is strict if

En + 1  DEn   and   (T« + l)£„=V

In this example, we will exhibit a convergence vector space (E, t) which

is the strict convergence inductive limit of a sequence of locally convex Fréchet

spaces (F„, T„) but which does not have the H.B.P. For this example (E, t)

is locally convex, but (E, \¡jt) is not. In the process, we obtain a subspace M

of E for which the strict inductive limit topology determined by the sequence

{M n Fn} has a larger dual than the space (M, TM) where TM is the topology

induced by  T, the inductive limit topology  on F.

Let  S2  be an open set in Euclidean «-space, Rn. For each compact set

Ken, V(K)  is the Fréchet space of infinitely differentiable real valued functions

with support in K (see Schwartz [12]).  P(Í2) = \J{V(K): K is compact in Í2}

provided with the inductive limit topology and  P'(Í2) is its topological dual.

E(S2) denotes the Fréchet space of all infinitely differentiable functions on  Í2

with the usual topology, and   E'(Í2) is its topological dual.  Let S G E'(Rn). If

S2j   and  Í22  are open sets such that

(4.2) S2j +suppScn2,

then the mapping  T defined by

(4.3) T<p = S *<p

where  *  denotes convolution, is a continuous injection from  Í?(í2j)  into V(Çl2)

and from   E'ify) into   E'(£22) [7].  Let  T* be the transpose of T.  We wish

to make use of some results of Hó'rmander [7] and therefore make the following:

Definition 4.1.  The pair (Í2j,í22) of open sets in Rn  is called S-con-

vex if (4.2) holds, and given any compact set K2 C Í22, there exists a compact

Ä", C fij   such that p e fl(í2j) and supp S * <pCK2  imply that  supp ipCK1.

Definition 4.2. The distribution SeE'(Rn) is said to be invertible

if there exist constants AltA2  and A3  such that for every £  in Rn, one can

find n G Rn  such that

(4.4) g - n\<A1 log (2 + || |),   and    \S(r¡)\ > (A2 + Ulf4 3.

Here 5 denotes the Fourier transform of S (see Schwartz [12]).  One can now

state the following three theorems due to Hórmander   [7].
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Theorem 4.1.  The following are equivalent:

(a) 7/*(E(í22)) = Eifï,);

(b) T~1   isa sequentially continuous mapping from the image, M C V(ß2),

of T onto  VÇl^and

(c) S is invertible and (ßv S22) is an S-convex pair.

Theorem 4.2. If (S2j,S22) is an S-convex pair, and <p G E'(ííj), then

the distance from supp ¡p to Rn\ Í2X  is equal to the distance from supp (S * <p)

to Rn\a2.

Theorem 4.3. If T*(V'(Sl2)) = V'(ßi), then the distance from sing supp<¿>

to Rn\Çlx is equal to the distance from sing supp (S * ip) to Fn\£22 for every

We first wish to show that the image, M, of T is a closed subspace of

P(Oj).

Proposition 4.4. If (a), (b), or (c) of Theorem 4.1 is satisfied, then M =

TTtPffij )) is a closed subspace of P(Í22).

Proof.  We make use of the following theorem by Dieudonné and Schwartz

[4] :  Let F and F be Fréchet spaces with duals É and F'  respectively, and

suppose 0  is a continuous linear mapping of F into F with transpose 6*.

Then 0  is a surjection if and only if 0*  is an injection and the image of F'

under 0* is a o(E', F)-closed subspace of F'.

Since the conditions of Theorem 4.2 are equivalent, T* maps   E(S22) on-

to   E(£lx), and thus L = r[E'(S2i)]   is a closed subspace of  E'(£22) by the

result quoted above.  Let ip G £>(£22)\Af.   Then <p G E'(Í22)\¿  and thus there

exists u e E(£22) which strongly separates <p and L.  But  E(S22) C I?'(S22)

and Me L.  Thus there exists u in  f/(i22) which strongly separates y? and

Af, i.e. Af is a weakly-closed subspace of P(f22), hence closed.   D

Fix a in V(Rn) suchthat a=l  on IT?=1[-1,1] and let

(4.5) 5 = 5 + a,

where S  is the Dirac measure. Then S G E'(R„) and is invertible.  Also

(4.6) sing supp S C interior [supp S].

Let  (Í2X,Í22) be an S-convex pair in F„  such that each of S2j, £22  has at

least one finite boundary point. (For example, let  S22   be the ball of radius twice

the diameter of supp S, and  £2j   the largest open set in Rn  such that (4.2) is

valid.) From the geometry of the situation we obtain

(4.7) ¿(sing supp S * i¿>, Fn\í22) > <z*(supp S * <p, F„\S22)
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for some  <p G E'(f2,) (namely  <p(x) = 5a(x) = 5(x -a)  for any a  in  Í2j).

Applying Theorem 4.3, we obtain

(4.8) cf(supp ip, Ä„\S2t) = d(supp S * <p, Rn\£l2)

for all ip E E'(^i)-  Combining (4.7) and (4.8), we see that

(4.9) <2(sing supp \p, Fn\S2j) < c?(sing supp S * <p, F„\i22)

for some  y in  E'(S2j).  Thus, it follows from Theorem 4.4 that

(4.10) T*(v\n2)) p p'rn,).

Choose <pEV'(Sli)\T*(V'(Sl2))  and define  ip  on M by

(4.11) i// = <p°r-1.

Applying Theorem 4.2, we see that  i//  is sequentially continuous, and thus, for

each compact set K C S22, ip\Mn V,K\  is sequentially continuous.  But  £>(£22)

induces the original topology on each  V(K), and thus  ip\Mn ¡j^q  is continuous

for each compact K C Í22.

Suppose  i//  has a continuous extension to  V(£l2), say  ^ G V'(tl2) such

that  V\M = t//.  Then, for each t? G ^(£7,) we have

<T*tf, ij> = (*, 7t7> = (i, Tn)
(4.12)

= V° T~\ Tr¡) = <<p, ri).

That is, J*^ = ip which contradicts the choice of ip.

One can easily verify that if r is the strict convergence inductive limit on

E, and  a is the strict convergence inductive limit on M determined by the

family   {V(K) DM: K is compact in f22} then t\m = o. It is clear that \p as

defined by (4.11) is a continuous linear form on Af with respect to the a conver-

gence structure. But we have shown that \p has no r-continuous extension to

1XJl2) since (V(n2), t)' = (P(Í22), \¡>°t)' = í/(S22).

Remark 4.1. We have exhibited a sequentially continuous linear form on a

closed subspace Af of an ZF-space which is not continuous. Thus Af with the

induced topology is not a bornological space and thus cannot be an ZF-space. This

provides a solution to a problem posed by Dieudonné and Schwartz in [4].

Example (4). In this example, we show the condition that a subspace Af of

a c.v.s. (E, r) be nearly closed is both necessary and sufficient for the continuous

extension of rM-continuous linear functionals to  (Af, t^) in case  (E, r) is of a

certain type. We also characterize the class of subspaces whose r-adherence is

r-closed for a class of c.v.s. of considerable interest.
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Throughout this example, (F, t) is a strict convergence inductive limit of

an increasing sequence  (En, Tn) of linear topological spaces.

Proposition 4.5. Suppose M is a subspace of (E, t). M is nearly closed

if and only if for each « > 1  there exists an integer N>n such that

MnEnCM^nEn, where OFj = Tk-closure of M n Ef in Ek for all k>j.

Proof.   Let   F„  be the neighborhood filter for 0 in En  and   Vn  the

filter in F generated by   F„. Then   {F„} is a fundamental family for t. Given

« > 1, choose N so that M n En Ç M$ n F„.  Let F be any element of

F„ Ç F„.  If x e M n F, then xeMnEn  and hence xeM%nEn.  But,

then x + h~N leaves a trace on M   Hence M is nearly closed. Now, suppose

M is nearly closed. Using the notation of the definition, let «  be fixed and

find   Fa < F„.  Let F G Fa  and  Tß be found such that yeMnF implies

y + Vß leaves a trace on M.   Find N such that   VN <Vß.  Let x eM nEn.

For some X > 0, Xx G M n F.  Hence Xx + Vß leaves a trace on M and so

Xx + VN also leaves a trace on M.   Thus Xx + VN leaves a trace on M and

therefore on M n EN = MN. That is, Xx G Af$.  Since Af$ is a subspace of

EN,xeM%. But xGF„  and thus xGM#nF„.   D

Theorem 4.4. If each (En, Tn) is metrizable, and M isa subspace of

E, then every continuous linear functional on (M, tm) can be extended to a con-

tinuous linear functional on (M,Tj¡j) if and only if for each «>1  there exists

N>n so that M n En C M^¡ n En, that is if and only if M is nearly closed.

Proof.   Suppose there exists «  such that for all m, M n En (J. M™ n En.

We may assume without loss of generality (as will shortly be evident) that « = 1

and M\nExe\ M%%\ n Ex   for all k > 1.  Let   {Uk} be a zero neighborhood

base for (Ev T{) such that  Uk+1 C Uk, k = 1, 2, • • • .   For each k, let

xke(uknMk+¡)\Mkk.

We note thatM% = MnEkk = Ek nMTŒk+1 =EknM£+1 since Tk+1 \Ek = Tk.

Thus for each k,xk$ M nEk. Let if be a Tk -continuous linear functional on

M n Ek. Then ip is  Tk+1 -continuous and thus has a unique continuous exten-

sion, again call it  ip, to MnE%+1. But xk^Wñ~Ek+x   and thus Wñ~Ek+1

©spanxfc  isa  Tk+1 -topological direct sum in MJ^}. Thus there exists a

Tk+1 -continuous linear functional * on M nFJ£+1 © spanxfc  suchthat ty

coincides with ip on M n Ek and  ^(xk) = 1.  By the Hahn-Banach Theorem,

^ has a continuous linear extension to m£J{.  Thus, we may construct a

sequence ipk  of linear functionals on Mk, k = 2, 3, • • •   such that ipk  is  Tk-

continuous, <Pk(xk_l) = 1  and <^fc|— fc_x = ipk_x   for k = 3, 4, 5, • • • . The
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choice of <p2  is subject only to the restriction ^2(xj) = 1.  Define ip on M

by <p(x) = ipk(x) if x G Af n Ek. y is well defined, linear and  rM-continuous.

If ip has a ^-continuous extension ip to Af = \Jk=xM\, then since xk  is a

sequence in Af whose associated filter is in tjcj(0), it must be that ip\xk) —► 0.

On the other hand, since xkEMDEk\\ CMOEk+i, i(xfc) = lim/-_>00i/)fc+i(y/)

for some sequence y} in MC\Ek+l   converging for  Tk+1   to xk. But then

1 = <Pk+i(xk) = ]hnHoo<pk+1(y¡) = ¡p(xk) since  <pk+i   is continuous on

MDEk\\   for  Tk+l.  This is a contradiction.  Hence, Af is nearly closed.  The

converse follows from Theorem 3.1 and Proposition 4.5.

Theorem 4.5. Suppose each (En, Tn) is a Fréchet space. A subspace Af

of E has the property that every rM-continuous linear functional on M can be

extended T^-continuously to M if and only if M is T-closed.

Proof.   Suppose M is r-closed.  Then for each n > 1, En O Af is closed

for  Tn. But EnnM = Enn\J~ = 1Mm = \J~ = 1EnnMm.  Since Tm\Bn =

Tn  for each m>n,EnC\Mm!  is closed for  Tn  in En. But EnC\M isa

Fréchet space, so by the Baire Category Theorem, there exists TV such that

En nAfjy  contains an open set in F„ n Af. Hence En OM = En DÂ7$  and

by Theorem 4.4, M has the required property. The converse follows from Theorem

4.4 and Theorem 3.2.

Corollary 4.5.1. Let (E, r) and M be as in the theorem. M is

T-closed if and only if M is nearly closed.

Example (5). We will now give a simple proof to show that any subspace

Af of a strict convergence inductive limit (E, r) of a sequence of Hubert spaces

(En, Tn) has the H.B.P. if and only if Af is nearly closed.

Proposition 4.6. Let   {En,Tn}"=i  be a sequence of topological vector

spaces such that EnCEn+l  and  T„+lE   = T„ for each n.  Let E =

U£=iF„ and  T the strict inductive limit topology on F.  If, for each subspace

M of E either (1) For some n,MCEn or (2) V«, 3 a subspace of En

such that (En C\M)®Nn=En topologically and N„CNn+1 for n = 1,

2, • " , then  T\M is the inductive limit topology on M defined by the family

{AfnF„:n = l,2, •••}.

Proof. If (1) holds, the result is clear. Suppose (2) is valid. For each

n, let Un be an open neighborhood of 0 in En. We must find a sequence of

0-neighborhoods An C En  (n = 1, 2, • • • ) such that

(4.13) r(jj a^ n Af c r[jj (u„ n a/)].



166 S. K KRANZLER AND T. S. McDERMOTT

By the hypothesis, for each « there exists a subspace Nn  in En  such that,

(M n En) ® Nn s En  topologically and   N„ C Nn+l    for all   «.    Choose

O-neighborhoods  Vn  and  Wn  on F„  such that

(4.14) (Mnv„)®(Nnnwn)cun.

Let 4 = (Sffl F„) © (Nn n Wn). Then An is a O-neighborhood in F„. Also

we have

Kiî a») nM=r[„y, { (m n **> ®(7v«n ̂ j]n m

c r[(„Qi(M n Fn)) e (Ä(7v"n ̂ ln M

(4.15) c | fr(jj (M n F„))] © [r^ y (A^„ n B^UJ n M

= r[ Ü (w n Kn)l = r[ Ü C4, njK)l
Ln = l J Ln = l J

cr|"u (^„niw)l .  d

Definition 4.3.  If M and N are subspaces of a Hubert space //, then

the angle a(M, N) between M and N is defined by

/ \
a(M, N) = arceos ( sup <x, y) J.

\jet=Ar,j't=JV; njc|| = ||j»|| = l /

One can show (see [14, p. 243]) that in case a(M, N) > 0 the M ®N is a topo-

logical direct sum in H.

Corollary 4.6.1. If M is a subspace of a topological strict inductive

limit (E, T) of Hubert spaces (Hn, T„), n = 1, 2, • • • , such that for each n,

a(Hn + 1 nM,Hn)>0 and MnHn is closed in Hn, then M is an LF-space.

Proof.  We choose the A/„'s inductively to satisfy Proposition 4.6 in the

following way:  Since H1   is Hubert there exists Ni   such that (H¡ nM)®

N1 = Hl   topologically.  Assume that   {0} = A^, Nx,' " ,Nn   are chosen so

that (HknM)®Nk= Hk  topologically and Nk_x C Nk  for k = 1, 2, •••,«.

Since Nn  is closed in Hn, it is also closed in Hn+1. But HnnM is also

closed in Hn+1, and a(Hn+1 nM, N„) > 0 since N„ CH„. Thus (Hn+1 nM)

®Nn is a topological direct sum in Hn+1 and is therefore closed. Since Hn+l is

Hubert, there exists a subspace Ln+i of Hn + 1 such that (Hn + 1 nM)®Nn®

Ln+1 =Hn + 1 topologically. Let Nn+1 =Nn®Ln+l. The result now follows

from the previous proposition.
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Theorem 4.6. Let (E, r) be the strict convergence inductive limit of the

Hubert spaces (Hn, T„), n = 1, 2, • • • . Then a subspace M of (E, r) has the

H.B.P. if M is nearly closed and for each n, a(Hn n Af, Hn) > 0.

Proof.   It was shown by Fischer [5] that for strict convergence inductive

limits   (E, t), i//°r is exactly the inductive limit topology for F.   Let M be

a nearly closed subspace of E. Without loss of generality (Theorem 3.1 and

Theorem 3.2), we may assume M is closed.  Proposition 2.4 applies to show

that (M, T(ít)m)' = (M, (Íit)m)'. By Proposition 4.4 and the fact that every

closed subspace of a Hubert space is a topological direct summand, we have

(m, rmMi = (m, mj = (M, 4>°mM)'

= (M, W°t)m)' C (M,  [rO//r)]M)\

But, since  T(\¡/t)m > [T($t)]m, we have

(4.17) (M, Wt)m)' = (M, [rO¿r)]M)\   D

The following more general result follows from Theorem 4.4, Theorem 3.2

and the extension result given by Hogbe-Nlend in [7, p. 66].

Theorem 4.7. Let E be a strict convergence inductive limit of reflexive

Banach spaces. A subspace M of E has the H.B.P. if and only if M is nearly

closed.
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