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A HOMOTOPY THEORY OF PRO-SPACES

BY

JERROLD W. GROSSMAN

ABSTRACT.   The category of towers of spaces,  ... •* Xs+X -* Xf —

... -* Xq, viewed as pro-spaces, appears to be useful in the study of the re-

lation between homology and homotopy of nonsimply connected spaces.   We

show that this category admits the structure of a closed model category, in

the sense of Quillen; notions of fibration, cofibration, and weak equivalence

are defined and shown to satisfy fundamental properties that the corresponding

notions satisfy in the category of spaces.   This enables one to develop a "homo-

topy theory" for pro-spaces.

1. Introduction.  Recent work on the relation between homology and

homotopy of nonsimply connected spaces (e.g. [2], [3], and unpublished re-

sults of E. Dror and W. Dwyer) involves towers of spaces,-► Xs+ x —►

Xs —► * * ■ —*■ X0, viewed as pro-spaces. It would be helpful to be able to

treat the category of such towers, which we denote by tow-S, like the cate-

gory of spaces.  In this paper we show that notions of fibration, cofibration,

and weak equivalence can be defined for tow-S which give the category the

structure of a closed model category, in the sense of Quillen [5] ; thus one can

"do homotopy theory" in tow-S.

In §2 we define the category tow-S, which is just a subcategory of the

category of pro-spaces, and elucidate the maps in the category. Next (§3) we

recall the definition of a closed model category, listing the axioms that fibra-

tions, cofibrations, and weak equivalences must satisfy; topological spaces and

simplicial sets are familiar examples of closed model categories. The definitions

of fibration, cofibration, and weak equivalence for tow-S are given in §4, and

the proof that tow-S is a closed model category with these definitions occupies

§§5-8.
We work over the category S of simplicial sets [4], but the definitions

and proofs are not combinatorial.
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research and writing of this paper, and William Dwyer for many helpful con-

versations.

2.   Pro-spaces.   In this section we introduce the category   tow-S.

2.1. Definition. The category   tow-S   is the category whose objects

are towers in   S   (the category of simplicial sets),
. .. —y Y —>. Y   —> . . . _».  Y

As+l As A0>

written   {Xs},  and whose maps are given by

Homtow-Ä>»iy.J) = Hm lim Homs(Yr Y,}.
j      i

The reader familiar with Artin-Mazur [1] will recognize that   tow-S   is

the full subcategory of pro-S   with the index restricted to the nonnegative

integers.

A map  {Xs} —► {Ys} in  tow-S   is best thought of as a compatible

system of maps   {Xt —► Ys}s,  modulo the relation that  Xt —> Ys  and

Xu —► Ys  are equivalent if for some large  w  the maps  Xw —*■ Xt —► Ys

and  Xw —► Xu —► Ys  are the same.   In particular any level map, i.e. tower

of maps

tS+ 1 i S i 0

I
1s+l        's 'o

in  S,  represents a map  {Xs} —► {Ys} in   tow-S . Not every map   {Xs} —►

{ Ys} can be so presented, however.   Instead we have

2.2.   Definition.   Let   0: {Xs} —* {Ys} be a map in  tow-S.  We say

that the level map   {fs: X's —► Y's} is a level representative of  0   if there

are equivalences in  tow-S,   {Xs} « {X's} and   {Ys} «   {y¡} such that the

following diagram in   tow-S   commutes:

0 (Ü

{ys} - {y;>

Thus for example the identity level map   {id:  Xs —► Xs} is a level

representative of any equivalence  {Xs} « { Ys}.   Clearly any map in  tow-S

has a level representative, obtained simply by taking a subtower of the domain.

We shall see in §4, however, that the full generality of Definition 2.2 is use-

ful.

3.   Model categories.   In this section we recall Quillen's definition of

closed model category and observe that simplicial sets and topological spaces

form closed model categories.

3.1.   Definition [6].   A closed model category isa category   C  to-



A HOMOTOPY THEORY OF PRO-SPACES 163

gether with three classes of maps in   C,   called fibrations, cofibrations, and

weak equivalences, satisfying the following axioms:

CM1.   C   is closed under finite direct and inverse limits.

CM2.   If / and  g  are maps in   C  such that  gf is defined, and two

of /, g,   and gf are weak equivalences, so is the third.

CM3.   If a map / is a retract of a map  g  (i.e. if the diagram

/

commutes), and g  is a fibration, cofibration, or weak equivalence, then so

is /.

CM4.   Given the following solid arrow diagram in   C

A-$E

i  \ y''  \p
X-->B

in which  i  is a cofibration and  p  is a fibration, the dotted arrow exists if

either

(i)  p  is a weak equivalence, or

(ii) /  is a weak equivalence.

CM5.   Any map in   C  can be factored in two ways:

(i)   as a cofibration followed by a fibration which is also a weak equiv-

alence;

(ii)   as a cofibration which is also a weak equivalence followed by a fi-

bration.

If the dotted arrow exists in the diagram of CM4, we say that  i has

the left lifting property with respect to  p,  and  p  has the right lifting prop-

erty with respect to  i.   A map which is both a fibration [resp. cofibration]

and a weak equivalence is called a trivial fibration [resp. trivial cofibration].

3.2.   Examples.   (See [5], [6, p. 259], and [2, Chapter VIII].)   We

use the fact that the category   S   of simplicial sets is a closed model category,

where fibrations are Kan fibrations (see [4, p. 25]), cofibrations are injective

maps, and weak equivalences are weak homotopy equivalences, i.e. maps  X

—► y such that  tt0X —► 7roy is an isomorphism of sets and   tt„(X, *) —•"

irn(Y, *)  is an isomorphism of groups for  « > 1   and every choice of base-

point in X.   (Here and throughout this paper, we denote the image of a base-

point   *  also by   *.)   Similarly the category   T of topological spaces is a

closed model category, with Serre fibrations as fibrations, weak homotopy

equivalences as weak equivalences, and retracts of sequences of relative CW complexes [7,
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p. 401] as cofibrations. In both of these examples, the associated homotopy

category (obtained by localizing at, i.e. formally inverting, weak equivalences)

is just the familiar homotopy category of Kan complexes, or, equivalently, of

CW complexes.

4. Statement of results. Our main result is that fibrations, cofibrations,

and weak equivalences can be defined in tow-S to satisfy the axioms CM1—

CM5 for a closed model category (3.1).

We begin with cofibration, which has the most natural definition.

4.1. Definition. A map in   tow-S   is a cofibration if it has a level

representative   {fs: Xs —► Ys} such that each fs   is a cofibration in   S,  i.e.

an injective map of simplicial sets.

4.2. Remark.   The need for the generality in the definition of level

representative (2.2) can be seen from the following example.   Consider the

tower   {Is} which has a 1-simplex at each level and  Is+1   projected to the

left endpoint of Is.   The map from  {Is} to   {*},   a tower of single points,

is clearly an equivalence in   tow-S,  and hence must be [6, p. 234] a cofi-

bration.   But no level representative of   {Is} —► { * } using subtowers of the

domain and range is a tower of cofibrations.

The definition of weak equivalence is complicated by the fact that the

spaces Xs  in an object   {Xs} of tow-S   need not be connected or even non-

empty.

4.3. Definition.  A map in   tow-S   is a weak equivalence if it has a

level representative   {fs: Xs —► Ys} such that

(0   {^(/s^ is an equivalence of pro-sets, i.e. for each  s > 0  there is a

t > s  and a map  7royf —► iïqXs  making the following diagram (of sets)

commute:

%Xt-► vnY.

(ii)   for each  « > 1   and each  s > 0  there is a  t > s   such that for

each choice of basepoint in  Xt  there is a map   fn(Yv *) —► tt„(Xs, *)

making the following diagram (of groups) commute:

»■(*».*>—^„(V)
I ^ \

*„(*,.*)—►*„<*,.•)
It is routine to check that if one level representative of a map satisfies

conditions (i) and (ii), so does any other.   In the case that all the spaces Xs

and   Ys  are connected and   {Xs} has a compatible basepoint, the definition
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becomes simply: a map {Xs} —► {Ys} is a weak equivalence if the induced

maps {ir„Xs} —* {irnYs} are pro-isomorphisms for n > 0. This is the usual

definition ([1], [2]).

Before defining fibration, it is convenient to introduce the following (partly

standard [7, p. 404]) terminology for maps of simplicial sets.

4.4. Definition.  Let A be a nonnegative integer and let f.X —*■ Y be

a map in S. Then / is an N-equivalence (for X not empty) if for every choice

of basepoint in X, tt„(X, *) —► n„(Y, *) is an isomorphism for 0 < n < N

and an epimorphism for « = N. (If X is empty, then X —► Y is an A-équiv-

alence if y is also empty.) On the other hand, / is a co-N-equivalence if for

every choice of basepoint in X, nn(X, *) —► irn(Y, *) is an isomorphism for

« > N and a monomorphism for n = N.

We define fibrations in two stages.

4.5. Definition. A map in tow-S is a level-fibration if it has a level repre-

sentative [Xs —► Ys} such that for each s

(i)  there exists an integer N(s) such that Xs —► Ys is a co-A(s)-equiv-

alence;

(ii) Xs —► Ys is a fibration in S; and

(iii) the induced map Xs+1 —► Xs xYs Ys+X  is a fibration in S.

Induction and diagram chasing show that condition (iii) implies that for each

fc > 1  the induced map Xs+k —► Xs xYs Ys+k is a fibration.  In particular a

subtower of a level representative satisfying Definition 4.5 also satisfies Defini-

tion 4.5.

4.6. Definition.   A map in tow-S is a fibration if it is a retract (3.1,

Axiom CM3) of a level-fibration (4.5).

In particular a level-fibration is a fibration.

4.7. Theorem .   The category tow-S, with fibrations, cofibrations, and

weak equivalences defined above, is a closed model category.

Organization of proof.  Axiom CM1 is proved by Artin-Mazur [1, Prop-

osition A.4.2]. In §5 we prove CM2 and CM3.  In §6 we reduce CM4 and CM5

to more concrete lifting and factoring statements, which are then proved in §8

and §7, respectively.

4.8. Remark.  Everything can just as easily be done for tow-S*, where

S* is the category of pointed, but not necessarily connected, simplicial sets.  The

fixed basepoint would play no role in the definitions or proofs, except to exclude

the case of empty simplicial sets.

5. Proofs of CM2 and CM3.

Proof of CM2. The proof consists of setting up the right level diagram.
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Suppose {Xs} —*■{ Ys} —► {Zs} are maps in  tow-S.  It is easy to see that by

taking level representatives (2.2) we can assume that we have a tower {Xs —►

Ys —* Zs}. We shall consider the case in which {Xs} —► {Zs} and  {Xs} —►

{ Ys} are weak equivalences; the other two cases are similar but easier.  We want

to show that {Ys} —► {Zs} is a weak equivalence, i.e. (4.3) for each « > 1  and

s > 0 there is a t> s such that for each choice of basepoint  • in T( there is

a map Tin(Zt, •) —► ̂n(Ys, *) making the following diagram commute

I „^' \

and a similar statement for ttq. The case of n0 is easy, so fix « > 1, s > 0.

Since {Xs} —► {Zs} is a weak equivalence, we can choose w>s so that the

dotted arrow exists in the following diagram for every choice of basepoint in X„ :

1 ,--■--       I
■l    Je-"" ?

\0Cs,*) — ^n(Ys,*) — nn(Zs,*)

Next, since {Xs} —► {Ys} is a weak equivalence, we can choose u>w so that

the dotted arrow exists in the following diagram for every choice of basepoint

in Xu:

1 ■■A***"" 1
:. *) — ««(rj *)

Finally we choose t ~> u so that the dotted arrow exists in the following diagram:

'oxt-"oY<

jrjr.^—► 7r„y.

Now let  • be any basepoint in Yt. Because of the last diagram, the image of •

in Yu is in a (path) component which is in the image of Xu —► Yu. Choose a

basepoint + in Xu such that (the images of) + and • are in the same (path)

component in Yu, and let a be a path between them. Then a induces an iso-

morphism

a#: nn(A, +)—>Tt„(A, •)

for A = Yu, Zu, Yw, Zw, Ys, Zs; and a# and a#!  commute with the ap-

propriate maps. Define the desired map as the composite
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.-1

^(Z,,.) — *H(ZU,')—+  nn(Zu,+)

*Ä.+)—*„CX,,+) %av+)—«.ovo.
A diagram chase gives the desired commutativity relations.

Proof of CM3for weak equivalence.  We are given the following com-

mutative diagram in tow-S:

-fc/p'i

Taking appropriate subtowers we get the following "level" representative of the

diagram:

By diagram chasing one can verify that the definition of weak equivalence is sat-

isfied by {Fs —*■ Fs} if it is satisfied by {Gs —► G's}.

Proof ofCM3 for cofibration. It is clear from the above diagram that

the following tower

i+i

K
.1
s+l

s s

is a. level representative for {Fs} —+ {F's}. Hence so is the subtower consisting

only of the Gs —+ G's. Now if {Gs} —* {G's} is a cofibration, we could have

chosen the level representative in such a way (4.1) that each Gs —► G's is a co-

fibration in S; hence {FS}—+{F'S} is also a cofibration.

The proof of CM3 for fibration is immediate from Definitions 4.5 and 4.6.

6. Proofs of CM4 and CM5. In this section we reduce CM5 and CM4 to

more concrete factoring and lifting axioms, which are proved in §§7-8.
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First we show that it suffices to prove the factoring and lifting axioms for

level-fibrations (4.5), namely

Any map in tow-S can be factored as a cofibration followed

F(i) by a trivial level-fibration (i.e. a level-fibration which is also a

weak equivalence).

. Any map in tow-S can be factored as a trivial cofibration

followed by a level-fibration.

Cofibrations have the left lifting property with respect to

trivial level-fibrations.

Trivial cofibrations have the left lifting property with respect

to level-fibrations.

Indeed, CM5 follows from F(i) and Z^ii), while CM4(ii) is a straightforward

application of Definition 4.6 and Z,(ii). Then to prove CM4(i), we take the given

lifting problem in tow-S

A->E

(using Roman letters for objects of tow-S in this proof only), in which A —► X

is a cofibration and E —> B is a trivial fibration, and factor E —*■ B by F(i)

into E —► y —* B, where  Y —► B is a trivial level-fibration and E —♦ Y is a

cofibration, which is trivial by CM2.  Then in the following diagram

the dotted arrow X —> Y exists by Z,(i), and the dotted arrow Y —* E exists

by CM4(ii). Their composite is the desired lifting X —* E.

Next, to make the proofs easier, we will modify F(ii) and Z,(ii) slightly.

6.1. Definition.   A map in tow-S is a level-trivial cofibration if it has a

level representative {Xs —► Ys} such that for each s, Xs —* Ys is a cofibration

and an s-equivalence.

Clearly a level-trivial cofibration is a trivial cofibration

We now replace F(ii) and Z,(ii) by the following statements

a ., Any map in tow-S can be factored as a level-trivial

cofibration followed by a level-fibration

, Level-trivial cofibrations have the left lifting property

with respect to level-fibrations.
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and observe that it suffices to prove F(i), F(ii)', Z,(i), and Z-(ii)'.  For it is clear

that F(ii)' implies F(ii); and Z,(ii) follows from Z,(ii)', F(ii)', L(i), and CM2

(the proof is similar to the proof of CM4(i), above).  The factoring properties

F(i) and F(ii)' are proved in §7, while the lifting properties Z-(i) and Z.(ii)' are

proved in §8.

7.  Proof of factoring properties F(i) and F(ii)'.  In this section we prove

that any map in tow-S, {Xs}—> {Ys}, can be factored

as {Xs} -*{Z,} -* {Ys} with {Xs} —► {Z,} a cofibration

and {Zs} -+ {Ys} a trivial level-fibration (4.5); and

,       as {Xs} -*• {Zs} -y { Ys] with {Xs} -*■ {Zs} a level-trivial

cofibration (6.1) and {Zs} —*■ {Ys} a level-fibration.

The proof consists of factoring in an appropriate way each level of a level repre-

sentative of {Xs} —► {Ys} and then modifying the result to fit Definition 4.5.

We shall use the following generalizations of the factoring and lifting prop-

erties for simplicial sets.

7.1. Lemma    Given an integer N>0 and a map X—► Y in S, then

there is a factoring X —► Z —► Y such that X —» Z is a cofibration and

N-equivalence, and Z —*■ Y is a fibration and co-N-equivalence (4.4).

7.2. Lemma   Given an integer N > 0 and a solid arrow diagram in S

A->F

->5

where A —> X is a cofibration and N-equivalence, and E —* B is a fibration

and co-N-equivalence (4.4), then the dotted arrow exists.

We now prove F(ii)'; the proof of F(i) is similar, using the ordinary

factoring and lifting axioms for S instead of Lemmas 7.1 and 7.2.  Let {Xs}

—► {Ys} be the given map in tow-S, which we can assume (2.2) has a level

representative {Xs —► Ys}. By Lemma 7.1 factor each level into Xs —► As —►

Ys, with Xs —*■ As a cofibration and s-equivalence, and As —*■ Ys a fibration

and co-s-equivalence.  By Lemma 7.2 the arrow ^4i+1 —► As exists in the fol-

lowing diagram:

Xs+1 -^,+ 1 ->Ys+l

J
*c-* K-> Y,s s s

The problem now is that {As} —>• { Ys} need not be a level-fibration because

^4i+1 —* As xY¡ Ys+X is not in general a fibration, so we must modify the

middle terms.   Let Z0 = A0, and assume by induction that Z0, • • •, Zs_x
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have been defined to replace A0, • • •, As_x, so that the pull-back condition is

satisfied through level s -

■ Bs into As

2. Let BS = ZS_X

,-+Bs where As

Ys and by Lemma 7.1 factor

Z   is an s-equivalence and cofi-
i-i

bration, and Z. —► Bs is a co-s-equivalence and fibration:

X.
s-l

■* A
iN*.

-*Z
s-l

s^
».

■* Y.

■* y
s-l

Then {Zs —► Ys} is a level map satisfying Definition 4.5, and {Xs —► Zs} is

a level map satisfying Definition 6.1, as desired.

Proof of 7.1.   Essentially we just apply the well-known Moore-Postnikov

factorization of a map. In detail, factor X —*■ Y into X —► A —* Y, with

X—+A a trivial cofibration and A —» Y a fibration. Then factor A —► Y into A —+B —*

y where B is the (N- l)st Moore-Postnikov "part" of the fibration A —► Y (see [4, p. 34],

which contains the unneeded hypothesis that A and Y are connected Kan

complexes). Thus A —► B is a (fibration and) A-equivalence, and B —► Y is

a fibration and co-A-equivalence.  Finally, factor A —► B into A —> Z —> B

with A —► Z a cofibration and Z —* B a trivial fibration.  Clearly X —► Z

—► y has the desired properties.

Proof of 7.2. Because A —*■ X is an A-equivalence, there is no obstruc-

tion to lifting the A-skeleton, A U XN. Because E —> B is a co-A-equivalence,

there is then no obstruction to lifting the rest of X¿

m

and

8. Proof of lifting properties Z,(i) and Z,(ii)'. In this section we prove that

cofibrations have the left lifting property with

respect to trivial level-fibrations (4.5),

my
level-trivial cofibrations (6.1) have the left lifting

property with respect to level-fibrations.

The proofs are similar, although Z-(i) is more technical. In both cases the plan

is to construct the lifting level by level.  Given a level diagram representing the

lifting problem

A.->E.

i     i
* B.
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■ Es such thatwe want to find a monotonie function p and maps Xp,s-,

{Xp(S) —>ES} defines a level map from a subtower of {Xs} to {Es}, i.e. the

following diagram commutes

lp(»)
-*E.

X_ ■*E.
p(s-l) "s-l

and the map is a lifting, i.e. the following diagram commutes:

VW
*E.

lP(s)
*B.

We first do the easier Z,(ii)'.  Given the following diagram in tow-S

I
{X,}

I
with {As} —» {Xs} a level-trivial cofibration and {Es} —► {Bs} a level-fibra-

tion, it is not hard to see that we can assume that we have a level diagram

■+B.

■*B.

such that for each s, As —*■ Xs is a cofibration and x-equivalence (6.1), and

Es —+ Bs is a fibration and co-A(s)-equivalence (4.5) for some integer N(s).

To construct the lifting to E0, let p(0) = 7V(0).  Then by Lemma 7.2

the dotted arrow exists in the following diagram:

*P(0)

>(0)

^o

+ B„

For the inductive step, assume that the map Xp^s_xy —> Es_x has been

defined.  Let p(s) = max(p(s - 1) + 1, N(s - 1), N(s)). Define E's = Bs xBsl

Es_ j ; from Definition 4.5 we know that Es —*■ E's is a fibration.  By universal-

ity the map Xp^ —*■ E's exists in the following diagram:
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Now since the fibration Es_x —*BS_X is a co-A(s - Inequivalence, so is

E's —► Bs; and hence, since Es —► Bs is a co-AYs)-equivalence, Es —* E's is a

co-p(s)-equivalehce. Thus the dotted arrow in the above diagram exists by

Lemma 7.2. Note that it was necessary to lift Xmtsy first to E's in order that

Xp(s)~+Es be compatible with Xp(s_x)-+Es_x.

For I(i) we must construct the maps Xp,sy —> Es by skeleta Xp^sy

i.e. we will find compatible maps Ap(s) U X^(s) —* Es+m, Ap(s) U Xp(s) -+

Es+m-1 » * * *. ¿p(s) u *Hs) -* E, and finally extend to Xp(s) — Er To

insure, moreover, that Xp(S-,—*Es is compatible with Xp,s_X)—*ES_X  we

must, for each skeleton, first lift to an appropriate pull-back as in the proof of

Z,(ii)', above.

We will need two lemmas. The first establishes sufficient conditions for

lifting skeleta, while the second shows how to choose a nice enough level repre-

sentative of a trivial level-fibration.

8.1. Lemma Let N be a nonnegative integer, and consider the following

solid arrow diagram in S, where A —*■ X is a cofibration, and E —► B and

E' —► B' are fibrations (we use Xr to denote the r skeleton of X, with

X~1  the empty space):

A ux^-1->E-►£'

**          i t
A\jXN-► B-► B'

Then the dotted arrow exists if

(i) N = 0 and the image of tt0B in it0B' is contained in the image of

tTqE' in ttqB';

(ii) N> 1 and for each choice of basepoint in E, the map %_1(F, *)

—+ ttn_x(F, *) is the zero map, where F and F' are the fibers of E —*■ B

and É —► B' over the basepoint.

Proof.  For N- 0 the construction of the lifting is straightforward.

For N> I  condition (ii) implies that there is no obstruction to lifting to Ë.
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8.2. Lemma  A trivial level-fibration in tow-S has a level representative

{Es —► Bs} which satisfies Definition 4.5 and the following conditions:

(i) ir„(Fs+ p*)—* n„(Fs, *) is the zero map for each n, s > 0 and

every choice of basepoint in Es+1  (where F¡ is the fiber of E¡—► B¡ over

the basepoint), and the image of n0Bs+ x  in ttqBs is contained in the image of

«qEs in *oBs-

(ii) Let E'S = BS xBrEr and E's+X =BS+X xBr+l Er+l, for r>0,

s > r + 2. Choose a basepoint in Es+ x and let G¡ be the fiber of E¡ —*■ E'¡.

Then ít„(Gí+j, *) —♦ ir„(Gs, *) is the zero map for each « > 0, and the

image of n0E's+ x in tt0E's is contained in the image of ir0Es in n0E's.

The proof is postponed until the end of the section.

We can now prove the lifting property Z,(i). where we are given a diagram

in tow-S

{AA -uy

w- «uSJ *    Í'

in which {As} —♦ {Xs} is a cofibration and  {Es} —*■ {Z?J is a trivial level-fi-

bration. As before, we can assume that in fact we have a level diagram
■*E_

I       J
i s

in which each As —*■ Xs is a cofibration and Es ■ Bs satisfies Lemma 8.2.

To simplify notation, we write X^p for A, U Xrs. For this proof let N(s) be

an integer greater than N(s — 1) + 2, such that Es

lence; A(-l) = 0.   Let p(s) = s+N(s)+ 1.

B. is a co-A(s)-equiva-

First, for s = 0, we construct X.

for fc
P(0)

E0 in stages X%L-*E.
PÍO) -p(0)-k-l

0,1,

A

p(0) — 1 = A(0). Consider the following diagram:

PÍO)
'P(O) 'P(0)-1

B_ B.

i o

i     I
B, —► BnPÍO) "PÍO) "PÍ0)-1

By Lemmas 8.1 and 8.2 (i) the desired liftings Xfyy —► Ep^_k_x  exist.

Further, by Lemma 7.2 and the choice of N(0), we can extend X$ffi) —

to Xp(0)—*E0.

v<fc)
Ap(s

Now assume by induction on  s  that we have compatible liftings

.1}—>Fp(i_1)_fc_j  for fc = 0, !,•••, p(s- l)-s=N(s- 1) and

Xp(s-i)~*Es-i- We wish t0 construct maps XSffa —* Ep{s)_k_x  for
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fc = 0, 1, • • • , p(s) - s — 1 = N(s) and XptS) —*■ Es, compatible with each

other and with the skeleta liftings for s — I. Define E',s\r by the following

rules:

E'pis)-r=Bpis)-r*Bp{s_x)_r_xEp{s-l)-r-l>    0 < r < p(s ~ 1) ~ S,

E'p(s)-r = Bp{s)-r *BS_X Es-V     P(s - 1) - S < r < p(s) - S.

Then there are natural liftings Xpr^s) —► Ep^_r for 0 < r < p(s — 1) - s

mi Xpís) ~* EPis)-r for P(s- l)-s<r< p(s) - s, since Xpr¡s) maps

to Ep^_x)_r_x  through Xprfs_xy and Xp^ maps to Es_x  through

Xp,s_xy We wish to construct the dotted arrow in the following diagram

yik-l)

APis)

*Bp(s)-k-l

where we are assuming by induction on fc that XpKz1^ —*Ep,sy_k has already

been constructed (there being nothing to prove for fc = —1).    There are two

cases.  If 0 < fc < p(s - 1) - s, we have the situation of Lemma 8.2 (ii) and

the lifting exists by Lemma 8.1.  Suppose therefore that p(s — 1) - s < fc <

p(s) — s.  In order to apply Lemma 8.1 we want, for every choice of basepoint

in Epis)-k> t1131 «k-iiGpW-k' *)~* «k-iiCpW-k-i' *) be zero, where

Gt is the fiber of E¡ —>E'¡.  First note that the fiber H of E'p(s)_k_x —*■

Bp(s)-k-i    *s tne same as tfte fiber °f ^s-i —*Bs-i  and m particular

7rfc(ZZ, *) = 0 since k>N(s- 1).   Now since   ^k-x(Fp^_k, *) —►

"'fc-i(^p(s)-fc-i> *)   's zero by Lemrna 8.2, it suffices to show that

nk-i(Gp(s)-lc-i> *) ""* *k-i(Fp(s)-k-i> *) is monomorphic. For this we

apply the Five Lemma to the following diagram (* and subscripts p(s) — fc — 1

are suppressed):

7TfcZZ=0

I
E'

I ' "I '-{
«kE-***?->%-!?->«k-lE->"k-lE'

nkE->HB->nk_xF->wk_tE->*k_xB

Having constructed the skeleton lifting X¥Âf~*~l* —*Ee the dotted arrow

finally exists in the following diagram by Lemma 7.2 and the choice of p(s):
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jKp(s)-s-l)
-*P(«) s-1

Proof of 8.2.  We start with any level representative {Es —► Bs} of tlie

trivial level-fibration which satisfies Definition 4.5.  By the definition of weak

equivalence (4.3) and level-fibration (4.5) we can, by taking a subtower, assume

that for each s > 0 the dotted arrow exists in the following diagram

*<>**+1

"o^s
-ff«A

and for each n > 1  and each choice of basepoint in Es+ x  the dotted arrow

exists in the following diagram: •

"Ärl'*)-""AH'*)

ttJBs, *) - *m&* *)

A diagram chase in the long exact sequence of homotopy groups of the fibra-

tions Es —► Bs shows that n„(Fs+2, *) —► "'„(Zv *) is the zero map for

each s > 0, n > 0, and basepoint in Es+2. The subtower {E2s —► B2s}

then satisfies condition (i). A lengthy diagram chase now shows that condition

(ii) will be satisfied as well if one takes the subtower {F4i —► B4S}-  ^v tne

comment following Definition 4.5, the final subtower still satisfies Definition 4.5.
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