
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 201, 1975

LARGE MODELS OF COUNTABLE HEIGHT

BY

HARVEY FRIEDMAN(l)

ABSTRACT.   Every countable transitive model  M of   ZF   (without

choice)   has an ordinal preserving extension satisfying   ZF, of power

^MnO/i"   An aPPucation t0 infinitary logic is given.

Any transitive model M of ZFC with countably many ordinals must be

countable.  The situation is quite different when the axiom of choice is dropped.

The first examples of transitive models of ZF of power  Wj   with count-

ably many ordinals were constructed by Cohen.  Later Easton, Solovay, and Sacks

showed that every countable transitive model of ZF has an ordinal-preserving

extension satisfying ZF, of power   2".   We prove here that every countable

transitive model M of ZF has an ordinal preserving extension satisfying ZF, of

power 3Mno„.

Theorem 1 is probably in the folklore.  However, the proof of its first part

is apparently not standard.  The method used in that proof and the combinatorial

construction of §2 form the crux of the proof of the main theorem.

1. Adding subsets of cj03.  Let  w = {0, 1, 2, • • •}, and identify n with

{0, 1, ••-,«- 1}.  Take x<w = U„ X*. D C (w<w)" is dense if (Vjc G (<o<w)")

(ly E D)(\/i E n)(x(i) C y(i)). D C (o<w)<w  is dense if (V* G (o«")«")

Qy E D)(y/i E dom(x))(x(/) C y(i)).

Fix a countable transitive M (= ZF.  An x E (cou)n  is M-generic if for

all dense D C (cj<w)"   with DEM, (3y E D)(Vi E n)(y(i) C x(i)).  An x E

(ww)w  is M-generic if for all dense D C (<o<w)<w  with DEM, (3y E D)

(vz G dom(y))(y(i) c x(i)). An x C cow  is M-generic if any finite sequence

of distinct elements of x is .M-generic, x is infinite, and  (V.V E co<w)(3z E x)

(y C z).  Let Ma be the sets in M of rank < a, for all a E M.   For sets x,

let Ma(x) be given by M0(x) = TC({x}), Ma+1(x) = {y: y E Ma  or y  is

first order definable over  (Ma(x), e) with parameters allowed}, Mß(x) =

Utt<u Ma(x), for a, p E M, p a limit. Take M(x) = Ua6M Ma(x)-
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Lemma 1. If x C co" is M-generic and countable, then x is the range of

some M-generic y G (cou)u.

Proof.   Let D0, Dx, • • •  be an enumeration of all dense D C (cj<a,)<tJ

with D E M., We wish to define an enumeration x0, xx,- • •   of x such that

(x0, xx,• • •)  is M-generic.

Let y0, yx, • • •  be any fixed enumeration of x.   For / G cj, we will

define jc0, • • •, x¿, where b is a strictly increasing function of /.   Take i0 =0,

and x0 = y0.  Suppose x0, • • •, x;. have been defined and are distinct elements

of x   If / is odd, set i¡+1 = i} + 1, and x¡       to be the first element of

y0, yx, • • •  which has not appeared.

If / is even, let D = Djj2, k = i¡.  Let E = {r t k + 1: r E D,

dom(r) > k}. Then E C (co<u)k+1   is dense.  By the M-genericity of (x0,

" •, xk), let s G F have s(i) C x¡, i < k.   Take  t E D with s C t, and let

t = (r0, • • •, fp), k <p.   Extend *0, • • •, xh to x0, • • •, xt. ••• ,xp,so

that  t¡ C x^ 0 < í < p, and the x¡ are distinct elements of x.

Lemma 2. If x E (cow)"  is M-generic, y E (uw)n, x(i), y(i) differ

finitely, for i < n, then y is M-generic.

Proof. This is well known, by symmetry.

Lemma 3. If x E (cow)" and for each n, x \ n is M-generic, then there

is an M-generic y G (cow)"  suchthat (Vn)(y(ri) and x(n) are finitely different).

Proof. Let D0, Dx, • • •  be an enumeration of all dense D C (o)<CJ)<CJ

with DEM.   Let x = (x0, xx, • • •)•  We wish to define z. y = (yQ, yx, • • •)

which is M-generic, such that xn, yn   differ finitely.

For / G w, we will define y0, • • •, yr. Take i0 = 0, ^0 = x0.  Suppose

y0,' • •, y¡   have been defined, and each y¡, x¡ are finitely different.  Let  i¡ = k,

and set E = {r I k + 1: r E Df, dom(r) > k}. Then F C (w<tJ)fc+1   is dense.

By Lemma 2, (.y0, • • •, yk) is Af-generic, and so let s G F have s(i) C x¡,

i < k.  Take t E D¡ with s C r.  Let t = (t0, • • •, ip), Ä < p.  Define vk+1,

• • •, y    so that  t¡ C jf and y¡ differs finitely from jc,-, for k + 1 < i < p.

Set i/+j =p.

For x G co", let x be the set of all y E cj"  which are finitely different

from x.

Let us call Qc0, Jclt* • •) M-generic if there is a sequence (.y0, yx, • • •)

with .y,. G jcj, which is M-generic.

Lemma 4.   (3c0,3cx, • • •) is M-generic if and only if, for each n, (x0, • • •,

xn) is M-generic.
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Proof. If: Apply Lemma 3 to  (x0, Xj,- • •) = x.  Only if: By Lemma 2.

Lemma 5. If x E (co")w  is M-generic, then M(x) f= ZF.

Proof. This is well known.

Lemma 6. If M(x) \= ZF, y E M(x), then M(y) |= ZF.

Proof. This is well known.

Theorem 1. Let M be a countable transitive model of ZF. If y C co"

is M-generic then M(y) N ZF. If for each n, (x0, • • •, xn) is M-generic, then

M((x0,xx,---)) f=ZF.

Proof. Let M be a countable transitive model of ZF, y C co", where

y is M-generic. The question of whether M(y) (= ZF  is absolute.  Hence if we

can show that  "M(y) |= ZF" holds in some Boolean extension of the universe,

we will have shown that M(y) (= ZF is in fact true.

We show that  "M(y) \= ZF" holds in any Boolean extension of the uni-

verse is which y becomes countable.  Argue as follows in the Boolean extension.

By Lemma 1, y  is the range for some M-generic x G (cou')u\  By Lemma 5,

M(x) \= ZF.  Since y G M(y), by Lemma 6 we have M(y) (= ZF.  We are done.

Now suppose that, for each «, (x0, • • •, xn) is M-generic.  By Lemma 4,

(x0, xx, - ' •) is M-generic, and so let x = (y0, yx, • • •) be an M-generic

sequence of representatives.  By Lemma 5, M(x) \= ZF.  Note that (x0, xx,' • •)

E M(x).  Hence by Lemma 6, M((x0, xx,' • •)) (= ZF. We are done.

Now fix Dm such that, for each « > 1, Dm enumerates all dense D C

(co<w)n such that DEM. An x E (co<w)" is m-M-generic just in case for

all p <m, (3 y G Z)pT)(VO(.yO') C x(i)).  (Assume m > I.)

Lemma 7. Let sx, • • •, sk E w<w, s¡ C & *-* i = j. Let m>\. Then

there are tx,' • •, tk G o)<u such that s¡ C t¡, and every sequence of distinct

elements of {tx, • • •, tk} is m-M-generic.

Proof. Left to the reader.

Lemma 8. There is a perfect tree such that any finite sequence of distinct

infinite paths is M-generic.

Proof. For each / we will define a set  T- C u>k, for some k. For / = 0,

set  T0 = {< >}.  Suppose  Tj has been defined, T¡ C cjk.  Suppose / is odd.

Set 7}+1 C cok+1, Tj+X =(sU {<jt, />}: (i = 0  or i = 1) & s G 7}}.

Suppose / is even, Tj C u>k.  Let / = 2m.   By Lemma 7, we can take

Tj+1 C to9, some q > k, so that  (Vs G 7}+1)(3r G 7})(r C s), (Vs G 7})
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(31 E Tj+ j )(s C t), and every finite sequence of distinct elements of T+ x   is

m + 1-M-generic.

Finally, let  T be the set of all s G co<u;   such that for some  t E (J/ T¡,

we have s C t.   It is easily verified that  T is a perfect tree.  Let x., •* •, Xt,

be distinct infinite paths through  T.   Choose / odd, q E co so that  F C co9,

and the x¡ 1 q  (which of course must be in  7^) are distinct. Then (xx  1 q,

• ' •, xk  1 q) is   «7-M-generic,   where   /  = 2m + 1.  Since / may be chosen

to be arbitrarily large, it is clear that for each m  there is a q  such that  (xx t q,

• • •, xk  1 c/) is m-M-generic.  Hence  (Xj, • • •, xk) is M-generic.

Corollary. If M is a countable transitive model of ZF, then there are

M-generic x C co" of power 2^, and hence x C cow  of power 2"  swc«

r«ar M(x) \= ZF.

Proof. Immediate from Theorem 1 and Lemma 8.

2. A combinatorial lemma.  For sets x, we say that y C p(x) is indepen-

dent just in case    0^=1 ± J^  is infinite, where « > 1, yj,* • •, yn  are dis-

tinct elements of y, and  4- yk = yk, - yk = x - yk.  In other words, any

nontrivial Boolean combination of the elements of y  is infinite.  Let x A y be

(x - 7) U (y - x).   Take x = {y: x A y is finite}.  For functions /, g with

domain an unbounded subset of X, write / ~ g for  (3 a < X)(V0 > a)

(/(0) = £(/3)). and write   [/] = {g: f ~ g}. Write //# for  (3a < XXV/5 > a)

Cf(0) * *(»)■
Let an  be of the set of multiples of the «th prime.  It is clear that {an :

0 < «} C P(co) is independent.  Let /: co —*■ co be one-one onto.

By transfinite recursion, we define sets Afa, B? and functions f¿, g?, for

all ordinals a, all one-one onto /: co —*■ co.  Below it will be convenient to sup-

press the superscripts.  Bear in mind that 0 is a nonlimit.

(1) fo=So= f> A0=B0 = co.

(2) 4 + 1: w -*■ Aa + l    is 8iven °y  /a + l(n) = {«*&)'■ k 6 flJ-

(3) Aa + X = {y: (3n)(fa+x(n) A y  is finite)}.

(4) Ba+X = {y:yEAa+x}. _

(5) ga+x: co ->Fa+j   is given by ga+x(n) = fa+x(n).

(6) Ax is the set of all functions g whose domain is the nonlimits y < X,

such that g(y) E By, g [ p E Aß  for limits p < X, and for some n, £(7) =

gy(n) for all sufficiently large y < X.

(7) /x: co -* ylx is given by fx(n)(y) = gy(n), for all nonlimits 7 < X.

(8) Bk = {[A] n^Ae AJ.

(9) gx: co -* Bx is given by #„(«) = [fx(n)] f\ Ak.
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We now let  Ca, Da, for  a < coj, be any transfinite sequence of countable

sets obeying

(a) C0 = D0 = co.

(b) Ca+X   is the closure of some infinite independent subset of  V(Da)

under finite symmetric difference.

(c) Da+X ={x:xECa+x}.

(d) Cx is a set of functions «  with domain the nonlimits y < X such

that (i) «(7) G Dy, (ii) h T ju G CM, for limits p < X, (iii) (\/g, h E Cx)

(g ~ h  or g/h), (iv) if g E Cx, h has domain the nonlimits 7 < X, «(7) G Dy,

h  1 pECß  for limits ju < X, and h ~ #, then A G Cx, (v) (3x C Cx)(x

infinite & (Wg, h E x)(g ± h -* g/h)).

(e) Dx = {[f] n Cx:fECx}.
We now fix 5 < coj, and show that for some one-one onto /: co —► co,

we have A^ = Ca, Z?£ = Da, for all a < 8.  It is convenient to assume that S

is a limit.

Let us call a class ZC of functions fm ¿J,, a < 8, special just in case there

is a fc such that

I.  Each f'a, g'a  is a one-one finite partial map from  co into  Ca, Da

respectively.

II-   ia- fa *£ 0}  contains only finitely many nonlimits.

III. f'a(n), g'a(n) are undefined if n > k.

IV. For each n, {a: g'a(n) is defined} is either finite or the union of a

finite set with {a: a < X}, for some limit  X < 8.

V. If fa(n) is defined, then f'Jn) E g'a(n) E Da, for a # 0.

VI. /o - g0-
VII. f'x(n) is defined if and only if g'Jn) is defined for all a < X.  If

f'K(n) is defined, then fx(n)(y) = gi(»), for ah nonlimits 7 < X.

VIII.  Suppose f'a+x(n)   is defined.   If m E an, g'a(m) is defined, then

g'Jrn) E f'a+x(n). If mtan,g'a(m) is defined, then g'Jrn) £ f'a+x(n).

XI-  If /á+i 9* 0.then ii(m) is defined for all m < fc

For classes ZC, ZC*  of partial maps f'a, g'a, a < S, K* extends K if every

f'a or ¿>a  °f K is contained in the corresponding   fa  or g'a  of ZC*. We also

let "K + fa(n) = y", or  "K + ga(n) = y", for « G co, a < 8, be the exten-

sion of K obtained by just extending the domain of fa, or ga, as indicated in

the expression.

Call K weakly special just in case there is a k such that I—VIII hold.

Lemma 1. Let K be weakly special, m E co, 0 < a < 8. Then for some y,

K + ga(m) = y is weakly special. If a = 0, then for some y, (K + ga(m) = y)

+ fa(m) = y is weakly special.
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Proof. Assume g'a(m) is undefined in K.   Let rx, • • •, r    be a one-one

enumeration of the arguments r at which /^+1   is defined in K, with m E ar;

let sx,- ' -, sq  be a one-one enumeration of the arguments  s at which f'a+x

is defined in K, with m £ as. Take

* - (O /á+iv*,)) n (1TKA, - /á+iM) •

By I, clearly x is infinite.  Let y E x, where  y  is not in the range of g'a  in

K.   Clearly ZC + ^(m) = J  is weakly special if a + 0, and  (ZC + g'a(m) = 7)

+ /á(m) = y is weakly special if a = 0.

Lemma 2  Zivery weaW^ special K can be extended to a special   K*.

Proof. Let K be weakly special.  Let ax, • • •, ar be an enumeration

of all a < 8   such that fa+l ¥=0   in ZC.   Then apply Lemma 1,  r(k + 1)

times, to define the g'a(m), all «1 < k.

Lemma 3. Let K be special, m E co, a < 8.  Then there is a special K*

extending K such that g'a(m) is defined in K*.

Proof.  First apply Lemma 1.  Then apply Lemma 2.

Lemma 4. Let K be special, n E co, a < 5.   Then there is a special K*

extending K suchthat fa+x(n) is defined in K*.

Proof. By Lemma 3, let K' be special, K' extending K, so that g'a+x(n)

is defined in ZC'.  We may assume ga+l(n) = x  in ZC', and fa+x(n) is unde-

fined in ZC'.  Clearly x E Ca+X.  Let y = {r: ga(r) is defined in ZC'  and

r E an}, z = {s: ga(s) is defined in K' and s £ an}.  Let w E x be such

that y C w, z n w = 0.  Let K" = K' + fa+x(n) = w.  Then ZC" is weakly

special.  Choose a special ZC*  extending ZC" by Lemma 2.

Lemma 5. Let hx,''m,hr be functions such that each particular one is

either finite or finitely extends an element of some C ,p a limit < X. Assume

their domains are contained in the set of nonlimits 7 < X. Assume the above

applies to g, except that < X is replaced by < X. Assume  Rng(#) n Rng(«f)

= 0 for all i.  Let x E Dx, hx, • • •, hr £ x.   Then

(3hE x)(g C « & Rng(«) n Rng(h¡) = 0, for all i).

Proof. By induction on limit ordinals X.  Let  X = co.  Choose any

h* E x.   Clearly g is finite, and each h¡ is either finite or eventually disagrees

with h*. There is an   n so large that  Dom(g) C «, and  (Dom(h¡) C «  or
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ht(m) ¥= h*(m) for all m > «). Take h(m) = h*(m) for m > «; h(m) E Dm

- U,- Rng(A,) for m < n, m fc Dom (g); and «(«7) = g(m) for «j G Dom (g).

Then h E x with the desired properties.

Suppose we have shown the lemma for all limits X' < X, all g, hx,• • •, hr,

x.   Now fix g, «j, • • •, hr, x as in the hypotheses.  Choose any h* Ex.   Let

ß < X be so large that  Domfe) C ß, and  (Dom^.) C 0 or h¡(y) =¿ «*(7), all

nonlimits ß < 7 < X).  We can assume  X > co, and that ß is infinite.  Let

ß = X' + p, p E co, X'  a limit < X.  If £ t  X' G Cv, then take «(7) = g(y),

for 7 G Dornig); «(7) = h*(y) for 0 < 7 < X; and «(7) E Dy - \J¡ Rng(h¡)

for X' < 7 < X' + p and 7 £ Dom(g) (where 7 is always a nonlimit).

If g r X' £ CKi, then g  r X', /ij  t  X',***, «r t X'  satisfies the hypo-

theses of the lemma for  X'.  Hence by induction hypothesis, choose g C g* E Cx,

so that  Rng(g*) n Rng(«;) = 0, for all i   Finally take h(y) = g*(y), 7 < X';

h(y) = h*(y) for 0 < X; and «(7) G Dy - \J¡ Rng(«f) for X' < 7 < X' + p

(where 7 is always a nonlimit).

Lemma 6. Z,er hx," •, hr be functions such that each particular one is

either finite or finitely extends an element of some C ,p a limit < X. Assume

the above applies to g, except that < X is replaced by < X. Assume  Rng(g)

n Rng(«f) = 0, for all i  Let /!„,•••,/*, be a nonrepeating sequence of limit

ordinals < X, 0 < s, and assume that xQ, • • •, xs are such that Xj E £>M., and

ht T Pj Ç. Xj.   Then

(3h)((\/j)(h 1 pj E CM.) & g C h & Rng(«) O Rng(h¡) = 0, for all i).

Proof. Apply Lemma 5 successively s + 1  times, for X = p0, • • •, ps,

after arranging p0,* • •, ps in increasing order. Piece together the s + 1   func-

tions so obtained.

Lemma 7. Let K be special, n E co, X a limit < 8.  Then there is a spe-

cial ZC* extending K such that fx(n) is defined in ZC*.

Proof. By Lemma 3, let K' be special and extend K, so that g'x(n) is

defined in ZC'.  We may assume g'x(n) = x in K', and /¿(«) is undefined in ZC'.

Let k be as in the definition of ZC' being special. Then n < k.  Define

h¡, for j < k, i # n, to be the partial function on X given by «,-(7) ■=* g'y(i), in

ZC', for nonlimits 7 < X.  Let g be the partial function on X given by g(y) —

g'y(n), for nonlimits 7 < X.  Let p0, • • •, ps list, without repetition, all limits

p < X suchthat (3i')(g¿(i) is defined in ZC'  and /¿(/) is not).  Choose x0,

• ••, xg such that g'ß.(i) =£ xy, for /* =£ «, and g¿.(") = */ if defined in K',

and Xj E Dß .
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It is easily seen that g, («,->, (pj), <Xy> obey the hypotheses of Lemma 6

for X.  Hence we can choose «  such that h l p;- G Xp g C h, and  Rng(«) D

Rng(f,) = 0, for all z.

Let ZC" be the same as ZC'  except that /^(«) = h \ p, g'Jri) = [h \ p],

g'y(n) = «(7), and /0(«) = «(0), for limits p < X, nonlimits y < X, in ZC".

Then K" is weakly special.  It should be noted that to verify condition VIII for

ZC", one uses condition IX for ZC'.

Finally set ZC*  to be any special extension by ZC", by Lemma 2.

Lemma 8. Let K be special, y E Da, a < 8.   Then there is a special ZC*

extending K such that g'a(m) = y in ZC*, for some m G co.

Proof. Assume that y £ Rng(g¿) in ZC.  Let rx, • • •, rp be a one-one

enumeration of the r suchthat fa+x(r) is defined in K with y E fa+x(r);

let sx,"',sq  be a one-one enumeration of the s  suchthat fa+x(s) is defined

in ZC with y <£ fa+i(r)-  Let x = M, ar. n (f|,(co ~as.)). Then x is in-

finite.  Choose m E x with m £ Dom(ga) in ZC.   Let ZC' = ZC + g'Jrn) = y,

if a * 0, ZC' = K + g0(m) = y + f'0(m) = y if a = 0.  Then K' is weakly

special.  Extend to a special ZC* by Lemma 2.

Theorem 2 Let Ca, Da, for a < 8 < coj, be countable sets obeying

a - e.   Then there is a one-one onto f: co —► co such that Ca = A^, Da = B?,

for all a < 8.

Proof. By Lemmas 3, 4, 7, 8, let K0, Kx, • • •  be a sequence of special

ZCn  such that (i) each ZC„+1   extends ZCn, (ii) for all a < S, m E co, there

are «, y such that f'Jm) = y in Kn, (iii) for all a < 8, m E co, there are

«, y such that g'a(m) = y in Kn, (iv) for all a < 8, y E Da, there are n, m

such that g'Jm) = y in Kn.

Let /a(m) = y if and only if (3ri)(f'Jm) = y in Kn).  Let gjm) = y

if and only if (BhX^îwî) = y in ZC„). Take / = /0. We claim that Ca =

Afa, Da = B{,, fa = f[, ga = g£, all a<8.  It suffices to prove that /, fa,

ga, Ca, Da  obey conditions (l)-(9), with Aa, Ba  replaced by Ca, Da, all

a < 8.  Conditions (l)-(5), (7)-(9) are clear.  We now establish condition (6).

Suppose that g has domain the nonlimits y < X, with g(y) E Dy, g t p

E CM  for limits p < X, and g(y) = gy(m) for all sufficiently large y < X.  Let

g* = fjrn). Then g*(y) = gy(m), all nonlimits 7 < X, and g* E Cx. Hence

g G Cx, since g ~ g*.

Suppose conversely that g E Cx.  Since gx is onto, let m, g* be such

that fx(m) = g*, g* ~ g.  Then £* G Cx, g*(y) - gy(m), all nonlimits 7 < X.

Hence g has domain the nonlimits 7 < X, with g(y) E Dy, g t p G C*M  for

limits ju < X, and #(7) = gy(m) for all sufficiently large 7 < X. We are done.
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Let  |x|  be the von Neumann cardinal of x.   Let 30 = co, 3a+1 =

|23"|, 3„ = supa<x 3a.

Lemma 9.  Let E be a set partitioned by {En}, 0 < n, and let Fn,0 < n,

be a collection of functions with domains En, whose ranges are, for fixed n,

mutually disjoint. Assume that co < |F0|, \Fn\ < \Fn+x\.  Then there isa set

G of functions with domain E, such that

fEG-+ftEnEFn,      \G\=  U \Fn\,
n

(f*g&f,gEG)-+ (3«)(Vx)(/(x) = g(x) -*Qi< n)x E £,.)),

and for each n, there is a Gn C G of power  \Fn\ suchthat (/#£&/, g G Gn)

-> (f(x) = g(x) -+ (3/ < n)(x E E,)).

Proof.  Left to the reader.

Theorem 3.  There are sets Ca, Da, a < coj, which obey (a)-(e), such

that icy--u)j-a«.

Proof. We will construct sets Ca, Da, a < coj, obeying (a)-(e), such

that  \Ca\ = |Z>a| = 3a, and for limits X' < X, there is a subset of Cx of power

2X> such that any two distinct elements disagree beyond X'.

Suppose the  Ca,Da have been so defined, for a < ß. Define  Cß+X   to

be the closure under finite symmetric differences of some independent subset of

?(Dß) of power 2ß+ x, and Dß+X   to be the set of equivalence classes of ele-

ments of Cß+X   under finite symmetric difference.

Now suppose that the  Ca, Da  have been so defined, for all a < X < coj.

If X = co, take E = co, En = {«}, and Fn = {/: Dom(/) = En, Rng(/) C Dn},

and choose G according to Lemma 9.  Set  Cu = {g: Dom(g) = co  and / ~ g

for some / G G}. Take D„ = {[g]:gE CJ.

Now assume that X = p + co, some limit p. By an argument using Lemma 9,

similar to the case X = co, it is easy to construct  Cx, Dx of power 3^, pre-

serving (a)-(e), such that there is a subset S of Cx  of power 3^, any two

distinct elements of which disagree byond p.  Suppose X' < p. Then there is a

subset  T of CM  of power 3 x,, any two distinct elements of which disagree

beyond X'.  By combining 5, T we get a subset of Cx  of power 3x,, any two

elements of which disagree beyond  X'.  This evidently holds for any limit X' <X.

Finally assume X is a limit of limits.  Let X0 = co, X„ < X„ + j < X,

0 < n, and lim„ X„ = X. Take E to be the set of nonlimits < X, and En  to

be the set of nonlimits X„ < y < X„ +1.  Let F'0  be any infinite subset of Cw

any two distinct elements of which have disjoint ranges.  For 0 < n, let F'n be

any subset of Cx    of power 3 x        any two distinct elements of which dis-
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agree beyond  X„_j.  Finally, take Fn  to be the restrictions to En  of elements

off;.
It is clear that Lemma 8 applies to E,En, and Fn.  Let G be the result of

applying that   lemma. Take  Cx = {g: Dom(g) = E, G(y) E Dy, g t pE Cß,

all nonlimits y < X, limits p < X, and  (3/ G G)(f ~ g)}, Dx = {[g] : g E Cx},

Then  Cx, Dx  preserve (a)-(e), and have power 3 x.

Assume X' < X.  Let  X„ < X' < X„+1.  Through use of the Gn+X C G

of Lemma 9, we see that there is a subset S of Cx  of power 3X       , any two

distinct elements of which disagree beyond  X„+1.  By induction hypothesis, there

is a subset  T of Cx        of power 3X,, any two distinct elements of which dis-

agree beyond  X'.   By combining  S, T, we obtain a subset of Cx  of power 3^r

any two distinct elements of which disagree beyond X'.

3. The models of ZF.   Fix a countable transitive model M of ZF, M n

On = X.  Let x = {x0, xx, • • •}, where each (x0, • • •, xn) is M-generic. We

begin by citing trivial generalizations of Theorems 2 and 3.

For one-one onto /: co —> x, define Afa, Z?{, f£, g?, a < X, so that f£ =

gr0 = /, AfQ = BfQ= x, and clauses (2)-(9) of §2 hold.

Lemma 1.  Suppose Ca, Da, a < X, are countable sets such that C0 =

DQ = x, and Ca, Da  obey clauses (b)-(e) of §2.   Then for some one-one onto

f: co —► x we have Ca = A^, Da = Z?£, for all a < X.

Let x be an infinite set.

Lemma 2   There are sets Ca, Da, a < X, C0 = D0 = x, obeying clauses

(b)-(e) o/ §2, such that  \CJ = |Z>J > \.

For sequences of sets <Sa>, a < X, we define M[<5'a>]   as follows. Take

M0[(Sa)] = 0. Mß+x[iSa)] ={y:y= TC({Sß}) or y E Mß or y  is first-

order definable over  (Mß [(Sa)], E) with parameters allowed}, Mß [(Sa)] =

Uß<ß Mß[(Sa)], for ß < X, m a limit < X. Take M[(Sa)] = \Jß<x Mß[iSa)].

Lemma 3. Suppose ÍSa), a < X, is first-order definable over some M(x) (=

ZF, with parameters allowed.   (Hence, e.g., each Sa E M(x).) Then M[iSa)] f= ZF.

Proof. This is standard.

Theorem. Every countable transitive model M of ZF has an ordinal pre-

serving extension satisfying ZF of power 3Mn0/J.

Proof. Fix x to be the closure under finite symmetric differences of some

M-generic subset of co". By Lemma 2, let Ca, Da, a < X, C0 = D0 =x, obey

clauses (b)-(e) of §2, such that   |CJ =  \Da\ > 3a.   We will establish that

M[(Ca)] t= ZF.



LARGE MODELS OF COUNTABLE HEIGHT 237

As in the proof of Theorem 1, the question of whether M[(Ca>]  (= ZF  is

absolute. Thus if we can show that  "M[(Ca)]  |= ZF" holds in some Boolean

extension of the universe, we will have shown that M[<Ca>]  \= ZF  is in fact true.

We show that  "M[<Ca>]  (= ZF" holds in any Boolean extension of the

universe in which Ua<\ Ca  becomes countable.  Argue as follows in the Boolean

extension.  By Lemma 1, choose a one-one onto /: co —> x such that  Ca = A^,

Da = B£, for all a < X.  By Theorem 1, M(f) |= ZF.

Note that  (Ca) is first-order definable over M(f).  Hence by Lemma 3,

•MT<Ca)]  1= ZF, and we are done.

In more technical terms, what we have shown is:

Corollary 1. Let M be a countable transitive model of ZF, and suppose

x is the closure, under finite symmetric differences, of some infinite set of func-

tions on co that are mutually Cohen generic over M.  Furthermore, let Ca, Da,

a E M, C0 = D0 = x, obey clauses (b)-(e) of §2.  Then M[(CJ]  |= ZF.

4. Hanf numbers.  In Barwise [1] it is shown that the Hanf number of  LA

is 3^n0n, for all countable admissible sets A.   Is this theorem true for all admis-

sible A  with countable A n Onl

We had answered this negatively by showing that for any countable admis-

sible set A, there is an ordinal preserving admissible extension B such that the

Hanf number of  LB  is > 3^ n0n.  Furthermore, B can be taken to be the

least admissible set B D A  with x E B, for some x C cow  depending on A.

The proof had no connection with the methods introduced in this paper. The

proof does not construct B (= ZF.

Leo Harrington has shown, by an application of the methods introduced here,

that every countable transitive model M t= ZF has an ordinal preserving exten-

sion N |= ZF  such that the Hanf number   LN is greater than a +.  (Also, if

t= ZF is replaced by admissibility.) This is an easy consequence of the following.

Corollary 2 Let M be a countable transitive model of ZF, and sup-

pose x is the closure, under finite symmetric differences, of some infinite set of

functions on  co that are mutually Cohen generic over M.   Then M(P(x)) H ZF.

Proof. The proof is the same as that of Corollary 1, except that the com-

binatorial lemma of §2 is replaced by: the closures of any two countable atomless

Boolean algebras of subsets of an infinite set, under finite symmetric difference,

are isomorphic.

Corollary 3. Every countable transitive model M of ZF has an ordinal

preserving extension N of ZF such that the Hanf number of LN is greater

than 3 ,.
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Proof. By Corollary 2, we may choose x  of power c so that M(V(x)) =

N f= ZF. There is a sentence <p in   LN whose models have the following

apparatus: (i) a model (A, R) of the axioms of admissibility, (ii) for each

a E A  such that  (A, R) |=  "a is an ordinal," an isomorphism between (A [ a,

R T a) and some linear ordering la  on a subset of x, (iii) la  is well ordered

with respect to all subsets of its field that are in N.

Since  V(x) E N, clearly (iii) requires that each la is a well ordering.

Hence (A, R) must be well founded, and of height at most c+.  Clearly c+   is

possible by taking (V(c+), E). The maximum cardinality of models of <p is

therefore  3 ., and so the Hanf number of  LN is greater than 3  ..
c c

Corollaries 2 and 3 can be strengthened by combining "the closures of any

two countable atomless Boolean algebras of subsets of an infinite set under finite

symmetric differences are isomorphic" with the transfinite constructions of §2.

Replace conditions (a)-(e) of §2 by the following conditions on x, Ca,

Da' Ea> Fot' « < COj :

(a')  C0 = x, D0 U E0 = x, D0 n E0 = 0, D0, E0  infinite, F0  is the

closure under finite symmetric differences of some infinite atomless Boolean alge-

bra of subsets of E0.

(b') Same as b.

(O Da+x n Ea+X = 0, Da+X U Ea+X = {x:xE Ca+X}, Da+X, Ea + X

are infinite, Fa+X   is the closure of some infinite atomless Boolean algebra of

subsets of Ea+X   under finite symmetric differences.

(d')  Same as d.

(e') Dx n Ex = 0, DXVEX = {[/] : /G Cx}, Dx, Ex are infinite, Fx

is the closure of some infinite atomless Boolean algebra of subsets of Ex under

finite symmetric differences.

By suitably modifying (l)-(9), and I-IX of §2 and imitating the proof of

Corollary 1, we obtain the following

Corollary 4. Let M be a countable transitive model of ZF, and sup-

pose x is the closure, under finite symmetric difference, of some infinite set of

functions on  co that are mutually Cohen generic over M. Furthermore, let x,

Ca, Da, Ea, Fa, a EM, obey clauses (a')-(e').  Then M[{Ca, Da, Ea, Fa)] h ZF.

An obvious modification of the proof of Theorem 3 yields the following.

Corollary 5. Let M be a countable transitive model of ZF.  Then there

is an ordinal preserving extension N satisfying ZF such that, for each  a E N,

there is an x EN with   \x\ =3a and  P(x) G N.

Proof. Arrange  \Ca\ = \Da\ = \Ea\ = 3a, and Fa = ?(Ea).

Corollary 6. Every countable transitive model M of ZF has an ordinal
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preserving extension N satisfying ZF such that the Hanf number LN is 3 a

Proof. This is obtained from Corollary 5 in the same way that Corollary 3

is obtained from Corollary 2.  The Hanf number of N cannot exceed  33

r<ea i-KLJ, and the latter has Hanf number  3n , by
K^-lMr\On      KW •'MnOn

Chang [2] and Morley [3].

We conclude the paper by briefly considering possibly nonstandard models

of ZF, answering a question posed to us by Sy Friedman.

Corollary 7. For each ß < coj   there are models of ZF of any infi-

nite power, which have countably many ordinals and whose standard ordinal is at

least ß.

Proof. This follows immediately from the fact that there are such models

of each power < 3W , since the Hanf number of  L^ w  is 3W .
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