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LARGE MODELS OF COUNTABLE HEIGHT
BY

HARVEY FRIEDMAN(1)

ABSTRACT. Every countable transitive model M of ZF (without
choice) has an ordinal preserving extension satisfying ZF, of power
Apnon- An application to infinitary logic is given.

Any transitive model M of ZFC with countably many ordinals must be
countable. The situation is quite different when the axiom of choice is dropped.

The first examples of transitive models of ZF of power w, with count-
ably many ordinals were constructed by Cohen. Later Easton, Solovay, and Sacks
showed that every countable transitive model of ZF has an ordinal-preserving
extension satisfying ZF, of power 2“. We prove here that every countable
transitive model M of ZF has an ordinal preserving extension satisfying ZF, of
power Aprn0n-

Theorem 1 is probably in the folklore. However, the proof of its first part
is apparently not standard. The method used in that proof and the combinatorial
construction of §2 form the crux of the proof of the main theorem.

1. Adding subsets of w*“. Let w = {0, 1, 2, - -}, and identify n with
0,1,-++,n =1} Take x<® =lJ, x". D C(w<w)" isdenseif (¥x € (W <“)")
Ay € D)(Vi € n)(x(i) C y(i)). D C (w<w)<¥ isdense if (Vx € (w<¥)<wW)
3y € D)(Vi € dom(x))(x(i) € y())-

Fix a countable transitive M = ZF. An x € (w*“)" is M-generic if for
all dense D C (w<%)" with D € M, (3y € D)(Vi € n)(y(@) C x(i)). An x €
(w*)* is Mgeneric if for all dense D C (w<¥)<“ with D € M, 3y € D)
(Vi € dom(P))(¥(@) C x()). An x C w* is M-generic if any finite sequence
of distinct elements of x is M-generic, x is infinite, and (Vy € w<¥)(3z € x)
(y C2). Let M, be the setsin M of rank < a, for all a« € M. For sets x,
let M,(x) be given by My(x) = TC({x}), My, (x)={y:y €EM, or y is
first order definable over (M, (x), ) with parameters allowed}, M, (x) =
Us<y M), for o, u €M, u alimit. Take M(x) = U,epr M,(x).
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228 HARVEY FRIEDMAN

LEMMA 1. If x C w" is M-generic and countable, then x is the range of
some M-generic y € (w“)*.

PROOF. Let D, D, +* be an enumeration of all dense D C (w<¢)<¢
with D € M., We wish to define an enumeration x,, x;,° <+ of x such that
(xg> Xy,°**) is M-generic.

Let yg, y,,°** be any fixed enumeration of x. For j € w, we will
define x4, -, Xip where i; is a strictly increasing function of j. Take iy, =0,
and x, = y,. Suppose X,,°°°, Xy, have been defined and are distinct elements
of x. If j isodd,set i, =i +1,and Xie1 to be the first element of
Yo» Yy»* * = which has not appeared.

If j iseven,let D =D,-/2, k=i,. Let E={r t k+1:r€D,
dom(r) > k}. Then E C (w<%)¥*! jsdense. By the M-genericity of (6798
cee,Xy),let sEE have s()) Cx;,, i <k Take ¢t €D with s C ¢, and let
t=(tg,*°", tp), k < p. Extend xo,'--,x,j to Xg,***, X;,0 0", X, SO
that t; C x;, 0 <i < p, and the x; are distinct elements of x.

LEMMA 2. If x € (w®)" is Mgeneric, y € (w*)", x(i), y(i) differ
finitely, for i <n, then y is M-generic.

ProoF. This is well known, by symmetry.

LEMMA 3. If x € (w¥)¥ and for each n, x | n is M-generic, then there
is an M-generic y € (w*“)“ such that (Nn)(y(n) and x(n) arefinitely different).

PROOF. Let Dy, D,,*++ be an enumeration of all dense D C (w<¥)<¥
with D € M. Let x = (xy, x,,***). We wish to definea y = (4, ¥;,°**)
which is M-generic, such that x,, y, differ finitely.

For j € w, we will define y,,°<+, y,. Take iy =0, y, = x,. Suppose
Yos°**» ¥; have been defined, and each y,, x; are finitely different. Let ij = k,
andset E={r I k +1:r €D;, dom() > k}. Then E C (w<“)**! is dense.
By Lemma 2, (¥4, **, ¥;) is M-generic, and so let s € E have s(i) C x,,
i<k Take t €D; with s Ct Let t = (t,*, ), k <p. Define y;,,,
R that ¢; C y; and y; differs finitely from x;, for k +1 <i<p.
Set ;. =D

For x € w¥,let X be the set of all y € w® which are finitely different
from x.

Let us call (Xy, X, ) Mgeneric if there is a sequence (yq, ¥;,°**)
with y; € X, which is M-generic.

LEMMA 4. (X, Xy, **) is Mgeneric if and only if, for each n, (xy,***,
x,) is Mgeneric.



LARGE MODELS OF COUNTABLE HEIGHT 229
Proor. If: Apply Lemma 3 to (x4, x;,***) = x. Only if: By Lemma 2.
LEMMA 5. If x € (wW®)¥ is Mgeneric, then M(x) E ZF.
Proor. This is well known.
LEMMA 6. If M(x) E ZF, y € M(x), then M(y) E ZF.
Proor. This is well known.

THEOREM 1. Let M be a countable transitive model of ZF. If y C w®
is M-generic then M(y) E ZF. If for each n, (xy,***, X,) is Mgeneric, then
M((%y, Xy,°**)) E ZF.

PROOF. Let M be a countable transitive model of ZF, y C w%, where
y is M-generic. The question of whether M(y) = ZF is absolute. Hence if we
can show that “M(») E ZF” holds in some Boolean extension of the universe,
we will have shown that M(») F ZF is in fact true.

We show that “M(y) F ZF” holds in any Boolean extension of the uni-
verse is which y becomes countable. Argue as follows in the Boolean extension.
By Lemma 1, y is the range for some M-generic x € (w*)*“. By Lemma 5,
M(x) E ZF. Since y € M(y), by Lemma 6 we have M(y) k= ZF. We are done.

Now suppose that, for each n, (xg,°**, x,,) is M-generic. By Lemma 4,
(Xg» Xy,°**) is M-generic, and so let x = (yq, ;,***) be an M-generic
sequence of representatives. By Lemma 5, M(x) = ZF. Note that (X,, X;,***)
€ M(x). Hence by Lemma 6, M((%,, X,,* * *)) k= ZF. We are done.

Now fix D}, such that, for each n > 1, D]} enumerates all dense D C
(w<®)" such that D EM An x € (w<®)" is m-Mgeneric just in case for
all p<m, 3y € DYVi)y(@) C x()). (Assume m >1))

LEMMA 7. Let §y,°+°, 5 € w<¥, 5, Cs;«>i=]j. Let m>1. Then
thereare ty,***, t; € w<% such that s; C t;, and every sequence of distinct
elements of {ty,***, t;} is m-Mgeneric.

PrROOF. Left to the reader.

LEMMA 8. There is a perfect tree such that any finite sequence of distinct
infinite paths is M-generic.

PrOOF. For each j we will define a set Tj C ok, forsome % For j =0,
set To = {()}. Suppose T; has been defined, T; C w*. Suppose j is odd.
Set Tjpy Cwf*I, Ty =V {k i} (=0o0ri=1)&s€ET}

Suppose j is even, T; C w¥. Let j =2m. By Lemma 7, we can take
Tjyy C w9 some q >k sothat (Vs €Ty )3t ET )t Cs), (Vs ET)
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(At e T; +1)6 C 1), and every finite sequence of distinct elements of T, is
m + 1-M-generic.

Finally, let T be the set of all s € w<® such that for some t € U,- T
we have s C . It is easily verified that T is a perfect tree. Let Xx;,<*°, X,
be distinct infinite paths through 7. Choose j odd, ¢ € w so that T; C w9,
and the x; I g (which of course must be in 7;) are distinct. Then (x, lq,
see,x, I q)is m-M-generic, where j = 2m + 1. Since j may be chosen
to be arbitrarily large, it is clear that for each m there isa g such that (x; I g,
se*, X, I q) is m-M-generic. Hence (x;,**-, x;) is M-generic.

COROLLARY. If M isa countable transitive model of ZF, then there are
M-generic x C w*® of power 2%, and hence x C w* of power 2% such
that M(x) & ZF.

Proor. Immediate from Theorem 1 and Lemma 8.

2. A combinatorial lemma. For sets x, we say that y C P(x) is indepen-
dent just in case [Vi—, * y, is infinite, where n =1, y,,***, y, are dis-
tinct elements of y, and + y, = y,, = ¥, = X — ¥;. In other words, any
nontrivial Boolean combination of the elements of y is infinite. Let x A y be
(x —y) U (¥ —x). Take ¥ = {y: x A y is finite}. For functions f, g with
domain an unbounded subset of A, write f ~g for (3a <AV > @)

(f(B) = &(B)), and write [f] = {g: f ~ g}. Write f/g for (3o <A(VB > @)
(f(B) # 2(B))-

Let a, be of the set of multiples of the nth prime. It is clear that {z,:

< n} C P(w) is independent. Let f: w — w be one-one onto.

By transfinite recursion, we define sets Af Bf and functions f , ga, for
all ordinals a, all one-one onto f: w — w. Below it will be convenient to sup-
press the superscripts. Bear in mind that O is a nonlimit.

1) fo=8 =Ff Ap =By = w.

() fyy1: w —> Ay, isgivendy f . () = {g,(k): k € a,}.

(3) Ayyq = : Gn)(fyy1(m) A y is finite)}.

(4) Ba+l = {7 y eAoz+l}'

(5) 8441t @ = Byyy isgivenby g, ,(1) = foi, ()

(6) A, is the set of all functions g whose domain is the nonlimits ¥ <A,
such that g(Y) €EB,, g I €A, for limits u < A, and for some =, g(y) =
8,(n) for all sufﬁaently large ¥ < A

() fi: w — A, isgiven by f,(n)(7) = g,(n), for all nonhm1ts ¥y<A

(8) By = {[n] N A,: h € 4)}.

9) g\: w = B, isgiven by g,(n) = [fA(m)] N 4,.
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We now let C,, D, for a < w,, be any transfinite sequence of countable
sets obeying

@) Cy =Dy = w.

(b) C,,, is the closure of some infinite independent subset of P(D,)
under finite symmetric difference.

©) Doy ={x: x€Cyyy}

(d) G, isa set of functions A with domain the nonlimits ¥ <X such
that () h(y) €D,, (i) h I p € C,, for limits pu <A, (i) (Vg h €C))

(8 ~h or glh), (iv) if g € C,, h has domain the nonlimits vy <X, h(y) € D,,
h I p€C, forlimits u <A and h ~g, then h € G, ) (3x C G
infinite & (Vg, h € x)(g # h — g/h)).

) D, ={[f]1 N C: fFE G}

We now fix § < w,, and show that for some one-one onto f: w — w,
we have A£ = Cy» B{; = D,, forall @ <§. Itis convenient to assume that &
is a limit.

Let us call a class K of functions f;, 8y @ < 8, special just in case there
isa k such that

L Each f,, g\ isa one-one finite partial map from w into C,, D,
respectively.
II. {a: f, # &} contains only finitely many nonlimits.
L f,(n), g,(n) are undefined if n > k.
IV. For each n, {a: g;(n) is defined} is either finite or the union of a
finite set with {a: a < A}, for some limit A <8.
V. If fi(n) is defined, then fo(n) € g,(n) € D,, for a # 0.
VL fy = g-
VIL. f)\(n) is defined if and only if gg(n) is defined for all @ <A. If
fr(n) is defined, then fy(n)(7) = &-/(n), for all nonlimits y <A.

VIIL Suppose f,,,(n) isdefined. If m € a,, g,(m) is defined, then

gm) Efr (). f m & a,, g.(m) is defined, then g,(m) & f,. ().
XL If fy,q # &, then g(m) is defined for all m < k.

For classes K, K* of partial maps f,, g., @ <8, K* extends K if every
fa or g, of K iscontained in the corresponding f, or g, of K*. We also
let “K + f,(n) =y”,or “K + g,(n) = y”,for n € w, a < 3§, be the exten-
sion of K obtained by just extending the domain of f,, or g, as indicated in
the expression.

Call K weakly special just in case there isa k such that I-VIII hold.

LEMMA 1. Let K be weakly special, m € w,0 < a < §. Then for some y,
K +g,(m) =y is weakly special. If « =0, then for some y, (K + g,(m) = y)
+ f(m) =y is weakly special.
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PROOF. Assume g;(m) is undefined in K. Let ry,*--, r, be a one-one
enumeration of the arguments 7 at which f,,, is defined in K, with m € a,;
let s,,**,s, beaoneone enumeration of the arguments s at which f,,,

is defined in K, with m & a,. Take
x= (Q f;H(ri)) N (Q D, - f;+,(s,))).

By I, clearly x is infinite. Let y € x, where y is not in the range of g, in
K. Clearly K + g;(m) = y is weakly special if a #0,and (K + g (m) =)
+ f,(m) = y is weakly special if a = 0.

LEMMA 2. Every weakly special K can be extended to a special K*.

PROOF. Let K be weakly special. Let a,,***, a, be an enumeration
ofall @« <& suchthat f,,, #& in K. Then apply Lemma 1, r(k + 1)
times, to define the g;(m),all m < k.

LEMMA 3. Let K be special, m € w, a < 8. Then there is a special K*
extending K such that g!(m) is defined in K*.

ProoF. First apply Lemma 1. Then apply Lemma 2.

LEMMA 4. Let K be special, n € w, o < 8. Then there is a special K*
extending K such that f,,,(n) is defined in K*.

PROOF. By Lemma 3, let K' be special, K’ extending K, so that 8a+1(M)
is defined in K'. We may assume g}, ,(n) =X in K',and f,,,(n) is unde-
fined in K'. Clearly x € C,,,. Let y = {r: g,(r) is defined in K’ and
r€a,}, z = {s: g)(s) is defined in K’ and s ¢ a,}. Let w €X be such
that y Cw, zNw=g. Let K" =K'+ f,,,(n) =w. Then K" is weakly
special. Choose a special K* extending K" by Lemma 2.

LEMMA 5. Let hy,*++, h, be functions such that each particular one is
either finite or finitely extends an element of some C“, p a limit <\ Assume
their domains are contained in the set of nonlimits vy < \. Assume the above
applies to g, except that < \ is replaced by < \. Assume Rng(g) N Rng(h;)
=@ forall i. Let x €ED,, hy,***, h, & x. Then

(3h € x)(g C h & Rng(h) N Rng(h) = &, for all 7).

PrOOF. By induction on limit ordinals A. Let A = w. Choose any
h* € x. Clearly g is finite, and each h; is either finite or eventually disagrees
with h*. Thereisan n so large that Dom(g) C n, and (Dom(h;) C n or
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hm) # h*(m) for all m > n). Take h(m) = h*(m) for m > n; h(m) € D,,
- U,- Rng(h;) for m <n, m & Dom(g); and h(m) = g(m) for m € Dom(g).
Then 4 € x with the desired properties.

Suppose we have shown the lemma for all limits A" < A, all g, hy,e**, h
x. Now fix g, h,***, h,, x asin the hypotheses. Choose any A* € x. Let
B <A be so large that Dom(g) C §, and (Dom(h;) C B or hy(y) # h*(7), all
nonlimits § < v < \). We can assume A > w, and that f is infinite. Let
B=X +p,p€w, X' alimit <A If g XN € C,,, then take h(y) = g(y),
for v € Dom(g); h(y) = h*(y) for B <y <A;and h(y) € D, — U; Rng(k;)
for ' <y<X +p and y ¢ Dom(g) (where v is always a nonlimit).

If gt N ¢ Cu,then g t N, iy T XNyeee A, I N satisfies the hypo-
theses of the lemma for \'. Hence by induction hypothesis, choose g C g* € G,
so that Rng(g*) N Rng(h;) = &, for all i Finally take h(y) = g*(¥), v <\’;
h(y) = h*(y) for B <A;and h(y) € D, — U, Rng(h,) for X' <y <X +p
(where v is always a nonlimit).

r?

LEMMA 6. Let hy,***, h, be functions such that each particular one is
either finite or finitely extends an element of some C“, u alimit < \. Assume
the above applies to g, except that < N is replaced by < \. Assume Rng(g)
N Rng(h) = &, forall i. Let pgy,***, 1, be a nonrepeating sequence of limit
ordinals <\, 0 <5, and assume that xg,* -+, x; are such that X; € D“i’ and
hy T & x; Then

@R T 15 € C,) & & C h & Rag(k) N Rug(h,) = g for all ).

PrOOF. Apply Lemma S successively s + 1 times, for A = pg,**°, ug,
after arranging pg,***, M, in increasing order. Piece together the s + 1 func-
tions so obtained.

LEMMA 7. Let K be special, n € w, N\ alimit < 8. Then there is a spe-
cial K* extending K such that fy(n) is defined in K*.

PROOF. By Lemma 3, let K' be special and extend K, so that gj(n) is
defined in K'. We may assume g3(n) = x in K',and f,(n) is undefined in K'.

Let k be as in the definition of K' being special. Then n < k. Define
h;, for i <k, i # n, to be the partial function on A given by hfy) =~ g.(i), in
K', for nonlimits ¥ < A. Let g be the partial function on A given by g(y) =
&,(n), for nonlimits y <A Let py,° -, y, list, without repetition, all limits
u <X such that (3i)(g,(i) is defined in K’ and f,(i) is not). Choose x,,
*++, x, such that g"‘i(i) # x;, for i # n, and g‘;i(n) = x; if defined in K',
and x; € D“i'



234 HARVEY FRIEDMAN

It is easily seen that g, {h,), {u), {x;) obey the hypotheses of Lemma 6
for A. Hence we can choose # such that 4 | u; € Xj, g C h,and Rng(h) N
Rng(g;) = &, for all i

Let K" be the same as K' except that fy(n) = h I w, g;(n) = [A | 4],
g,(n) = h(y), and fo(n) = h(Q), for limits u < A, nonlimits y <A, in K".
Then K" is weakly special. It should be noted that to verify condition VIII for
K", one uses condition IX for K'.

Finally set K* to be any special extension by K", by Lemma 2.

LeMMA 8. Let K be special, y € D, a < §&. Then there is a special K*
extending K such that g!(m) = y in K*, for some m € w.

PROOF. Assume that y & Rng(g,) in K. Let ry,<--, r, be a one-one
enumeration of the r such that f,,,() is defined in K with y € £, ,(");
let s;,°<+, s, bea one-one enumeration of the s such that fas1() is defined
in K with y € f,,,(). Let x = ﬂ, a, N (nj(w —ag)). Then x isin-
finite. Choose m € x with m ¢ Dom(g)) in K. Let Ié' =K +g.(m) =y,
if a#0,K'=K+gim)=y+fym)=y if a =0. Then K’ is weakly
special. Extend to a special K* by Lemma 2.

THEOREM 2. Let C,, D,, for a <8 < w,, be countable sets obeying
a — e. Then there is a one-one onto f: w — w such that C, = A%, D, = BL,
forall a <5é.

ProoF. By Lemmas 3, 4, 7, 8,let K,, K,,**+ be a sequence of special
K, such that (i) each K, ., extends K, (i) forall a <§, m € w, there
are n, y such that fy(m) = y in K,, (iii) for all a« <&, m € w, there are
n, y such that g,(m) =y in K, (iv) forall « <§, y € D, there are n, m
such that g;(m) = y in K,

Let f,(m) = y if and only if (An)(fy(m) =y in K,). Let g, (m) =y
if and only if (In)(g,(m) =y in K,). Take f = f,. We claim that C, =
AL, D, =Bl f, =1l g, =gl all a<&. It suffices to prove that f, f,,
8> Cy» D, obey conditions (1)—(9), with 4, B, replaced by C,, D,, all
a < §. Conditions (1)—(5), (7)—(9) are clear. We now establish condition (6).

Suppose that g has domain the nonlimits y <X, with g(y) €D,, g I u
€ C, forlimits p <A and g(y) = g,(m) for all sufficiently large v <. Let
g* = f,(m). Then g*(y) = &,(m), all nonlimits ¥ <A, and g* € C,. Hence
g € G, since g ~ g*.

Suppose conversely that g € C,. Since g, is onto, let m, g* be such
that f,(m) = g*, g* ~ g Then g* € G, g*(y) = g,(m), all nonlimits vy <A
Hence g has domain the nonlimits y < A, with g(y) € D.,, ghupe Cn for
limits u <A, and g(y) = g.y(m) for all sufficiently large vy < A. We are done.
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Let |x| be the von Neumann cardinal of x. Let 35 = w,,,; =
[27¢], 2, = sup, <y A,-

LEMMA 9. Let E be a set partitioned by {E,},0 < n, and let F,,0 <n,
be a collection of functions with domains E,, whose ranges are, for fixed n,
mutually disjoint. Assume that w < |Fy|, |F,| < |F,,|. Then there isa set
G of functions with domain E, such that
fEG—fIE,EF, IGl=U IF,,

(F#g &f g €G) = An)(Vx)(f(x) = g(x) = Qi < n)x € E))),

and for each n, thereisa G, C G of power |F,| suchthat (f¥g &f, g €G,)
= (f&x) = g(x) = @i < n)(x € E)).

PrROOF. Left to the reader.

THEOREM 3. There are sets C,, D,, a < w,, which obey (a)—(e), such
that |C,| = |D,| =3,.

ProOF. We will construct sets C,, D, a < w,, of)eying (a)—(e), such
that |C,| = |D,| = A, and for limits A\’ <\, there is a subset of C, of power
3, such that any two distinct elements disagree beyond N.

Suppose the C,, D, have been so defined, for a < f. Define Cg,, to
be the closure under finite symmetric differences of some independent subset of
P(Dg) of power 5,4, 2and Dy, to be the set of equivalence classes of ele-
ments of Cg,; under finite symmetric difference.

Now suppose that the C,, D, have been so defined, for all @ <A < w,.
If A\=w,take E=w, E, = {n},and F, = {f: Dom(f) = E,, Rng(f) C D,},
and choose G according to Lemma 9. Set C,, = {g: Dom(g) = w and f~g
for some f € G}. Take D, = {[g]: g € C,}.

Now assume that A = u + w, some limit u. By an argument using Lemma 9,
similar to the case A = w, it is easy to construct C,, D, of power 3,, pre-
serving (a)—(e), such that there is a subset S of C, of power 3, any two
distinct elements of which disagree byond u. Suppose A' < u. Then there isa
subset T of C, of power 2,/ any two distinct elements of which disagree
beyond \'. By combining S, T we get a subset of C, of power 3,,, any two
elements of which disagree beyond \’. This evidently holds for any limit A’ <A.

Finally assume A is a limit of limits. Let Ay = w, A, <A, <A,

0 <n, and lim, A\, = \. Take E to be the set of nonlimits < A, and E, to
be the set of nonlimits A, <y < \,,,. Let Fy be any infinite subset of C,
any two distinct elements of which have disjoint ranges. For 0 <=, let F, be
any subset of C,\” of power an_l any two distinct elements of which dis-
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agree beyond A,_,. Finally, take F, to be the restrictions to E, of elements
of F,.

It is clear that Lemma 8 applies to E, E,,, and F,. Let G be the result of
applying that lemma. Take C, = {g: Dom(g) = E, G(y) € D,y, gt ue C“,
all nonlimits y <\, limits u <A,and (3f € G)(f ~ g}, D, = {[g]: g € G}
Then C,, D, preserve (a)—(e), and have power J,.

Assume N <A Let N\, <X <A,,,. Through use of the G,,, CG
of Lemma 9, we see that there is a subset S of C, of power 3,  ,any two
distinct elements of which disagree beyond A, ,,. By induction hypothesis, there
isa subset T of C\ a4y Of power 3,, any two distinct elements of which dis-
agree beyond \'. By combining S, T, we obtain a subset of C, of power 2,.
any two distinct elements of which disagree beyond A'.

3. The models of ZF. Fix a countable transitive model M of ZF, M N
On =\ Let x = {X,, X;,°* -}, where each (xqy,***, x,,) is M-generic. We
begin by citing trivial generalizations of Theorems 2 and 3.

For one-one onto f: w —> x, define AL, BL, fI, gf, a <A, so that ff =
g = f, Al = BJ = x, and clauses (2)—(9) of §2 hold.

LemMmA 1. Suppose C,, D,, a < A, are countable sets such that C, =
Dy = x,and C,, D, obey clauses (b)—(e) of §2. Then for some one-one onto
f: w = x wehave C, = AL, D, = B, forall a <\.

Let x be an infinite set.

LeEMMA 2. There are sets C,, D,, a <\, Cy = D, = x, obeying clauses
(b)—(e) of §2, such that |C,| = |D,| > 3,.

For sequences of sets (S,), @ <A, we define M[(S,)] as follows. Take
MyKS)) = & Mg, [(S)] = {y: y = TC{Sg}) or y € My or y is first-
order definable over (Mz[(S,)], €) with parameters allowed}, M, [(S)] =
Us<p MpES)L, for B <A, u alimit <A Take M[S] = Uscn MpKS-

LEMMA 3. Suppose (S,), a <\, is first-order definable over some M(x) =
ZF, with parameters allowed. (Hence, e.g., each S, € M(x).) Then M[(S)] F ZF.

ProoOF. This is standard.

THEOREM. Every countable transitive model M of ZF has an ordinal pre-
serving extension satisfying ZF of power Qprnop-

ProOF. Fix x to be the closure under finite symmetric differences of some
M-generic subset of w®. By Lemma 2,let C,, D,,a <), C, = D, = x, obey
clauses (b)—(e) of §2, such that |C,| = |D,| > 3,. We will establish that
M[C)] E ZF.
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As in the proof of Theorem 1, the question of whether M[(C)] F ZF is
absolute. Thus if we can show that “M[(C,)] E ZF” holds in some Boolean
extension of the universe, we will have shown that M[{C,)] E ZF is in fact true.

We show that “M[(C,)] E ZF” holds in any Boolean extension of the
universe in which |, <, C, becomes countable. Argue as follows in the Boolean
extension. By Lemma 1, choose a one-one onto f: w — x such that C, = Aﬁ,
D, = BJ, for all « <\. By Theorem 1, M(f) k ZF.

Note that (C,) is first-order definable over M(f). Hence by Lemma 3,
M[(C))] E ZF, and we are done.

In more technical terms, what we have shown is:

COROLLARY 1. Let M be a countable transitive model of ZF, and suppose
X is the closure, under finite symmetric differences, of some infinite set of func-
tions on « that are mutually Cohen generic over M. Furthermore, let C,, D,,
a €M, C, = D, = x, obey clauses (b)—(e) of §2. Then M[(C,)] k ZF.

4. Hanf numbers. In Barwise [1] it is shown that the Hanf number of L,
is 2, non» for all countable admissible sets A. Is this theorem true for all admis-
sible A with countable 4 N On?

We had answered this negatively by showing that for any countable admis-
sible set A, there is an ordinal preserving admissible extension B such that the
Hanf number of Lp is > 3,,,. Furthermore, B can be taken to be the
least admissible set B D A with x € B, for some x C w* depending on A.
The proof had no connection with the methods introduced in this paper. The
proof does not construct B E ZF.

Leo Harrington has shown, by an application of the methods introduced here,
that every countable transitive model M = ZF has an ordinal preserving exten-
sion N |F ZF such that the Hanf number L, is greater than 2,+ (Also, if
= ZF is replaced by admissibility.) This is an easy consequence of the following.

COROLLARY 2. Let M be a countable transitive model of ZF, and sup-
pose x is the closure, under finite symmetric differences, of some infinite set of
functions on w that are mutually Cohen generic over M. Then M(P(x)) E ZF.

ProOF. The proof is the same as that of Corollary 1, except that the com-
binatorial lemma of §2 is replaced by: the closures of any two countable atomless
Boolean algebras of subsets of an infinite set, under finite symmetric difference,
are isomorphic.

COROLLARY 3. Every countable transitive model M of ZF has an ordinal
preserving extension N of ZF such that the Hanf number of Ly is greater
than :'lc_,_.
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Proor. By Corollary 2, we may choose x of power ¢ so that M(P(x)) =

N [ ZF. There is a sentence ¢ in L, whose models have the following
apparatus: (i) a model (4, R) of the axioms of admissibility, (ii) for each

a € A such that (4, R) F “a is an ordinal,” an isomorphism between (4 I' a,
R T a) and some linear ordering /, on a subset of x, (iii) /, is well ordered
with respect to all subsets of its field that are in M.

Since P(x) € N, clearly (iii) requires that each I, isa well ordering.
Hence (4, R) must be well founded, and of height at most c*. Clearly c* is
possible by taking (V(c*),€). The maximum cardinality of models of ¢ is
therefore :c_,_, and so the Hanf number of Ly is greater than 2 .

Corollaries 2 and 3 can be strengthened by combining “the closures of any
two countable atomless Boolean algebras of subsets of an infinite set under finite
symmetric differences are isomorphic” with the transfinite constructions of §2.

Replace conditions (a)—(e) of §2 by the following conditions on x, C,,
D,E,F, a<w:

@) Cy=x, Dy VE, =x, Dy N Ey = & D, E, infinite, Fy is the
closure under finite symmetric differences of some infinite atomless Boolean alge-
bra of subsets of E.

(b") Same as b.

(@) Dyyy NEyyy = B Doy Y By = (%2 X € Cyir} Doyys Eqyg
are infinite, F,,, is the closure of some infinite atomless Boolean algebra of
subsets of E_ ., under finite symmetric differences.

(d") Same as d.

) Dy, NE, = g D, VE, = {[f]: f€ G}, D, E, are infinite, F
is the closure of some infinite atomless Boolean algebra of subsets of E, under
finite symmetric differences.

By suitably modifying (1)—(9), and I-IX of §2 and imitating the proof of
Corollary 1, we obtain the following

COROLLARY 4. Let M be a countable transitive model of ZF, and sup-
pose x is the closure, under finite symmetric difference, of some infinite set of
functions on < that are mutually Cohen generic over M. Furthermore, let X,
C,, D,, E,, F,, a € M, obey clauses (a")—(¢"). Then M[C,, D,, E,, F,)] F ZF.

An obvious modification of the proof of Theorem 3 yields the following.

COROLLARY 5. Let M be a countable transitive model of ZF. Then there
is an ordinal preserving extension N satisfying ZF such that, for each a € N,
there isan x € N with |x| =2, and P(x) € N.

PROOF. Arrange |C,| = |D,| = |E,| =3,,and F, = P(E,).

COROLLARY 6. Every countable transitive model M of ZF has an ordinal



LARGE MODELS OF COUNTABLE HEIGHT 239
preserving extension N satisfying ZF such that the Hmf mamber Ly, is 2 ptnon’

ProoF. This is obtained from Corollary S in the same way that Corollary 3
is obtained from Corollary 2. The Hanf number of N cannot exceed 25
since Ly C UK<3Mn0n L,.,> and the latter has Hanf number
Chang [2] and Morley [3].

We conclude the paper by briefly considering possibly nonstandard models
of ZF, answering a question posed to us by Sy Friedman.

COROLLARY 7. For each § < w, there are models of ZF of any infi-
nite power, which have countably many ordinals and whose standard ordinal is at
least f.

ProoF. This follows immediately from the fact that there are such models

of each power < :le, since the Hanf number of L, , is 3, .

REFERENCES

1. J. Barwise, Infinitary logic and admissible sets, Doctoral Dissertation, Stanford
University, Stanford, Calif., 1967.

2. C. C. Chang, Some remarks on the model theory of infinitary languages, The Syntax
and Semantics of Infinitary Languages, Lecture Notes in Math., vol. 72, Springer-Verlag, Ber-
lin, 1968, p. 47.

3. M. Morley, Omitting classes of elements, Theory of Models (Proc. 1963 Internat.
Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 265—273. MR 34 #1189.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT
BUFFALO, AMHERST, NEW YORK 14226



