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NIL AND POWER-CENTRAL POLYNOMIALS IN RINGSO)

BY

URILERON

ABSTRACT.   A polynomial in noncommuting variables is vanishing, nil or central in

a ring, R, if its value under every substitution from  R   is  0, nilpotent or a central element

of  R, respectively.

THEOREM.  // R   has no nonvanishing multilinear nil polynomials then neither has

the matrix ring  Rn.   THEOREM.  Let R   be a ring satisfying a polynomial identity modulo

its nil radical  N, and let f be a multilinear polynomial   If f is nil  in  R   then f is

vanishing in  R/N.   Applied to the polynomial  xy-yx, this establishes the validity of a

conjecture of Herstein's, in the presence of polynomial identity.   THEOREM.   Let  m   be

a positive integer and let F  be a field containing no mtn roots of unity other than   1.   //

/ isa multilinear polynomial such that for some  n > 2 j      is central in Fn,   then f is

central in  F^

This is related to the (non)existence of noncrossed products among  p -dimensional

central division rings.

Introduction.   Let  C be a fixed domain of operators which we assume to be a

commutative ring with unity.  All rings are unital C-algebras and all polynomials have

their coefficients in  C.   Let R  be a ring, /(x,, •••, xk) a polynomial in noncommu-

ting variables. / is said to be vanishing, nil or central in R  if under any substitution

from R  its value is 0, nilpotent or a central element of R, respectively. / is

multilinear if it is homogeneous and linear in every one of its variables.   In § 1 we prove

that the  n  x «-matrix ring Rn  has no nonvanishing multilinear nil polynomials if R

has none.  This is the case, for example, when R  has no nonzero nilpotent elements.

If R  satisfies a polynomial identity modulo its nil radical and f(xx, •••, xk) is a

multilinear polynomial which is nil in R, it is then shown (§2) that the ideal f(R)

generated by the elements f(rx, •••, rk), ri GR, is nil.  Applied to the polynomial

* 1*2 ~~ *2*i ' this establishes the validity of a conjecture of Herstein's [4, p. 30], in the

presence of polynomial identity.  (This corollary has been known to some people for

some years, but has apparently never been published.)  A polynomial is called power-
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central in R  if some power of it is central in R.   The existence of noncentral power-

central polynomials for matrix rings over fields has recently been closely linked [6]

with the open problem whether every p2-dimensional central division ring is a crossed

product.  In §3 we prove that if F is a field and n > 2 then, with some provisions,

every multilinear power-central polynomial for Fn  must be central.

1. Nil-polynomials in matrix rings.  Let R  be a ring, Rn  the ring of n x n-

matrices over R.   Let R* be the ring obtained from R  by adjoining 1, and let e¡j

be the matrix units in R* having 1 in the  (i, /)th position and  0  elsewhere.  (The

ring R* is introduced for notational convenience only:  The matrices that occur in

the sequel are all of the form aetj, with a G R, and thus belong to Rn.)  Recall that

these units multiply according to the rules e¡-e-k = eik  and  e¡elk =0  if / # /.  Also,

the elements of R  (thought of as scalar matrices) commute with the  e(y's.  Let u =

(i4j, •••, Ak) be a sequence of matrices in Rn. The value of u is defined to be

the product  \u\ = Ax'A2 ••• Ak. u is nonvanishing if |m| =£ 0.  For a permutation

a of  {1, •••,£}  we write u" = (Aa^y •••, Aa^) and call u°  a permutation of

u.   Finally, a sequence of matrices from Rn  is simple if it has the form  u =

(axe¡ ■ , •••, oke¡ ■ ), where a¡GR, i = 1, •••, k.   Note that the value of a simple

sequence is always of the form ae¡ for some a G R.

Lemma 1. Let u be a nonvanishing simple sequence from Rn and u° a

nonvanishing permutation of u.

(a) // \u\=aeu for some aGR and  1 </<«  then   \u0\ = be-, for some

bGR and  1 </<n.

(b) If u=ae¡j for some aGR and i¥=j then   \ua\ = bej- for some bGR

and the same i, i.

Proof.  For any simple sequence w = (cle¡j , •••, cke¡ ■) write X(w, p)

(respectively p(w, p)) for the number of occurrences of the number p as a left

(respectively right) index of one of the unit matrices occurring in w.   Since   u°  is a

permutation of u, it is clear that for every 1 < p < n, \(u, p) = X(u°, p) and p(u, p) =

p(u",p).  Suppose now  |m| =aeij =£ 0  for any i and / (not necessarily distinct).

Then u must have the form

(*) « = (aieiix- a2eili2> a3ei2i3> "•> akeik.xj)-

Hence it is seen that i=j if and only if \(u, p) = p(u, p) for every p.   To prove

(a), assume  |m| ~aeu. Then X(u, p) = p(u, p) for every p and so \(u°,p) =

p(u", p) for every p, hence  \ua \ = be,- for some bGR  and some /.  To prove

(b), assume  \u\=ae¡j and i ¥= j.  Then, by (*), \(u, p) = p(u, p) for every p #

i, /, while X(«, /) = p(u, i) + 1  and  \(u, j) = p(u, j) - 1. The same relations must

therefore hold also for u", and this can only happen if  |wa| = bet¡. Thus the

proof is completed.
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Definition.  Let « be a simple sequence. Then u  is called even if for some

a, \u° | = beu # 0, and odd if for some  o, \u° | = be¡- i> 0 where  i =£ /.

These terms are well defined by Lemma 1, and are explained by the observation

that if i = j (respectively i ¥> j) then i and / have an even (respectively odd) num-

ber of occurrences in the indices of the unit matrices of u.   Note that if  I«"! = 0

for all a, then u is neither odd nor even.

Lemma 2 (Regev). Let R be a ring, f(xx, •••, xk) a multilinear polynomial.

Let u = (A j, • • \ Ak) be a simple sequence of matrices from Rn.

(a) If u is even then the matrix f(u), obtained by substituting u in f, is

diagonal.

(b) // u is odd then f(u) = ae^ for some aGR and i ¥= j.

Proof.  Since   /   is multilinear, it has the form   f(xx, • • • , xk) =

^oesfcc<T*a(i)'***' *a(fc)> where Sk  is the symmetric group on   {!,••*, fc} and

ca G C.  Thus f(u) = Za<=Skca\ua\.  Let  T = {o G Sk\ \ua\ =¡t 0}, and note that in

the sum for f(u) it suffices to let  o range over  T.

(a) If u is even then, for some  oGT,   \ua\ is of the form aeu, whence,

by Lemma 1,  \u° | = a„e; ,    for every  oGT.  Thus
u    lO lO

f(u)= Z c |mct|= Z c a e. . ,

that is, a diagonal matrix.

(b) If u is odd then for some   oGT |«°| is of the form ae^ with i#/;

hence, by Lemma 1, |«CT| =aae//- for every  a G T.  Thus

f(u)= Z c \u°\= Z cjareu
o&T  ° oBT  ° c '1

= [¿-ica  )e.. =ae.., where
\aer o °J '/       'i oBT °  °

and Lemma 2 is proved.

Lemmas 1 and 2 will now be applied to discuss polynomial identities and nil

polynomials in matrix rings.

Lemma 3.   Let R be a ring and f(xx, ••• , xk) a multilinear polynomial.  If

f vanishes under every even substitution from Rn  then f vanishes in Rn.

Proof .  Since / is multilinear and the matrices of the form ae^, aGR,

generate Rn  additively, it will suffice to show that / vanishes under every simple

substitution u = (Ax,-'-,Ak) from Rn. This vanishing is given for even substitu-

tions, so assume u is odd. By Lemma 2, /(«)=ae,y for some aGR  and i#;',

and we wish to show a = 0.  Consider the invertible matrix A = 1 + ej{ (its inverse

is A~l - 1 -e¡t) and the inner automorphism i¿>: x f-> AxA~l  it induces in

Rn. Writing u* for the image of the sequence « under <p, we have
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/(«*) = f(uf = ae*   = a(en - eu + e,y - e/f),

since ¡p leaves a fixed. Now u* may not be a simple sequence, but we can write

f(u*) = S^Lj/Xt/'')), where the  u^  are simple.  We claim that the entries on the

main diagonal of the matrix f(u'r') are all 0  for r = 1, •••, m.   Indeed, this is

given for even  w-^  and follows from Lemma 2 for odd  trr'.  Thus the main diagonal

also vanishes in the matrix fQx*) = a(e¡¡ - e¡¡ + e¡- - e/7) and, given i #/, this

forces a = 0.   Hence f(u) = ae¡- = 0, and the proof is completed.

Remark.  Lemma 3 asserts that a multilinear polynomial which vanishes under

even substitutions from Rn  must also vanish under odd ones.  The converse of this

statement is false for every n.   For if R  is, for example, a field of characteristic

zero, then by [3] there exists a multilinear polynomial /, which is central and

nonvanishing in jR„; and, by Lemma 2, / vanishes under every odd substitution from

Rn-

The main theorem of this section follows.

Theorem 4. If in a ring R  every multilinear nil polynomial vanishes, then

the same holds for Rn.

Proof.  Suppose f(xx, •••, xk) is a multilinear polynomial which is nil in Rn.

Then we shall show that / vanishes in Rn.  By Lemma 3 we need only show that

f(u) - 0 whenever

u = ("ieniv"-'akeikjk)

is even.  To this end, consider the matrices xve¡ > , v = 1, • • •, k, with polynomial

entries.  Substitute these matrices in / and write

ffx(xx, '".xk\ 0 \

f(xieiiii>~->xk%jk)=[ ', ).

\ 0 /„(*!, -.**)/

where the f¡ are multilinear polynomials over  C in the variables xx,"-,xk. The

off-diagonal entries are guaranteed by Lemma 2 to be 0, since the original sequence

u was even.  If we now make any substitution xt = b¡GR  in the above relation,

then the left-hand member becomes a nilpotent matrix since / is nil in Rn. There-

fore, the diagonal matrix on the right also becomes nilpotent and it follows that each

polynomial ft is nil in R, hence vanishes in R.   In particular, by substituting x¡ =

a¡, we obtain f(u) = 0.  As mentioned above this completes the proof of the

theorem.

The following special case of Theorem 4 is of particular interest.

Corollary 5. Let R be a ring with no nonzero nilpotent elements and let

f be a multilinear polynomial.  If f is nil in Rn  then f vanishes in Rn.
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Examples of rings R  as in Corollary 5 are fields, division rings and direct prod-

ucts thereof.

Remark .  If R  is a ring with no nonzero nilpotent elements, it is an open

question whether nonvanishing nil polynomials (necessarily nonmultilinear) for Rn

exist.  In case R is an infinite field the answer is negative, as follows from [1, Theo-

rem 4], by noting that if / is nil in Rn  then f  must vanish in Rn.

2.  A generalized Herstein's conjecture.  One of the principal problems concerning

nil polynomials is the following open problem, which was formulated by Herstein

[4, p. 30] for the case of the polynomial xxx2-x2xx: If f(xx, •••, xk) is nil in

R, is the ideal generated in R  by the elements f(rx, •••, rk) nil?  The answer is

known to be "yes" in case f(xx, x2) = xxx2-x2xx and the indices of nilpotency

are bounded [ibid.]. In this case the ring satisfies the identity  (xxx2-x2xx)m for

some m.   We shall now show that the answer is still positive if R  satisfies any

polynomial identity modulo its nil radical and / is any multilinear polynomial. We

start with a generalization to nil polynomials, of Kaplansky's classical theorem on

primitive rings satisfying a polynomial identity.

Theorem 6. Let R  be a (Jacobsori) semisimple ring and let f(xx, •••, xk)

be a multilinear polynomial of degree k which is nil in R.   Then f vanishes in R.

If, in particular, R is primitive, then it is a central simple algebra of dimension

< [k/2]2  over its center.

Proof. If R = Dn  is a matrix ring over a division ring, then / vanishes in R

by Corollary 5.  Suppose next that R  is primitive.  Then there exists a division ring

D such that either R — Dn  for some n, or Dn  is a homomorphic image of a

subring of R   for every  n.   But the latter is impossible for it leads to the absurd

conclusion that / is nil (hence vanishes) in Dn   for every n.  Thus R = Dn  for

some n and / vanishes in R.   Finally, if R  is semisimple then it is a subdirect

product of primitive rings R¡ and / is nil in each R¡.  Thus / vanishes in each

R¡, hence also in R.

Theorem 7. Let R be a ring, N its maximal nil ideal, and suppose R/N

satisfies a polynomial identity.  Let f(xx, •••, xk) be a multilinear polynomial which

is nil in R.   Then the ideal f(R), generated in R by all the elements f(rx, •••, rk),

r¡ G R, is nil.

Proof.  Suppose first that R  is an algebra over a field.  By considering R/N

instead of R, we may suppose that R  satisfies a polynomial identity and has no

nonzero nil ideals. We then wish to show that f(R) = {0}, i.e. / vanishes in R.

Consider any element a  of f(R). a can be written as a finite sum of terms of

the form xf(rx, •••, rk)y, where x, y, rx, •••, rk GR.   If R0   is the subalgebra of
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R generated by all the elements appearing in such an expression for a, then clearly

aGf(R0).  Let J0 be the (Jacobson) radical of R0. Then / is nil in the semisim-

ple algebra R0/J0 and, by Theorem 6, / vanishes in R0/J0. Thus f(R0)ÇJ0  and

in particular a G J0.   But J0, being the radical of a finitely generated polynomial

identity algebra over a field, is nil [2] and so a is nilpotent.  Since a was an

arbitrary element of f(R), f(R) is seen to be a nil ideal, hence f(R) = {0}. This

establishes the theorem for algebras over fields.  The transition to general rings is

standard and will be omitted (see e.g. [5, p. 416]).

Applying Theorem 7 to the polynomial f(xx, x2) = xxx2~x2xx, one obtains

a proof of Herstein's conjecture, in the presence of polynomial identity.

Corollary 8. Let R be a ring, N its maximal nil ideal, and suppose R/N

satisfies a polynomial identity.  If all the commutators in R are nilpotent, then the

ideal C(R) generated by them is nil.   (Equivalently, the collection of nilpotent

elements of R is an ideal.)

Remarks .  (a) Theorem 7 asserts that the condition that R/N satisfies a

polynomial identity is sufficient for the validity of the "generalized Herstein's con-

jecture".  It is interesting to note that this condition is also necessary.  For if R is

any ring and the ideal f(R) is nil, then / vanishes in R/N.

(b) Theorem 7 and Corollary 8 still hold if, instead of assuming that R/N

satisfies a polynomial identity, we assume that R  is an algebra over an uncountable

field.

3.  Power-central polynomials.

Lemma 9. Let R be a ring, f(xx, •••, xk) a multilinear polynomial and

n > 2 an integer.  If f(u) G Center (Rn) for every even substitution u from Rn

then f is central in Rn.   The conclusion still holds if n = 2 and 2a ¥= 0 for all

a*0 in R.

The proof is similar to that of Lemma 3, but we repeat it for completeness.

Proof. It is enough to show that / vanishes under every odd substitution

from Rn.  Let u be odd and let f(ii) = aei¡ for some aGR  and /#/.   Apply-

ing the same transformation ¡p as in the proof of Lemma 3, we have /(k^) =

a(e¡j-eii + ei]-eji). Write f(u*) =2"Lxf(u(r)) where u<r> are all simple. Then,

by Lemma 2, the sum over all the even m^'s must equal a(e,,—e¡¿).  But by the

assumption of the lemma, this sum is in the center of Rn. Thus «(*»"*%) G

Center (R„).  Since we are assuming n > 2 or a ¥= -a, this forces a = 0.  Hence

f(u) = ae¡j = 0 and / is central.

Note that the restriction in Lemma 9 is essential, for if F is a field of charac-

teristic 2, then the commutator  [xx, x2] =xxx2 -x2xx  is a multilinear polynomial

and is central under even substitutions from F2> but  [exx, eX2] = eX2 £ Center (F2).
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Theorem 10. Let f be a multilinear polynomial, m and n> 2 positive integers,

and F a field containing no mth roots of unity other than   1. If f"  is central in

Fn, then so must be f.   The conclusion holds also for n = 2, provided char (F) =£ 2.

Proof.  Assume that f"  is central in Fn  and let u be an even substitution

from Fn. By Lemma 9, we need only show that f(u) G Center (Fn). Since «  is

even, f(u) is a diagonal matrix, f(u) = S"= xafa, a¡ G F.  We may assume f(u) + 0,

say ax # 0.  Since fm(u) = E£L xam eB is in the center of F„, we have am =am =

•" =am. Thus, for any  1 <i <n,  (a/ax)m = 1; so a,/^ = 1  and af =«|, that is,

f(u) = ^!=laieiiG Center (F„).

Let ß denote the field of rational numbers, and for a prime #  let Zq(t) de-

note the field of rational functions in t over the field of q  elements.  Let F de-

note either Q or   Zq(t)   and q = char F.   In [6] Schacher and Small proved the

equivalence of the following statements for an odd prime p:

(a) Every p2 -dimensional division ring of characteristic q (0 or a prime) is a

crossed product.

(b) There exists for F    a noncentral polynomial / such that fp is central.

Whether these statements are true or false is still an open problem (for p > 5).

However, we have the following.

Corollary 11. Let q and p>2 be primes such that q < p, and let F be

Q or Z (t).  Then F    has no noncentral multilinear polynomial f such that fp

is centra!.

Proof . Note that F has no pth roots of unity other than  1, then apply

Theorem 10.
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