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HERBERT HALPERN

ABSTRACT. It is shown that the set of quasi-equivalence classes of normal

representations of a separable C*-algebra is a Borel subset of the quasi-dual with

the Mackey Borel structure and forms a standard Borel space in the induced Borel

structure. It is also shown that the set of factor states which induce normal repre-

sentations forms a Borel set of the space of factor states with the w*-topology and

that this set has a Borel transversal.

Let A be a separable C*-algebra. Two representations X and X'  of A

on the Hilbert spaces //(X) and HQ,') are said to be quasi-equivalent (in

symbols:  X ~ X') if there is an isomorphism <ï> of the von Neumann algebra

X(4)" generated by \(A) onto that generated by X'(4) such that $(X(x)) =

X'(x) for every x G A.   A representation X of A  is a factor representation

if the center of X(4)" consists of scalar multiples of the identity. The relation

of quasi-equivalence partitions the factor representations of A  into quasi-equiv-

alence classes.  Let A   denote the set of all quasi-equivalence classes of nonzero

factor representations of A, and let   [X]   denote the quasi-equivalence class that

contains the representation X.

For any Hilbert space //, let  Rep(A, H) (resp. Fac(4, //)) denote the

space of all representations (resp. factor representations) of A  on H taken

with the topology of pointwise convergence, i.e., X„ —*■ X if and only if

X„(jc)f -*■ X(x)f for all x G A and J GH.  Let //„(« = 1, 2, •• -, ~) be

a separable Hilbert space of dimension «, and let  Rep A (resp. Fac A) be the

disjoint union of the spaces  Rep(4, //„) (resp. Fac(4, //„)) for » = 1,2,««*,<*>.

A subset X of Rep A (resp. Fac A) is a Borel set if, for each «, the set

X n Rep(A, Hn) (resp. X C\ Fac(A, //„)) is a Borel set in the Borel structure

induced by the topology. The Borel space  Rep A  is standard in the sense

that it is Borel isomorphic with a Borel subset of a polonais (i.e., a complete

separable metrizable) space. (Note that a standard Borel space is determined up
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to Borel equivalence by its cardinality and only two infinite cardinals are possible

[12, §3].) The set  Fac A  is a Borel subset of Rep A   and the Borel structure

induced on  Fac A  by  Rep A  is the structure already assigned to it. The map

\p which assigns to each X its quasi-equivalence class [X] in A   actually is sur-

jective and induces the so-called Mackey Borel structure on A, viz., a set X is

Borel in A   if and only if ^j~x(X) is Borel in  Fac A [6, §§5, 7].

A nondegenerate representation X of A  on the Hubert space H(k) is

said to be a trace representation of A  if the von Neumann algebra \(A)"

generated by \(A) is semifinite and if there exists a faithful normal trace t on

X(4)"+  such that X(A) n N(t) generates the von Neumann algebra X(4)". Here

N(t) is the ideal of definition  of t given by the set of all linear combinations

of elements in the set

N(t)+ = [x G \(A)"+\t(x) < +«>}.

The set N(t) is an ideal in X(4)" (cf. [6, §6]). (In the sequel a t.wo-sided ideal

closed under involution is simply called an ideal.  Most of the ideals considered

in this note will not be closed in the norm topology.)

If X is a trace representation of A  and if X(4)" is a factor von Neumann

algebra, then X is called a normal representation  of A [9, Definition, p. 13].

Since every trace representation gives a a-finite von Neumann algebra [6, 6.3.6],

the faithful normal trace on \(A)"+, where  X is a normal representation, is

unique up to a strictly positive scalar multiple [7, I, 6, Theorem 4, Corollary].

Thus, a semifinite factor representation X of A  is normal if and only if X(A)

contains a nonzero element of finite trace.  Indeed, if the ideal X(4) n N(t) is

nonzero, then its weak closure is \(A)" [7, I, 3, Theorem 2, Corollary 3].

In this note we show that the set X of quasi-equivalence classes of normal

representations of A  is a Borel subset of A   and is standard in the induced Borel

structure.  This answers a question posed by J. Dixmier [6, 7.5.4] (2). We apply

this to show that there is a Borel subset of factor states of A  (with the Borel

structure induced by the w*-topology) that is Borel isomorphic with X.  A.

Guichardet [9] proved that the quasi-equivalence classes of finite (resp. type I)

normal representations is a Borel subset of A   and is standard in the induced

Borel structures.  Other structures in this regard have been given by Perdrizet [14].

Although there are separable C*-algebras with no normal representations [5], there

are some (viz., the GCR algebras) for which every factor representation is normal

and others (e.g., the reduced group C*-algebra of a second countable, locally com-

pact unimodular group [9,1, §3, Theorem 1, Corollary]) such that, for every non-

zero x in the algebra, there is a normal representation X with \(x) =£ 0.

(2) The rest of the problem has been solved by O. A. Nielsen.
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The first lemma is the basis of our analysis of the Borel structure.

Lemma 1. Let A  be a separable C*-algebra.   There is a countable subset

S of A+  such that, for every normal representation  X of A, the set \(S)

contains a nonzero element of finite trace.

Proof.   Let Sx   be a countable dense subset of {x G A+\ \\x\\= 1}.  Let

a, ß be rational numbers with 0 < a < ß < 1   and let f-fa,ß be the contin-

uous real-valued function of a real variable defined by f(y) =0 if y < a,

f(y) = 1  if y > ß, and / linear on   [a, ß].  Let F be the (countable) family

of functions F= [fa^\a, ß rational and  0 <a<ß< I}. Let S be the

countable subset of A+  given by S = [f(x)\fGF, x GSX}.

Let X be a normal representation of A   and let  t be a faithful, normal,

semifinite trace on X(4)"+. We show that there is an xGS suchthat  0<

t(K(x)) < +°°. Let / be the closed ideal of X(4)" generated by the finite

projections of X(4)" (cf. [10, §2]).  Let y be a nonzero element in \(A) n

N(t). Since y*y G \(A) n N(t), we may assume that yG\(A)+. Let 0 < a <

\\y\\ and let e be the spectral projection of y (in X(4)") corresponding to the

interval   [a, \\y\\]. We have that e<a-1.y  and thus that e has finite trace.

This proves that e GJ.  We also have that  \\y - ey\\ < a. Because  a > 0 may

be arbitrarily small, we get that y G J.  This means that the closed ideal \(A)t~\J

of \(A) is not zero, and therefore, the canonical homomorphism 0 of the C*-

algebra X(A) onto the C*-algebra X(4)/X(4) n 7 is not an isometry.  But if

IIX(z)|| = gib {||X(z) + w\\\wCjn \(A)} = ||0(X(z))||

for every zGSj.then   ||z||  = ||0(z)||  for every z  in the unit sphere of X(4)

due to the continuity of the maps z —► ||X(z)||  and z —► ll0(X(z))|| on A.

This means that the canonical homomorphism 0 is an isometry. Therefore, we

may find a z G Sx   and an  a with 0 < a < 1/2 such that

||0(X(z))|| < (1 - 2a)||X(z)|| < ||X(z)|| < 1.

Let e' be the spectral projection of   X(z)   corresponding to the interval

[(1 - a)||X(z)||, ||X(z)||]. We have that

X(z)>(l-a)||X(z)||e'

and thus that

X(z) (mod J)>(\- a)||X(z)||e'(mod J) > 0

in the  C*-algebra \(A)"/J.  We get that
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(1 - 2a)||X(z)|| > ||0(X(z))|| = ||X(z)(mod 7)|| > (1 - a)||X(z)|| ||e'(moa J)\\.

We find the norm of the projection e'(mod J) is zero since the only possible

choices for its norm are 0 and  1. Hence the projection e' is in /.  We recall

that all the projections in / are finite projections [10, Proposition 2.1]. Now

we may find a function f in F suchthat /(X(z)) ¥= 0 and such that /(X(z))<e\

For example, let f = fß>y where ß and y are rational numbers that satisfy

(1 - a)||X(z)|| < ß < y < ||X(z)||.  Since /(X(z)) = X(/(z)), the element x = f(z)

in S is not in the kernel of X and satisfies the relation  0 < X(jc) < e'. This

proves that \(x) is a nonzero element of finite trace.   Q.EJ).

Let / be an ideal of the C*-algebra A. A complex-valued function s of

the cartesian product / x I is called a bitrace with ideal of definition I if s

satisfies the following axioms: (i) s is a positive hermitian form on I x I; (ii)

s(x, y) = s(y*,x*), for all x,y GI; (iii) s(zx, y) = s(x, z*y), for all x.yGI

and z G A ; (iv) for every x G A, the map z —► xz defines a continuous linear

operator of / into / in the prehilbert structure induced by s; and (v) the set

72 = {xy\x,y GI} is dense in / in the prehilbert structure induced by s [4].

Every bitrace s with ideal of definition I induces a trace representation of A

in a canonical way.  In fact, first assume that s  satisfies only the properties (i)—

(iii).  Let  As be the canonical homomorphism of / into / modulo the ideal

{x G I\s(x, x) = 0}. For every x, y G I, the relation (As(x), As(y)) = s(x, y)

defines an inner product on AS(I). Let Hs be the completion of AS(I) in

this inner product. Now assume s satisfies property (iv).  For every x G A  the

map  As(y) —♦ As(xy) (resp. As(y) —*• As(yx)) of AS(I) can be extended to a

bounded linear operator \(x) (resp. ps(x)) of the Hilbert space Hs, and the map

x —► \(x) (resp. x —► Ps(x)) defines a representation (resp. antirepresentation)

of A on Hs. This means that  ||Xs(x)H < ||jc|| (resp. Ilp^*)!! < ||x||) since every

representation of A is norm decreasing.  Suppose now that s satisfies property

(v). We then have that \(A)" = ps(A)'. Furthermore, there is a faithful normal

semifinite trace  t on \S(A)"+   such that  t(ks(xx*)) = s(x, x) for all x GI

and such that \(A) n N(t) generates the von Neumann algebra X(4)" ([4], [9],

cf. [6, 6.2]).

Conversely, let X be a trace representation of A  on the Hilbert space H.

Let t be a faithful normal semifinite trace on \(A)"+   suchthat \(A)dN(t)

generates \(A)". The set /= {jc G A\t(\(x)\(x)*) < 4-°°} is an ideal in A  and

the relation s(x, y) = r'(X(xy*)) defines a bitrace with ideal of definition 7.

Here t' is the unique extension of r to a linear functional on N(t). The

canonical representation Xs induced by s is quasi-equivalent to X [6, 6.6.5(h)].
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Proposition 2. Let x0GA+,let I = I(x0) be the ideal of A generated

by x0, and let T = T(x0) be the family of all bitraces on   I   such that

s(x0, x0) = 1; then in the topology ofpointwise convergence on I x I, the space

T is polonais.

Proof.  Let  T' be the set of all complex-valued functions s on / x /

satisfying properties (i)—(iv) of the definition of bitraces and the additional

property (vi) s(x0, x0) = 1. Notice that  T is a subset of T'.

Let Ae  be the C*-algebra A  if A  has identity or the C*-algebra A with

identity e0  adjoined (cf. [6, 1.3.8]) if A  has no identity. If A has no identity,

the map (x, a) —► x + ae0  of the Banach space given by the cartesian product

of A  with the complexes with norm   ||(jc, a)|| = ||jc|| + la I onto the C*-algebra

Ae with norm  ||jc + ae0|| = lub {||jcy + ay || \y G A, \\y\\ < 1}  is continuous

and one-one. Therefore, the inverse of the map is continuous, and so there is a

constant k > 1   with  ||x|l + |a| < k\\x + ae0||.  Using Ae, we can explicitly

express the ideal / as

I= ■jZfr/W/H <i<m}ppyt GAe, m = 1, 2, • • • >.

For each x, y GI, we show that the set   {\s(x, y)\ \s G T'} is bounded.

Let s GT'; then, for x, y GAe, we get by direct calculation that

s(xx0y,xx0y)<K*\\x\\2\\y\\2,

and thus, for x¡, y¡ (1 < i < m), x'¡, y\ (1 < i < n) in Ae, we get that

6>íWí.Z*,Wi) < Y,s(xix0yi,x¿x0yiyi2s(x'jxQy'j,x)x¿y'l)1l2
'       U i

<Z k4iix¿ii h*;ii ib,.ii ty%
(0

Setting

°\Lxixoyi> Z^o^î) = Zk4KH ii*/H ib,n \\y)t

we obtain a positive real-valued function on I x I that is independent of the

choice of s in  T'.

It is now possible to define a metric on  7"'.  Let 5 be a countable dense

subset of Ae  containing the identity.  Let   {«,-} be an enumeration of the

countable dense subset of I

C = {Zfr/WiU <i<m] \x¡, y i G B, m = 1, 2, • • • J ,
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and let d be the positive real-valued function of T' x T' given by

d(r, s) = Z IK«,-, «/) - s(U¡, Uj)\l2i+i(oiuit «,) + 1).

Due to the bound   |s(u/( uj)\ < a(u¡, u¡) on s, the function d is finite-valued.

To verify that d is a metric it is necessary to verify d(r, s) = 0  implies r = s;

the other properties of a metric are clearly satisfied.  Let d(r, s) = 0.  Let xt,

x'¡ G Ae  and let b¡, b'¡ GB for  I < / < m; then, for every p G T', the elements

ApÇEbjXçb'D tend to Ap(Sx,oc0x|) in Hp  as the  />,- and b\ tend to the x¡

and X; respectively due to the continuity of the functions x, y —► Ap(xzy) on

Ae x Ae, for fixed z G / (cf. (1)). (Note that this means that  Ap(C) is dense

in Ap(I).) In particular, we get that

(a?(Z Wí)> ap(Z WÍ)) -+ (ap(Z^o^/). ap(£>¿*o*/))

as b¡ —► je,-  and   b\ —► x'¡ for all i.   This implies that r(x, x) = s(x, x) for

all x GI and consequently that r = s by polarization.

We now show that the metric topology on  T' is the same as the topology

of pointwise convergence.  In fact, let   {sn}  be a net on  T' that converges to

s  in  7' in the metric or equivalently, pointwise on  C x C.   But given x GI

and  e > 0, there is a u GC such that   \r(u, u) - r(x, x)\ < e for all r G T'.

This implies that lim sn(x, x) = s(x, x) for all x GI, and thus, that   {sn} con-

verges to s  pointwise on I.

Now, in the usual way, we can identify  7"' with a closed subspace of the

product of compact subsets of the complex numbers.  Let  II be the compact

space given by

II = riíí«  complexl |a| < a(x, y)}\x, y GI},

and let 4> be the homeomorphism of T' into  II given by ®(s)x y = s(x, y).

Let   {s„} be a net in  T' such that   {*(s„)} converges to r in  II.  Setting

rx y = s(x, y), we obtain a complex-valued function of / x / that satisfies

properties (i)-(iii) of the definition of a bitrace.  For x G A, y G I, we have

that

s(xy, xy) = lim sn(xy, xy) < ||x||2 lim sup sn(y, y) = ||x||2s(.y, y).

This means that s satisfies property  (iv). Also We see that $(s) = r. Hence,

we get that $(T') is closed in  II, and so we have that  T' is compact.

We can finish the proof by showing that  T is a G6   in  7' since every

Gs  in a complete metric space is complete and metrizable in the induced topology
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[2, §6, Propositions 2 and 3]. Let {«J} be an enumeration of the countable

set {u¡Uj\i, j = 1, 2, • • • }. For every triple i, j, k of integers, let Xi¡k be

the open subset of T' given by

Xijk = {s G T'Hu'i - Uj, «; - u,) Kk-1}.

Then  T can be written as the  G6-set  X = f!, & U¡X¡jk.  In fact, if s GX,

then s satisfies (v) since AS(C) is dense in / and since AS(C2) C AS(I2). The

converse relation is known (cf. [9,1, §1, Remark 4]).    Q.E.D.

We now can prove the main result.

Theorem 3. Let A  be a separable C*-algebra; then the set of quasi-

equivalence classes of normal representations of A  is a Borel set in the quasi-

dual of A  with the Mackey Borel structure and is standard in the induced Borel

structure.

Proof.   Let S be a countable subset of A+   such that, for every normal

representation  X  of A, the set  X(S)  contains a nonzero element of finite

trace (Lemma 1).  For each x in S, let I(x) be the ideal generated by x and

let  T(x) be the set of all bitraces s  on I(x) such that s(x, x) = 1. There is

a Borel map 4> = 4>x  of the family of all bitraces s on I(x) x I(x) taken with

the Borel structure induced by the topology of pointwise convergence on I(x) x

I(x) into Rep A such that 0(s) is quasi-equivalent to X4 [9, Chapter I, §2,

Lemma 2]. Because the set  T(x) and the inverse image  <p~1 (Fac A) under

the Borel map 0 are certainly Borel sets in the family of all bitraces on I(x) x

I(x) and because the Borel structure induced on  T(x) by the family of all

bitraces coincides with that already assigned to  T(x), the restriction 0 = 9X  of

0 to the Borel subset  T = Tx = T(x) n 0_1(Fac A) of T(x) is certainly a

one-one Borel map of the Standard Borel space  T into  Fac A. The fact that

T is standard follows from the fact that it is a Borel subset of the polonais space

T(x) (Proposition 2). We now verify that  0  is one-one.  In fact, we show more:

If r, s are in  T and if 9(r) and  0(s) are quasi-equivalent, then r = s. In-

deed, let  9(r) ~ 0(s).  Since  Xr ~ 9(r)  and  Xs ~ 9(s), there is an isomorphism

4> of \(A)" onto  Xr(A)" such that  &(Xs(y)) = $(\r(y)) for all y G A. Let

tr and ts be faithful normal semifinite traces on \(A)" and \(A)" respec-

tively such that

trfrr(yy*)) = r(y, y)   and   ts(Ks(yy*)) = s(y, y),

for all y G I(x).  The function  tr • <ï>  defines a faithful, normal, semifinite trace

on \(A)" because  <ï> preserves least upper bounds of monotonely increasing
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nets in \(A)"+. Since the trace of \(A)" is unique up to a strictly positive

scalar multiple, there is an a > 0 such that  tr • $ = ats. But we have that

1 = r(x, x) = tr(kr(xx*)) = tr($(\s(xx*)))

■ ats(ks(xx*)) = as(x, x) = a.

Hence a = 1, and so  tr • & = tr Thus for all y G I(x), we have that

r(y, y) = tr(Xr(yy*)) = ts(\s(yy*)) = s(y, y).

This proves that r = s. Now 0  is a one-one Borel function of the standard

Borel space  T into the standard Borel space  Facd. Thus, the image  9(T) of

T is a Borel subset of Fac A  and the map 0  is a Borel isomorphism of T on-

to 0(7)  [1, Proposition 2.5],  Let  0 be the mapping of Fac A  onto A

which associates with each element X of Fac A  its quasi-equivalence class   [X].

Since the Borel set  0(7") of Fac A  meets each quasi-equivalence class in at

most one point, the image  0(0(7)) of 9(T) is a Borel set in A   and  0  is a

Borel isomorphism of 9(T) onto  0(0(70) [6, 7.2.3]. Hence, the set  0(0(7))

is a Borel subset of A   and a standard Borel space in the induced Borel structure.

Thus we get that X = [ty(9x(Tx))\x G S} is a Borel subset of A   since S is

countable, and that X is a standard Borel space since X may be written as a

disjoint countable union of Borel subsets of the  ty(9x(Tx)) and such Borel sub-

sets as well as disjoint countable unions of standard Borel spaces are standard

[12, Theorem 3.1 and Theorem 3.2, Corollary 1].

We finish the proof by showing that X contains every quasi-equivalence

class of normal representations for A.  Let X be a normal representation of A

and let  t be a faithful normal semifinite trace of X(4)". There is an element

x G S such that  0 < t(\(x)) < +°° (Lemma 1).  Since X(x) G X(4)+  we have

that

0 < t(\(x)\(x)) < \\\(x)\\t(\(x)) < +°o.

There is no loss in generality in the assumption that  t(X(x)\(x)) = 1. We may

define a bitrace r on the ideal

I={yGA\t(\(y)X(y)*)<+co}

by setting r(y, z) = t'(K(y)\(z)*) for all y, z GI.  Here  t' is the unique exten-

sion of t to a linear functional on its ideal of definition. The canonical repre-

sentation Xr induced by r is quasi-equivalent to X (cf. introductory remarks,

Proposition 2).  Because x G I, we get that I(x) C I.   Let s be the restriction

of r to I(x) x I(x). It is clear that s satisfies properties  (i)—(iv) in the
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definition of a bitrace on I(x) x I(x) plus the property (vi) s(x, x)= I. We

show that s G T(x) by showing that As((I(x))2) is dense in As(I(x)). Let

{xn} be an increasing approximate identity for I(x) in the positive part of the

unit sphere I(x) [6, 1.7.2]. For every y GI(x), we have from (1) that

s((l -xn)y, (\-xn)y) <k4||1 -*„IU'(X((1 -xn)y)\(y)*)

<KV(X((l-x„)y)X(y)*).

Because the function z —► t'(z\(y)*) is continuous on X(A)"   [7,1, §6, Prop-

osition 1], we conclude that

lims((l-x„)y,(l-xn)y) = Q.

This proves that As(I(x)2) is dense in As(I(x)). Therefore the function s is

in the set  T(x). We now show that the canonical representation  Xs is unitarily

equivalent to Xr. Because  Xr ~ X, this would imply on the one hand that  Xs

is a factor representation and therefore that s GTX. On the other hand, this

would imply 9x(s) ~ Xs ~ Xr ~ X, and consequently, we would get   [X] G

\p(9x(Tx)). Hence the set X would contain all quasi-equivalence classes of

normal representations. We proceed with the proof that  Xs is unitarily equivalent

to Xr. We have that the linear manifold  Ar(I(x)) in Hr is invariant under

\(A) and pr(A). This means that the closure of Ar(I(x)) in Hr corresponds

to a projection e in \(A)' n pr(A)' - \(A)' n Xr(A)". Because  \(A)" is a

factor von Neumann algebra and because eAr(x) = Ar(x) ¥=■ 0, the projection e

is equal to the identity, or equivalently, Ar(I(x)) is dense in Hr. This means

that the map As(y) —► Ar(y) of As(I(x)) onto  Ar(I(x)) can be extended

to an isometric isomorphism u  of Hs onto Hr. For every y G A, z G I(x),

we get that

u\(y)u~l\(z) = uAs(yx) = Ar(yz) = Xr(y)Ar(z).

Consequently the representations Xr and Xs are unitarily equivalent via u. Q.E.D.

A measure p on a Borel space X is said to be standard if there is a

/i-null Borel subset M of X such that X - M is standard in the induced Borel

structure. Decomposition theorems for traces and trace representations are for-

mulated in terms of standard measures confined almost everywhere to the quasi-

equivalence class of normal representations (cf. [3], [6], [9], [13]). This is seen

to be unnecessary.

Corollary 4.  77ie set of Borel measures of the quasi-equivalence classes

of normal representations of a separable C*-algebra (with the Mackey Borel

structure) coincides with the set of standard Borel measures.
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Let / be a state of the C*-algebra A  (i.e., of positive linear functional

on A  of norm 1); let Lf be the so-caUed left kernel of / given by

Lf= {xGA\f(x*x) = 0}.

The set Lj is a closed left ideal.  Let LJx) denote the image of x in A

under the canonical homomorphism of A  into A (mod Lf). The relation

(Lf(x),Lf(y))=f(y*x)

defines an inner product on A (mod Z, A  Let H* denote the completion of

A (mod Lf). If x G A, the map Lj(y) —► Lf(xy) can be extended to a

bounded linear operator X^(x) of the Hilbert space Hf. The map x—► Xf(x)

is a representation of A  called the canonical representation  induced by /

(cf. [6, 2.4ff.] ).  A state / is called a factor state if X^ is a factor representa-

tion of A.   Let F(A) be the space of factor states of A  with the relativized

w*-topology. The space F (A) is a standard Borel space with the Borel structure

induced by the topology ([15, 3.4.5]   and   [11, Lemma 7]). Two elements /

and g of F (A) are said to be quasi-equivalent (in symbols: f~g) if X^~X .

The relation of quasi-equivalence partitions F (A) into quasi-equivalence classes.

The map  01(/) = [Xf]   maps F (A) onto A. A set X in F(A) is said to be

saturated for the relation of quasi-equivalence if g G X whenever g ~ f for

some fGX.   A subset X0  of the set X in F(A) is said to be a  transversal

of X if, for each fGX, the set X0 meets 0J"1([X^]) in exactly one point.

Theorem 5. Let A  be a separable C*-algebra, let F(A) be the factor

states of A, and let X be the set of all factor states whose canonical representa-

tions are normal.   Then the set X is a saturated Borel set of F(A) with a Borel

transversal.

Proof.   Let  \jjx  be the map of F(A) onto A   given by  tyx(f) —

[XA. A subset  Y of A   is a Borel subset of A   if and only if \px1(Y) isa

Borel subset of F(A) [11, Theorem 8]. Using this fact and Theorem 3, we con-

clude that the set X is a saturated Borel set of F(A).

Let S be a countable dense subset of A+  such that, for every normal

representation X of A, the set X(S) contains a nonzero element of finite trace

(Lemma 1).  For each x GS, let I(x) be the ideal generated by x, and let

T(x) be the set of all bitraces s on I(x) x I(x) such that s(x, x) = 1. Let

T= Tx  be the set of all bitraces s in  T(x) such that  X5 is a factor repre-

sentation.  The set  Tx  is a Borel subset of the polonais space  T(x) and thus

Tx  is standard (Theorem 3 and its proof).  For s G T, let / = fs  denote the

positive functional on A given by f(y) = s(yx, x) for y G A.  We note that
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/ is a state.  Indeed, the property (v) of bitraces shows that the lim Xf(un) = 1

in the strong topology on Hf where   {un} is an increasing approximate identity

in the positive part of the unit sphere of A.  (The last statement, incidentally,

shows the equivalence of the definition of bitraces used in this note and the def-

inition used by Guichardet [9,1, §1, no. 1].) The canonical representation

X = Xf induced by / is quasi-equivalent to X^. Because Xs is a factor repre-

sentation, it is sufficient to show that X is equivalent to a subrepresentation of

Xs [6, 5.3.5].  For x¡, y¡ (1 < í < m) in A, the relation

(ZLf(X¡), Z¿,Cv,)) = T,(Lf(x¿,Lf(y¡))
i, j

= Zf(yfx¡) = (Za/*,jO,Za,OvO)

implies the existence of an isometric isomorphism u of Hf onto the closed

subspace H's = clos Xs(A)As(x) of Hs. The projection e of Hs onto H's

lies in the commutant XS(A)' of XS(A)" and satisfies the relation

u-1X(y)u = Xs(y)e'

for every y G A.   This proves that  X ~ e'XJ5 and consequently, that  X ~ Xr

Now let q> = $x  be the map of T into F(A) given by <I>(s) = fs. It

is clear that <ï> is continuous. We have that <5 is one-one; in fact, by the proof

of Theorem 3, we have more:  If $(r) ~ q?(s), then Xr ~ Xs and consequently

r = s.  Hence, we get that Í» is a one-one Borel map of the standard Borel space

T into the standard Borel space F(A). This means that $(7) is a Borel sub-

set of F(A) [1, Lemma 2.5].  It is clear that  3>(7) meets each quasi-equivalence

class of F(A) in at most one point.

Let   {x¡} be an enumeration of S.   Let í>(- = O     and let  Tx. = Tr We

have that  01 ($,(7,)) = Y¡ is a Borel set in A [11, Proposition 10]. Since the

saturation Z¡ of $¿(7,-) can be expressed as Z¡ = 0¡"' (7,), we conclude that

Z¡ is a Borel set in F(A). We define the Borel sets   {X¡\i = 1, 2, • • •} in F(A)

by

Xx - <PX(TX)   and   Xt - *¿Tt) - U Z,
¡<i

for i > 1. Then X0 = U X¡ is a Borel subset of X and is a transversal for X.

We first verify that two quasi-equivalent factor states / and g in X0 are

equal.  Suppose that / G X¡ and g G X¡. Since Z¡ and Z;- are saturated and

/ and g he in Z¡ and Z- respectively, we must conclude that i = /.  How-

ever, the set X¡ is contained in the set <P,(7,) which meets each quasi-equivalence
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class in at most one point. Hence we have that / = g.

Now we prove that each fGX is in the saturation of X0. By Theorem

3, there is an s G T¡ for some positive integer i  such that  0(0^ .(s)) = [X^].

(Here we are employing the notation of Theorem 3.) We may assume that this

i is the smallest such integer for which such an s exists. Then we have that

Xf ~ 9x.(s) ~Xs~Xf , and consequently, that f~ftm $¡(s). For every / < i,

we get that fs ^ Z;-; otherwise, there is an r G 7;- such that fr~ fs~ f or

equivalently such that  ty(9x.(r)) = [Xf]. This proves that / is in the saturation

of X0.   Q.E.D.
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