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ISOLATED INVARIANT SETS FOR FLOWS

ON VECTOR BUNDLES
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JAMES F. SELGRADE

ABSTRACT.   This paper studies isolated invariant sets for linear flows on

the projective bundle associated to a vector bundle, e.g., the projective tangent

flow to a smooth flow on a manifold.   It is shown that such invariant sets meet

each fiber, roughly in a disjoint union of linear subspaces.   Isolated invariant sets

which are intersections of attractors and repellers (Morse sets) are discussed.   We

show that, over a connected chain recurrent set in the base space, a Morse filtra-

tion gives a splitting of the projective bundle into a direct sum of invariant sub-

bundles.   To each factor in this splitting there corresponds an interval of real num-

bers (disjoint from those for other factors) which measures the exponential rate of

growth of the orbits in that factor.  We use these results to see that, over a con-

nected chain recurrent set, the zero section of the vector bundle is isolated if and

only if the flow is hyperbolic.   From this, it follows that if no equation in the

hull of a linear, almost periodic differential equation has a nontrivial bounded solu-

tion then the solution space of each equation has a hyperbolic splitting.

1. Introduction.  In analyzing solutions to an autonomous system of differ-

ential equations, a useful technique is to study the linearized equations.  The glo-

balization of this approach is studying a flow / on a manifold by analyzing its

tangent flow  Tf on the tangent bundle to the manifold. ("7"' denotes the tan-

gent functor—here applied to the map ft  for each  t GR.)  Our analysis concen-

trates on the isolated invariant sets of the flow which  Tf induces on the projec-

tive bundle associated to the tangent bundle (each fiber is the projective space ob-

tained from the tangent space).  Certain isolated invariant sets are central to the

study of /,  for example, those corresponding to the tangent spaces to the stable

and unstable manifolds of a hyperbolic critical point of / are a repeller and an

attractor, respectively, of the projective tangent flow.

While our investigation has been motivated by the desire to study flows on

smooth manifolds in terms of isolated invariant sets of the projective tangent flow,
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we have not proved any theorems specific to tangent flows.  Our results do in-

clude several basic theorems relating the linear aspects of vector bundle flows to

the notion of isolated invariant sets.

We consider a flow F on a vector bundle over a compact metric space

which, for each  t G R,  is a vector bundle morphism (takes fibers to fibers, lin-

early).  A flow on the base space lying under F is denoted by /; and the pair

(F, f) is called a linear flow.  Because of linearity, F induces a flow PF on

the projective bundle associated with the vector bundle. The compactness of the

projective bundle allows the use of techniques not available for the vector bundle.

§§2, 3 and 4 develop the necessary background and introduce some con-

cepts useful in proving the main result treated in §§5, 6 and 7. This result asserts

that an isolated invariant set of PF intersects each fiber in a disjoint union of

linear subspaces together with closed arcs of  1-dimensional linear subspaces

(Theorem 7.1). Also, in each fiber, there are only a finite number of distinct sub-

spaces which can be traces of isolated invariant sets on that fiber (Theorem 7.4).

§8 contains a brief summary of some recent work of Charles Conley on

chain recurrence and Morse sets [6]. A Morse set means the intersection of an

attractor and a repeller; so Morse sets are isolated. To each filtration of a flow

there corresponds an ordered collection of Morse sets, and any collection arising

in this way is called a Morse decomposition of the flow. The existence of nitra-

tions of a flow depends on a weak recurrence relation defined in §8. A theorem

in [6] states that a flow is "chain recurrent" if and only if there are no nontrivial

nitrations.

In §9, we prove that a Morse set of PF meets each fiber in one linear sub-

space (without exception).  Furthermore, if the base is connected and the flow

/ is chain recurrent on it, then each Morse decomposition of PF corresponds to

a splitting of the projective bundle into a direct sum of invariant subbundles. (An

example shows that chain recurrence in the base is necessary.) In §10, we use

these results to see that, if / is chain recurrent on a connected base, then the

zero section of the vector bundle is an isolated invariant set of F if and only if

F is hyperbolic.  Also, to each Morse set in a Morse decomposition over a chain

recurrent, connected base, there corresponds an interval of real numbers which

measures the exponential rate of growth of the orbits in that set. The intervals

corresponding to different Morse sets are disjoint. This implies that there is a

unique finest Morse decomposition and that PF restricted to each of the Morse

sets in this decomposition is chain recurrent.  If the base space is a rest point or

a periodic orbit, the growth rate intervals corresponding to Morse sets in the

finest decomposition are points. This is not generally the case.

As a corollary, we prove a strengthened version of a result due to Robert

Sacker and George Sell [18] concerning almost periodic differential equations.
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Their result states that if no equation in the hull of the almost periodic system,

x = A(t)x, has a nontrivial bounded solution, then the solution space of each

equation in the hull splits into a direct sum of a subspace with exponential growth

and a subspace with exponential decay.  Our theorem on finest Morse decomposi-

tions over a chain recurrent base generalizes and refines this statement; in particu-

lar, the chain recurrence of PF restricted to each Morse set is a novel feature.

The results presented here are taken from the author's doctoral thesis written

under the direction of Charles Conley. The author wishes to thank Professor Con-

ley for his invaluable assistance.

2. Flows on vector bundles and projective bundles.  Let (M, d) be a com-

pact metric space.  Let  (E, M, it, M) denote a vector bundle over M as defined

in [1]. E is the total space,  rr is the projection from E onto M,  and  M  is

the maximal atlas of charts.  Charts, subbundles, quotient bundles, Whitney sums,

and Riemannian metrics have their usual meaning [1], [13]. Unless otherwise

stated, we will assume all vector bundle structures are continuous; and we will de-

note a bundle by its total space.

Remark. Let E be an n + 1-dimensional bundle over M. For bGM,

let /?g+1 denote the fiber over b, i.e., R"b+1 = rr_1(ô). Then R",+ 1 has a

unique vector space structure.

Proposition 2.1. // E' is a closed subset of E and É intersects each

fiber in a k-dimensional subspace (1 < k <B 4- 1), then É is a k-dimensional

subbundle of E.

Consider the subspace E - Z of E where Z is the zero section of the

vector bundle E.  On E - Z perform the identification corresponding to the fol-

lowing equivalence relation:  For bGM and ob, wb GRb+1 - 0, ob~wb  if

and only if there is an a =£ 0 G /?  so that ob = awb. The equivalence class of

ob will be denoted   [ob].  Let PE denote the identification space with the quo-

tient topology and Pit, the induced projection from PE onto M.  With this

topology, (PE, M, Pit) becomes a fiber bundle with fiber Pn, real «-dimensional

projective space, and is called the projective bundle associated with (E, M, it, M).

Because of the linearity of the charts for E,  they induce charts for PE which

will be referred to as linear bundle charts for PE.

Definition.  For bGM,  let Pb   denote the fiber of PE over b.   For

0 < k < n,  a k-dimensional linear subspace of Pb  is the image under identifica-

tion of a k 4- 1-dimensional subspace of Rb+1.

Definition.  A subset H of PE is a k-dimensional subbundle of PE if

its pull-back to E by the identification map is a k + 1-dimensional subbundle

of E.
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Definition. PE is said to be the direct sum of its subbundles {PEX, ••• ,PEk}

if E is the Whitney sum of {Ex, •••, Ek}.

A flow on M will be denoted by f:M x R —* M and sometimes by {/,},

ft:M—+ M for each  t G R.   A flow on the total space E will be denoted by F

or {Ft}.  If  y is a subset of M (or of E) and / is a subset of /?,  then

y. J = f(Y x J) (respectively,  Y • / = F(Y x J)). (F, f) is a //«ear /7ow on the

bundle E if:

(1) F and / are flows on E and M,   respectively,

(2) ft ° 7T = jp o ff  for all  r G 7?,   and

(3) Ff :/?£+ * —► Rf\b)   is a linear isomorphism for each bGM.

Because of the linearity, F induces a flow on the total space PE  defined by

PF(([ob],t))= [F((ob, t))]   for all b GM, [ob] G PE,  and  t G R.  The advan-

tage in studying PF instead of F is that PF is a flow on a compact metric

space which lends itself to the study of isolated invariant sets [2], [7], [15], [26].

The canonical example of a linear flow on a vector bundle is a C-flow (r > 1)

on a compact manifold and its tangent flow.

For each bGM,  we define a topological metric on P^  which depends on

a given Riemannian metric g on E.   We introduce this metric to facilitate the

use of the "cross ratio" discussed in the next section.

Given two nonzero vectors, x, y GRb+1, let yl  denote the unique vector

(up to sign) of the subspace determined by x and y such that g(y, y1) = 0

and g(yL, y1) = g(y, y). Define pb  on jP£ x />£ by

/-r i   r -w \g(x,yL)\

P»{{x]^]) = g(x,xtg(y,y)*

where  | • |  denotes the absolute value of a real number. pb  is a bounded metric

(by 1) on P",  giving the same topology which Pb  inherits as a subspace of PE.

PE is metrizable; let d  denote a metric on PE giving its topology.  Then

d and p  are related in the following way:

Proposition 2.2. For each e > 0, the number 5(d, e) = inf {pb(z, w) \

bGM and z, wGPb and d(z, w) > e} is greater than zero. And, for each

S > 0, the number e(p, Ô) ■ inf {d(z, w) I 3 b G M B z, w G P% and pb(z, w)

> 5 } is greater than zero.

Proof.  Use the compactness of M and PE and the fact that p is con-

tinuous as a function of its three arguments, b, z,  and w.

Corollary 2.3. Let bGM and z.wGP^. Then limt_+ccpb.t(z't,wt)

= 0 if and only if limf_ 00d(z-t, wt) = 0.

A statement analogous to Corollary 2.3 for  t —> - °° also holds.  Corollary



FLOWS on vector bundles 363

2.3 asserts that if two orbits of the flow PF, starting in the same fiber, come

together in the p  metric as í —► °° then they come together in the d metric,

and vice versa.  Henceforth, the terminology  "z  goes to w as  t —► °°"  will

mean the orbits of z and w come together as  t —* °° as in Corollary 2.3.

3. Cross ratio on Pl   and PE.   In order to exploit the linearity of PF,

we will introduce a tool which, in local coordinates, is the cross ratio of four

points in a projective line.  First, consider the Euclidean plane R2  and the asso-

ciated projective line P1.

Take a basis for i?2   and let x  denote the column vector representation of

a point in R2  with respect to this basis.  Let {x, y} denote the  2x2  matrix

with columns the vectors jc  and y.

Definition. Given [x], [y], [o], [w] distinct points in P1, define the

cross ratio of  [x], [y], [o], [w]   by

_,, -   r -   r ,   r  1N _ det{x,y}   det {o,w}

Remark . The cross ratio is independent of the basis used to define it, be-

cause if two vector representations by different bases differ by a nonsingular ma-

trix A,  then

det{jc, y}      det A     det{jc, y} _ det {A • {x, y}}    det {Ax, Ay}

det{x, w}      det A     det{x, w}     det {A • {x, w}}    det{Ax, Aw}'

Proposition 3.1. Let T be a linear transformation on R2  and FT be

the induced map on P1.   Then the cross ratio is invariant under PT,  i.e., for

distinct points   [x], ¡y], [o], [w] GPl

C([x], [y], [o], [w]) = C([75-], [Ty], [To], [Tw]).

Proof.   Use the preceding computation where A   is the matrix of T.

Given an inner product < •, • > on R2   and representing vectors in terms of

an orthonormal basis, we see that the cross ratio can be written as (suppressing

[•]) =
_, .      (x, Jy)   <o, Jw)
C(x, y, o, w) = -——   —— ,

<jc, Jw) (o, Jy)

where / is the  2x2  matrix   (_ °  ¿).  For each positive definite, symmetric,

bilinear map g on R2,  there is a matrix G  so that g(x, y) = (x, Gy)  for all

jc, y G R2. The following two results say that we can express the cross ratio in

terms of g.

Lemma 3.2.  Given a positive definite, symmetric, bilinear map g on R2

and an orthonormal basis with respect to <•,•>,  let G be the matrix for g in

this basis.   Then there are only two 2x2 matrices JG=± Vdet G G~ 1J so that
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(1) </gjc, GJGy) = (jc, Gy) for all jc, y G R2, and

(2) (jc, GJGx) = 0 for all xGR2.

Proof. (1) implies JGGJG = G and, after taking det of both sides, we

see that det JG = ± 1. (2) implies that GJG  is antisymmetric.  Since the dimen-

sion of 2 x 2  antisymmetric matrices is  1, GJG = \J for some  X G /?.   Since

det G > 0, it follows that det JG > 0. Thus Â2 ■ det G.

Henceforth, JG  will denote the matrix y/det G G~1J.   Let x'=JGx for

all x GR2.  Lemma 3.2 implies that for all x, y, w GR2 :

(x.Jy) = <x, GJGy) = gfr, /)

(x, Jw)     <x, GJGw)     g(x, w')'

Proposition 3.3. Let g be any positive definite, symmetric, bilinear map

on R2.   Then for distinct points   [x], [y], [o], [w] GP1,

ri -i   gfcy)g(v>w')
C(x, y, o, w) =—-£ —-1 •

g(x, w ) g(o, y )

Remark.   Since jc' = ± x1 for all jc G R

m     \8(x,yy)\  \g(o, w1)!
\C(x,y, o,w)\ = ——— ———-.

\fa,vn\ \g(v,yL)\

Define the subset APE of PE x PE x PE x PE by

APE = {(jc, y, o, w) G PEA\ lb G M 3 jc, y, o, w axe distinct points

in the same 1-dimensional subspace of Pb}.

Definition. Let (jc, y, o, w) G APE with P7t(jc) = bGM and let (<¡>, U)

be a linear bundle chart for PE with b G U.  Then the cross ratio of (jc, y, o, w)

is defined by

C(x, y, o, w) = C(<t>x, (¡>y, 0u, 4>w).

Remark.   C is independent of the chart because if (\p, V) is another lin-

ear bundle chart with b G V then  C defined in terms of \¡i differs from  C

defined in terms of <t> by a linear map on P1   (Proposition 3.1).

Proposition 3.4. Let T be a bundle morphism from E to E (T maps

fibers to fibers, linearly) and PT be the induced map on PE.   Then   C is in-

variant under PT.

The following relates  C to the p  metric discussed in §2:

Proposition 3.5. Let g be a Riemannian metric on E and let pb  be

the induced metric on Pb  for bGM.   Then for (jc, y, o, w) G APE where

Pti(x) = b,
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. t Pb(x, y) Pb(o, w)
I C(x, y, o,w)\= —- ——-

pb(x, w) pb(o, y)

Proof.  Use the remark after Proposition 3.3.

4. Notation.  Unless stated otherwise, we will deal with one linear flow

(F, f) and one vector bundle E over M and its projective bundle PE.

The symbol Ax II A2  denotes the disjoint union of the disjoint sets Ax

and A2. For a set A,  let Int A, Ext A, o A, Cl A,  and Comp.4  denote the

topological interior, exterior, boundary, closure, and the complement of A,  re-

spectively.  Let g be a fixed Riemannian metric on E with fiber distance p,

and let d be the distance in the total space PE.   If x, y GP", then  seg [jc, y]

will denote a closed arc from x  to y  contained in the unique P1   determined

by x and y; there are two such arcs. Open arcs will be denoted by  seg (jc, y);

and half-open arcs will be denoted as usual.  For compact subsets A   and  C of

E,  let d(A, C) = inf {d(a, c) \ a G A   and c G C}; for compact A  contained in

one fiber, let  diam A = sup {p(a, c)\a, cGA}.

An isolated invariant set 5 is a compact invariant set (S • /? = S) which

is the maximal invariant set within a closed neighborhood of itself.  Maximality

implies that isolated invariant sets are closed. An isolating block B for S is

a closed set containing S in its interior such that for each point pGoB there

is an e > 0  so that either p • (0, e) C Ext B or p • (- e, 0) C Ext B.   This def-

inition appears different from Churchill's [2] but it is essentially the' same.  Every

neighborhood of S contains some isolating block for 5   [2], [7], [26]. The

intersection of isolated invariant sets is said to be quasi-isolated.

Except in §§10, 11, and 12, all isolated invariant sets are those of the

flow PF.

5. How S meets a 1-dimensional subspace of the fiber.  Fix bGM and

a 1-dimensional subspace P¿  contained in Pb.  b(SOPb) denotes the bound-

ary of S n Pb   relative to P\.  For Lemma 5.1 through Corollary 5.5, S is a

fixed isolated invariant set and B  a block for S.

Lemma 5.1. Suppose  Y is a connected subset of Int B and  Y'TC

IntB forsome T>0. If YOS¥=0,  then   Y-[0,T] C Int B.

Proof. Let A = {z G Y\z -[0,T] C Int B}. A*0 since  Y n S ¥= 0;

and A  is open by the continuity of the flow. A  is closed:  Suppose z¡ —► z

as i —»• oo where z¡ G A  but z £ A.  There is a t, 0 < t < T,  so that z -1

Ç.\ntB.   If z • t G Ext B then continuity implies :,-•/€ Ext B for large /.

This is a contradiction.  If z • t G dB then for some s, 0 < t + s < T, z • (t + s)

GExtÄ  Thus zr(t + s)GExtB for large  /.
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Thus A = Y since  Y is connected.

Definition.  Let y be an arc in P¿   and z G S n y. Then y is expand-

ing positively (negatively) at z relative to B if given any connected neighbor-

hood y   of z  relative to y, there is a  T so that for all  t> T (t < T), y • f

(flntfi

Lemma 5.2. Le/ z G 9(5 n />¿).  77ze« /«ere /s a« arc 7 /« />¿  so /«a/

z /s a boundary point of S Ci y relative to y.  Furthermore, any such  y is

either expanding positively or negatively at z relative to B.

Proof.  For the first assertion any open arc in P¿  containing z will do.

If the second assertion is false, there are two connected neighborhoods, yx

and y2, of z and sequences t¡ —► °° and s¡ —► - °° so that yx • ti C Int B

and y2 • s¡ C Int B for all /. Applying Lemma 5.1, we see that (yx n y2) • /?

C Int B. So 7¡ n 72 is contained in S, which contradicts z being a bound-

ary point of S n y relative to 7.

Definition, z GPxb  is a positive (negative) expansion point if for every

compact subset K of Pb - z, diam (K • t) —► 0  as  / —* °° (- °°).

Remark.   Consequently, if z G Pb  is a positive expansion point then jc

goes to y  as  / —► °°  for all x, y G Pb  and x, y ¥= z.

Lemma 5.3. Pb  contains at most one positive (negative) expansion point.

Proof.  Suppose P¿  contains two positive expansion points; then there

is a cover of Pb  by two compact sets Kx   and K2  so that  diam (K¡ • /) —*■ 0

as r—>°°, /=1,2.  Thus diam (P¿ • /) —> 0  as / —♦ °°, which is a contra-

diction.

Corollary 5.4. In P\,  there are five possible arrangements for expansion

points. Either there is:

(1) two distinct expansion points, one positive and the other negative, or

(2) a point which is both a positive and a negative expansion point, or

(3) a positive expansion point, or

(A) a negative expansion point, or

(5) no expansion points.

Lemma 5.5. Let y be an arc in P\ and z G S n y. If y is expanding

positively (negatively) at z relative to B, then z is a positive (negative) expan-

sion point.

Proof.  Take K to be a compact subset of Pb - z.  Define  2a = p(K, z)

and c = d(dB, S).  Let 5=S(d, c)  as in Proposition 2.2; so, if y £ Int B,  then

p(x, y)> 8   for any jc  in S  and in the fiber of y.
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Given e > 0 we will show there is a  T > 0 so that for all t> T,

p(zx • t, z2 • /) < e for all zx, z2 G K.  Consider a connected neighborhood y

of z  relative to y so that:

(1) p(z, y) < a28e for all y G 7', and

(2) p(Cl y', K)>a.

Since 7 is expanding at z,  there is a  T > 0 so that 7'* / £ Int P for all

/ > P.   Thus, for each  />P there is some jc G 7'   so that x-t^lntB,   i.e.,

p(z •/, jc •/)> 5.  For Zj, z2 G ^T,   the invariance of the cross ratio gives

C(zj • t, z2 • t, z • t, x • /) = C(zx, z2, z, x). So

p(zx,z2)    p(z,x) P(ft,z2-i)
p(zx-t,z2>f) = —---——-— p(zl't,x>t).

p(zx,x)   p(z,z2)  p(z-t, x-t)

This gives p(Zj • t, z2 • f) < p(z, Jc)/a2S < a2Se/a25 «■ e. Thus diam (K • t) < e

for all  t>T.

Corollary 5.6.  77iere are two points x, y G Pb  such that if S is an

isolated invariant set then  9(5 n Pb) C {x, y}.

Proof.   A point in  9(5 n Pb)  for some 5  is a positive or negative expan-

sion point by Lemma 5.2 and Lemma 5.5.  Lemma 5.3 implies that there are at

most two such points.

Definition.  Let Pkb  be a ^-dimensional subspace of P£.  G(Pk,) is the

set of subsets of Pb  defined as follows:  GGG(P£) if and only if G is a con-

nected component of S C\ Pb  for some isolated invariant set 5.

Corollary 5.7.  G(Pb) contains at most six sets: two points, two closed

arcs, P\, and 0.

Proof. The sets in  G (Pi) depend on the possible arrangements of positive

and negative expansion points of P¿.  If Corollary 5.4(1) applies, where x  and

y denote the distinct expansion points, then  G(Pb) is at most comprised of the

sets: {jc}, {y}, both seg[je, j/]'s,P¿, and 0.  Corollary 5.4(2), (3) and (4)

imply that  G(Pb) contains at most a point, P¿, and 0.  Corollary 5.4(5) im-

plies that  G(P0) contains at most P¿  and  0.

The remaining results in this section are used in §6 but they pertain to a

1-dimensional subspace of the fiber.

Corollary 5.8. Suppose a point x is a component of S n Pb and,

for some y i=x, y goes to x for a sequence tm —► °°.   Then x is a negative

expansion point.

Proof.  Since y goes to x as tm —► °°,  Lemma 5.1 implies that there

is a  T > 0 so that for one arc from jc • T to y • T,  call it seg [jc • T, y • T],
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seg[jc • P. y • T] • [P, °°) C Int B.  So seg[jc -Ty-T]   satisfies the hypothesis

of Lemma 5.2 but is not expanding positively at jc • P.  Thus seg[jc • P, y • P]

must be expanding negatively at jc • P relative to B and so jc • P is a negative

expansion point by Lemma 5.5.

Corollary 5.9. Given P\ C P£, suppose Gx  and G2 are disjoint

sets in  G(Pk,). If xGGx  and y G G2,  then the orbits of x and y are

bounded apart for all tGR.

Proof. Suppose jc goes to y for a sequence tm —*■ °°. Let P¿ be the

1-dimensional subspace determined by x and y. Since Gx and G2 ate dis-

joint, x = Sx n P¿ and y = S2 n Pb for isolated invariant sets Sx and 52

(Corollary 5.7). Corollary 5.8 implies that both jc and y are negative expan-

sion points, which is a contradiction. A similar argument shows that x cannot

go to y for a sequence  tm —► - °°.

Corollary 5.10. Given S isolated, suppose there are two distinct points

in  9(5 n Pb). For the positive expansion point x,  there is an open arc y con-

taining x so that y • / C Int B for all t < 0; and for the negative expansion

point y,  there is an open arc o containing y so that o • / C Int B for all

t>0.

Proof.  Since y is a negative expansion point, there is an open arc 7 so

that JcG7CIntP and  diamfr*/)—► 0 as t—*-<*>. So Lemma 5.1 im-

plies 7 • (- °°, 0] C Int B. Do likewise for some o containing y.

Lemma 5.11. Suppose S n Pb contains more than one point.  Let jc G

SnPb and y G Pi  with y • [0, °°) C Int B. If one of the arcs from x to y,

call it segfjc, y], is contained in  Int B,  then  seg[jc, y] • [0, °°) C Int B.

Proof.  Assume  seg[jc, y]   contains a point in 9(5 n Pb); otherwise

seg[;c, y] CS and we are done. So, without loss of generality, assume jc is the

closest point in 9(5 C* Pi) n seg [jc, y) to y and assume seg(x, y) n 5 = 0.

Case 1. y £ 9(5 n P¿). So there is a z £ seg[jc, y]   so that z G 9(5 n P¿).

If z is a positive expansion point then diam (seg [jc, y] >t) —► 0 as / —► °°,

and Lemma 5.1 implies our conclusion.  But z  cannot be a negative expansion

point because then y -R C Int B which contradicts y £ 9(5 n Pb).

Case 2. yGb(SC\ Pi). If y is a positive expansion point then, for each

w G seg(x, y), seg[jc, w] • [0, °°) C Int B so we are done.  If x is a positive

expansion point then, for each w G seg(x, y), seg[y, w] • [0, °°) C Int B.

6. Preliminary lemmas for the fiber. Again fix b G M and P£, a ¿-di-

mensional subspace of P£ where k < n.  For all results in this section, 5 is a
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fixed isolated invariant set. We begin with a lemma which depends only on the

geometry of «-dimensional projective space.

Lemma 6.1. Let bGM and x^yGP^.  Given seg[jc,y]  anda 5,

0 < 6 < ¥í , then there exists a neighborhood U of y in P", so that for each

zGU there is a unique seg[jc, z]   within 8 of seg[x,y], Le., p(w, seg[x, y])

<5 for all w G seg[jc, z]   and p(w, seg[jc, z] ) < 5 for all w G seg[jc, y]. Fur-

thermore, the union over zGU of seg(jc, z]   is a neighborhood of seg(x, y]

in PI-

Remark.   Such a neighborhood of seg(jc, y]   is called a cone-like neigh-

borhood of seg(jc, y]   over  U.

Lemma 6.2. Given S, there exists some 5 > 0 so that if x, y G S CiP",

and p(x,y)<5 then the seg[x, y] of p-length<8 is contained in 5. (77ie

same S  works for all bGM.)

Proof.  Take a block B for 5.   Let c m d(bB, 5). Define 6 = b(d, c).

If p(jc, y)<8  for jc, yGSnP^, then p(z, x) < 5  for all zGseg[x,y].

Thus seg[jc, y] C Int B.  Lemma 5.11 implies that seg[x, y] • R C Int B and

so seg[;c, y] CS.

Corollary 6.3. S C\ P", has at most a finite number of connected com-

ponents.

Proof. Each component must be separated by the S  in Lemma 6.2.

Definition. A subset A  of P£ is arc connected if for each pair jc # y

G A  at least one  seg[jc, y]   is contained in A.

Lemma 6.4. If S C\P^ is connected then S n p£ is arc connected.

Proof. Take a block B for 5.  Let c = d(bB, 5) and S = 8(d, c). Fix

xGSDPk  and define A={yGSr\Pk\ at least one seg[jc, y] C 5 n P*}.

A^h 0 since 5 n p£  is connected and Lemma 6.2 implies that points of SC\Pb

close to jc  are connected to x by arcs in SOP*.

A  is open: Lemma 6.2 implies that jc G Int A.  Take >> =£ jc G A  and

seg[jc, y] C 5 Pi p£. Use Lemma 6.1 to get a neighborhood  U of y so that

seg[jc, z]   is within 5   of seg[jc, ̂]   for all zGU.   Let  If = Í7 n (5 n P*).

For each w G W, seg[jc, w] C Int B; and this gives seg[jc, w] -R Clnt B by

Lemma 5.11. Thus wGA  and so  W C A.

A  is closed: Take y¡GA   suchthat y¡—*■ y as i—> °° where yGS

dP^. Without loss of generality, assume  seg[jc, y¡]   converges to one  seg[jc, y]

as /—> °°. Thus, for large i,  segfjc, y]   is within S   of seg[jc, y¡] C5np£.

So seg[jc, y] C Int B and, as above, y G A.
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Therefore, A = S n I*  since S n Pk is connected.

Definition.   [jcJ, [jc2], •••, [jcfc] GP£  are linearly independent if jc1(

x2, •••, xkG Rb+1   are linearly independent.

Lemma 6.5. If S C\ P'l is connected and contains k + 1  linearly inde-

pendent points, then S n Pk has interior relative to Pb.

Proof.  Let JCj, jc2, •••, Jcfc+1   be k+l  linearly independent points

in snpk.

Claim.   For r < k, Int (5 O P£) relative to P£  is nonempty, where Prb

is the r-dimensional subspace of P\  spanned by {jcp •••,Jcr+1}. We argue by

induction on r.   For r = 0,  the claim is obvious.  Assume it is true for the

P£-1   spanned by {jc1( ••*, xr) and consider the Fb spanned by {xx, •••,JCr+1}.

Let yGln^Snp^-1) relative to P£_1.  By Lemma 6.4 one  seg[xr+x,y]   is

contained in 5 n Prb. Take a block P for 5 and let 8=8 (d, c) where c =

d(bB, S).  Construct a cone-like neighborhood within  S   of seg[xr+x, y]   over

a neighborhood of y in Int(5nP£-1) relative to P£_1.  Applying Lemma

5.11, we see that this cone-like neighborhood of seg(jcr+1, y]   is contained in

Int(5nP£) relative to Prb.

Lemma 6.6. Suppose S O Pk is connected and contains k+l  linearly

independent points.  If k > 1, then 9 (5 n P*) relative to P£  is connected.

Proof.  Let ^4 = 5 n P^. ^4 being arc connected (Lemma 6.4) implies

that Comp(5 n p£) is arc connected.  Let A' = Cl (Comp(5 n P*)) relative

to P*.

In Cech homology every compact triad is proper [12], so  (P£, A, A') is

proper.  Appealing to the first four terms of the reduced Mayer-Vietoris sequence
v

in Cech homology with real coefficients, we get the exact sequence:

HX(A U A') -*■ H0(A n A') -* //0(4) 0 //o04') -#■ //o04 U A')

which is

//.(P*) -> //0(3(S n P*)) -*■ H0(A) 0 tf0(4') — ff0(P*).

Since A  and vl'  are connected,(H0(A) = H0(Af) = 0; and, since  k>l,

Hx(Pk) = 0. Thus H0(d(S n P*)) = 0  so  9(5 n P*) is connected.

Lemma 6.7. Suppose S n Pk is connected and contains k+l  linearly

independent points. If k>l, then S n Pb = p£.

Proof.  If not, then 9(5 n p£) relative to Pkb  is not empty.

Take a block B for 5 with 8 = 8(d, c) where c = <i(9P, 5).  Fix jc G

9(5 n p£) relative to Pkb.  For any j> G Int(5 n Pk) relative to P£, one

seg[jc, j']  is contained in 5 n p£  by Lemma 6.4.  For the P¿  spanned by jc
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and y, it is true that jc G 9(5 n Pb) relative to this P¿.  If not, we can extend

segfjc, y]   to seg[z, y] GSC\P\ where jc G segfz, y). Constructing a cone-

like neighborhood for seg[z, y]   within 5  of seg(z, y]   forces jc G Int(5 n Pb),

which is a contradiction.

By Lemma 5.5, jc is either a positive expansion point or a negative expan-

sion point with respect to y but not both because  9 (5 n Pb) contains two

points.  If jc is a positive expansion point with respect to y,  then x is a posi-

tive expansion point with respect to any other y G Int(5 C\ Pk):   Lemma 5.10

implies there is an  arc yy C P¿  so that yy • t C Int B for all  / < 0.  For z G

yy n Comp 5 and close to jc,  take a cone-like neighborhood   V of seg(z, y]

over a neighborhood   U of y  in  Int(5 n P*).  Choose these neighborhoods so

that, for all w G U,   the  seg [z, w]   in   F is within 5  of 5 n p£  and so is in

Int P.   Since z • (- °°, 0] C Int B,  Lemma 5.11 implies   V- (- °°, 0] C Int P.

So for some other y G Int (5 np£),  the P¿  determined by jc  and 7'  meets

V in an open arc  7 r  which must remain in  Int B  for all  / < 0.  Thus  y ,

is expanding positively at x  by Lemma 5.2 and jc  is a positive expansion point

with respect to y   by Lemma 5.5.

Define A = {x G 9(5 n P¿)|jc  is a positive expansion point},  and A' =

{jc G 9(5 n P£)|jc  is a negative expansion point}. A ¥= 0 implies .4' ** 0 since

a P¿  spanned by a positive expansion point in  9 (5 O Pk) and a point of

Int(5 n Pk) must contain a negative expansion point.  So A   and A'  axe non-

empty, disjoint sets whose union is  9(5 n p£). ,4   is open:   The argument is the

same as that showing the "positive expansion point" characterization is indepen-

dent of y G Int(5 n Pk).  Observe that the cone-like neighborhood   V meets

9(5 D Pb) in a neighborhood of jc,   all of whose points must be positive expan-

sion points.

Likewise A'  is open.  But this disconnects 9(5 n Pk), and thus contra-

dicts Lemma 6.6.

7.  Main results on how 5  meets the fiber.

Theorem 7.1. Let S be an isolated invariant set.  Let Pb   denote some

k-dimensional subspace of P£, 0 < Jfc < «.   77zew S n Pk = Us.= l s n Pki, 0 <

k¡ < k,  where the Pb '  are disjoint k¡-dimensional subspaces of Pb   and

(1) if k¡±l   then S n P*' = P¿¿;

(2) i/fc,. = l /«en 5HP¿=P¿ or S n P¿  is a closed arc of P1 (ahalf-P1).

Proof. If a component of 5 n Pb   has more than two linearly indepen-

dent points, take a maximal set of linearly independent points in the component
k •

and consider the Pb'  they span.  Lemma 6.7 implies the component is exactly

this Pb '. If a component of 5 n Pk  has two or less independent points, the

result follows from Corollary 5.7.
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The only possibility for an intersection of these Pb''s is if they are P¿'s

containing half-P1 components.    But the point of intersection is forced to go to

both components simultaneously, which is a contradiction (Lemma 6.2).

Lemma 7.2. For 0 < k < n, let Pb  be a k-dimensional subspace of

Pb  and let {Ax, •••, Ar} be a collection of pairwise disjoint sets in  G(Pb).

Then  2ri=x (dim A¡ + 1) < Jfc + 1, where the dimension of a half-P1   is 1.

Also, if 2;=1 (dim A¡ + 1) = k + 1, then each wGP£ goes to a point of

one of these A's as t —*■ °° and to a point of one as t —► — «°.

Proof.  Use induction on k.  The case k = 1   follows from Corollary

5.7. Assume the result for Jfc — 1. To prove the first assertion for k,  assume

there is a collection  {Ax, ••• ,Ar} with  Z?=1 (dim A, + 1) > k + 1.  By Theo-
k ' 1

rem 7.1, A¡ = Pb' except if A¡ is a half-P and then it is contained in a

unique P¿. For each i, choose k¡ + 1 linearly independent points in A¡

(dim A¡ ■=■ k¡). Let L denote the set of all such points. By induction, any

k+l   points of L  ate linearly independent.

Case 1.   One   A¡,   say   Ar,   is either a half-P1    or a point.   Let

{xx, ••' ,xk+2} be k + 2 points of L  with either JCfc+1, Jcft+2 G^4r  or

xk+2=Ar. The intersection of the P£_1   spanned by {jCj, •••, jcfe} and the

P¿  spanned by Jcfc+1   and Jcfc+2  contains some point y. y goes to xk+2

as t —► °° or as t —► - ». Without loss of generality, assume y goes to

xk+2  as t—>°°. By induction, y goes to one of the first r - 1 ^4/s as

t —♦ oo. This contradicts Corollary 5.9.

Case 2. No A¡ is a half-P1   or a point.  Let {xx, "• ,xk+2} be k + 2

points of L where xx   and jc2  belong to the same A¡, say Ax. xk+2  isa

linear combination of  {JCj, •••, jcfc+1}. Since linear combinations of jct   and

jc2  belong to Ax, xk+2  is a linear combination of k independent points

{ajjct + a2JC2, jc3, •••, jcfc+ x} where ax, a2 G R.  This contradicts the induc-

tion hypothesis.

To prove the second assertion, let  2J_j (dim A¡ + 1) = k + 1   and take

L = {jCj, •••,xk+l} as above. {xx, •" ,xk+x} are linearly independent.  By

induction, we may assume that w is a linear combination of all xx, ••' ,xk+x.

The P¿  spanned by  w and jcfc+1   meets the Pb~x   spanned by JCj,*",jcfc

in a point yx. By induction, yt  goes to one of the first k A's as t—* °°

and to one as / —* - °°. Without loss of generality, assume xk+x   is a nega-

tive expansion point (if xk+, £ 3(5 n P¿) for some 5 isolated then P¿  con-

tains two points in 9(5 n Pb) and we are done). Thus w goes to yx   as

t —*oo and so to a point of one of the A's as  /—► °°, say jcr Now take

the P¿  spanned by w and jcr  Again assume JCj = 9(5 n Pb) for some 5.
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P¿  meets the Pb~x   spanned by jc2, x3, •••, xk+x   in a point y2.  By

induction, y2  goes to the ,4's as / —► °° and as  t—* - °°.  Since w goes to

jc,   as f —* «>, w goes to y2  as t —*■ - °° (Corollary 5.8).  Thus w goes to

a point in one of the A's as / —► - °°.

Theorem 7.3. Let S be an isolated invariant set and Pb  be a k-dimen-

sional subspace of P£, 0 < /c < «.  Suppose Snpk=Us.=l Pk\ 0 < fc,- < k,

where Pi may denote a half-P1 (Theorem 7.1).  77ie«  2J=1 (k¡ + 1) < k + 1.

Proof. This is a consequence of Lemma 7.2.

Theorem 7.4. For any k-dimensional subspace P£ of Pb,  let V(Pb)

denote the set of subspaces of Pb  such that G G V(P%) if G is a component

of S r\Pb for some isolated invariant set S (V is  G minus half-Pi's).  Then

P(P*) is finite.

Proof.  V(Pbc) = \Jkn=0Vm(Pbc) where Vm(P%) is the set-of «--dimen-

sional subspaces in V(Pb). We proceed by induction on k.  For k = 1  and

m = 0, 1, Corollary 5.7 applies.  So we assume the assertion for Jfc— I. To

prove it for k we use induction on m.

For «i = 0, the result follows from Lemma 7.2. Assume  Vm_x(Pb) is

finite. Consider a (k - l)-dimensional subspace Pb~1   of Pb.  By induction,

Pm(P£-1) is finite, so we will show the m-dimensional subspaces in Vm(Pb:) which

are not subsets of P£-1   are finite in number.  By induction,  Vm_x(Pb:~1) =

{Ax,--,Ar}. All subspaces in Pm(P£) - Pm(P£_1) must meet P£_1   in one

of these .4's.  But for each A{, i = 1, •••, r, there are only a finite number of

subspaces G G Vm(P%) so that G = A¡n Pk~1 :  Take x G At and a P£-1

complementary to jc in Pb. Each such G must meet Pb_1   in a different

set in  Pm_!(Pô_1). And  í^-tíP^-1) is finite by induction.

Thus pm(pök)-r»m(pöfc_1) isfinite- So QmVt) isfinite-

8. Morse sets and chain recurrence. In this section and the next, we re-

strict our attention to a subset of the set of isolated invariant sets.  These sets

are called Morse sets because the generalized Morse inequalities apply [5]. The

following discussion makes use of results in an I. B. M. research paper, Gradient

structure of a flow. I (RC 3932, My 12, 1972), by C. Conley.

For a flow / on a compact metric space  (M, d), let /*  denote the back-

wards flow defined by f*(x) = f_t(x). For  Y CM,  let u(Y, f) denote

C\t>0Ci{Y-(t, °°)} and be called the u-limit set of Y.  The a-limit set of Y

is co(y, /*). A subset A  is called an attractor for f if A  has a closed neigh-

borhood AT so that A = co (A7, /). A quasi-attractor is the intersection of attrac-

tors. An attractor for f* is called a repeller for / Let A* = Comp {jc|co(jc, f) CA}.
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Lemma 8.1. If Ai=M and is an attractor for f,  then A* is nonempty

and is a repeller for f.

Remark.   A*   is called the repeller for  /  dual to  A.   The repeller

for  /*   dual to  A*   is exactly  A.

We may define a generalized limit set and recurrent set in terms of the attrac-

tors of f.   For any subset  Y, let £l(Y, f) be the intersection of all attractors

of / containing co(Y, f), and define R(f) to be the intersection, over all at-

tractors A,  of A LIA*. R(f) is called the c«ai« recurrent set of /  The ra-

tionale behind the terminology is that R(f) can be characterized in terms of a

recurrence relation.

Given (jc, y) G M x M and  e, / > 0, an (e, t, /)-chain from jc  to y is

a collection   {jct = jc, jc2, '",xk+x = y; tx, t2, •••, rfc} so that for  1 </<«

we have  t¡> t and d(x¡ • t¡, xí+ x ) < e. Let P(f) = {(x, y)\ for any e, t > 0

there exists an (e, /, /)-chain from jc  to y}; P(f) is closed in M x M and is

a transitive relation.

Proposition 8.2. For  Y CM,  £l(Y, f) = {x\ there exists some y G Y

so that (y, x) G P(f)}.  (In particular, for xGM, co(jc, f) C Í2(jc, /).)

Lemma 8.3. For x.yGM,  if y G î2(jc, f) then x G Sl(y, f*).

Proposition 8.4. R (f) = {jc | (jc, jc) G P(f)}.   Equivalently, R(f) =

{x\xGÇl(x,f)}.

The set R(f) is a closed invariant set containing the nonwandering set and

R(f) = R(f*).  Roughly speaking, the connected components of R(f) contain

the nongradient-like behavior of /   In fact, if each component of R(f)  is iden-

tified with a point then the induced flow on the identification space is gradient-

like, i.e., there are continuous functions which decrease on all nonconstant orbits

of the induced flow and the set of rest points is totally disconnected.  The con-

stant orbits of the induced flow are precisely the images in the identification space

of the components of R(f).

Given   Y C M, f is chain recurrent on   Y if and only if R(f\Y) = Y.

Proposition 8.5. // / is chain recurrent on a connected set  Y and if

jc, y, G Y,   then  (jc, y) G P(f) and (y, x) G P(f).

Proposition 8.6. // f=f\R{f) then R(f) = R(f).

From Proposition 8.6, it follows that / is chain recurrent on R(f).  Propo-

sition 8.5 implies that the components of R(f) axe the maximal connected sub-

sets of M on which / is chain recurrent.  Also, / is chain recurrent on the

a- and  w-limit sets of a point and on a minimal set  (a closed, invariant set

which is minimal with respect to these properties).
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Definition.  A Morse set is the intersection of an attractor and a repeller.

A quasi-Morse set is the intersection of Morse sets.  (Morse sets are isolated invari-

ant sets since attractors and repellers are isolated and finite intersections of iso-

lated invariant sets are isolated.)

Proposition 8.7. 5 is a Morse set if and only if S = Í2(5, f) n Í2(5, /*)

and S H R(f) is open and closed in R(f).

A Morse decomposition of f is a finite ordered collection of Morse sets

{5j, 52, '".S^ suchthat

(a) R(f) = Uk=1R(f)nSi;

(b) for i </, Í2(5,-, f)nsf = 0 and  £2(5/( /*) n S¡ = 0.

Remark. If {5} is a Morse decomposition of /,  then 5 = M because,

if not, 5 = Ax n A* t^M where Ax   and A2   are attractors.  But then either

A* or A2  contains points of R(f) not in 5.

A filtration of f is a finite increasing sequence  {0 = A0,AX, ••• ,Ak = M}

of attractors for f.

Proposition 8.8.  77iere is a one-one correspondence between filtrations

and Morse decompositions such that to the filtration {0 = A0, ••' ,Ak} there

corresponds the Morse decomposition {Sx, • • •, Sk} where S¡ = AtC\ A*_x,

i = 1, •••, k.   To the Morse decomposition {Sx, •••, 5fc} there corresponds the

filtration A¡ = £l(Sx U ••• U S¡, f), i = 1, •••, k; and A0 = 0.

Lemma 8.9. If S^M and is a Morse set, then there is a Morse decompo-

sition of f having at least two Morse sets with S being one of these.

Proof.  By Lemma 8.1, 5 = ^41n^4* where Ax   and A2  are attrac-

tors for /.  Since Si-M,  either Ax *M or A2 ¥*0. If Ax = M,  then 5 =

A* and {A2, A*} is a Morse decomposition.  If ^42 = 0, then 5 = .4,   and

{AX,A*} works. And if Ax+M and A2*0, then {A2, S, A* C\ A*}

works.

Lemma 8.10. Let {Sv ••-, Sk} be a Morse decomposition of f Suppose

S is a closed invariant subset of M. Then {Sx d S, • • •, Sk n 5} is a Morse de-

composition of f\s.

9. Morse sets in projective bundles.  Let us return to the situation where

E is an « + 1-dimensional vector bundle over M and PE is its associated pro-

jective bundle. (F, f) and (PF, f) denote a linear flow on these bundles.  The

following lemma shows that a Morse set of PF meets the fiber in a simpler way

than does an arbitrary isolated invariant set.

Lemma 9.1. Let S be a Morse set in PE and bGM.   There is some
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k-dimensional subspace, where k depends on b, so that S n P£ = Pb. (Thus

S C\Pj¡ has at most one component and the exceptional half-P1  cannot occur.)

Proof. Suppose S C\ P% has at least two components. Take a point x

in one component and y in another component. Fix z in the P\  spanned

by x and y and assume z$.S.  Corollary 5.7 implies that S Ct Pi = {jc, y).

By Lemmas 5.2 and 5.5, either jc or ^  is a positive expansion point and the

other is a negative expansion point. Without loss of generality, assume y is the

positive expansion point. Then Z't —* x-t as t —► °°.  So, for some  w G

co(jc, PF) C S,  there is a sequence  tm —► °° such that z • tm —► w.  Thus

w G co(z, PF) and so Lemma 8.3 implies that z G ü(w, PF*). Thus z G

Í2(5, PF*). Likewise, for some u G oj(y, PF*) C S,  there is a sequence sm —►

- o» so that z>sm—>u.   So zG 0,(u, PF) C Sl(S, PF). But then z G

ft(5, PF) n fi(5, PF*) = 5, which is a contradiction. (5 = Í2(5, PF) n Í2(5, PF*)

because 5 is a Morse set.)

The same argument shows that S D Pb   cannot contain a half-P1   since, if

it does, a point in the other half is forced to be in fi(5, PF) n fi(5, PF*) = S.

Now we shall state and prove the splitting theorem for a Morse decomposi-

tion of PF over a connected space Q on which / is chain recurrent. One

might suspect this result by analyzing the case where Q is a rest point of a C1-

flow / and Ft = Tft, i.e., the case of a linear autonomous differential equa-

tion. In this situation, the splitting of PE is determined by the Jordan canon-

ical form of the matrix for the differential equation. A connected Morse set is

an invariant subspace corresponding to Jordan blocks having eigenvalues with con-

secutive real parts (see Example 1 in § 11).

Theorem 9.2. Let f be chain recurrent on a connected space Q. Sup-

pose {5,, • • •, Sk} is a Morse decomposition of PF.  Then there exist sub-

bundles, {PEX, •" ,PEk}, of PE so that S¡=PE¡, i = 1, •••, k; and PE

is the direct sum of PEV •••, PEk.

This theorem and the previous lemmas immediately give:

Corollary 9.3. Let f be a flow on M and Q be a component of the

chain recurrent set of f.  Then each Morse decomposition of PF gives a split-

ting of PE \q  into a direct sum of invariant subbundles.

Theorem 9.4. // 5 is an attractor (repeller) for PF and if c G Sl(b, f)

(respectively, /*), then dim(5 n P£) > dim(5 n P£).

The lemma crucial to the proofs of Theorem 9.2 and Theorem 9.4 says that

if b and c axe points of M and if the Í2-Iimit set of b contains c,  then the
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£2-limit set of an /--dimensional subspace in the fiber over b contains at least an

r-dimensional subspace in the fiber over c.

Lemma 9.5. Suppose b, cGM and c G Q,(b, f). For each r-dimensional

subspace Pb contained in Pb, there exists an r-dimensional subspace Pr such

that Prc C Í2(P£ PF) n P£.

Proof.  Define  Í2'(P£, e, r, PF) = {y I  there is an (e, f, PP)-chain from

jc to y for some jc G P£}. Proposition 8.2 implies

Sl(Prb,PF)=   PI    Sl'(Prb, e, t, PF).
e,t>0

For each e, / > 0 we will show ft'(P£, e, /, PF) meets P"  in at least an r-di-

mensional subspace. Given  e and a P£ in the fiber over some x GM,  there

exists a 5  (independent of jc) so that for each y within 5  of x there is a

Pry within e of Prx (in the Hausdorff metric). Obtain this 6  as follows:  Take

a finite cover of M by bundle charts.  Because of local triviality, a 6   can be

found for each set in the cover. The desired  S  is the minimum of these and the

Lebesgue number of the cover.

Since c G £l(b, f), there is a (8, t, /)-chain from b to c.   The preceding

implies the existence of an (e, /, PP)-chain from points of Pb to each point of

some Prc, denoted Prc(e, t).

Since  C1Í2'(P£, e/2, t, PF) C ÇÏ(Prb, e, t, PF), Q.(Prb, PF) can be expressed

as the intersection of a nested family of closed sets. Let Prc be a limit point of

the family Fc(e, t) as e —* 0 and t —♦ •». Then Prc C Q.(Prb, PF).

Proof of Theorem 9.2. We use induction on k.  For Jfc =1, Sx  must

equal PE by a previous remark.  So we assume the theorem is true for k - 1

and prove it for k.

Let {5j, •••, Sk} be a Morse decomposition of PF.   If S{ = 0 for any

i, 1 < 7 < k,  delete it and then we are done by induction. Otherwise Sx ¥= 0

and is an attractor.  Let 5*  denote its dual repeller.  Since S¡,i= 1, • • •, k,

axe disjoint invariant sets, S¡ is contained in 5*  for i > 1. We will show the

following:

(1) The theorem is true for {Sx, S*}.

(2) {S2, ••-, Sk} is a Morse decomposition of PF\S*  where, in light of

(1), 5* is a bundle over Q.

Then induction will apply to the 5* bundle to complete the proof.

(2) is a consequence of Lemma 8.10.

We prove (1) as follows:  For ease of notation replace Sx   by 5.   Remem-

ber that 5 = £2(5, PF). Take b G Q such that 5 n P£ =É 0; by Lemma 9.1,

SC\Pb =Pb for some r > 0.  For each cGQ,  Proposition 8.5 implies that
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c G Q(b, f). Thus Lemma 9.5 implies that SOP"  contains some Prc. Inter-

changing the roles of b and c,  we see that 5 meets all fibers in precisely an

r-dimensional subspace for some r > 0.

Likewise, 5*  meets all fibers in a ^-dimensional subspace for some k.  We

show that r + k = n - 1: Fix b G Q and consider a subspace of Pb   comple-

mentary to S*r>P£=Pk. Denote this subspace by Pb~k~1. By the defini-

tion of 5*, cú(Pb~k~1, PF) is a subset of 5.  Since 5 is an attractor,

£l(Pb1~k~1,PF) is also a subset of 5.   But, for each c G Q,  Lemma 9.5 im-

plies that  £l(Pb~k~1, PF) meets P"  in a subspace of dimension at least « -

Jfc-1. Therefore, r = n-k-l.

To complete the proof we need only show that 5 (likewise 5*) is a sub-

bundle.  If 5'  denotes the pull-back of 5 to E,  then S' is a closed set of

r + 1 -planes in P.   But Proposition 1.1 applies to 5'  showing that 5' is a sub-

bundle of E.

Definition. A finest Morse decomposition of PF is a Morse decomposi-

tion of PF,  {Sx, ••', Sk} where S¡ ¥= 0, i = 1, • • •, k, so that for each Morse

decomposition of PF,  {Cx, •••, Cs} where  C¡ =£ 0, / = 1, •••, s:

(1) s < k,  and

(2) for each S¡, i = 1, •••, k, there is a C¡, 1 </ < s,  so that S¡ C C¡.

Remark.   A finest Morse decomposition of PF is unique up to a reorder-

ing of the Morse sets.

Lemma 9.6. Let  {Sx, '",Sk} and  {Tx, •••, Ts} be two Morse decom-

positions of PF. Define sets Cí(í_ 1)+/- ="5,0 T¡ for i = 1, •••, k and j =

1, •••,s.   77ie«  {Cj, ••-, Csk} is a Morse decomposition of PF.

Remark.   {Cx, •••, Cifc} is called the intersection of {Sx, ••*, 5fc} and

{Px, •••, P,}. {5^ •••, Sk} n {Pj, •••, PJ is the same as {P,, •••, PJ n
{5j, • • •, Sk} after reordering.

Theorem 9.7. Let f be a chain recurrent on a connected space Q. Then

there is a finest Morse decomposition of PF over Q. (For uniqueness see Corol-

lary 11.7.)

Proof.  Fix b G Q.   Since  V(Pb) is finite (Theorem 7.4), there are only

a finite number of sequences of subspaces of Pb, {Kx, •••, Km}, so that K¡ =

T¡ n P£  where  {Tx, •••, Tm} is a Morse decomposition of PF.   For each such

sequence take a Morse decomposition which meets Pb   in that sequence.  Let

{5j, •", Sr} be the intersection of all these Morse decompositions, after deleting

any empty intersections.  For each Morse decomposition {Tx, ••-, Tm} where

P;- =£ 0,j' = 1, ••' ,m,  this construction and Theorem 9.2 imply that  «i < r
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and that for each St there is a  T¡ so that S¡ npjc T¡ n P£. In fact, for

each e G g and 5,-, there is a  P- where / depends on c so that 5, n P" C

TjC^P^:  If there is a Morse decomposition  {P1,*-",Pm} so that S^P^Çl

T¡r\P^  for any /, then  {Sx, •••, Sr} n {P,, •••, Pm} is a Morse decomposi-

tion having more than r nonempty Morse sets.  But this contradicts the maxi-

mally of r.

Given {Pj, •••, Tm}, we associate to each c G Q a sequence of r inte-

gers, ;,(c), i = 1, •••, r, where /¿(c) is the integer such that S¡ C\ P" C P/.(c)

HP".  To show {5p •••, Sr} is the finest Morse decomposition, it suffices to

show j¡(c) is constant as a function of c for / = 1, •••, r.   Let H = {cGQ\

j¡(c) = j¡(b) for / = 1, •••, r}.   H ¥^ 0 and H is both open and closed be-

cause the 5,'s and  27s are subbundles so their intersections with the fiber are

continuous functions of the base.  Thus H = Q since  Q is connected.

As a consequence of Theorem 9.7, all Morse sets over a connected set on

which / is chain recurrent are linear spans of the Morse sets in the finest Morse

decomposition.  Thus quasi-Morse sets are Morse sets.  Since, in general, compo-

nents of R(PF) axe quasi-Morse sets, the components of R(PF) over a con-

nected, chain recurrent set are precisely the finest Morse sets.

In the case of the linear autonomous differential equation, each Morse set

in the finest Morse decomposition is the span of the Jordan blocks having eigen-

values with the same real part.  And, as mentioned earlier, every connected Morse

set is the span of all Jordan blocks having eigenvalues with consecutive real parts.

Example.   Strict inequality in Theorem 9.4 occurs often. In fact, for any

Morse set 5,  the dimension of 5 O Pb   is only upper semicontinuous as a func-

tion of b (since 5 is closed and meets fibers in linear subspaces). Also, if Q

is only a Morse set of / there may not be a splitting over Q  as in Theorem

9.2. This example illustrates both these statements.

Consider a smooth flow / on the circle 51.  Let   [b, c],  an arc joining

the rest points b and c, be a repeller and some other point in 51 - [b, c]   be

an attractor. The flow in   [b, c]   goes from b  to c (Figure 1).   [b, c]   is a

Morse set of /. Parameterize the arc (b, c) by R.  Take an R2-bundle over

51   with the flow F over   [b, c]   being the solutions of the following differen-

tial equations:  Over b,  use the system x = - x and y = y.   Over c,  use the

system jc = jc and y = y.   Over (b, c), use the system jc = (2/7r) (arctan /)jc

and y=y for tGR.  F induces PF on a P1-bundle over   [b, c]   given in

Figure 2. Let jc denote the repeller over b,  and y the attractor.  Let z be

the  co-limit set of the orbit over (b, c) with a-limit set y.   A Morse decompo-

sition over   [b, c]   has jc as the repeller and the orbit from y to z  plus the

fiber over c as the attractor.  So the attractor increases fiber dimension at
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c and neither attractor nor repeller are subbundles over   [b, c].

O      ̂ ^
b

Figure 2

Theorem 9.4 is just the first step in tying the Morse structure of the flow

in  PE   to that of the flow in  M.   In the preceding example,   b   and   c   are

components of the chain recurrent set and Morse sets in a Morse decomposition,

and   c G £2(6, /).   Notice that the attractor in the Morse decomposition of PF

increases fiber dimension as the flow proceeds from   b   to   c   and the repeller

loses fiber dimension.   This is the force of Theorem 9.4, i. e., as the flow moves

down through the filtration of / (down in terms of the indexing in a Morse

filtration) the attractors in a Morse decomposition of PF  cannot decrease fiber

dimension but may increase fiber dimension and the repellers cannot increase

but may decrease; and an attractor increase must be balanced by a repeller de-

crease.   Theorem 9.4 guarantees this, provided the Morse sets of the decompo-

sition of /  are exactly components of R(f).

To give a more complete picture of PF  we need to study how the finest

Morse decomposition changes from over one component of R(f)   to over the

next component, i. e., how does the splitting over one component of R(f) link

up with the splitting over another component.

10.   Hyperbolicity.   As in previous sections, let   (F, f)   be a linear flow

on a vector bundle   (E, M, jr, M).   For  x G E,   let |jc| denote g(x, xf where

g is a Riemannian metric on E.

Definition. (F, f) is hyperbolic on E if

(1) there exists a splitting of E into the direct sum of two invariant sub-

bundles, Es and Eu; and

(2) there are real numbers a > 0 and 0 < X < 1  so that, for  / > 0,

|Pf(x)|<aXf[x|  for xGE* and  |Pf*(jc)|<aXf|jc|  for jcGP".

Remark.   Suppose / is C on a compact C-manifold M and Ft m

Tft. Let X:M—*TM be the vector field for f.  If / is hyperbolic in the usual

sense [20], then (F, f) is hyperbolic according to our definition on  TM/X,  the

quotient bundle obtained from  TM by factoring out the tangent direction to /
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In order to prove the equivalence between hyperbolicity and the zero sec-

tion Z of E being an isolated invariant set, we need the following observations.

Lemma 10.1 can be found in [2].

Lemma 10.1. Let I be an isolated invariant set and N a compact neigh-

borhood of I. Suppose that for each xGN-1,  there exists t < 0 (/ > 0)

such that x-t$.N.   Then I is an attractor (respectively, a repeller). (N will

be called an attractor neighborhood for I.)

Remark.   Also, because of the linearity of F, Z is isolated if and only

if F has no nonzero bounded orbits (bounded in terms of g).

Theorem 10.2. Suppose f is chain recurrent on a connected space M.

Then (F, f) is hyperbolic on E if and only if Z is an isolated invariant set.

Proof.  If (F, f) is hyperbolic, then F has no nonzero bounded orbits.

Thus Z is isolated.

An outline of the proof of sufficiency is:  Use the two asymptotic sets to

Z to define sets in the bundle PE.   These sets are the attractor and repeller in a

Morse decomposition of PF.   Therefore, by Theorem 9.2, PE splits into the

direct sum of two subbundles. We pull these subbundles back to E and show

there is exponential growth in the attractor and decay in the repeller.

Define asymptotic sets as follows:

A + = {jc G EI  there exists an aGR  so that  \y\<a for all y G x -R+}

and

A-={xGE\ there exists an aGR  so that  |.y|<a for all y G jc -R~}.

Given jc G .4+ and a neighborhood of Z,  some scalar multiple of jc  is in this

neighborhood for all / > 0 and, thus, goes to 0 as / —► °°.  By linearity, jc

goes to  0 as / —► °°. Likewise for jc G A-, x goes to  0  as / —► - °°. A-

and A+ meet each fiber of E in a linear subspace, possibly {0}.  Since Z is

isolated, A+C\A- = Z.  We may assume neither A- nor A+ equals E.  This

implies, via Lemma 10.1, that neither equals Z   Upon identification, (A-) - Z

and (A+) - Z give the disjoint, nonempty sets Sx   and 52   in PE.

Take an isolating block B for Z.  There is an r > 0 so that Int B con-

tains the disk bundle D(r) of radius r,  i.e., D(r) = {jc Gp| |jc| < r}. If jc G

A+ H D(r), then the line segment from 0  to jc is in Int B,  and, since jc

goes to  0  as / —*■ °°,  Lemma 5.1 implies that jc -R+ C Int B.   So points of

A+ n D(r) stay in B for all / > 0 and, likewise, points of A- n D(r) stay

in B for all / < 0.  Let S(r) denote the sphere bundle of radius r.   Since

A+and A- are linear, ,4+n5(r) and ^-H5(r) give 52 and Sx after identifica-

tion.
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We claim that 52   is a repeller:   Because A± n S(r)  axe closed, there are

disjoint open sets  U and   F in PE so that 52 C U and Sx C V.  Pull  U

and   V back to disjoint neighborhoods,  U' and  V', of .4+ and .4-.  It is a

general fact ([2], [7], [9])  that points of B near those which remain in B for

all / > 0 leave B near points which remain in B for all / < 0.  Because of

this and the compactness of A+ D 5(r), there is a closed neighborhood N' of

>4+ n S(r) in  £/'  such that for each jc G N' - (A+ n 5(r))  there is a r > 0

so that jc • / G V'.  Thus A^',  after identification, gives a repeller neighborhood

for 52  in PP.   By Lemma 10.1, 52  is a repeller.

Likewise, Sx   is an attractor.

So Sx   and 52  are Morse sets and, by Lemma 8.9 and Theorem 9.2, each

meets every fiber in a subspace of constant dimension. Clearly, S2 C 5*.  If

5* - 52 # 0, then choose jc  in a Morse set contained in S* - S2. The closure

of the orbit of jc  and 52   are separated by open sets  U and   V.   Let y G Sx

and be in the fiber containing jc.  Consider the P1   spanned by jc and y. Since

Sx   is an attractor, y must be a negative expansion point so all points of this P1

near y goto jc  as t—*-<*>, i. e., there is a  P<0 so that, for all  /<P and

z ¥= y G P1, z . t   is in the open set  U containing the orbit of x.   But, as above,

the points of B near points which remain in B for all / < 0 leave B,  in

large negative time, near points which remain in B for all  / > 0.  So there are

points in P1   near y which go into   V,  the neighborhood of 52,  for arbitrarily

large negative time. This is a contradiction. Thus 52 = 5*  and {5X, 52} is a

Morse decomposition of PF.   Theorem 9.2 implies that PE splits into the direct

sum of subbundles Sx   and 52.  So E splits into the direct sum of A- and A+.

We claim that {Ft} decays exponentially in A+. Consider the unit sphere

bundle 5(1) in P.  Take the sphere bundle of radius xh, 504), and a block B

inside SQA), i. e., B C Int DQA). For some r > 0, S(r) is contained in Int B.

For each jc G A+ n 5(1), there is  Tx > 0 so that jc • Tx  is inside S(r). By

continuity, take a neighborhood  Ux  of jc in ^4+ n 5(1) so that  Ux • Tx  is

inside S(r). By Lemma 5.1,  t^ . [Tx, oo) c Int B.  Take a finite subcover of

A+ n 5(1) by these  i/^'s and let  Px  be the maximum of the corresponding

Tx's. So for each jc G A+ n 5(1),  |Pf(jc) | < V4 = J4 |jc |  for all f>Pr  By

linearity, for each jcG.44-,  \Ft(x)\ <Vl\x\ for all />Pr  Let X = (%)1/r-.

For each jc G^+, |Pf(jc)| < 2Xf (x|  for all í^P^   For />P1(  there is a

positive integer k and a real number s,  0 < s < Tx, so that t = fcPx + s.

Then

\FM\ = l-V^*-Or,+/*))! < ^(t-i)ri+íWI<- <e¿)fcM<2Xf|j<|.

By compactness of  [0, Px]   and linearity, we choose aGR+   so that

IF^KaX'lxl foraU xGA+ and ah / > 0.



FLOWS ON VECTOR BUNDLES 383

Similarly, {F*} decays exponentially on A-. So (F, f) is hyperbolic.

Remark.   The equivalence in Theorem 10.2 depends on the condition that

/ is chain recurrent on M.  Consider the example of §9.  The flow on the R2-

bundle over  [b, c]   is not hyperbolic but the zero section is isolated since orbits

become unbounded as they approach the fiber over c.

11. Growth rates for orbits in a Morse decomposition. Now we will inves-

tigate the different exponential growth rates in the pull-backs of Morse sets of a

Morse decomposition over a connected subset Q of M on which / is chain re-

current.

Lemma 11.1. Suppose É is an invariant subbundle of E over M. If

for each xGE1 there is tk—*°° so that \Ft (jc) I —* oo,  then Z over M is

a repeller for F^».

Proof. Any disk bundle in E1 is a repeller neighborhood for Z so

Lemma 10.1 gives the result.

Lemma 11.2. Suppose É is an invariant subbundle of P.  If for each

x G E1 there is a tk —»• °° so that  \pf  (x)\ —> 0, then Z is an attractor for

F\e>.

Proof.  We claim that the unit disk bundle D(l) is an attractor neighbor-

hood for Z:

There is a  P> 0 so that, for each jc G 5(1), there is a / G [0, T]   such

that  \x>t\<Vi\x\. If not, for each i>0 there is jc,-G 5(1) so that  \x¡>t\

> xh for all / G [0, i]. Without loss of generality, x¡ —*■ X € 5(1).  Since

|jc • tk\ —*■ 0 as tk —*■ oo, there is an N so that for all tk>N,   \x • tk\ < Vi.

Consider tx   and  |jc • tx \ < Vi. For i large,  |jc, • tx I < Vi. So for some i> tx,

|jcf •/j | < të, which contradicts  \x¡-t\>tt. for all /G[0,/].  Also, by the

linearity of F,  for each xGD(l) we have   |jc »/| < Í¿|jc|  for some  fG[0, P].

Suppose there is y^OG D(l) such that y-(-°°,0] C D(l).  Let y • s,

for 0<s<P,  besuchthat  \y >s\ = inf{\y-1\ |/G [0, 7j}. Pick /GP  so

that 2'<|^-s|.  Let z =■;>•(-iT). Then  |z|<l, and there is a / G [0, P]

so that  |z • t\ < lA\z\. Let z = z • /; then there is a t' G [0, T]   so that

\z' -1'\ < lA |z'| < lA\z\ < Va. Continue this process until we have "z G y - [0, P]

and  \7\ < 1/2' < \y • s\. This is a contradiction. Thus y-(-°°,0] <£ D(l)

and D(l) is an attractor neighborhood.

Lemma 11.3. Let {5,, ••*,5fc} be a Morse decomposition of PF over

Q with {Ex, '••, Ek} being the corresponding pull-backs to E.   Then at most

one E¡ contains two points jc, y =£ 0 so that  \Ft(x) \-f*0 as t —*■ °° and

\Ft(y)\-h °° as t—> oo.
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Proof.  Suppose E¡ and E} both contain such points, jc,-, y¡ G E¡ and

x¡, y¡ G Ej. Without loss of generality assume S¡ is an attractor and S¡ is a re-

peller. Thus, points of a P1  determined by a point of S¡ and a point of Sf

goto S¡ as t—►oo. There is a sequence tk—*°° so that  \y¡'tk\ is bounded.

For each zG5^ and w ¥= z in the P1   determined by z and y¡, p(w't,y¡'t)

—*0 as t—*■<*>. Thus   \z'tk\—*0 as ffc —* °°. Lemma 11.2 implies that

Z is an attractor for F[¿.. Then Theorem 10.2 implies that   \z -1\ —*■ 0 as

í —> oo for all z G E¡. This contradicts the fact that  |jcy • tm I -f* 0 for a se-

quence iTO —*■ oo.

Corollary 11.4. Pe/ {Sx, •••, 5fc} be a Morse decomposition of PF

over Q with {Ex, •••, Ek} being the corresponding pull-backs to P.   77?e«

there is at most one E¡ so that Z is not an isolated invariant set of F\e{-

Proof. If Z is not an isolated invariant set of Ffe , then there is some

jcGP, (=£0) so that |Pf(jc)|-f*0 as t—*">° by Lemma 11.2 and some y G

E¡ so that  \Ft(y)\ -f*°° by Lemma 11.1.  Lemma 11.3 gives the result.

Lemma 11.5. Let E' be a subbundle of E over M.  Then there exists

a, ß,y,8G R+  where y < 1 and 8 > 1 so that ßy* |x| < |Pf(jc)| < a5f M

for all xGE' and t>0.

Proof. Let 5(1) denote the unit sphere bundle in E'. Let 7 =

inf{|jc • i| |jc G 5(1) and t G [0, 1]}.   So 0 < 7 < 1.  By linearity, 7UI <

Ijc'íI for all xGE' and /G[0, 1]. For each t>\, t = k + s where k

is a positive integer and 0 < s < 1. So, for x G E',

\x-t\>yk\x'S\>yk+1\x\>yt+1\x\.

Therefore,  \x.t\>ßyt\x\ fot all xGE' and  / > 0.

Let 5=-sup{|jc-r| 1jcG5(1) and f G [0, 1]}. Then  KK». By

linearity,  |jc • f| <8|;c|  for all jcGP'  and rG[0, 1]. As above, for f>l,

t = k + s.  And  |x./KSfclJc.s|<5i+1|x| for xGE'. Thus, |jc-/|<

a5f|jc|  foraU jcGP'  and t > 0.

Definition. Let E' be an invariant subbundle over M.  Define X =

sup{XGP| |e~XfPf(jc)|—»-oo as r—► « for au x^OGE'}, where e'XtFt(x)

denotes the vector whose components are e~Xt times each component of Pf(x).

And define  X = inf{XG/?| \e-XtFt(x)\ —> 0 as / —► °o for aU x^OGE'}.

Remarks.   Lemma 11.5 implies that X   and X are finite. And, for jc G

E', if |e_XfPf(jc)|->r^0 as t—*™, then XG [X,X]. The closed inter-

val  [X, X]   is called the (positive) growth rate interval of F on P'. The

growth rate interval of F* is the negative growth rate interval of F.
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Lemma 11.6. £e/ 5 be a Morse set over Q with pull-back   E'  and let

X,—*\ as i—>oo   // |e-XfPf(jc)|—*oo as t—*°° for all xGE',  then for

large i, |e~x'fF,(jc)| —> °° as r—>-oo forall jcGP'.  Also, if \e~XtFt(x)\

—*0 as t—+ <*> forall XGE\  then for large i, \e~x¡tFt(x)\ —*■ 0 as f—►

» for all x G E'.

Proof.  For the first assertion, let Gt(x) = e~XtFt(x) forall jcGP'  and

tGR.  Then {67,} is a flow on P'  and Lemma 11.1 implies that Z is a re-

peller for G.  Theorem 10.2 implies that G grows exponentially for t > 0, so

for some  P>0, Gr  takes the sphere bundle 5(1) into ExtD(l).  For large

/, {e~ /fPf} is close to {67,} in the compact open topology so e~x'TFT takes

5(1) into Ext D(l). By linearity, D(l) is a repeller neighborhood for

{e"x,fP,} for large /.  Theorem 10.2 implies that  |e_x,fP,(jc)| —» ~ as / —*

oo forall jcGP'.

The second assertion follows from Lemma 11.2 and Theorem 10.2.

Theorem 11.7. Let {Sx, •••,5fc} be a Morse decomposition of PF over

Q with pull-backs {Ex, ••*, Ek}.  Let   [k¡, Xf]   denote the growth rate interval

for Eit i= 1, ••-, k.   Then   [\¡, X,] n [X,-, X;] =0  for i*j.

Proof.  Suppose  X G [X,-, X,-] D [X;-, X;]   for i¥=j.   Lemma 11.6 implies

that there are points x¡, y¡¥=0G E¡ and jc/( v;.^0e Ef so that  |e"XfP,(jcm)|

-T*0 as /—► oo and  |e~XfP,Om)| -/♦ oo as t—*«», m = i, j.   Define 67,(z)

= e_XfP,(z) for all z G P.  G is a flow on P and PG = PP on PP. Thus

{5j,,*,,5fc} is a Morse decomposition for PG with pull-backs {P(, • • •, Ek}.

The existence of x¡, y¡ G E¡ and jc-, y- G p. contradicts Lemma 11.3.

Corollary 11.8. Let S be a Morse set over Q with pull-back P'. If

[X, X]   is the growth rate interval of F on E',  then   [-X.-X]   is the growth

rate interval of F* on E'.

Proof.  For each X > X, consider the flow G,(jc) = e_X/P,(jc) for jc G

E'. For jcGP',  |G,(jc)|—► 0 as /—►«>, so Z is an attractor for G by

Lemma 11.2. Theorem 10.2 implies that  |G,(jc)| —> °° as / —> - °° for x ï

OGp'. Let  [a,a]   be the positive growth rate interval of  F*.   But

l^-W-O^^)!—>oo as i—»•»   so -X<a. Thus -X<a. Likewise,

for X < X, we see that - X > a. Thus - X > a.

Applying the preceding argument to the flow P* with growth interval

[a, a]   gives -a <X   and -a>\. Therefore a = - X   and a = - X, and

so  [a, ä] = [-X.-X].

Corollary 11.9. Let {Sx, ■••,5fc} be a finest Morse decomposition over
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Q with pull-backs {Ex, •'•, Ek}. Let   [X,-, X;]   denote the growth rate interval

for E¡, i = 1, • • •, k. If F is not hyperbolic on E,  then there is an r,   1 <

r < k,  so that Xf < 0 for all i> r and X,- > 0 for all i < r.  Furthermore,

\{<\j if i>j.

.Proof.  Theorem 10.2 implies that Z is not isolated in some E¡. Corol-

lary 11.4 implies there is only one such E¡, say Er, and 0 G [X r, \r]. Also,

for i # r,  orbits in E¡ either all decay exponentially or grow exponentially as

t —*■ oo because  {Sx, • • ■, Sk} is a finest Morse decomposition.

For i" > r,  Sr is contained in an attractor and S¡ is contained in its dual

repeller. Thus, points of a P1   determined by a point of Sr and a point of 5,

go to Sr as / —► oo.  For some y G Er there is a sequence  tk —► °° so that

[y • tk\ is bounded. Thus, for z G E¡, \z • tk | —* 0 as t —* °°.  So X, < 0.

For i < r,  a similar argument shows X,- > 0.

For i > /,  5;- is contained in an attractor and S¡ is contained in its dual

repeller. Consider the flow G, = e'^'p,. The preceding argument shows that

X^X,..

Remarks.   If F is hyperbolic, then the final inequality in Corollary 11.9

holds but no growth rate interval contains 0. Also, Corollary 11.9 implies that

a finest Morse decomposition is unique, i.e., the Morse sets cannot be reordered

to give another Morse decomposition.

Theorem  11.10. Suppose E splits over Q into the direct sum of invari-

ant subbundles {Ex, ••• ,Ek}. Let   [Xf, Xf]   denote the growth rate interval for

E¡, i = 1, •••, k.  Let {Sx, '",Sk} be the corresponding subbundles in PE.  If

the growth intervals are pairwise disjoint, then  {Sx, ■••, Sk} is a Morse decompo-

sition of PF.

Proof.  Use induction on k.   For k = 1, the result is trivial.  Assume the

results for a splitting into k - 1  subbundles and prove it for {Ex, •••, Ek}.

Without loss of generality, assume X¡ > X,- if / > i.   Let X be a real number

such that  X2 < X < X,. Define the flow G,(jc) = e_XfP,(jc)  for all jc G P.

Let E' be the direct sum of {P2, ••• ,Ek}. Then P is the direct sum of Ex

and p'  both invariant under  G.   The growth rate interval for Ex   with respect

to the flow G is to the right of 0  on the number line. And the growth rate

interval for P'  is to the left of 0.  Thus Z is isolated for the flow G on P.

According to Theorem 10.2, p' = A+ and Ex = A- so Ex   and P' give rise

to a Morse decomposition  {Sx, 5} of PG.   But PG = PF.   By induction,

{52, •••, Sk} is a Morse decomposition of PF\S. Therefore,  {Sx, S2, •••, Sk}

is a Morse decomposition of PF.
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Example 1. Let Q be a rest point and so the bundle E over Q is an

«-dimensional vector space. F over Q is given by Ft(x) = e^'jc   for jcGP

where A  is an « x «  real matrix.  Let  Xt, •••, X-.   denote the distinct real

parts of the eigenvalues of A  with X,- > X;- if /'</.   For each / = 1, •••, k,

define the subbundle Ei to be the span of the invariant subspaces corresponding

to the Jordan blocks of A  with eigenvalues having real part X(-. Then E is the

direct sum of {Ex, •",Ek}.  The growth rate interval of E¡  is  X,-, 1 = 1, •••,&

So, by Theorem 11.10, the corresponding subbundles {Sx, •••, Sk} of PE =

pn-i   give a Morse decomposition of PF.  Since these growth rate intervals are

points, Theorem 11.7 implies that {Sx, ••*, Sk} is the finest Morse decomposi-

tion of PF, and PF is a chain recurrent on each 5,-.

If Q is a periodic orbit, then the situation is similar to the preceding case.

The distinct real parts of the characteristic exponents are the growth rate inter-

vals. The Morse sets in the finest Morse decomposition are the invariant subbun-

dles corresponding to the different real parts.

Example 2. We give an example where each  X in the growth rate interval

of a subbundle over  Q  is the positive growth rate of a particular orbit.  Let  Q

be the annulus in P2  defined, in polar coordinates, by  Q = {(r, d)\r G [rx, r2]

and 9 G [0, 2ir]}. Let p' be a P1-bundle over Q.   Define P on P' by

Ft((r, 9), x) = ((r, 9 + t), ertx) for (r, 9)GQ and jc G P1, where 0 + / is

taken modulo 27*. The growth rate interval for P'  is   [rx,r2].  For (r, 9)GQ,

each orbit over the orbit (r, 9 + t), t G R,  has growth rate r.  •

Example 3.  Let Q = 51   and let / have two rest points on 51 (Figure

3). Let P' be an R1 -bundle over Q.   Define P over Q (Figure 4) by the

O
Figure 3

"y

Figure 4
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solutions to the following differential equations:  Over y,  use x = x; over z,

use jc = - jc; over the orbit from y to z,  use jc = - (2/jr) (arctan r)jc; and

over the orbit from z  to y,  use jc = (2/7r) (arctan /)jc.  The growth rate inter-

val for P'  is   [-1,1].  But the only positive growth rates for particular orbits

are   1   and - 1.

12. An application to almost periodic differential equations.

Definition. A set of real numbers is said to be relatively dense if there

is an L > 0 so that every open interval in R  of length L  contains at least

one point of this set. (L  is called a span of this set.)

Definition. A continuous function «  from R  into a metric space

(X, d) is almost periodic if for each e > 0 there is an L > 0 and a relatively

dense set {r,} having span L  suchthat d(h(t + T¡),h(t)) < e forall tGR

and for all t¡.

Let A be an almost periodic function from R  into the « x «  matrices,

considered as R" . Consider the linear, nonautonomous differential equation

jc = A(t)x where x G R"  and tGR.   Let C be the space of continuous

functions from R to R"    with the topology of uniform convergence on com-

pact subsets.  Let / be the Bebutov dynamical system on C,  i. e., for BGC,

ft(B) h pf where B*(t) = B(t + t) for all r£ R.  The Bebutov system is a

continuous flow on C  [19]. If A  is almost periodic, the hull of A  (the clo-

sure of the orbit of A) is a compact subset of C since A  is bounded and uni-

formly continuous. Since the orbit through A  is almost periodic as a function

from R  into  C,  Birkhoff s recurrence theorem [16] implies that the hull of A

is a compact minimal set. Let M denote the hull of A,  a compact metric

space.  Let E = MxRn. Define a linear flow (F, f) on P where / is the

Bebutov system restricted to M and where P is defined as follows:  For

(B, jc) G M x R", Ft(B, x) = (ft(B),y(t)) where y(t) is the unique solution to

the differential equation jc = P(r)JC with initial value y(0) = jc.  F is a continu-

ous flow as shown in a more general situation in [19].

Since the zero section of P being isolated is equivalent to each equation

in the hull of A  having no nontrivial bounded solutions, the following is an

immediate consequence of Theorem 10.2:

Corollary 12.1. If no equation in the hull of A  has a nontrivial

bounded solution, then the solution space of each equation in the hull has a hy-

perbolic splitting.

Remark.   More explicitly, Theorem 10.2 asserts that

(1) for each BGM, R" = ES(B) ® EU(B), i.e., there is a splitting for

R"  varying continuously with B,  and
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(2) there are positive real numbers a and  X, X < 1, so that each solu-

tion y of jc = P(r)jc with initial value y(0) in ES(B) satisfies  |y(f)l <

aXf |.y(0)| for all / > 0 and each solution z with initial value in EU(B) satis-

fies  \z(t)\ > «--X-'Izii))! for all t > 0.

By Theorem 9.7, Es and P"  split into the direct sum of the invariant

subbundles corresponding to the finest Morse decomposition of PF,  and PF is

chain recurrent on each of these subbundles.  In other words, for each equation

in the hull, the stable and unstable solution spaces may split into subspaces with

disjoint growth rate intervals, and the solutions in each subspace are chain recur-

rent when viewed as projective space (angular recurrence in dimension two). The

growth rate intervals are the same for all equations in the hull, and we conjecture

that the intervals are, in fact, points.
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