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ABSTRACT. Let G be a finite group with a cyclic Sylow p-subgroup for some

prime  p > 13.   Assume that   G   is not of type   L2(p),  and that   G   has a faith-

ful indecomposable modular representation of degree  d < p.   Some known lower

bounds for   d  are improved, in case the center of the group is trivial, as a conse-

quence of results on the degrees (mod p) of irreducible Brauer characters in the

principal p-block.

1. Introduction. This paper continues the work of [3], [1], [2] on groups

which, for a fixed prime p, are not of type L2(p), and which have a cyclic

Sylow p-subgroup and a faithful indecomposable representation of degree d < p

over a field of characteristic p.  Information on the degrees (modulo p) of irre-

ducible Brauer characters in the principal p-block is obtained, and then used to

improve some known lower bounds for d  in case the center of the group is

trivial.

Throughout the paper, G is a finite group, p a fixed prime, P a Sylow

p-subgroup of G. TV and  C are respectively, the normalizer and centralizer of P

in G. Z is the center of G, z = \Z\, e = \N : C\ and t = (p - l)/e. K is a

field of characteristic p which is a splitting field for all subgroups of G, and B0

is the principal p-block of G.

Hypothesis A.   \P\ = p and N/P is abelian.

Hypothesis B.  P is cyclic, p>\3,G is not of type L2(p), and there is a

faithful indecomposable KG-module L of dimension d = p - s <p.

Hypothesis B implies Hypothesis A by [3].  When Hypothesis A holds, we

freely use the notation and terminology of [1].   In particular, if X is a nonpro-

jective indecomposable /CG-module, X = L(n, y)  means that the Green correspon-

dent of X is the /^TV-module   ^„(7); or, equivalently, that 7, a linear character

from N/P to K, is the npmv of X, and  rem X = n.  a is the linear character:

NIP-+K defined by x-\y* =/*(*}  all yGP,xGN. Wedenote 7 = a'' for
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some  i  with 1<i<k (j, k integers) by 7 G [j, k].  Since   |<a)l = e, 7 G [/, k]

if and only if 7 G [/ + re, k + re] for all integers r.

2.  Statement of results.

Theorem 1. Assume Hypothesis B.  Let X be an irreducible KG-module

in B0  with Xi> X*. Let m = p - x = rem X.

(a) If rem X > p/2 then x < max {t, (e/2) - s + / }. // rem X < p/2

then m < max {t, ((e + l)/2) - s + ?}•

(b) Suppose z 12   awe/ ¿ 7^ L*.  Then  rem X > p/2  implies x <

max{r, (2e - 6s + It + 2)/3}, and rem Z< p/2 imp/i'es m <

max {Y, (2e-6s + 7f +4)/3}.

(c) Suppose z\2, L^L*, e is even, and s> t.   Then rem X> p/2

imp/i'es x < maxfr, (2e - 6s + At + 5)/3}.  // rem X< p/2, then m <

max{f, (2e - 6s + At + 7)/3 }.

(d) Suppose L « L* and e is even.   Then rem X > p/2 implies x<

max{l, (e/2) - s + 1}, and rem X< p/2 implies m < max{l, (e/2) - s + 1}.

Theorem 2. Assume Hypothesis B. Let X be an irreducible KG-module

in B0   with X « X*. Assume m = p - x = rem X    is even.   Then e is odd.

If rem X > p/2 then x < e - 2s + 2t.  If rem X < p/2 then m < e - 2s +

2i + 1.

Corollary 3. Assume Hypothesis B with z = 1  and L i* L*. Then

s < min {K(t + (e/2)), (2e + It + 2)/9}.

Furthermore, if e is even then s < max {t, (2e + At + 5)/9}.

Corollary 4. Assume Hypothesis B wi'rA z = 1, d even, and L « L*.

Then s < (e + 2r)/3.

The next result eliminates the case p = 31, d = 27, z = 1, e = 6 listed in

[1> §8].

Corollary 5. Assume Hypothesis B with z = 1, G = G', f cxzV ancf

¿«I*.  77ie« s<(e + 2)/3.

[2, Corollary 2], [1, Theorem 5.7] show that under Hypothesis B with t> 3,

we have d > S(p - l)/6.  Our final corollary partially extends this result to the

case t = 2, with the additional restriction that z = 1.

Corollary 6. Assume Hypothesis B with z = 1 and t = 2. 77ze« tf 5*

(5p - 7)/6 im/ess I « /,* a/zd ci is ode?.
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3. Proofs.

Lemma 7. Assume Hypothesis A. Let X = L(m, y) be a nonprojective

irreducible KG-module, x = p - m, and let p: N/P -*■ K be a linear character.

Let u, r be positive integers such that u <r <(p + 3)/4, m > u (if rem X <

p/2), or x>u (if rem X > p/2). Assume that  7-1oT*   occurs as a main

value of   SJr¿ L(2i + I,pa') at most u times.

(a) // rem X > p/2, then r < (x + l)/2 implies

yp £ [- (r - 1) + u, (r - 1) - u], and r > (x + l)/2 implies

yp£ [-y, (r- l)-u]   where y = min{[(x - u - l)/2], (r - l)-u}.

(b) // rem X < p/2, then r<(m + l)/2 implies

yp £ [- (r - 1) + u, (r - 1) - u], and r>(m + l)/2 implies

yp £ [- (r - 1) + u, y']   where y' = min{[(m -u- l)/2], (r - 1) - u }.

Proof.  Let L¡ = L(2i + I, pa'), 0 < í <r - 1. Since 7"'a-* is the

npmv of X* [1, Lemma 2.3], then X* Ç L¡ implies  7~1ö~:i:  is a main value

of L¡.  So X* is a submodule of at most  u of the L¡.

If X ®L¡ has 1 as an npmv, then X ® L¡ has an invariant by [1, Theorem

4.1].  Since X 0 L¡ * Homx (X*, L¡) as a KG-module, it would follow that

X* C Lt.
(a) Suppose rem Z > p/2.

If r < (x + l)/2, then for all 1 with 0 < i < r - 1, the npmv's of

X®L¡ are  yprf~w, 0<w<2i  [1, Lemma 2.4]. Thus if yp = ak  with

HtKi-l-K, then 1 is an npmv of Lik],L^ki+ï.Lr_ l.  Hence, X*

is a submodule of at least  u + 1  of the /,,., a contradiction.    So we may as-

sume r > (x + l)/2.

Suppose 7p = ak, 0 < k < r - 1 - u.  Note that  » + k < r - 1.

If k > [(x + l)/2], then for any / with k<j<u + k, the npmv's of

X ® Lj are 7paT/+w, 0 < w < x - 1   [1, Lemma 2.6].     Since x > u + 1

implies / - x + 1 < k </',  1  is an npmv of I® L¡.  Hence    X* is

contained in each of the  u + 1  modules Lk, Lk+l, . . . , Lk+U, a con-

tradiction.

If k < [(x - l)/2] then k < i < [(x - l)/2] implies the npmv's of *»/,,.

are 7pûTw , 0 < w < 2i, whence ** Ç L¡. There are  [(x - l)/2] - k + 1   of

the I, here, so we may assume  [(x - l)/2] - k + 1 < u.  Consider any integer

/ with 0 </ <u + Jfc - [(x - l)/2] - 1.  Then

[(x + l)/2] +/ < [(x + l)/2] +u+k-[(x - l)/2] -l = u+k<r-l,

and x > u + 1  implies

[(x + l)/2] +j-x + Ku+k-x + \<k.
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Now the npmv's of X® Ll(x+1)/2]+i are TAlcr>-[(*+1>/2J+w, o<w<

x - 1, whence 1 is an npmv and X* Ç £j(*+i)«i+#<  So X* is contained in

[(x - l)/2] -k + 1 +u + k -[(x - l)/2] = u + 1   of the L¡, a contradiction.

Suppose 7p = a~k, 0 < k < y, y = min{[(x - u - l)/2], r — 1 - «}.

Then as above,  X* Ç Lk, Lk+l, . . . , Li(x-i)ßy We may assume

[(x - l)/2] - k + 1 < u.  Consider any integer / with 0 </ < u -

[(x - l)/2] + k - 1.  Then [(x + l)/2] +/<«+*< r - 1  and

k < (x - u - l)/2 implies [(x + l)/2] +j-x + Ku+k-x + K-k.

Therefore 1 is an npmv of X ® Z-[(x + 1)/2]+/-, so that X* C Lux+iy/2\+j>

0 </ < « - [(x - l)/2] + k - 1.  Then X* is again contained in u + 1   of

the L¡, a contradiction.

(b) Suppose tern X < p/2.

If r < (m + l)/2  and 7p = ak  with   Ifcl <r - 1 - u, then as in part

(a), X* is a submodule of Iljfct,jLIJfc(+1,..., Lr_1, a contradiction.  So we

may assume r > (m + l)/2.

Suppose 7p = a~k, 0 <k <r - 1 - u.  If k>[(m + l)/2], then for any

/ with k </ < u + k <r — 1, the npmv's of I® /,- are ypa'~w, 0 < w <

m - 1.  Since « < m  implies / - m + 1 < k </,  1   is an npmv of X ® L¡.

Hence, X* is contained in each of the  u + 1   modules Lk, Lk + l, . . . , Lk+U,

a contradiction.

If k < [(m - l)/2], then k < i < [(m - l)/2]  implies the npmv's of

X ®L¡ are  ypai~w, 0 < w < 2i, so that X* Ç L¡. We may assume

[(w - l)/2] - k + 1 < u.  For any integer / with 0</<«+&-

[(m -1)/2] - 1, then  [(m + l)/2] +j<u+k<r-l   and w>«  implies

[(m + l)/2] +/-m + l<i<-T-Ä:-m + l<*.  Since the npmv's of

*®¿[(m + i)/2]+/  are ypalim + 1)/2]+i~w, 0<w<m - 1,   1 is ar npmv and

AT* C Lj. Again, Z*  is contained in u + 1   modules £,-, another contradiction.

Finally, suppose yp=ak,  0 < Ä: <y, where  v' =

min{[(m - 1 -u)/2],r-u - 1}. As before, X* Ç ¿fc, ¿fc+1,. . . , Z,[(m_1)/2],

and we may assume  [(m - l)/2] - k + 1 < «.  For any / with 0 </ < « -

t(m-l)/2] + *-I,
[(m + l)/2] +/<« +k<r - 1

and fc < (w - 1 - w)/2 implies

[(m + l)/2] +/ + 1 -m<u +k + 1 - m < - k.

So 1 is an npmv of X ®¿[(m + 1)/2]+/ and X* ç L[(m + 1)/2]+/, 0</<K-

[(i7i - l)/2] + /V - 1.  Thus X*  is contained in u + 1   of the /,,-, which is

again a contradiction.

Lemma 7'. Assume Hypothesis A. Lei A" = ¿(wi, 7) be a nonprojective
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irreducible KG-module,  x = p - m, and let  p: N/P —► K be a linear character.

Let r be an integer such that  1 < r < (p + 3)/4. Let m > 1   if rem X < p/2,

or x > 1  if rem X > p/2. Assume that for no integer i with 0 < i < r - 1

does y_1a~x occur as a main value of both /,(2i' + l,pa/) ara?

L(2i + 3,pai+1).

(a) // rem X> p/2, iVie« r < (x + l)/2 implies yp$ [- r + 2, r - 2]

and r > (x + l)/2 implies yp$ [- [(x - 2)/2], r - 2].

(b) If rem X < p/2, then r < (m + l)/2  implies  yp$ [- r + 2, r - 2]

and r>(m + l)/2 implies yp$ [- r + 2, [(m - 2)/2]].

The proof is similar to that of Lemma 7 and is omitted.

Proposition 8. Assume Hypothesis A. Let X = L(m,y) be a nonpro-

jective irreducible KG-module with X ^ X*. Let m = p - x. Assume x > 1

if rem X > p/2, or m > 1    if rem X < p/2.

(a) // rem X> p/2 then y2 ^ [- 2x 4- 1, - 1] so that

y G [-x + 1,-1]   and y G [-x + 1 + [e/2], [(e + l)/2] - 1].

(b) // rem X< p/2  /¿en  72 £ [0, 2iti - 2], so that y$ [0, m - 1] and

y Ç [[(e + l)/2], m - 1 + [e/2]].

Proof . X i* X* and X irreducible imply there is no nonzero KG-homo-

morphism from X* to X. Thus X®X has no invariants, so [1, Theorem 4.1]

implies 1 is not an npmv of X ® X.

If rem X>p/2, the npmv's of X®X are 72tY*+', 0</<x-l.

Hence, 72 ^ [- 2x + 1, - x]. The same argument applied to X* gives

(7-ia-x)2 £ [_ 2x + 1, - x], whence 72 <£ [- x, - 1].

If rem Z< p/2, the npmv's of X®X are 72a_/, 0<i<m-l.

Hence, 72 ^ [0, w - 1].  The same argument for X* yields (7-1am_1)2 £

[0, m - 1], so that y2 $ [m -1,2m - 2].

Proof of theorem 1.  Let X = L(m, y). 76(a) by [1, Proposition

4.6]. The discussion of [1, §4] shows that X, X* separate a total of either 2x

(rem X > p/2) or 2m (rem X < p/2) vertices from the real stem of the graph of

B0. Hence, rem X> p/2  implies x < [e/2]  and  rem X< p/2 gives m<

[e/2].  So we may assume d < p - 1, and, in the proof of (a), (b) that s > t.

By [1, Theorem 5.7], s<(p + 3)/4.

Let L = L(d, X).  Then

(L ®L*)N    * S± F2/+1(o/) + P~¿     Vp(c?)
i=0 i=s

[1, Lemma 2.3, Lemma 2.6].  So  L ® L* is the direct sum of S^ L(2i + l,o/)

and (possibly) a projective A'G-module.  Since p - s < p - 1 = te, no linear
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character:  N/P -* K occurs as a main value of 2£l¿ ¿(2i + 1, a') more than t

times.

[1, Lemma 2.6] also gives

(L®L)N~ £ V2i+1(\2aS+i) + P~Z    ^(XV+<)-
«=0 i=s

So L®L is the direct sum of S^ L(2i + 1, \2as+r) and perhaps a projec-

tive module, and no linear character: N/P -*• K occurs as a main value of

2f-¿ L(2i + 1, \2as+i) more than t times.  Note that z 12  implies \2as G

(a). If e  is even, [1, Lemma 3.3] implies for all integers i  with 0 < i < s - 1,

L(2i + 1, X2ai+/) and L(2i + 3, X2as+,+1) have no main values in common.

Let  T= D„ G("\ the intersection of the derived series. G  not p-solvable

implies P CT.  LP is indecomposable [3], hence  T and LT satisfy Hypothe-

sis B. Then d<p-\   and [1, Proposition 6.1] imply LT is irreducible.  It

follows that L is irreducible.

(a) Suppose first that  rem X > p/2. We may assume x > /. Then by

Lemma 7 with p = 1, u = t and r = s, 7 £ [0, s - 1 - í].  Applying Lemma

7 to X* gives  y~1a~x £ [0, s - 1 - t], so 7^[-x - s +1 + i, - x].

XfcX* implies 7 G [-x + 1, - 1]   by Proposition 8. Thus

7 £ [- x - s + 1 + t, s - 1 -1].

Since Proposition 8 also says 7 € [-x + 1 + [e/2], [(e + l)/2] - 1], we must

have

either   s - í < - x + 1 + [e/2]   or    [(e + l)/2] -l<e-x-s+i\

Both these inequalities are equivalent to x < [e/2] -s+/ + l, i.e. x <

[e/2] - s + t. Note that

S - t < - X + 1 + [e/2] < [(e + l)/2] -Ke-x -s+t,

y G [s - t, [e/2] - x]   or   [[(e + l)/2], e - x - s + t].

If rem X < p/2, we may assume m> t.  Lemma 7 and Proposition 8 give

7£[-s + l +t, m+s-t-2]. Proposition 8 implies

7É[[(e + l)/2],w-l + [e/2]],

so that

either   m + s - t - 1 < [(e + l)/2]   or   m - 1 + [e/2] < e - s + t.

Hence m < [(e + l)/2] - s + i.  Note

m + S ~ * ~ ! < [(g + 1)/2] < W ~ 1 + [el2] < e ~ S + U

yG[m+s-t -l,[(e - l)/2]]    or    [m + [e/2], e - s + t ].

(b) Assume first that  rem X > p/2. We may assume x > t and x >
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(2e - 6s + It + 2)/3.  Suppose x>2s -t.  By (a), x < (e/2) - s + t. There-

fore, 2s - t < (e/2) - s + t implies s < (e/6) + (2i/3).  Then

x > (2e/3) - 2s + (7f/3) + (2/3)

> (2e/3) - s - (e/6) - (2f/3) + (7f/3) + (2/3)

= (e/2) - s + (5z73) + (2/3).

Hence, (e/2) - s +t> (e/2) - s + (5í/3) + (2/3), a contradiction.  So we may

assume x < 2s - t - 1, hence  (x - t - l)/2 < s - t - 1.

Now L i> L* implies  X2c^ = ac   where   lcl>s-l  by Proposition 8.

We may take s<c<e-s.  Since (\~1a~s)2as = a~c, replacing L by L*

(if necessary) we may assume e/2 < c < e - s.  Lemma 7 applied to X for

p = 1, ac, a~c gives 7p £ [- [(x - t - l)/2], s - 1 - í], and applied to X*

yields 7-1cT*p-1 $ [-[(x - t - 1)12], s - 1 - t], whence

7P G [- x - s + 1 + t, [(x - t - l)/2] - x]. In particular,

7 £ [c - x + 1 + t - s, c + [(x - t - l)/2] - x]   and

(H)
7<Ê[-c- [(x-t- i)/2],-c + s-l-r].

Since c > e/2 and x > t, we have

(12) c + [(x -t - l)/2] - x > [e/2] - x.

If e-c+s-1 - t < [e/2] - x, then c <e - s implies x < c + [e/2] -

e - s + t + 1 < [e/2] - 2s + t + 1   which says

(2e/3) - 2s + (7//3) + (2/3) < [e/2] - 2s + t + 1.

Hence, (7//3) + (2/3) < t + 1   which implies At < 1, a contradiction.  So

(13) e-c+s-1 -t>\e\2] -x.

If either c-x + l+t-s or e - c - [(x - t - l)/2]  is less than or

equal to s - t, then (9), (11), and (12) or (13) imply y G [[(e + l)/2],

e - x - s + t]. But the same argument applied to X* gives 7-1ûTx G

[[(e + l)/2], e - x - s + t], hence y G [s - t, [e/2] - x], a contradiction.

Therefore

(14) c -x + 1 +t -s>s-t and e - c - [(x - t - l)/2]>s - f.

Adding these two inequalities, we have e - x - [(x - t - l)/2] + 1 + t - s >

2s - 2t, which says e - 3s + 3t + 1 > x + [(x - t - l)/2],  whence

x + (x - i)/2 < e - 3s + 3t + 1.  The desired inequality follows.

The case  rem X < p/2  is similar. We may assume  m > t and  m >

(2e - 6s + It + 4)/3.  If m > 2s - t, then (a) yields

((e + l)/2) - s +t> (e/2) - s + (5t/3) + (7/6),

a contradiction.  So we may assume  (m - t - 2)/2 < s — t — 1.
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Let X2c/ = ac, where we may assume s < c < e/2.  Lemma 7 applied to

X, X*, with p = ac, gives

7 G [-c-s + 1 +t,-c + [(m-t - l)/2]] and

(15)
7 <$ [c + m - 1 - [(m - t - l)/2],   c + m + s - t - 2].

Since c < [e/2] and  m> t,

(16) c + m-l-[(m-t- l)/2] < [e/2] + m - 1.

If e-c-s + 1+f > m - l + [e/2], then c > s  implies m < e - [e/2] -

c-s+2+r<e- [e/2] - 2s + 2 + t, which gives

(2e/3) - 2s + (7t/3) + (A/3) < [(e + l)/2] - 2s + 2 + t.

Hence, (7t/3) + (4/3) < 2 + í and í < 1/2, a contradiction.  So

(17) e-c-s + 1 +f<m - 1 + [e/2].

If either c+m+s-t-2>e-s+t or  e - c + [(m - t - l)/2] >

e -s +t, then (10), (15), and (16) or (17) imply y $ [m + [e/2], e - s + t].

But also 7_1am~1 G [m + [e/2], e - s + t], whence y G [m + [e/2], e - s + t],

a contradiction.  Hence

(18) c + iH + s-í-2<e-s-l-í1  and  e - c + [(m - t - l)/2] <e -s+t.

Adding these two inequalities yields m + [(m - t - l)/2] < e - 3s + 3r + 2,

hence  m + (m - f)/2 < e - 3s + 3i + 2  and (b) follows.

(c)  Suppose rem X > p/2.  We may assume x > t and x >

(2e - 6s + At + 5)/3.  Suppose x > 2s - 1. Then arguing as in (b), we see that

(a) forces (e/2) - s + t > (e/2) - s + t + (4/3), a contradiction.  Hence, s >

(x + l)/2.

Assume X2a* = of, e/2 < c < e - s.  Lemma 7', with p = ac, applied to

X* and X, gives

y<£[c -x -s +2,c -x + [(x - 2)/2]] and
(19)

' 7 £ [-c - [(x - 2)/2], -c+s-2].

The argument proceeds as in (b), with (19) replacing (11). We arrive at c — x —

s + 2 > s - t and e - c - [(x - 2)/2] > s - t. Adding these inequalities

yields the desired result.

If rem X < p/2, we may assume  m > t  and  m > (2e - 6s + At + 7)/3.

If m > 2s - 1, then (a) implies ((e + l)/2) - s + t > (e/2) - s + t - 1/2 +

(7/3), a contradiction.  So  s> (m + l)/2.

Assume X2«* = ac, s <c < e/2.  Apply Lemma 7' to X and X*  to

obtain
7 S [- c - s + 2, -c + [(m - 2)12]] and

(20) y ç [c + m _ j _ r(m _ 2)/2], c + m + s - 3].
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Argue as in (b), with (20) replacing (15), to reach c + m+s-3<e-s + i

and  e - c + [(m - 2)/2] < e - s + t. Adding these inequalities completes the

proof of (c).

(d)  If rem X> p/2, we may assume x > 1. Then by Lemma 7', with

p = 1 = X2cys, 7 £ [0, s - 21  Likewise,  7_1a~* G [0, s - 2],  so that

7 G [-x -s + 2,-x]. Then Proposition 8 implies either s - 1 <-x + 1 +

(e/2) or  (e/2) -l<e-x-s + l.  Each is equivalent to x < (e/2) - s + 2,

hence x < (e/2) - s + 1.

If rem X < p/2,  we may assume m > 1.  Then Lemma 7', with p = 1 =

X2as, applied to X and X*, gives 7 ^ [- s + 2, 0]  and  7 $ [m - 1, s +

m - 3]. Proposition 8 implies either s + m - 2 < e/2  or m - 1 4- (e/2) <

e — s + 1.  Both inequalities are equivalent to the desired result, and Theorem 1

is proved.

Proof of Theorem 2. X ^ X* implies 72 = am_1 [1, Lemma 2.3].

X GB0  implies 7 G <o¡>. Thus m - 1  odd forces e to be odd.

Since x < e if rem X > p/2  and  m < e if rem X < p/2 by

Rothschild's argument [1, §4],  it suffices to assume  s > t.  Let  rem X> p/2.

Suppose e-2s+2t<x<t.  Then  2s>e + t + 1.  But [2, Corollary 2]

says 2s < max{e + 5, e + t - 1}.  It follows that  f + 1 < 5, so  f < 4.  If

f = 4, then m  even implies x < 3  and  e — 2s 4- 8 < 3,  so that  2s > e + 5,

a contradiction.   If t = 2  then  e - 2s 4- 2f < 2  implies s > (e + 2)/2 =

(p + 3)/4, again a contradiction.  So we may assume x > t.

Since e and x are odd, 72 = a~x implies 7 = a^e~x^l2. By Lemma 7

with p = 1, 7 ^ [0, s - 1 - /]. Hence (e - x)/2 >s - t and x < e - 2s +

2t.

Let rem X < p/2.  If e - 2s + 2f 4- 1 < m < t, then  2s > e + t 4 1.

Since  e + f + 1   is even, 2s > e + t + 3.  By [2, Corollary 2], 5 > t + 3  so

t = 2. Then e - 2s + 2r < 2  implies s > (e + 2)/2 = (p + 3)/4, a contra-

diction.  Then it suffices to assume m> t.

X^X* implies 72=am_1.   Then y «a(»+*-0/2.  By Lemma 7 with

p = 1, 7 # [- s + 1 4-1, 0]. Therefore  (e + m - l)/2 <e-s + i,  so  w<

e -2s + 2/ + 1.

It suffices to assume, in proving the corollaries, that d < p - 1. Then, as

in the proof of Theorem 1, L is irreducible. If z = 1, L G B0 [ 1, Corollary

4.7].

Proof of Corollary 3 .  Let L = X in Theorem 1, L fcL* implies s <

e/2, hence  (e/2) - s + t > t. Then (a) gives s < (e/2) - s + t, so s <

H(e/2) + t).

If t > s > (2e + It + 2)/9, then 9t > 2e + 7t + 2 implies t > e + 1.

Then s > (2e + 7(e + 1) + 2)/9 = e + 1, a contradiction.  So if s >
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(2e + It + 2)/9, then s > t. Theorem 1(b) yields s < (2e - 6s + It + 2)/3,

whence s < (2e + It + 2)/9.

If e is even and s > t, Theorem 1(c) gives s < (2e - 6s + At + 5)/3

and s < (2e + At + 5)/9.

Proof of Corollary 4 . Let L = X in Theorem 2. Then s < e - 2s + 2t,

whence the result.

Proof of Corollary 5. Since G = G', the determinant of the linear trans-

formation on L given by the action of each element of G is 1. Then [ 1,

Lemma 2.3] implies Xd = ûcf(d-1)/2, where L = L(d, X). L * L* giv^s

X2 = ad~i.   Since d is odd, X=a^d_1^2. Now t odd (and hence e  even)

gives

(d - l)/2 = (p - 1 - s)/2 = (fe - s)/2 = (re/2) - (s/2) = (e - s)/2.

By Lemma 7', with X = Z,, r = s, p = X2cy* = 1, we have X ̂  [0, s - 2].

Hence s - 1 < (e - s)/2, which implies s < (e + 2)/3.

Proof of Corollary 6 . If L fcL*, Corollary 3 implies s < (p + 15)9 <

(p + 7)/6 for all p > 13.  If Z, « I* and d  is even, Corollary 4 gives s <

(e + 2r)/3 = (p + 7)/6 and we are done.
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