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ABSTRACT. Let G be a finite group with a cyclic Sylow p-subgroup for some
prime p > 13. Assume that G is not of type L,(p), and that G has a faith-
ful indecomposable modular representation of degree d < p. Some known lower
bounds for d are improved, in case the center of the group is trivial, as a conse-
quence of results on the degrees (mod p) of irreducible Brauer characters in the
principal p-block.

1. Introduction. This paper continues the work of [3], [1], [2] on groups
which, for a fixed prime p, are not of type L, (p), and which have a cyclic
Sylow p-subgroup and a faithful indecomposable representation of degree d <p
over a field of characteristic p. Information on the degrees (modulo p) of irre-
ducible Brauer characters in the principal p-block is obtained, and then used to
improve some known lower bounds for d in case the center of the group is
trivial.

Throughout the paper, G is a finite group, p a fixed prime, P a Sylow
p-subgroup of G. N and C are respectively, the normalizer and centralizer of P
in G. Z isthecenterof G, z=1ZLe=IN:Cl and t=(p — 1)le. K isa
field of characteristic p which is a splitting field for all subgroups of G, and B,
is the principal p-block of G.

Hypothesis A. |Pl=p and N|P is abelian.

Hypothesis B. P is cyclic, p 213, G is not of type L,(p), and there is a
Jaithful indecomposable KG-module L of dimension d =p —s <p.

Hypothesis B implies Hypothesis A by [3]. When Hypothesis A holds, we
freely use the notation and terminology of [1]. In particular, if X is a nonpro-
jective indecomposable KG-module, X = L(n, y) means that the Green correspon-
dent of X is the KN-module V,(y); or, equivalently, that 7, a linear character
from N[P to K, isthe npmvof X, and rem X = n. « is the linear character:
N/P > K defined by x~lyx =p*™) all y €P,x EN. We denote y =ao for
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some i with j <i<k (j, k integers) by v €[j,k]. Since [a) =¢, y€E U, k]
if and only if y €[j +re, k +re] for all integers r.

2. Statement of results.

THEOREM 1. Assume Hypothesis B. Let X be an irreducible KG-module
in By with X% X*. Let m=p —x=rem X.

@) If remX>p/2 then x <max {t,(e[2) —s +t}). If rem X <p/2
then m <max {t, (e +1)/2) —s +1¢}.

(b) Suppose z12 and L # L*. Then rem X > p/2 implies x <
max{t, (2e — 6s + 7t + 2)/3}, and rem X <p[2 implies m <
max{t, (2¢ — 6s + 7t + 4)/3}.

(c) Suppose zI2, L # L*, e iseven,and s>t. Then rem X > p/2
implies x < max{t, (2e — 6s + 4t + 5)/3). If rem X< p[2, then m <
max{t, (2e — 6s + 4t + 7)/3 }.

(d) Suppose L~ L* and e is even. Then rem X > p[2 implies x <
max {1, (e/2) —s + 1}, and rem X <p/[2 implies m < max{l, (e/2) —s + 1}.

THEOREM 2. Assume Hypothesis B. Let X be an irreducible KG-module
in By, with X~ X*. Assume m=p —x=rem X iseven. Then e is odd.
If temX>pl2 then x<e—-2s+2t. If tem X<p/2 then m<e — 2s +
2t + 1.

COROLLARY 3. Assume Hypothesis B with z =1 and L # L*. Then
s <min {%(t + (e/2)), (2e + 7t + 2)/9}.

Furthermore, if e is even then s <max {t, (2¢ + 4t + 5)/9}.

COROLLARY 4. Assume Hypothesis B with z=1, d even,and L ~ L*,
Then s < (e + 2t)/3.

The next result eliminates the case p =31,d =27,z =1,e = 6 listed in
(1, §8].

COROLLARY 5. Assume Hypothesis Bwith z=1,G=G', t odd and
L =L* Then s<(e+2)/3.

[2, Corollary 2], [1, Theorem 5.7] show that under Hypothesis B with ¢> 3,
we have d 2 5(p — 1)/6. Our final corollary partially extends this result to the
case t = 2, with the additional restriction that z = 1.

COROLLARY 6. Assume Hypothesis Bwith z=1 and t =2. Then d >
(5p —7)/6 unless L~ L* and d is odd.
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3. Proofs.

LEMMA 7. Assume Hypothesis A. Let X = L(m, ) be a nonprojective
irreducible KG-module, x = p — m, and let pu: N[P—~ K be a linear character.
Let u, r be positive integers such that u <r <(p +3)/4, m>u (if rem X <
pl2), or x> u (if rem X > p[2). Assume that y o™ occurs as a main
wlue of ZiZd L(2i + 1,u0’) at most u times.

(a) If rem X > p/2,then r<(x + 1)/2 implies
WERFE-1+u ¢c—1)—ul,and r>(x +1)/2 implies
Y& [-y, ¢ —1)—u] where y=min{[(x —u—1)/2],¢ - 1) -u}.

() If rem X <p/2,then r < (m + 1)/2 implies
WEFC-D+u ¢—1)—ul,and r>(m + 1)/2 implies
YWE[-C-1)+u ] where y'=min{[(n-u-1)2],¢-1)-u}.

PrOOF. Let L, =L(2i +1,pa'), 0<i<r —1. Since v 1o~ is the
npmv of X* [1, Lemma 2.3], then X* C L; implies v la~* is a main value
of L, So X* isa submodule of at most u of the L,

If X®L, has1 as an npmv, then X ® L; has an invariant by [1, Theorem
4.11. Since X ® L; ~ Homy (X*, L,) as a KG-module, it would follow that
X*ClL,

(a) Suppose rem X >p/2.

If r<(x +1)/2, then forall i with 0<i<r -1, the npmv’s of
X®L, are yuod ™, 0<w<2i [l, Lemma 24]. Thusif yu=0o* with
Ikl<r—1—u, thenlisannpmvof Lz, L gi4ys---»L,_y. Hence, X*
is a submodule of at least u + 1 of the L;, a contradiction. So we may as-
sume r > (x +1)/2.

Suppose yu=0o*,0<k<r—1-u Note that u +k <r-1.

If k> [(x + 1)/2], then for any j with k <j<u +k, the npmv’s of
X®L; are yua i*%, 0<w<x -1 [1,Lemma2.6]. Since x>u+1

implies j —x +1 <k <j, 1 isannpmvof X®L, Hence X* is

contained in each of the u + 1 modules L,, Ly,.,...,Lgy,, acon-
tradiction.

If k<[(x-1)/2] then k <i<[(x —1)/2] implies the npmv’s of X® L,
are yuo/™, 0 <w <2i, whence X* C L, Thereare [(x —1)/2]—k +1 of
the L, here, so we may assume [(x — 1)/2] — k + 1 <u. Consider any integer
j with 0<j<u+k-[(x—-1)/2] - 1. Then

[c+D2]1+j<[x+D2]tu+k-[x-1)2]-1=u+k<r-1,
and x> u + 1 implies

[x+D2]+j-x+1<u+k-x+1<k.
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Now the npmv’s of X ® Li(y41y/2]4j are yua /~IG+DR2IW 0 <y <
x —1, whence 1 isannpmvand X* C L, ,1)2)4j- So X* is contained in
[x=12]-k+1+u+k—[(x—-1)2]=u+1 of the L;, a contradiction.

Suppose yu=0a"% 0<k<y,y =min{[(x —u — 1)/2),r — 1 —u}.
Then as above, X* C Ly, Lyyy,- -5 Lix_1)2)- We may assume
[(x — 1)/2] — k + 1 <u. Consider any integer j with 0 <j<u —
[x-1)2]+k —1. Then [(x +1)2]+j<u+k<r-1 and
k<(@x—u-—1)2 implies [(x +1)2]+j-x+1<u+k-x+1<-k.
Therefore 1 is an npmv of X ® Lj(, 1 1)/214j> 50 that X* C Ly(iy1y/2) 45
0<j<u-—[(x-1)2]+k—1. Then X* is again contained in ¥ +1 of
the L, a contradiction.

(b) Suppose rem X < p/2.

If r<(@m+1)2 and yu=0o* with 1kl<r —1 —u, then as in part
(@), X* isasubmodule of L,,\, L z\4q5---5L,_y, acontradiction. So we
may assume r > (m + 1)/2.

Suppose yu=a"¥%, 0<k<r-—1-u. If k>[(m + 1)/2], then for any
j with k<j<u+k<r—1, thenpmvsof X®L; are yuoe/ ™, 0<w<
m —1. Since u <m implies j —m +1 <k <j, 1 isan npmv of X®Lj.
Hence, X* is contained in each of the u +1 modules L, Ly q,..., Ly,
a contradiction.

If k<[(m - 1)/2], then k <i<[(m — 1)/2] implies the npmv’s of
X®L, are ypa™™, 0 <w <2i, sothat X* C L, We may assume
[(m — 1)/2] - k +1 <u. For any integer j with 0 <j<u +k —
[(m —1)/2] =1, then [(m +1)/2]+j<u+k<r -1 and m>u implies
[(m+1)2]+j-m+1<u+k-m+1<k. Since the npmv’s of
X®Lipmyry2)e; are yual (P +D/2147% 0 <y <m — 1, 1isar npmv and
X* C L,. Again, X* is contained in u + 1 modules L,, another contradiction.

Finally, suppose yu=0a¥, 0 <k <y', where y' =
min{[(m — 1 —u)/2],r —u — 1}. Asbefore, X* CL,, Ly, ,..., L[(m—l)/2]’
and we may assume [(m —1)/2] -k +1<u. Forany j with 0 <j<u -
[(m -1)/2]+k -1,

[(m+1D2]+j<u+k<r-1

and k <(m — 1 — u)/2 implies
[m+D2]+j+1-m<u+k+1-m<-k.

So 1 isan npmv of X ® Li(,41)214j a4 X* C Ly s1y2y4jp 0 ST<SuU -
[(m —1)/2] + kK — 1. Thus X* is contained in u + 1 of the L, which is
again a contradiction.

LEMMA 7'. Assume Hypothesis A. Let X = L(m, ) be a nonprojective
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irreducible KG-module, x =p — m, and let yu: NJP— K be a linear character.
Let r bean integer such that 1 <r <(p +3)/4. Let m>1 if rem X <p/2,
or x> 1 if rem X > p/2. Assume that for no integer i with 0 <i<r -1
does vy Ya~=* occur as a main value of both L(2i + 1, ue!) and
L(2i + 3, uoit1),

(@) If rem X> p/2, then r < (x + 1)/2 implies yu & [-r +2,r — 2]
and r> (x +1)/2 implies yu €& [-[(x — 2)/2],r - 2].

(b) If rem X <p[2, then r <(m + 1)/2 implies yu ¢ [-r +2,r — 2]
and r> (m +1)[2 implies yu & [—-r + 2, [(m - 2)/2]].

The proof is similar to that of Lemma 7 and is omitted.

PROPOSITION 8. Assume Hypothesis A. Let X = L(m,y) be a nonpro-
jective irreducible KG-module with X # X*. Let m =p — x. Assume x> 1
if remX>pf2, or m>1 if rem X <p/2.

@) If rem X>p/2 then v* & [-2x + 1, — 1] so that
YyE[-x+1,-1] and YyE[-x + 1+ [¢/2], [(e + 1)/2] — 1].

®) If rtem X <p/2 then +* & [0,2m — 2], so that y & [0,m — 1] and
7€ [l +1)2],m -1 +[e/2]].

PROOF. X # X* and X irreducible imply there is no nonzero XG-homo-
morphism from X* to X. Thus X ® X has no invariants, so [1, Theorein 4.1]
implies 1 is not an npmv of X ® X.

If rem X > p/2, the npmv’sof X ® X are y2>a**, 0<i<x-1.
Hence, 7% € [- 2x + 1, — x]. The same argument applied to X* gives
0 'a*)? ¢ [-2x + 1, — x], whence ¥? & [-x, — 1].

If rem X <p/2, the npmv’sof X ® X are y%a~!, 0<i<m - 1.
Hence, v* & [0, m — 1]. The same argument for X* yields (y~'o™ 1) ¢
[0,m — 1], so that 42 & [m — 1, 2m — 2].

PROOF OF THEOREM 1. Let X = L(m, 7). v €{a) by [1, Proposition
4.6]. The discussion of [1, §4] shows that X, X* separate a total of either 2x
(rem X > p[2) or 2m (rem X < p/2) vertices from the real stem of the graph of
B,. Hence, rem X > p/2 implies x <[e/2] and rem X <p/2 gives m <
[e/2]. So we may assume d <p — 1, and, in the proof of (a), (b) that s> ¢.
By [1, Theorem 5.7], s < (p + 3)/4.

Let L= L(d,X). Then

——

s—1 D 1
L ®LYy = i_zovz,.ﬂ(afn E) V,@)

[1, Lemma 2.3, Lemma 2.6]. So L ® L* is the direct sum of 2}';3 LQ2i + l,a/)
and (possibly) a projective KG-module. Since p —s <p — 1 = te, no linear
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character: N/P - K occurs as a main value of E}’;g L(2i +1,a") more than ¢
times.
[1, Lemma 2.6] also gives

s=1 2 s+, P31 2 s+t
LOLy= Y Vo W@ )+ :E vV, +),
i=0 =5

So L ® L is the direct sum of &) L(2i +1,2%° *1) and perhaps a projec-
tive module, and no linear character: N/P - K occurs as a main value of

228 L2i + 1, \%e®*Y) more than ¢ times. Note that z |2 implies A%a® €
(o). If e iseven,[1, Lemma 3.3] implies for all integers i with 0 <i<s -1,
L2 + 1, 2%y and L(2i + 3, A2a’+*1) have no main values in common.

Let T=1/), G™, the intersection of the derived series. G not p-solvable
implies PCT. Lp is indecomposable [3], hence T and L, satisfy Hypothe-
sis B. Then d <p — 1 and [1, Proposition 6.1] imply L, is irreducible. It
follows that L is irreducible.

(@) Suppose first that rem X > p/2. We may assume x > ¢. Then by
Lemma 7 with u=1,u=1¢ and r=s, y€¢ [0,s — 1 —¢t]. Applying Lemma
7to X* gives v la ¥ @ [0,5s -1 —¢], s0o y&[-x —s+1+¢, —x].

X# X* implies ¥ € [-x + 1,—1] by Proposition 8. Thus
YE[-x-s+1+¢ts-1-1].
Since Proposition 8 also says v & [-x + 1 + [¢/2], [(e + 1)/2] - 1], we must
have
either s —¢t<—-x+1+[ef2] or [e+1)2]-1<e—-x-s+1t.
Both these inequalities are equivalent to x <[e/2] —s +7 + 1, ie. x <
[e/2] — s +¢t. Note that
©) s—t<-—-x+1+[e2]<[(e+1))2]-1<e—-x-5+¢
yE[s -t [ef2] —x] or [[(e+1)2),e—x—s+t].

If rem X <p/2, we may assume m >t. Lemma 7 and Proposition 8 give

YE[-s+1+¢t m+s—1t-2]. Proposition 8 implies
v € [[(e + 1)2],m—-1+ [¢/2]],
so that

eitheer m+s—t—-1<[e+1)2] or m-1+[e)2]<e-s+1.
Hence m <[(e + 1)/2] —s +t. Note

m+s—t—-1<[e+12]<m-1+[e2]<e -5 +1,
yEmMm+s—t—1,[(e-1)2]] or [m+][ef2],e —s +1]
() Assume first that rem X > p/2. We may assume x >t and x>

(10
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(2e — 65 + 7t +2)/3. Suppose x =>2s —t. By (a), x <(e/2) —s +t. There-
fore, 2s —t < (ef2) —s + ¢ implies s < (e/6) + (2t/3). Then

x> (2¢/3) = 25 + (7t]3) + (2/3)
> (2¢/3) — s — (e/6) — (2t/3) + (7t/3) + (2/3)
= (e/2) — s + (5¢t/3) + (2/3).

Hence, (e/2) —s +t> (e/2) —s + (5¢/3) + (2/3), a contradiction. So we may
assume X <25 —t —1, hence (x —t -1)/2<s -t -1.

Now L # L* implies A%0® =of where lcI>s —1 by Proposition 8.
We may take s <c <e —s. Since \"la~%)?a® =a~°, replacing L by L*
(if necessary) we may assume e/2 <c <e —s. Lemma 7 applied to X for
u=1,a% a ¢ gives yu& [-[(x —¢t —1)/2],s — 1 —¢], and applied to X*
yields vy~ la=*u~! @ [~ [(x — ¢t — 1)/2],s — 1 —¢], whence
YHE [Fx—-s+1+¢ [(x—t-1)2] —x]. In particular,

v¢le—-x+1+t-s,c+[(x—-t-1)2]-x] and
T€[Fc-[x-t-1)2],-c+s-1-1].

Since ¢ =>e/2 and x> ¢, we have

(12) c+[x—-t-1)2] —x=>[ef2] — x.

If e-c+s-1-t<[ef2] —x, then ¢ <e —s implies x <c + [¢/2] —
e—s+t+1<[ef2] —2s +¢t+1 which says

(2e/3) = 25 + (7t]3) + (2/3) <[e/2] — 2s +¢ + 1.

Hence, (7t/3) + (2/3) <t + 1 which implies 4t <1, a contradiction. So
(13) e—c+s—1-t=>[ef2] —x.

If either c —x+ 1+t —s or e —c —[(x —t — 1)/2] is less than or
equal to s —¢, then (9), (11), and (12) or (13) imply v € [[(e + 1)/2],
e —x — s +t]. But the same argument applied to X* gives v~ la™ €
[[(e +1)/2),e —x —s +t], hence v E[s —¢, [e¢/2] — x], a contradiction.
Therefore
(14) c—-x+1+t-s>s-tande—-c-[x—-t-12]>s-1t.

an

Adding these two inequalities, we have e —x — [(x —¢t —1)/2] +1 +¢t —s>
2s — 2t, which says e —3s + 3t +1>x + [(x — ¢ — 1)/2], whence
x4+ (x -t)2<e-3s+3t+1. The desired inequality follows.
The case rem X < p/2 is similar. We may assume m >t and m >
(Qe —6s + 7t +4)/3. If m=>2s —t, then (a) yields

(e + 1)/2) —s +t > (e/2) — s + (5t/3) + (7/6),

a contradiction. So we may assume (m —t -2)/2<s -t -1.
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Let A2o® =of, where we may assume s <c¢ <e/2. Lemma 7 applied to
X, X*, with u=af, gives
YE [-Fc-s+1+t,—c+][m—t-1)2]] and

(15)
yé€letm—-1—-[m—-t-12), c+m+s—t-2].

Since ¢ <[e/2] and m >,
(16) c+tm—-1-[m-t-1)2]1<[e/2] +m - 1.

fe-c—s+1+¢t >m—1+/[ef2], then ¢ >s implies m <e —[¢/2] —
c—-s+2+t<e—[ef2] —2s + 2+, which gives
(2¢/3) —2s + (7t/3) + (4/3) <[(e + 1)/2] = 2s + 2 +1¢.

Hence, (7t/3) + (4/3) <2+t and t <1/2, a contradiction. So
a7 e—c—-s+1+t<m-1+][ef2].

If either c+m+s—-t-22e—-s+t or e-c+[m-t-1)2]>
e —s +t, then (10), (15), and (16) or (17) imply v & [m + [e[2],e —s + ¢t].
Butalso Y 'a™ 1 & [m+ [e/2],e—s+ ], whence Y€ [m+ [e/2],e—s+1],
a contradiction. Hence
(8) c+m+s—-t-2<e-s+t and e-c+[m-t-12]<e-s+z.
Adding these two inequalities yields m + [(m — ¢t — 1)/2]<e —3s +3t + 2,
hence m +(m —t)[2 <e — 3s + 3t + 2 and (b) follows.

(c) Suppose rem X >p/2. We may assume x>¢ and x>
(2e — 65 + 4t + 5)/3. Suppose x =>2s — 1. Then arguing as in (b), we see that
(a) forces (ef2) —s +t > (e/2) —s + ¢t + (4/3), a contradiction. Hence, s >
(x + /2.

Assume A20f =0of,e/2<c<e -s. Lemma 7', with u=a°, applied to
X* and X, gives

y¢e—x-s+2,¢c—x+][(x-2)/2]] and

(19) 1E[-c— [ -2} —c +s - 2],
The argument proceeds as in (b), with (19) replacing (11). We arrive at ¢ — x —
s +2>s—t and e —c — [(x — 2)/2] > s —t. Adding these inequalities
yields the desired result.

If rem X <p/2, we may assume m >t and m > (2e — 6s + 4t + 7)/3.
If m>2s -1, then (a) implies (e +1)/2) —=s+t>(ef2) -s+¢t —-1/2 +
(7/3), a contradiction. So s> (m + 1)/2.

Assume A2of =af,s <c <e/2. Apply Lemma 7' to X and X* to
obtain

YE[-c—s+2,—c+[m -2)/2]] and

(20 yE€le+tm—-1—[m—-2)2],c+m+s-3].
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Argue as in (b), with (20) replacing (15),toreach ¢ +m +s -3 <e—-s +¢
and e —c +[(m - 2)/2] <e —s +t. Adding these inequalities completes the
proof of (c).

(d) If rem X > p/2, we may assume x > 1. Then by Lemma 7', with
p=1=2%¢, y¢ [0,s — 2]. Likewise, 7 'a~* & [0,s — 2], so that
v & [-x—s5+2,-x]. Then Proposition 8 implies either s—1 <-x+ 1+
(e/2) or (e/2) -1 <e —x —s + 1. Each is equivalent to x <(e/2) —s + 2,
hence x < (ef2) —s + 1.

If rem X <p/2, we may assume m > 1. Then Lemma 7', with u=1=
N2o, applied to X and X*, gives Y ¢ [-s+2,0] and vy ¢ [m — 1,5 +
m — 3]. Proposition 8 implies either s +m —2<e/2 or m — 1 +(e/2) <
e — s + 1. Both inequalities are equivalent to the desired result, and Theorem 1
is proved.

PROOF OF THEOREM 2. X ~ X* implies 9% =o™"![1, Lemma 2.3].

X €B, implies y €{a). Thus m —1 odd forces e to be odd.

Since x <e if remX >p/2 and m<e if rem X <p/2 by
Rothschild’s argument [1, §4], it suffices to assume s>¢. Let rem X > p/2.
Suppose e —2s + 2t <x <t¢. Then 2s >e +¢ + 1. But [2, Corollary 2]
says 2s <max{e +5,e+¢ —1}. It followsthat ¢t + 1 <5, so ¢t <4. If
t =4, then m even implies x <3 and e —2s + 8 <3, so that 2s>e + 5,
a contradiction. If ¢t =2 then e —2s + 2t <2 implies s> (e +2)/2 =
(p + 3)/4, again a contradiction. So we may assume x >t.

Since e and x are odd, 7> = a~* implies vy = a(¢~*)/2, By Lemma 7
with u=1, y¢ [0,s -1 —¢]. Hence (e —x)/2=>s -t and x<e —25 +
2t.

Let tem X<p/2. If e —2s+2t+1<m<t¢, then 2s>e +¢ + 1.
Since e +¢+1 iseven, 2s =>e +¢t + 3. By [2, Corollary 2], 52>t +3 so
t=2. Then e — 2s + 2t <2 implies s > (e + 2)/2 = (p + 3)/4, a contra-
diction. Then it suffices to assume m > ¢.

X ~ X* implies v* = o™~ !. Then y=a*"~1)/2 By Lemma 7 with
u=1, y&¢ [-s+1+1¢0]. Therefore (¢ +m -1)2<e-s+t, so m<
e—-2s+2t+1.

It suffices to assume, in proving the corollaries, that d <p — 1. Then, as
in the proof of Theorem 1, L is irreducible. If z =1, L € B, [1, Corollary
4.7].

PROOF OF COROLLARY 3. Let L =X inTheorem1, L #L* implies s <
ef2, hence (e/2) —s +t >=t. Then (a) gives s <(e/2) —s +1¢, s0 § <
%((e/2) +1).

If t=>s>Qe+7t+2)9, then 9t >2e + 7t +2 implies t >e + 1.
Then s> (2e + 7(¢e + 1) +2)/9 = e + 1, a contradiction. So if s>
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(2e + 7t + 2)/9, then s> t. Theorem 1(b) yields s < (2e — 6s + 7t + 2)/3,
whence s < (2e + 7t +2)/9.

If e isevenand s>¢, Theorem 1(c) gives s < (2e — 6s + 4t + 5)/3
and s < (2e + 4t + 5)/9.

PrROOF OF COROLLARY 4 . Let L =X in Theorem 2. Then s<e—2s+2¢,
whence the result.

PROOF OF COROLLARY 5. Since G =G, the determinant of the linear trans-
formation on L given by the action of each element of G is 1. Then [1,
Lemma 2.3] implies A? = o@(@=1)/2 where L =L(d,\). L ~L* givis
A% = of1, Since d isodd, A =a@-1)/2, Now ¢ odd (and hence e even)
gives

@-1D2=@p-1-5s)y2=(te —s5)/2 = (te/2) — (5/2) = (e — 5)/2.
By Lemma 7', with X=L, r=s, =22’ =1, we have A & [0,s — 2].
Hence s — 1 € (e — 5)/2, which implies s < (e + 2)/3.

PROOF OF COROLLARY 6 . If L # L*, Corollary 3 implies s<(p + 15)9 <
(p +7)/6 forall p=>13. If L~L* and d is even, Corollary 4 gives s <
(e +2t)/3 = (p + 7)/6 and we are done.
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