UNDER THE DEGREE OF SOME FINITE LINEAR GROUPS. II

ΒY

HARVEY I. BLAU

ABSTRACT. Let G be a finite group with a cyclic Sylow p-subgroup for some prime $p \ge 13$. Assume that G is not of type $L_2(p)$, and that G has a faithful indecomposable modular representation of degree $d \le p$. Some known lower bounds for d are improved, in case the center of the group is trivial, as a consequence of results on the degrees (mod p) of irreducible Brauer characters in the principal p-block.

1. Introduction. This paper continues the work of [3], [1], [2] on groups which, for a fixed prime p, are not of type $L_2(p)$, and which have a cyclic Sylow *p*-subgroup and a faithful indecomposable representation of degree $d \le p$ over a field of characteristic p. Information on the degrees (modulo p) of irreducible Brauer characters in the principal *p*-block is obtained, and then used to improve some known lower bounds for d in case the center of the group is trivial.

Throughout the paper, G is a finite group, p a fixed prime, P a Sylow p-subgroup of G. N and C are respectively, the normalizer and centralizer of P in G. Z is the center of G, z = |Z|, e = |N : C| and t = (p - 1)/e. K is a field of characteristic p which is a splitting field for all subgroups of G, and B_0 is the principal p-block of G.

Hypothesis A. |P| = p and N/P is abelian.

Hypothesis B. P is cyclic, $p \ge 13$, G is not of type $L_2(p)$, and there is a faithful indecomposable KG-module L of dimension $d = p - s \le p$.

Hypothesis B implies Hypothesis A by [3]. When Hypothesis A holds, we freely use the notation and terminology of [1]. In particular, if X is a nonprojective indecomposable KG-module, $X = L(n, \gamma)$ means that the Green correspondent of X is the KN-module $V_n(\gamma)$; or, equivalently, that γ , a linear character from N/P to K, is the npmv of X, and rem X = n. α is the linear character: $N/P \to K$ defined by $x^{-1}yx = y^{\alpha(x)}$ all $y \in P, x \in N$. We denote $\gamma = \alpha^{i}$ for

Received by the editors August 7, 1973.

AMS (MOS) subject classifications (1970). Primary 20C20, 20C05; Secondary 20D05.

Key words and phrases. Indecomposable modular representation, small degree, cyclic Sylow *p*-subgroup, main value.

some *i* with $j \le i \le k$ (*j*, *k* integers) by $\gamma \in [j, k]$. Since $|\langle \alpha \rangle| = e, \gamma \in [j, k]$ if and only if $\gamma \in [j + re, k + re]$ for all integers *r*.

2. Statement of results.

THEOREM 1. Assume Hypothesis B. Let X be an irreducible KG-module in B_0 with $X \neq X^*$. Let m = p - x = rem X.

(a) If rem X > p/2 then $x \le \max\{t, (e/2) - s + t\}$. If rem X < p/2 then $m \le \max\{t, ((e + 1)/2) - s + t\}$.

(b) Suppose $z \mid 2$ and $L \not\approx L^*$. Then rem X > p/2 implies $x \le \max\{t, (2e - 6s + 7t + 2)/3\}$, and rem X < p/2 implies $m \le \max\{t, (2e - 6s + 7t + 4)/3\}$.

(c) Suppose z|2, $L \neq L^*$, e is even, and s > t. Then rem X > p/2implies $x \leq \max\{t, (2e - 6s + 4t + 5)/3\}$. If rem X < p/2, then $m \leq \max\{t, (2e - 6s + 4t + 7)/3\}$.

(d) Suppose $L \approx L^*$ and e is even. Then rem X > p/2 implies $x \le \max\{1, (e/2) - s + 1\}$, and rem X < p/2 implies $m \le \max\{1, (e/2) - s + 1\}$.

THEOREM 2. Assume Hypothesis B. Let X be an irreducible KG-module in B_0 with $X \approx X^*$. Assume m = p - x = rem X is even. Then e is odd. If rem X > p/2 then $x \le e - 2s + 2t$. If rem X < p/2 then $m \le e - 2s + 2t + 1$.

COROLLARY 3. Assume Hypothesis B with z = 1 and $L \neq L^*$. Then

 $s \le \min \{\frac{1}{2}(t + \frac{e}{2}), \frac{2e + 7t + 2}{9}\}.$

Furthermore, if e is even then $s \le \max \{t, (2e + 4t + 5)/9\}$.

COROLLARY 4. Assume Hypothesis B with z = 1, d even, and $L \approx L^*$. Then $s \leq (e + 2t)/3$.

The next result eliminates the case p = 31, d = 27, z = 1, e = 6 listed in [1, §8].

COROLLARY 5. Assume Hypothesis B with z = 1, G = G', t odd and $L \approx L^*$. Then $s \leq (e + 2)/3$.

[2, Corollary 2], [1, Theorem 5.7] show that under Hypothesis B with $t \ge 3$, we have $d \ge 5(p-1)/6$. Our final corollary partially extends this result to the case t = 2, with the additional restriction that z = 1.

COROLLARY 6. Assume Hypothesis B with z = 1 and t = 2. Then $d \ge (5p - 7)/6$ unless $L \approx L^*$ and d is odd.

3. Proofs.

LEMMA 7. Assume Hypothesis A. Let $X = L(m, \gamma)$ be a nonprojective irreducible KG-module, x = p - m, and let $\mu: N/P \to K$ be a linear character. Let u, r be positive integers such that $u < r \le (p+3)/4, m > u$ (if rem X < p/2), or x > u (if rem X > p/2). Assume that $\gamma^{-1}\alpha^{-x}$ occurs as a main value of $\sum_{i=0}^{r-1} L(2i + 1, \mu\alpha^i)$ at most u times.

(a) If rem X > p/2, then $r \le (x + 1)/2$ implies $\gamma \mu \notin [-(r-1) + u, (r-1) - u]$, and r > (x + 1)/2 implies $\gamma \mu \notin [-y, (r-1) - u]$ where $y = \min\{[(x - u - 1)/2], (r - 1) - u\}$.

(b) If rem X < p/2, then $r \le (m + 1)/2$ implies $\gamma \mu \notin [-(r-1) + u, (r-1) - u]$, and r > (m + 1)/2 implies $\gamma \mu \notin [-(r-1) + u, y']$ where $y' = \min \{[(m - u - 1)/2], (r - 1) - u\}$.

PROOF. Let $L_i = L(2i + 1, \mu\alpha^i)$, $0 \le i \le r - 1$. Since $\gamma^{-1}\alpha^{-x}$ is the npmv of X^* [1, Lemma 2.3], then $X^* \subseteq L_i$ implies $\gamma^{-1}\alpha^{-x}$ is a main value of L_i . So X^* is a submodule of at most u of the L_i .

If $X \otimes L_i$ has 1 as an npmv, then $X \otimes L_i$ has an invariant by [1, Theorem 4.1]. Since $X \otimes L_i \approx \operatorname{Hom}_K (X^*, L_i)$ as a KG-module, it would follow that $X^* \subseteq L_i$.

(a) Suppose rem X > p/2.

If $r \leq (x + 1)/2$, then for all *i* with $0 \leq i \leq r - 1$, the npmv's of $X \otimes L_i$ are $\gamma \mu \alpha^{i-w}$, $0 \leq w \leq 2i$ [1, Lemma 2.4]. Thus if $\gamma \mu = \alpha^k$ with $|k| \leq r - 1 - u$, then 1 is an npmv of $L_{|k|}, L_{|k|+1}, \ldots, L_{r-1}$. Hence, X^* is a submodule of at least u + 1 of the L_i , a contradiction. So we may assume r > (x + 1)/2.

Suppose $\gamma \mu = \alpha^k$, $0 \le k \le r-1-u$. Note that $u + k \le r-1$. If $k \ge [(x + 1)/2]$, then for any *j* with $k \le j \le u + k$, the npmv's of $X \otimes L_j$ are $\gamma \mu \alpha^{-j+w}$, $0 \le w \le x-1$ [1, Lemma 2.6]. Since $x \ge u+1$ implies $j - x + 1 \le k \le j$, 1 is an npmv of $X \otimes L_j$. Hence X^* is contained in each of the u + 1 modules L_k , L_{k+1}, \ldots, L_{k+u} , a contradiction.

If $k \leq [(x-1)/2]$ then $k \leq i \leq [(x-1)/2]$ implies the npmv's of $X \otimes L_i$ are $\gamma \mu \alpha^{i-w}$, $0 \leq w \leq 2i$, whence $X^* \subseteq L_i$. There are [(x-1)/2] - k + 1 of the L_i here, so we may assume $[(x-1)/2] - k + 1 \leq u$. Consider any integer *j* with $0 \leq j \leq u + k - [(x-1)/2] - 1$. Then

 $[(x + 1)/2] + j \le [(x + 1)/2] + u + k - [(x - 1)/2] - 1 = u + k \le r - 1,$ and $x \ge u + 1$ implies Now the npmv's of $X \otimes L_{[(x+1)/2]+j}$ are $\gamma \mu \alpha^{-j-[(x+1)/2]+w}$, $0 \le w \le x-1$, whence 1 is an npmv and $X^* \subseteq L_{[(x+1)/2]+j}$. So X^* is contained in [(x-1)/2] - k + 1 + u + k - [(x-1)/2] = u + 1 of the L_i , a contradiction. Suppose $\gamma \mu = \alpha^{-k}$, $0 \le k \le y$, $y = \min\{[(x-u-1)/2], r-1-u\}$.

Then as above, $X^* \subseteq L_k, L_{k+1}, \ldots, L_{\lfloor (x-1)/2 \rfloor}$. We may assume $\lfloor (x-1)/2 \rfloor - k + 1 \leq u$. Consider any integer j with $0 \leq j \leq u - \lfloor (x-1)/2 \rfloor + k - 1$. Then $\lfloor (x+1)/2 \rfloor + j \leq u + k \leq r - 1$ and $k \leq (x-u-1)/2$ implies $\lfloor (x+1)/2 \rfloor + j - x + 1 \leq u + k - x + 1 \leq -k$. Therefore 1 is an npmv of $X \otimes L_{\lfloor (x+1)/2 \rfloor + j}$, so that $X^* \subseteq L_{\lfloor (x+1)/2 \rfloor + j}$, $0 \leq j \leq u - \lfloor (x-1)/2 \rfloor + k - 1$. Then X^* is again contained in u + 1 of the L_i , a contradiction.

(b) Suppose rem X < p/2.

If $r \leq (m+1)/2$ and $\gamma \mu = \alpha^k$ with $|k| \leq r-1-u$, then as in part (a), X^* is a submodule of $L_{|k|}, L_{|k|+1}, \ldots, L_{r-1}$, a contradiction. So we may assume r > (m+1)/2.

Suppose $\gamma \mu = \alpha^{-k}$, $0 \le k \le r - 1 - u$. If $k \ge [(m + 1)/2]$, then for any j with $k \le j \le u + k \le r - 1$, the npmv's of $X \otimes L_j$ are $\gamma \mu \alpha^{j-w}$, $0 \le w \le m - 1$. Since u < m implies $j - m + 1 \le k \le j$, 1 is an npmv of $X \otimes L_j$. Hence, X^* is contained in each of the u + 1 modules $L_k, L_{k+1}, \ldots, L_{k+u}$, a contradiction.

If $k \leq [(m-1)/2]$, then $k \leq i \leq [(m-1)/2]$ implies the npmv's of $X \otimes L_i$ are $\gamma \mu \alpha^{i-w}$, $0 \leq w \leq 2i$, so that $X^* \subseteq L_i$. We may assume $[(m-1)/2] - k + 1 \leq u$. For any integer j with $0 \leq j \leq u + k - [(m-1)/2] - 1$, then $[(m+1)/2] + j \leq u + k \leq r - 1$ and m > u implies $[(m+1)/2] + j - m + 1 \leq u + k - m + 1 \leq k$. Since the npmv's of $X \otimes L_{\lfloor (m+1)/2 \rfloor + j}$ are $\gamma \mu \alpha^{\lfloor (m+1)/2 \rfloor + j - w}$, $0 \leq w \leq m - 1$, 1 is an npmv and $X^* \subseteq L_j$. Again, X^* is contained in u + 1 modules L_i , another contradiction. Finally, suppose $\gamma \mu = \alpha^k$, $0 \leq k \leq y'$, where y' =

minify, suppose $j\mu = u$, $0 \le k \le j$, where jminif[(m - 1 - u)/2], r - u - 1}. As before, $X^* \subseteq L_k, L_{k+1}, \ldots, L_{\lfloor (m-1)/2 \rfloor}$, and we may assume $\lfloor (m - 1)/2 \rfloor - k + 1 \le u$. For any j with $0 \le j \le u - \lfloor (m - 1)/2 \rfloor + k - 1$,

 $[(m + 1)/2] + j \le u + k \le r - 1$

and $k \leq (m-1-u)/2$ implies

 $[(m+1)/2] + j + 1 - m \le u + k + 1 - m \le -k.$

So 1 is an npmv of $X \otimes L_{[(m+1)/2]+j}$ and $X^* \subseteq L_{[(m+1)/2]+j}$, $0 \le j \le u - [(m-1)/2] + k - 1$. Thus X^* is contained in u + 1 of the L_i , which is again a contradiction.

LEMMA 7'. Assume Hypothesis A. Let $X = L(m, \gamma)$ be a nonprojective

irreducible KG-module, x = p - m, and let $\mu: N/P \rightarrow K$ be a linear character. Let r be an integer such that $1 < r \le (p+3)/4$. Let m > 1 if rem X < p/2, or x > 1 if rem X > p/2. Assume that for no integer i with $0 \le i < r - 1$ does $\gamma^{-1}\alpha^{-x}$ occur as a main value of both $L(2i + 1, \mu\alpha^i)$ and $L(2i + 3, \mu\alpha^{i+1})$.

(a) If rem X > p/2, then $r \le (x + 1)/2$ implies $\gamma \mu \notin [-r + 2, r - 2]$ and r > (x + 1)/2 implies $\gamma \mu \notin [-[(x - 2)/2], r - 2]$.

(b) If rem X < p/2, then $r \le (m + 1)/2$ implies $\gamma \mu \notin [-r + 2, r - 2]$ and r > (m + 1)/2 implies $\gamma \mu \notin [-r + 2, [(m - 2)/2]]$.

The proof is similar to that of Lemma 7 and is omitted.

PROPOSITION 8. Assume Hypothesis A. Let $X = L(m, \gamma)$ be a nonprojective irreducible KG-module with $X \neq X^*$. Let m = p - x. Assume x > 1 if rem X > p/2, or m > 1 if rem X < p/2.

(a) If rem X > p/2 then $\gamma^2 \notin [-2x + 1, -1]$ so that $\gamma \notin [-x + 1, -1]$ and $\gamma \notin [-x + 1 + [e/2], [(e + 1)/2] - 1].$

(b) If rem $X \le p/2$ then $\gamma^2 \notin [0, 2m-2]$, so that $\gamma \notin [0, m-1]$ and $\gamma \notin [[(e+1)/2], m-1+[e/2]]$.

PROOF. $X \not\approx X^*$ and X irreducible imply there is no nonzero KG-homomorphism from X^* to X. Thus $X \otimes X$ has no invariants, so [1, Theorem 4.1] implies 1 is not an npmv of $X \otimes X$.

If rem X > p/2, the npmv's of $X \otimes X$ are $\gamma^2 \alpha^{x+i}$, $0 \le i \le x - 1$. Hence, $\gamma^2 \notin [-2x + 1, -x]$. The same argument applied to X^* gives $(\gamma^{-1}\alpha^{-x})^2 \notin [-2x + 1, -x]$, whence $\gamma^2 \notin [-x, -1]$.

If rem X < p/2, the npmv's of $X \otimes X$ are $\gamma^2 \alpha^{-i}$, $0 \le i \le m-1$. Hence, $\gamma^2 \notin [0, m-1]$. The same argument for X^* yields $(\gamma^{-1}\alpha^{m-1})^2 \notin [0, m-1]$, so that $\gamma^2 \notin [m-1, 2m-2]$.

PROOF OF THEOREM 1. Let $X = L(m, \gamma)$. $\gamma \in \langle \alpha \rangle$ by [1, Proposition 4.6]. The discussion of [1, §4] shows that X, X* separate a total of either 2x (rem X > p/2) or 2m (rem X < p/2) vertices from the real stem of the graph of B_0 . Hence, rem X > p/2 implies $x \leq [e/2]$ and rem X < p/2 gives $m \leq$ [e/2]. So we may assume d , and, in the proof of (a), (b) that <math>s > t. By [1, Theorem 5.7], $s \leq (p + 3)/4$.

Let $L = L(d, \lambda)$. Then

$$(L \otimes L^*)_N \approx \sum_{i=0}^{s-1} V_{2i+1}(\alpha^i) + \sum_{i=s}^{p-s-1} V_p(\alpha^i)$$

[1, Lemma 2.3, Lemma 2.6]. So $L \otimes L^*$ is the direct sum of $\sum_{i=0}^{s-1} L(2i+1, \alpha^i)$ and (possibly) a projective KG-module. Since $p - s \leq p - 1 = te$, no linear

character: $N/P \to K$ occurs as a main value of $\sum_{i=0}^{s-1} L(2i+1, \alpha^i)$ more than t times.

[1, Lemma 2.6] also gives

$$(L \otimes L)_N \approx \sum_{i=0}^{s-1} V_{2i+1}(\lambda^2 a^{s+i}) + \sum_{i=s}^{p-s-1} V_p(\lambda^2 a^{s+i}).$$

So $L \otimes L$ is the direct sum of $\sum_{i=0}^{s-1} L(2i+1, \lambda^2 \alpha^{s+i})$ and perhaps a projective module, and no linear character: $N/P \rightarrow K$ occurs as a main value of $\sum_{i=0}^{s-1} L(2i+1, \lambda^2 \alpha^{s+i})$ more than t times. Note that $z \mid 2$ implies $\lambda^2 \alpha^s \in \langle \alpha \rangle$. If e is even, [1, Lemma 3.3] implies for all integers i with $0 \leq i < s - 1$, $L(2i+1, \lambda^2 \alpha^{s+i})$ and $L(2i+3, \lambda^2 \alpha^{s+i+1})$ have no main values in common.

Let $T = \bigcap_n G^{(n)}$, the intersection of the derived series. G not p-solvable implies $P \subseteq T$. L_p is indecomposable [3], hence T and L_T satisfy Hypothesis B. Then $d and [1, Proposition 6.1] imply <math>L_T$ is irreducible. It follows that L is irreducible.

(a) Suppose first that rem X > p/2. We may assume x > t. Then by Lemma 7 with $\mu = 1, u = t$ and $r = s, \gamma \notin [0, s - 1 - t]$. Applying Lemma 7 to X^* gives $\gamma^{-1}\alpha^{-x} \notin [0, s - 1 - t]$, so $\gamma \notin [-x - s + 1 + t, -x]$. $X \not\approx X^*$ implies $\gamma \notin [-x + 1, -1]$ by Proposition 8. Thus

 $\gamma \notin [-x-s+1+t, s-1-t].$

Since Proposition 8 also says $\gamma \notin [-x + 1 + [e/2], [(e + 1)/2] - 1]$, we must have

either s - t < -x + 1 + [e/2] or [(e + 1)/2] - 1 < e - x - s + t.

Both these inequalities are equivalent to x < [e/2] - s + t + 1, i.e. $x \le [e/2] - s + t$. Note that

(9)
$$s - t < -x + 1 + [e/2] \leq [(e + 1)/2] - 1 < e - x - s + t, \gamma \in [s - t, [e/2] - x] \text{ or } [[(e + 1)/2], e - x - s + t].$$

If rem X < p/2, we may assume m > t. Lemma 7 and Proposition 8 give $\gamma \notin [-s + 1 + t, m + s - t - 2]$. Proposition 8 implies

$$\gamma \notin [[(e + 1)/2], m - 1 + [e/2]],$$

so that

either m + s - t - 1 < [(e + 1)/2] or m - 1 + [e/2] < e - s + t. Hence $m \le [(e + 1)/2] - s + t$. Note

(10)
$$\begin{array}{l} m+s-t-1 < [(e+1)/2] \le m-1 + [e/2] < e-s+t, \\ \gamma \in [m+s-t-1, [(e-1)/2]] \quad \text{or} \quad [m+[e/2], e-s+t]. \end{array}$$

(b) Assume first that rem X > p/2. We may assume x > t and x > t

(2e - 6s + 7t + 2)/3. Suppose $x \ge 2s - t$. By (a), $x \le (e/2) - s + t$. Therefore, $2s - t \le (e/2) - s + t$ implies $s \le (e/6) + (2t/3)$. Then

$$\begin{aligned} x > (2e/3) - 2s + (7t/3) + (2/3) \\ \ge (2e/3) - s - (e/6) - (2t/3) + (7t/3) + (2/3) \\ = (e/2) - s + (5t/3) + (2/3). \end{aligned}$$

Hence, (e/2) - s + t > (e/2) - s + (5t/3) + (2/3), a contradiction. So we may assume $x \le 2s - t - 1$, hence $(x - t - 1)/2 \le s - t - 1$.

Now $L \not\approx L^*$ implies $\lambda^2 \alpha^s = \alpha^c$ where |c| > s - 1 by Proposition 8. We may take $s \leqslant c \leqslant e - s$. Since $(\lambda^{-1}\alpha^{-s})^2 \alpha^s = \alpha^{-c}$, replacing L by L^* (if necessary) we may assume $e/2 \leqslant c \leqslant e - s$. Lemma 7 applied to X for $\mu = 1, \alpha^c, \alpha^{-c}$ gives $\gamma \mu \notin [-[(x - t - 1)/2], s - 1 - t]$, and applied to X^* yields $\gamma^{-1}\alpha^{-x}\mu^{-1} \notin [-[(x - t - 1)/2], s - 1 - t]$, whence $\gamma \mu \notin [-x - s + 1 + t, [(x - t - 1)/2] - x]$. In particular,

(11)
$$\gamma \notin [c - x + 1 + t - s, c + [(x - t - 1)/2] - x] \text{ and} \\ \gamma \notin [-c - [(x - t - 1)/2], -c + s - 1 - t].$$

Since $c \ge e/2$ and x > t, we have

(12)
$$c + [(x - t - 1)/2] - x \ge [e/2] - x$$
.

If $e - c + s - 1 - t \le [e/2] - x$, then $c \le e - s$ implies $x \le c + [e/2] - e - s + t + 1 \le [e/2] - 2s + t + 1$ which says

$$(2e/3) - 2s + (7t/3) + (2/3) < [e/2] - 2s + t + 1.$$

Hence, (7t/3) + (2/3) < t + 1 which implies 4t < 1, a contradiction. So (13) $e - c + s - 1 - t \ge [e/2] - x$.

If either c - x + 1 + t - s or e - c - [(x - t - 1)/2] is less than or equal to s - t, then (9), (11), and (12) or (13) imply $\gamma \in [[(e + 1)/2],$ e - x - s + t]. But the same argument applied to X^* gives $\gamma^{-1}\alpha^{-x} \in [[(e + 1)/2], e - x - s + t]$, hence $\gamma \in [s - t, [e/2] - x]$, a contradiction. Therefore

(14)
$$c-x+1+t-s>s-t$$
 and $e-c-[(x-t-1)/2]>s-t$.

Adding these two inequalities, we have e - x - [(x - t - 1)/2] + 1 + t - s > 2s - 2t, which says e - 3s + 3t + 1 > x + [(x - t - 1)/2], whence $x + (x - t)/2 \le e - 3s + 3t + 1$. The desired inequality follows.

The case rem X < p/2 is similar. We may assume m > t and m > (2e - 6s + 7t + 4)/3. If $m \ge 2s - t$, then (a) yields

$$((e + 1)/2) - s + t > (e/2) - s + (5t/3) + (7/6),$$

a contradiction. So we may assume $(m - t - 2)/2 \le s - t - 1$.

Let $\lambda^2 \alpha^s = \alpha^c$, where we may assume $s \le c \le e/2$. Lemma 7 applied to X, X*, with $\mu = \alpha^c$, gives

(15)
$$\gamma \notin [-c - s + 1 + t, -c + [(m - t - 1)/2]]$$
 and $\gamma \notin [c + m - 1 - [(m - t - 1)/2], c + m + s - t - 2].$

Since $c \leq [e/2]$ and m > t,

(16)
$$c+m-1-[(m-t-1)/2] \leq [e/2]+m-1.$$

If e - c - s + 1 + t > m - 1 + [e/2], then $c \ge s$ implies $m < e - [e/2] - c - s + 2 + t \le e - [e/2] - 2s + 2 + t$, which gives

$$(2e/3) - 2s + (7t/3) + (4/3) < [(e + 1)/2] - 2s + 2 + t.$$

Hence, (7t/3) + (4/3) < 2 + t and t < 1/2, a contradiction. So

(17)
$$e-c-s+1+t \leq m-1+[e/2]$$

If either $c + m + s - t - 2 \ge e - s + t$ or $e - c + [(m - t - 1)/2] \ge e - s + t$, then (10), (15), and (16) or (17) imply $\gamma \notin [m + [e/2], e - s + t]$. But also $\gamma^{-1}\alpha^{m-1} \notin [m + [e/2], e - s + t]$, whence $\gamma \in [m + [e/2], e - s + t]$, a contradiction. Hence

(18) c + m + s - t - 2 < e - s + t and e - c + [(m - t - 1)/2] < e - s + t. Adding these two inequalities yields m + [(m - t - 1)/2] < e - 3s + 3t + 2, hence $m + (m - t)/2 \le e - 3s + 3t + 2$ and (b) follows.

(c) Suppose rem X > p/2. We may assume x > t and x > (2e - 6s + 4t + 5)/3. Suppose $x \ge 2s - 1$. Then arguing as in (b), we see that (a) forces (e/2) - s + t > (e/2) - s + t + (4/3), a contradiction. Hence, s > (x + 1)/2.

Assume $\lambda^2 \alpha^s = \alpha^c$, $e/2 \le c \le e - s$. Lemma 7', with $\mu = \alpha^c$, applied to X^* and X, gives

(19)
$$\gamma \notin [c - x - s + 2, c - x + [(x - 2)/2]] \text{ and} \\ \gamma \notin [-c - [(x - 2)/2], -c + s - 2].$$

The argument proceeds as in (b), with (19) replacing (11). We arrive at c - x - s + 2 > s - t and e - c - [(x - 2)/2] > s - t. Adding these inequalities yields the desired result.

If rem X < p/2, we may assume m > t and m > (2e - 6s + 4t + 7)/3. If $m \ge 2s - 1$, then (a) implies ((e + 1)/2) - s + t > (e/2) - s + t - 1/2 + (7/3), a contradiction. So s > (m + 1)/2.

Assume $\lambda^2 \alpha^s = \alpha^c$, $s \le c \le e/2$. Apply Lemma 7' to X and X* to obtain

(20)
$$\gamma \notin [-c - s + 2, -c + [(m - 2)/2]]$$
 and $\gamma \notin [c + m - 1 - [(m - 2)/2], c + m + s - 3].$

Argue as in (b), with (20) replacing (15), to reach c + m + s - 3 < e - s + tand e - c + [(m - 2)/2] < e - s + t. Adding these inequalities completes the proof of (c).

(d) If rem X > p/2, we may assume x > 1. Then by Lemma 7', with $\mu = 1 = \lambda^2 \alpha^s$, $\gamma \notin [0, s - 2]$. Likewise, $\gamma^{-1} \alpha^{-x} \notin [0, s - 2]$, so that $\gamma \notin [-x - s + 2, -x]$. Then Proposition 8 implies either s - 1 < -x + 1 + (e/2) or (e/2) - 1 < e - x - s + 1. Each is equivalent to x < (e/2) - s + 2, hence $x \leq (e/2) - s + 1$.

If rem X < p/2, we may assume m > 1. Then Lemma 7', with $\mu = 1 = \lambda^2 \alpha^s$, applied to X and X*, gives $\gamma \notin [-s+2,0]$ and $\gamma \notin [m-1,s+m-3]$. Proposition 8 implies either s+m-2 < e/2 or m-1+(e/2) < e-s+1. Both inequalities are equivalent to the desired result, and Theorem 1 is proved.

PROOF OF THEOREM 2. $X \approx X^*$ implies $\gamma^2 = \alpha^{m-1}$ [1, Lemma 2.3]. $X \in B_0$ implies $\gamma \in \langle \alpha \rangle$. Thus m-1 odd forces e to be odd.

Since $x \le e$ if rem X > p/2 and $m \le e$ if rem X < p/2 by Rothschild's argument [1, §4], it suffices to assume s > t. Let rem X > p/2. Suppose $e - 2s + 2t < x \le t$. Then $2s \ge e + t + 1$. But [2, Corollary 2] says $2s \le \max\{e + 5, e + t - 1\}$. It follows that $t + 1 \le 5$, so $t \le 4$. If t = 4, then m even implies $x \le 3$ and e - 2s + 8 < 3, so that 2s > e + 5, a contradiction. If t = 2 then e - 2s + 2t < 2 implies s > (e + 2)/2 =(p + 3)/4, again a contradiction. So we may assume x > t.

Since e and x are odd, $\gamma^2 = \alpha^{-x}$ implies $\gamma = \alpha^{(e-x)/2}$. By Lemma 7 with $\mu = 1$, $\gamma \notin [0, s-1-t]$. Hence $(e-x)/2 \ge s-t$ and $x \le e-2s+2t$.

Let rem X < p/2. If $e - 2s + 2t + 1 < m \le t$, then 2s > e + t + 1. Since e + t + 1 is even, $2s \ge e + t + 3$. By [2, Corollary 2], $5 \ge t + 3$ so t = 2. Then e - 2s + 2t < 2 implies s > (e + 2)/2 = (p + 3)/4, a contradiction. Then it suffices to assume m > t.

 $X \approx X^*$ implies $\gamma^2 = \alpha^{m-1}$. Then $\gamma = \alpha^{(e+m-1)/2}$. By Lemma 7 with $\mu = 1, \ \gamma \notin [-s+1+t, 0]$. Therefore $(e+m-1)/2 \leq e-s+t$, so $m \leq e-2s+2t+1$.

It suffices to assume, in proving the corollaries, that d . Then, as in the proof of Theorem 1, <math>L is irreducible. If z = 1, $L \in B_0$ [1, Corollary 4.7].

PROOF OF COROLLARY 3. Let L = X in Theorem 1, $L \not\approx L^*$ implies $s \leq e/2$, hence $(e/2) - s + t \geq t$. Then (a) gives $s \leq (e/2) - s + t$, so $s \leq \frac{1}{2}((e/2) + t)$.

If $t \ge s > (2e + 7t + 2)/9$, then 9t > 2e + 7t + 2 implies t > e + 1. Then s > (2e + 7(e + 1) + 2)/9 = e + 1, a contradiction. So if s > (2e + 7t + 2)/9, then s > t. Theorem 1(b) yields $s \le (2e - 6s + 7t + 2)/3$, whence $s \le (2e + 7t + 2)/9$.

If e is even and s > t, Theorem 1(c) gives $s \le (2e - 6s + 4t + 5)/3$ and $s \le (2e + 4t + 5)/9$.

PROOF OF COROLLARY 4. Let L = X in Theorem 2. Then $s \le e - 2s + 2t$, whence the result.

PROOF OF COROLLARY 5. Since G = G', the determinant of the linear transformation on L given by the action of each element of G is 1. Then [1, Lemma 2.3] implies $\lambda^d = \alpha^{d(d-1)/2}$, where $L = L(d, \lambda)$. $L \approx L^*$ gives $\lambda^2 = \alpha^{d-1}$. Since d is odd, $\lambda = \alpha^{(d-1)/2}$. Now t odd (and hence e even) gives

$$(d-1)/2 = (p-1-s)/2 = (te-s)/2 = (te/2) - (s/2) = (e-s)/2.$$

By Lemma 7', with X = L, r = s, $\mu = \lambda^2 \alpha^s = 1$, we have $\lambda \notin [0, s - 2]$. Hence $s - 1 \leq (e - s)/2$, which implies $s \leq (e + 2)/3$.

PROOF OF COROLLARY 6. If $L \not\approx L^*$, Corollary 3 implies $s \leq (p+15)9 \leq (p+7)/6$ for all $p \geq 13$. If $L \approx L^*$ and d is even, Corollary 4 gives $s \leq (e+2t)/3 = (p+7)/6$ and we are done.

REFERENCES

1. H. I. Blau, Under the degree of some finite linear groups, Trans. Amer. Math. Soc. 155 (1971), 95-113; Errata, ibid. 162 (1971), 475. MR 43 #367; 44 #329.

2. ———, Finite groups where two small degrees are not too small, J. Algebra 28 (1974), 551-555.

3. W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J. 27 (1966), 571-584. MR 33 #7404.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115