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A CONSTRUCTION OF LIE ALGEBRAS

BY TRIPLE SYSTEMS
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W. HEIN

ABSTRACT.   A construction of Lie algebras by means of special unital

representations of Jordan algebras on a certain kind of triple systems is given

which generalizes the construction due to Freudenthal, Faulkner and Koecher.

Introduction. A common feature of all the Lie algebras obtained by either

the Freudenthal, Faulkner or Koecher construction (cf. [4], [3], [7] resp.)is

that there is an X in any such algebra  Ç such that the eigenvalues of ad X

are contained in the set {0, ± 1, ± &}   (cf. {3], [4], [7] ). Moreover, the direct

sum of the  +1   and  — & eigenspace turns out to be a triple system (a vector

space together with a trilinear inner composition)  such that ? decomposes as

the vector space direct sum 5ß (2)© 5 © 5   where   5c(2) is a subalgebra of

the Lie algebra of all linear transformations on   2 and %   is another copy of

%.  If G  is obtained by the Koecher construction, the ± H eigenspaces are

{0}; if £  is obtained by the method of Faulkner, the  ±1  eigenspaces are one

dimensional. Consulting a table of roots of the simple Lie algebras over an alge-

braically closed field of characteristic zero one finds that each such Lie algebra

contains an element X such that the eigenspaces of ad X do not satisfy the

above dimension restrictions. This is the point where the present paper starts.

In § 1, we define an anticommutative algebra structure on the vector space

5l(£) © S © S where S   is a certain triple system, £ another copy of S

and   ï!(2) a Lie algebra of linear transformations of %. Assuming the Jacobi

identity to be satisfied we deduce a set of identities which describes S by a

Jordan sub triple system  21   (see [7] or [8] for definition) and a certain triple

system   8, a special representation  a of the Jordan triple system   2Ï on the

underlying vector space of  8  and a bilinear mapping from   8x8   to 21

(/ is not needed if a is faithful). We restrict ourselves to the case where  21 is
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a Jordan algebra with unit element. Then 21  is the  +1  and  8 is the  - &

eigenspace of ad X with suitable X in 51(2).

In §2, we start with a situation 21, a,f, 8 which satisfies certain axioms

and make the vector space direct sum 2 = 21 © 8  a triple system such that the

construction of §1, yields a Lie algebra C(2).

We investigate the ideals of 2 and Q (2) in §3 and give conditions for

2 and Q (2) to be simple.

In §4, we give a set of examples which provide Lie algebras of type B, C,

and D.

Using symplectic representations of Jordan algebras and Lie algebras we con-

struct in §5 triple systems as considered in §2, such that Lie algebras of type

G2, F4  and E8  are obtained, the latter two types by means of spin representa-

tions of Clifford algebras.

Note.  After the present paper had been completed, the author was referred

by J. R. Faulkner to a paper of I. L. Kantor in Soviet Math. Dokl. 14 (1973), pp.

254-258, who gives a construction which is related to that given in the present

paper.

According to the referee, another related paper is A construction of Lie

algebras from ^-ternary algebras, by B. N. Allison, which will appear in Amer. J.

Math.

1. A class of ant¡commutative algebras.

1.1. Let A, B be vector spaces over a field of characteristic not two,

A ¥= { 0}.  Suppose that on the direct sum  T = A © B a trilinear inner compo-

sition  (u, v, w) I—*<,uvw) is defined satisfying

<TTA)CA,      <TTB)CB,

<ABT) = <BAT) = {0},

and that there is an element e =£ 0 in A  such that

(2) (abe) + <bae) = 0

for all a, be B.

Let 2 denote the triple system (J, < >) and 51(2) the Lie algebra of

linear transformations on 2 which is generated by the transformations L (u, v),

where   L(u, v)   is defined for   u, v G 2  by   L(u, v)w := <uvw),

Let Ä, B be other copies of A  and B resp. and let x |—>• x, a \—» ä

be isomorphisms of A  onto A  and B onto B resp.

In order to construct an anticommutative algebra, we define, using an
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involution N \—*N* of the Lie algebra 5Î(2), a composition on the vector

space direct sum 51(2) ®A @A~ ®B ®B by

[N, N' + x + y + a + b] := [N, N'] + Nx - N*y + Na - N*b,

[x, y + z  + a + b] := 2L(x, z) - 2(xea),

(3) [x,y+a+b] := -2<xeb),

[a, b + c\

[a,b]

:=L(a,c) + (abe),

:= - (abe),

for N, N' G 51(2), x, y, z G A  and a, b, c G B. The remaining products are

then defined by anticommutativity, which makes sense because of (2). We denote

this algebra by Q(2, *). Put L0 :=5i(2),£, :=A,L_1 :=A,L_lfl := B and

LVl := B.  Then (1) and (2) yield   [Lv, ¿J C Lv+I1  for v, p m 0, ± l.± H

(it being understood that Lv+¡1 = '{0}   if v + p is different from 0, ± 1  and

±H).
1.2. Obviously, the anticommutative algebra just defined is a Lie algebra if

and only if the Jacobi identity

J(X, Y, Z) :. [X, [Y, Z}] + [Y, [Z, X]] + [Z, [X, Y]] = 0

is satisfied for all X, r,ZGC(S,*).  Since 51(2) is a Lie algebra, J(NlfN2,N3)

= 0   holds for   Nt G 51(2).   Since  TV h^-A^*  is an involution, J(NV N2, X)

= 0 holds for N¡ G 51(2) and X G Ç(2, *). Using the fact that the mapping

J is alternating, a simple computation shows that C(2, *) is a Lie algebra if

and only if the following identities are satisfied for all  N G 51(2), u, v G 2,

x, y, z G A  and a, b, c G B:

(a) [N, L(u, v)] = LÇNu, v) - L(u, N*v),

(b) (xyz) = (zyx)>

(c) (abc) = (cba) - 2((ace)eb)>

(d) (xya) = - 2(ye(xea))'

(e) (abx) = — 2((xea)be)>

(0 N*(xea) + ((Nx)ea) + (xe(Na)) = 0»

(g) N*(abe) + ((Na)be) + (a(Nb)e) = 0,

(h) L(x, (abe)) + L(a, (xeb)) - L(b, (xea)) = 0,

(i) L(x, yfz = L(x, zfy,
(k) L(a, b)*c = L(a, c)*b + 2((bce)ea)>

(1) L(x, y)*a = - 2(xe(yea))>

(m) Lia, b)*x= 2((xeb)ae),

(n) L{(abe), x) + L((xea), b)-L((xeb), a) = 0.

1.3. In view of the next section we remark
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a. If L(x,y)* = L(y, x) and L(a, b)* = -L(b, a) hold for x.yGA

and a, b EB, the identities (i)-(n) follow from the former ones.

b. Suppose L(x, y)* = L(y, x) holds for all x.yGA and (a)-(h) are

satisfied. Then (a) and (b) imply that A together with the composition (xyz)

is a Jordan triple system (cf. [8] ). From (d) and (f) one concludes immediately

that

((xyz)ea) = 2{(xe(ye(zea))) + (ze(ye(xea))))

for x, y, z G A  and a G B.  With a(x) := — 2L(x, e)¡B, x G A, this can be

rewritten as

a((xyz)) = H (a(x)a{y)a(z) + o(z)a(y)o(x))

which means that  o is a special representation of the Jordan triple system

(A, ( >). If the characteristic of the groundfield is not three, then A  is a Jordan

algebra under the composition x • y = (xey) (cf. [8, p. 70] ) and a is a

special representation of this Jordan algebra. If in addition (eex) = x for all

x G A  (that means e is the unit element of (A, • )), then (a) yields

(4) (xyz > = (xy)z + x(yz) - y(xz)

for x,y,z E. A.

c. Suppose 5={0}. Then (1) is satisfied and (2) holds for all eG^l.

The composition rule can now be written as

[N, N' + x+y] = [N, N'] + Nx - N*y,

[x, y+z]= 2L(x, z),

[x,y]   =0

for N, N' G 51(2) and x,y,zEA. Thus, in the case where L(x, y)* =

L(y, x) for x, y G A  our construction is the same as that given by Meyberg

in [8].  If in addition A  is a Jordan algebra under the composition x • y =

(xey) with unit element e we observe, using (4), that our construction is

identical with the Koecher construction (cf. [6] ).

2. A class of triple systems. In this section we shall be interested in those

triple systems used in §1 to construct the anticommutative algebra Q(2, *). We

restrict ourselves to the case where A with the multiplication x • y =

(xey ) is a Jordan algebra with unit element e   (see 1.3b). We describe the

triple system 2 in terms of a Jordan algebra 21, a certain kind of triple system

8, a special unital representation a of JI  on the underlying vector space of 8
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and a skew symmetric bilinear mapping from 8 x S to 21  by a system of axioms,

which guarantee that with a suitable involution * of the Lie algebra 51(2) of

endomorphisms of   2 generated by the linear mappings w i—>■ (uvw) the alge-

bra C(2, *) is a Lie algebra.

2.1. Let  21 be a Jordan algebra with unit element e ¥= 0 over a field F

of characteristic not two and  a a special unital representation of 21 on the vec-

tor space B over F, that means a F-linear mapping from A  to EndF(5) satis-

fying

o(xy)= % (o(x)o(y) + a(y)o(x))

and

a(e) = idB

for all x, y G 21. We denote o(x)a by x . a.

Let / be a skew symmetric bilinear mapping from B x B to  21  such that

(F) 2xf(a, b) = f(x .a,b)+ f(a, x . b)

holds for all x G 21 and a, b GB.

Finally, we require a trilinear inner composition (a, b, c) |—>• (abc) =

L(a, b)c to be given on B making B a triple system denoted by 8   satisfying

the following two axioms for all a, b, c, d G 8:

(LI) [L(a, b), L{c, d)] = L(L(a, b)c, d) + L(c, L(b, a)d),

(L2) (abc)- (cba) = (cab)- (acb).

A situation ■ 21, o, f, 8 which has the above properties is called admissible if the

following relations hold for all x G 21 and a, b, c, d G 8:

(VI) [a(x), L(a, b)] = L(x .a,b)- L(a, x . b),

(V2) L(a, b) - L{b, a) = a(f(a, b)),

(V3) f((abc), d) + f(c, (abd)) = f(a, f{c, d) . b).

2.2. Remark.  We consider the case where 21 = Fe is the one-dimensional

Jordan algebra over F. If a is any special unital representation of 21 on the

vector space B, we have  a(£e)a = %a for all % G F and aGB. The skew

symmetric bilinear mappings f:B*B I—>•  21 with (F) are exactly the skew

symmetric bilinear forms on B.

Now, let ((5, D), ß) be a Freudenthal triple system in the sense of [9,

§1, (l)-(4)] and let ((5, R), ß) be a Faulkner triple system (cf. [3] for defini-

tion). Put'

f(a, b) := ß(a, b)e   and   (abc) := - 2 D(a, b)c + V* ß(a, b)c
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for a, b, c G B. Then with 21  and  a as above we get an admissible situation

21, a, f, (B, ( >). Moreover, if a, b, cGB then

(abc) = R(a, b)c - ß(a, c)b + ß(c, b)a.

2.3. Example 1.  Let 21, o, B be a special unital representation of the

Jordan algebra 21  on the vector space B which satisfies o(x)o(y) = o(y)o(x)

for all x, y G 21. Let f:BxB\—*- 2Í be a skew symmetric bilinear mapping

such that (F) and f(x . a, b)= f(a, x . b) hold for all x G 21 and a, b G B.

Then with the triple system   8 defined by

(abc) := H (f(a, b) . c - f(b, c) . a + f(c, a) . b),

we get an admissible situation 21, o, f, 8.  If 21 is one dimensional, this is

exactly Example 1 in [3].

Example 2. Let ß be a skew symmetric bilinear form on the vector space

B and 21 the Jordan algebra of symplectic symmetric endomorphisms of B, i.e.

21 = {X G EndF (B); ß(Xa, b) = ß(a, Xb) for a, b G B}

with multiplication X • Y » H(XY + YX). Define a special unital representa-

tion a of 21 by o(X)a := Xa for X G 21 and aGB, and define for each

pair (a, b) of elements of B an endomorphism of B by f(a, b)c := ß(a, c)b -

ß(b, c)a.  It is immediate that f(a, b) is in 21   for all a, b GB, and an easy

computation shows that the triple system 8, defined by (abc) := ß(c, a)b for

a, b, c G B makes 21, a, f, 8 an admissible situation. We remark that this

example is a special case of the example considered in §4.

2.4. Given an admissible situation 21, a,f, 8, we make the vector space

direct sum of 21 and 8 a triple system, denoted by 2, which satisfies (1) and

(2). For x,y, z G 21 and a, b, c G 8 we put (xyz)% := (xy)z + x(yz) -

y(xz), denote by < >B   the composition on 8 and define

(xy(z + c)> := (xyz)t - xhy . (x . a),

(5) (ab(z + c)> := - f(z . a, b) + (abc >8 ■

(xb(z + c)) :=(ay(z + c)) := 0

for x,y,zG 21 and a, b, c G 8.  Clearly (1) and (2) are satisfied and with

L(x) := L(x, e), x G ?l, where L(u, v)w := (uvw) for u, v, w G 2, we obtain

L{x)y = xy and L(x)a = — Vix . a for x, y G 21 and a G 8.  Moreover,

(6) L(x, y) = ¿(xy) + [L(x), L(y)],

(7) L(a, b)-L(b,a) = -2 L(f(a, b))

for x.yG ÇI and a, ¿GS.
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Next we define a bilinear mapping D: 2 x 2 r—*■ EndF(2) by

Dix, y) := Vx (L(x, y) - L(y, x)),

(8) D(a, b) := - %(L(a, b) + L(b, a)),

D(x, a) := D(a, x) := 0

for x, y G 21 and a, b G 8. Using (6) and (7) we obtain

(9) L(x, y) = L(xy) + D(x, y),

(10) Lia, b) = - L(f(a, b)) - D(a, b)

for x, y G 21 and a, b G 8. Hence ¿(2,2) is the vector space sum of 1(21)

and D{% 2). This sum is direct since D(x + a, y + b)e = 0 for all x, y G 21

and a, b G 8. Therefore we may define for x G 21 and D GD(2,2)

(11) (L(x) + D)* := L(x) - D

to get an involutorial vector space automorphism * of ¿(2, 2). Note that

(12) L(x, y)* = L{y, x\

(13) L(a, b)* = - L{b, a)

for all x, y G 21 and a, b G 8. Hence 1.3, a-c apply.  In order to show

that  * is an antiautomorphism of the Lie algebra 51 (2), we verify

(14) [N, Liu, v)] = LiNu, v) - Liu, N*v)

for N G 51(2) and u, v G 2.  From this identity it is clear that the vector space

L(2,2) is closed under the bracket multiplication, hence 51(2) = 1(2,2), and

an easy computation shows that (14) implies  [./Vj, A^2] * = [N*,N* ]   for

N¡ G Z,(2,2). Now, (14) is an immediate consequence of the following three

identities which we shall now prove (for the cases u.vGA  applied to A  and

u, v G B applied to B, first look at A^ = Lia, b) and then at N = Z,(x)):

(15) N *fia, b) + /(/Va, b) + fia, Nb) = 0,

(16) N*ix . a) + iNx) .a+x.iNa) = 0,

(17) - 2 Lix, fia, b)) = Lia, x . b) - Lib, x . a)

for /V G Li%, 2) and a, b G 8.

To verify (15) it is enough to consider the cases where N = L(x, y) and

N = Lia, b) for jc, y G 21 and a, b G 8. The latter case follows from

Lib, a)fie, d) = fia, fie, d) . b),a, b,c,dG$, which is immediate from (5) and

(V3). It is clear from (6) that (15) holds for W = Lix, y) if it holds for N =

Lix), but this is what (F) says.
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Since a is s special representation of 21, (16) is satisfied for N = Lix),

xGU. It remains to show (16) for N G Z)(2,2). With 2ö"(x) := - a(x) we

have

[[äix), ö~iy)], ö(z)] = äixiyz) -yixz))   for x, y, z G 21

which implies (16) for N = Dix, y). Axiom (VI) yields x . (abc) - (abix • c))

= <(x . a)bc) - (aix . b)c) for x G 21 and a, b, c G8.  Interchanging a and

b implies

x . (bac) - (baix . c)) = <(x . b)ac) - <Z?(x . a)c).

Adding the last two identities and using (7) and (8), we get the desired result.

Since (abx) = - fix . a, b) for x G 21 and a, b G 8 (see (5)), it follows

from (F), (6) and (8) that (17) holds when applied to x G 21. Combining (7),

(VI), (V2) and (16) we get

(aix . b)c) - (bix . a)c) = (aix . b)c) - (ix . a)bc) + fix . a, b) . c

= - x . (abc) + (abix . c)) + fix . a, b) . c

= -x. (abc) + (baix . c))-fib, a) . (x . c) + fix . a, b) . c

= (abx) . c + fia, b) . ix . c) + fix . a, b) ; c

= -2(xfia,b)c)

for x G 21 and a, b, c G 8. This completes the proof of (15)—(17).

We note that (14) implies D(2,2) = Inder(2), where Inder(2) is the Lie

algebra of those endomorphisms D G £(2,2), for which D(uuw) = <(Dw)mv> +

(uiDv)w) + (uviDw)) holds for all u, v, w G 2, the so-called inner derivations

of the triple system 2 .

The triple system 2 and the involution  * of the Lie algebra ¿(2,2)

defined in the present section lead to the anticommutative algebra C(2, *) con-

structed in §1.1. We observe

Theorem 1. 5(2, *) isa Lie algebra.

Proof.    Following remark 1.3a, we must verify the identities (a)-(h)

of §1.1. Now, (b) is immediate from the definition of < >a. Identity (a) is

equivalent to (14), and (c) follows from (7), whereas (d) and (e) are special cases

of definition (5). Finally, (f), (g) and (h) are equivalent to (16), (15) and (17)

resp.

If 2 is the triple system constructed as above from an admissible situation

and * is the involution defined by (11), we write Q(2) for the Lie algebra

G(2, *)•

3. Ideals in 2 and C(2). Let Ö be a triple system over a field of

char ¥= 3 (and ¥= 2) and  a a subspace of 2. We call a an ideal of S  if
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<S3 5ßa> Ca, <3]aï5> C a and  <a»Sß> C a. We call the triple .system 33   simple if

<BS$B>=¿ {0}   and  Sß  has no ideals different from   {0}  and ».

For the present section we fix an admissible situation 21, a, f 8 and de-

note the corresponding triple system constructed as in §2.4 by 2.

3.1. With each ideal t of 2 there are associated two ideals of the Lie

algebra ¿,(2,2), namely

nt:=¿(2,t) + Z,(t,2)

and

mt:= {N G ¿(2,2); /V(2) C t and /V*(2)Ct}.

Obviously the inclusion nt C mt holds and a simple computation shows that, if

f) is any ideal of ¿(2 ,2), the vector space direct sum I = £) © t © ï  is an

ideal of C(2) if and only if

(18) ntCÇcmt.

We define the projections R, 5 and 5 of C(2) onto the subspaces ¿(2, 2),

2 and 2 resp., and the projections P and Q of   2 onto the subspaces  21 and

8 of 2 resp. by

RiX) := N,   SiX) := u,   5(JT) := F;

Piu) := x,    Qiu) := a

whenever X = N + u + v and u = x + a,NGLiZ,Z),x G 21 and a G8.

If a is any ideal of £(2) and t  is any ideal of 2 , then Ria), S(a), 5(a),

PQ.) and ß(t) are ideals of ¿(2,2), 2, 2, 21, 8 resp.  For each « = x + a G

t we have ¿(e)« - u = - (3/2)a, which implies a G t, hence u - a = x G t.

It follows that

(19) t = P(t) © Qit)

for any ideal t of 2.

If a is any ideal in Q(2) and X = N + u +~v G a, u = x + a, v = y + b,

then   [e, [e, X]] = - 2y and [r, [e~, X] ] = — 2x imply x, y Go.. Moreover,

[Lie), X] = x - Via - y   + Vb G a yields w :=a -b G a. Since   [e, w] =

— 2a and   [e~, w] = 2b, we have a, b G a. Finally we have N G a since N =

X - u - v and u, v G a. This and 5(a) - S(a) imply

(20) a = Ria) © 5(a) © S(â).

Using (18) we conclude that a = {0}   if and only if S(a) = {0}, and that a =

ç(2) if and only if 5(a) = 2.  Since   [1(e), x + a] = ¿(e) (x + a) = x - Via

for x G 21 and a G 8    we see that ¿(2,2) = {0}    if and only if
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[G(2), C(2)] = {0}. Hence we observe

Theorem 2. C(2) is simple if and only if 2  is simple.

3.2. For the rest of this section we assume that / is not the zero mapping.

We saw that each ideal of 2  can be written as a © 6, where a   is an ideal of

21 and í>   is an ideal of 8. Conversely given ideals a, i> of 21 and   8 resp.,

the sum a © b is an ideal of 2 if and only if

(21) a(2I)f>Cfc,   a(a)8cb,   /(b,8)Ca.

It follows immediatly that ker a © {0}, <im/> © 8 and   {0} © {a G 8; /(a, 8)

= {0}} are ideals of v2, where <im/> denotes the subspace of 21 generated by

fia, b), a, b G S.  If 2 is simple we conclude that  a is faithful, / is nonde-

generate and <im/> = 21. Moreover, we prove

Theorem 3.  2 is simple if and only if 8  has no o iU)-invariant ideals

different from   {0}  and 8, a is faithful and <im/> = 21.

Proof.   Suppose 2  is not simple and t is an ideal of 2 such that   {0}

=£ t =£ 2.  Write t = a © 6 where a  and  b are suitable ideals of 21 and 8

resp. Then (21) yields a(21)6 C i>.  If  {0}   and 8   are the only  a(2I)-invariant

ideals of 8 we obtain that either i>  = {0}   or 6 = 8.  If a is faithful (21)

shows that  6 = {0}   implies a = {0}, hence t = {0}. Using (21) again we see

that <im f) = 21, and  6 = 8 implies a = 21, hence  t = 2.  Thus in any case

we get a contradiction to our assumption on t.

3.3. We consider the important case, where the Jordan algebra  21 is simple.

Recall that   {0} © {a G 8;/(a, 8) - {0}}  is an ideal of 2 and that   {0} © 8

is not an ideal of 2  since f¥=0. Hence 2   simple implies / nondegenerate.

It is an immediate consequence of (21) that any ideal =£ 2 of 2 can be written as

{0} © 6 where h is an ideal of 8 different from 8, such that fib, 8) = {0}.

Hence / nondegenerate implies 6 = {0}.  Thus we observe

Proposition.  If the Jordan algebra 21  is simple, then 2  is simple if

and only if f is nondegenerate.

4.  Lie algebras of type B, C, D.   Let  U be a vector space of finite dimen-

sion over a field F of characteristic not two and X a bilinear form on  U. We

denote by   21 the Jordan algebra of those endomorphisms X of U, for which

\iXa, b) = X(a, Xb) for a, b G U.   The product of two such endomorphisms is

defined as usual by X • Y = V iXY + YX). Let  W be another vector space

over F of finite dimension and p a bilinear form on  W. We choose a basis

«!,••*, ar of U and a basis bl, • • • , bs of W and define a representation
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a of 21 on the vector space   V := U ®F W by

aiX)iai®bj):=Xai®bj

for X G 21 and  1 < i < r, 1 < / < s.   This representation is clearly faithful and

unital special. Now, we define a trilinear inner composition on   V by

<(a,. ® bj) (afc ® b,) iam ® bn)) := X(af, ak)pibn, b¡)am ® b¡

-\iak,am)pibl,b¡)ai®bn

+ X(ak, a¡)pibn, bj)am ®b¡

for  1 < /', k, m < r and   1 </, Z, n < s.  It is immediate that for a, b G V the

endomorphism   /(a, ô) := ¿(a, ft) — ¿(ô, a) is in  21 if(a)X is skew symmetric

and m is symmetric, or (b) X is symmetric and p is skew symmetric. An

elementary proof shows that in both cases the situation 21, o, f, (V, ( )) is ad-

missible. If X and p are not the zero forms and are nondegenerate, then /

is nondegenerate. Using the proposition of §3, we observe that the Lie algebra

Ç(2) is simple since 21   is simple (cf. [1, Satz 3.2, p. 189]). In the case (a)

Ç(2) is of type Br+t if s = 2r + 1   and of type Dr+t if s = 2t.  If (b)

holds we have s = 2t and C(2) is of type  Cr+t.

Remark. There is another way to describe the above situation 21, a, f,

(V, ( >), which is due to U. Hirzebruch:   Let   V be the vector space of all r

by s matrices over F and A\—+A  a F-linear mapping from  V to the vector

space of all s by r matrices over F, such that

ABC = - CBÄ

for A, B, CG V. Denote by  21 the set of those r by r matrices X over F,

for which XA = AX is satisfied for all A G V. It follows immediately that  21

is a Jordan algebra under the multiplication X • Y — ViiXY + YX), where XY

is the ordinary matrix product.  21 acts on  V by matrix multiplication. Denote

this action by o~. Put

fiA, B) := AB - BA   and    (ABC) := ABC + CBA + CAB

for A,B,CG V. The situation  2Ï, ö,f, (F, < >) is then admissible.

We specialise this situation by letting A := MAtN, A G V where A* is the

transpose of   A, M is an r by r matrix over F and N is an s by s matrix over

F, such that either M is skew symmetric and A^ is symmetric or M is sym-

metric and N is skew symmetric.  Further we let 2t be the subalgebra of    21

formed by those elements of 21 which commute with A^f. We denote the re-

striction of o to  21  by a. It is easily seen that fiA, B)G 21 for all A, B G V,
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and a simple computation shows that this specialisation of the above situation

exactly yields those triple systems which led us to the Lie algebras of type B, C

and D.

5. Triple systems defined by symplectic representations of Jordan algebras.

5.1.1. Let 21 be a finite-dimensional Jordan algebra over a field F of

characteristic not two with unit element e =£ 0 and a a nondegenerate sym-

metric bilinear form on % ,ai=0 such that

(22) aixy, z) - aix, yz) = 0

for x,y,zG^ä.  Let  a be a faithful special unital representation of 21 on the

vector space B over F which is symplectic with respect to the nondegenerate

skew symmetric bilinear form ß ¥= 0 on B, that means

(23) ßix .a,b) = ßia, x . b)

for x G 21 and a, b GB, where x . a stands for  a(x)a.

5.1.2. Let ®  be a finite-dimensional Lie algebra over F and p =£ 0 a

nondegenerate symmetric associative bilinear form on  3  (associative means

piDl, [D2, D3]) = Pi[Dv D2],D3)). Assume that a faithful symplectic repre-

sentation p  of 3  on the symplectic space  (5, j3) is given, such that

(24) [a(2I),a(21)]Cp(3)))

(25) K2I),p(®)]Ca(2I),

a'iaix), [piD), aiy)}) - p'(p(¿»), [aiy), aix)])
(26)

= *ïoiy), [aix), piD)])

for x, y G 21 and D G 2), where a   and p' are defined by

a'iaix), aiy)) := a(x, y),     p'(p(¿\), p(¿>2)) := piDl, D2).

5.2.1. For a first set of examples, which plays a role later on choose a Lie alge-

bra % with nondegenerate Killing form p and symplectic representation p on the

nonsingular symplectic space (B, ß). Let 21 = Fe be the one-dimensional Jordan

algebra over F. Then there is exactly one special unital representation a of 21 on

B given by ai%e)a = %a for £GF   and a GB. Now, (23)-(26) are satisfied.

Since every bilinear form a on  21 satisfies a(|e, t]e) = a(e, e)?r? for £, 77 G F, the

identity (22) is clearly satisfied.

5.2.2. A more important set of examples which leads to the Lie algebras of

type F4  and Es  is the following:   Let 21, a, a,B, ß be given as in 5.1.1. Put

3 := [o"(20, °(2I)]   and p := idB. Then p is a faithful symplectic representation

of the Lie algebra 3  on thé symplectic space  (5, j3) and the outer terms of

identity (26) obviously agree. Now, a induces a nondegenerate symmetric asso-
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ciative bilinear form p on 5), which is uniquely determined by

(27) pi [aix), aiy)], [aix'), aiy')] ) = - 4(cv(xx', yy') - aixy', x'y))

for x, x',y,y' G 21. Clearly 5.1.2 is also satisfied.

5.3. From now on let the characteristic of F be different from two and

three. In order to construct an admissible situation (see 2.1) from the data of 5.1.1

and 5.1.2, we define a bilinear mapping f.BxB\-+ 21 by

(28) aix, fia, b)) = 2ßix . a, b)

for x G 21 and a, b GB, and a bilinear mapping D: B x B I—> EndF(5) by

(29) p'ipiD), Dia, b)) = - ßipiD)a, b)

for D G 5) and a, b GB. Next we put

(30) (abc) := 14/(a, b) . c - Dia, b)c

for a, b, c G B, and this makes B a triple system which we denote by 8.

Theorem 4. 21, a, f, 8 is an admissible situation if and only if

(31) Dia, b)c - Die, b)a = Vi fia, b) . c + Vifib, c) . a - fie a) . b

or equivalently (abc) - (cba) = fie, a) . b for a, b, c G 8.

// (31) is satisfied the corresponding Lie algebra Q(2) is simple if the

Jordan algebra 21  is simple.

Proof.  It follows immediately from (24) and (25) that 51 := a(21) ©

p(5)) is a subalgebra of the Lie algebra of all endomorphisms of 8-  Using (26)

we obtain a nondegenerate symmetric associative bilinear form X on 51  by

X(a(x) + piD), aix') + piD')) := a(x, *') + p(¿>, D')

for x, x' G 21 and D, D' G S.   Obviously we have

(32) X(7V, ¿(a, b)) = ßiNa, b)

for all TV G 51 and a, ft G 8.  Now we are ready to establish our axioms.  First,

we get (F) as a simple consequence of (22) and (28).  Since  a and  p  are

symplectic with respect to j3, (30) yields j3(¿(a, b)c, d) = - j3(c, ¿(ft, a)d). The

associativity of X and (32) imply

X(/V, [Lia, ft), Lie, d)]) = ßiNLia, b)c, d) - |3(¿(a, b)Nc, d)

for N G 51 and a, ft, c, d G 8.   These two identities imply (LI).  Obviously (L2)

and (V2) follow from (31) and (30) resp. Using again the associativity of X we

obtain (VI). In order to check (V3) we first prove

2[aix), Dia, ft)] = - a(/(x . a, ft) + /(a, x . ft))   for x G 21 and a, ft G %
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The associativity of X implies

2X(o(jO + piD), [aix), Dia, ft)]) = 2X([oO0, aix)], ¿»(a, ft))

= - 2ßiy . ix . a), ft) + 2ßiy . a, x . ft)

= - aiy, fix . a, ft)) + aiy, fia, x . ft))

= Xioiy) + piD), - aifix . a, ft)) + aifia, x . ft)))

for x,yGU,DG%

Since X is nondegenerate, this implies the desired identity. We shall now show

(V3).  For any x G 21 we have

aix, fi(abc), d)) + aix, fie (abd)))

- 2j3(jc . (abc), d) + 2ßix . c, (abd))

= ßix . ifia, ft) . c), d) - 2/3(:c . iDia, b)c), d)

+ ßifia, ft) . ix . c), d) + 2ßiDia, b)ix . c), d)

= 2ßüxfia, ft)) . c, d) + ßifix . a, ft) . c, d) - ßifia, x . ft) . c, d)

= 2ßifix .a,b).c,d) = aifix . a, ft),/(c, d))

= - 2ßific, d).b,x . a) = aix, fia, fie d) . ft)),     a, ft, c, d G 8.

Since a is nondegenerate this yields (V3).

Suppose (31) is satisfied and 2T is simple. Since ß is nondegenerate, / is

also. Using the proposition of §3, we conclude that Q(2) is simple.

5.4.  Following 5.2.1 we give the data %,p,B,ß which lead to Lie algebras

of type  G2 :  Let  3 be the Lie algebra of 2 by 2 matrices over an arbitrary field

of characteristic not two and three with trace zero.  Let B be the four-dimen-

sional vector space over the same field with basis eQ, ev e2, e3. We define the

representation p of  5) on the basis

"-(¡-ft H?$ '-(! S)
of S by

H

With the notation i>,. := 3 - 2i   (0 < / < 3), p,. := /(4 - /) (1 < / < 4) and

e_ j := e4 := 0, the representation p can be written as

PÍH)e¡ = viei,   piE)e¡ = pfy_,,   p(F)e,. = ef+1
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for 0 < / < 3. This representation is clearly faithful. It is symplectic with re-

spect to the nondegenerate skew symmetric bilinear form ß, defined by the

matrix

(.,■-")

We define the bilinear form a by a(e, e) = - 8/3  which yields /(a, ft) =

- (3/4)/J(a, ft)e (e  as in 5.2.1).

In order to check (31) we note that, if p denotes the Killing form of 2), the

relations pQI, H) = 8, p(E, F) = 4, pQI, E) = p(/¿, F) = p(E, E) = p(E, F) = 0

holds. Using (29) we obtain for 0 < /, /, k < 3

*Ket> e¡)ek = V vt»kß(et, e¡)ek + Pkßiei+1, ej)ek_l + ß.ß(ei_1, e¡)ek+1.

Now, an easy computation establishes (31).

5.5. We shall now give the construction of Lie algebras of type F4  and E8

according to 5.2.2. What we need is a faithful symplectic special unital representa-

tion of a finite-dimensional Jordan algebra 21 with unit element e ^ 0 on a finite-

dimensional nonsingular symplectic space, where 21 admits a nondegenerate sym-

metric associative bilinear form.

Let  V be a vector space  of finite dimension n   over a field F of char-

acteristic not two or three. Let q be a quadratic form on   V with associated

symmetric bilinear form a, defined by

a(*. y) = Vl iqix +y)- qix) - qiy))   for x.yGV.

We denote the Clifford algebra of q byS(F, q) or E.  The subspace  2Í :=

Fe © V, e the unit element of S, becomes a Jordan algebra by

i%e + x) ine +y) := (£77 + aix, y))e + r\x + %y

for £, 77 G F and x, y G V, of which S is the special unital universal envelope

(cf. [5, p. 74, example (4)]). We extend a to a nondegenerate symmetric bi-

linear form a' on 21 by

a'(e, e) := 1,      a'(e, x) := a'(x, e) := 0,      a'(x, y) :- aix, y)

for x,y GV.  Immediately a   satisfies (22). Since a is nondegenerate the

Jordan algebra 21  is simple (cf. [1, Satz 5.7, p. 197]).

Suppose now that q is of maximal Witt index r > 2. Hence n = 2r or

n = 2r + 1. We choose maximal totally isotropic subspaces N and P of V

satisfying N C\P= {0}, a basis xt, • • • , xr of N and a basis xr+1, • • • ,
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x2r of P such that

(33) aixt, xj) - 8 i+rJ     (1 < i, j < 2r).

If n = 2r clearly  V = N®P holds. Let n = 2r+ I. We assume that

2(- l)r¿> is a square in F, ¿» being the discriminant of q. Then there exists a

vector *„ in  V such that

(34) a(x/,x„) = 5i(„      (1 </<«).

Note that  F = W©P©F;c„.

Recall that the elements of the form x,   • • • x,  , 1 < i, <•••</'< n,

form a basis of S. We denote such an element by xM  if M = {ilt • • • , imi-

Let 5 be the subspace of g" spanned by the xM, M C R := {1, • • • , /■}. In

order to define a representation r of   £ on B it is enough to define  tíx¡)xm

for  l</<« and all MCR. We put

(35) t(x¡)xm := £,.*,.xM      (l</< «, M C R)

where  £,. := 1  iî iGR  or i - r G M; |, := 0 if i - r G R\M; if « = 2r + 1

the factor %n is defined by (- l)m, m being the number of elements of M.

We note that this representation is a spin representation of £.  The de-

scription above can easily be deduced from the definitions of [2, p. 70].

Since t is a faithful representation of £ and S is the special unital

universal envelope of 21, the restriction of t to  21 is a faithful special unital

representation of 21  on the vector space B which we denote by  a.

It is shown in [2, §3.2] that there exists a nondegenerate bilinear form ß

on B satisfying /3(r(x)a, ft) = (3(a, r(x)ft) for all xGV and a, ft G B.   It is

easily seen that this implies

(36) ßixA ,xB)^0   if and only if A U B = R   and.4n.ß = 0

for A, B C R. Moreover, ß is skew symmetric if r = 2 or 3 mod 4. There-

fore we suppose that this condition on r is always satisfied. Hence a is sym-

plectic.

Now, let 21, a,f, 8 be constructed as in 5.3 from the data 21, a, B, ß

defined above and those of 5.2.2.

Theorem 5.  The situation 21, a, f 8 is admissible if and only if the di-

mension of V is either 6 or 13. In the former case the corresponding Lie algebra

Q(2) is of type F4 whereas Q(2)   is of type Es  in the latter case.

Proof.   According to Theorem 4 we must show that (31) holds if and only

if n = 6 or n = 13.  The rest of the theorem is then clear because Q (2) is
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simple and has dimension 52 if n = 6, it has dimension 248  if n = 13. Now,

using (33)-(36) both sides of (31) can be computed from the definitions (28)

and (29). Note that if (31) holds for ft = e, e the unit element of £, then (31)

holds for all ft G 8. This can be proved by an easy induction on the number of

elements of M if ft = xM. The statement that n = 6 or n = 13  is necessary

for (31) to be satisfied follows from the case a = xR, ft = c = e.
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