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WILD SPHERES IN E" THAT ARE

LOCALLY FLAT MODULO TAME CANTOR SETS

BY

ROBERT J. DAVERMAW1)

ABSTRACT.   Kirby has given an elementary geometric proof showing that

if an (n — l)-sphere £ in Euclidean n-space E   is locally flat modulo a Cantor

set that is tame relative to both 2 and e", then X is locally flat.   In this paper

we illustrate the sharpness of the result by describing a wild (n - l)-sphere S

in e" such that E is locally flat modulo a Cantor set C and C is tame relative

to E . These examples then are used to contrast certain properties of embedded
3

spheres in higher dimensions with related properties of spheres in E .

Rather obviously, as Kirby points out in [11], his result cannot be weak-

ened by dismissing the restriction that the Cantor set be tame relative to En.

It is well known that a sphere in E   containing a wild (relative to E ) Cantor

set must be wild.   Consequently the only variation on his work that merits

consideration is the one mentioned above.

The phenomenon we intend to describe also occurs in 3-space. Alexander's

horned sphere [1] is wild but is locally flat modulo a tame Cantor set.   In

fact, at one spot methods used here parallel those used to construct that ex-

ample.   However, other properties of 3-space are strikingly dissimilar to what

can be derived from the higher dimensional examples constructed here, for,

as discussed in §2, natural analogues to some important results concerning

locally flat embeddings in E   are false.

Most of the terminology and notation is standard. We distinguish between

the two senses of the term "boundary" by using 971/ to denote the boundary of a

manifold M and Bd A, for A C X, to denote the boundary of A in the space X. Our

standard &-cell Bk is the set of points in Ek of norm < 1. We use p to denote the

standard complete metric on E"+', and for two maps/and /' of a space X into

E"+!, we use p(f, /') to denote lub {p(f(x)>f(x))\x G X}.

1. Construction of certain wild spheres. The somewhat intricate definition

and lemma that follow are designed to slip naturally into the proof of Theorem 3
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and could readily have been incorporated there.  By isolating the formation of

special Cantor sets, however, we profit in two ways, the most obvious being a

precise specification of those Cantor sets in the embedded sphere that can be

employed; the other, a convenient description of locally flat embeddings that con-

verge to the wild embedding desired in Theorem 3.

Let Q denote an n-manifold, n > 3, and C a Cantor set embedded in Q.  A

sequence {A/,-}," , of compact «-manifolds with boundary in Q is a defining sequence

for C iff (1) C = C\M¡, and (2) Mi+l C Int M¡ for each i.  The sequence {M¡} is

called a doubly regular defining sequence for C if, in addition, the following con-

ditions are satisfied: (3) each component of each M¡ is homeomorphic to B2 x

T"~2, where Tn~2 denotes the Cartesian product of n - 2 copies of S1; (4) the

inclusion of each boundary component of Y¡ = M¡ - Int Mi+l into the appropriate

component of Y¡ induces an injection of fundamental groups; (5) for every odd

positive integer i and every component P of M¡, P n M¡+1 consists of exactly two

components Cx and C2 determined by disjoint subdisks Bx and B2 of Int B2 such

that, under some homeomorphism h of B2 x Tn~2 onto P, Ce = h(Be x Tn~2)

(e = 1, 2), and, furthermore, there exists a homeomorphism g of Bx onto B2

reversing the induced orientations on these two disks such that

Kg x 1 ̂ -a)Ä~' (Ci n Mk) = C2C\Mk   for all k > i.

Remark.   It would be permissible in condition (3) above to require instead

that to each component P of M¡ there correspond an (« - 2)-manifold Np such

that P and B2 x Np are homeomorphic; but we have found it more convenient to

specify Np as Tn~2.

Lemma 1. For n>3 there exists a Cantor set C in S" that has a doubly

regular defining sequence.

Proof.  Consider a sequence {N¡}'¡Ll of compact n-manifolds with boundary

in Sn such that (1) ClN¡ is a Cantor set, (2) Ni+l C Int N¡, (3) each component

of N¡ is homeomorphic to B2 x T"~2, and (4) the inclusion of each boundary

component of Z¡ = N¡ - Int Ni+i into the appropriate component of Zi induces

an injection of fundamental groups. We shall assume the reader is acquainted with

Cantor sets in Sn having such defining sequences, for example, Antoine's necklace

in S3 [2] and Blankenship's generalizations in higher dimensional spheres [4].

(Explicit comments regarding why condition (4) applies in these cases can be

found in [14].) We shall modify the sequence {N¡} to obtain a doubly regular

defining sequence for another Cantor set, which might be embedded differently

than City.

Let Mx = Nx. Fix two disjoint disks Bx and B2 in Int B2. Then for each
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component R of M j there exists a homeomorphism hR of B2 x 71"-2 onto R.

Define M2 as the union of the sets A^^j U B2) x r"~2).

For M3 we mimic a portion of {N¡} in each component of M2, attending to

epsilonics to force C\M¡ to be a Cantor set while exercising technical care in light

of condition (5).   Fix homeomorphisms ge of B2 onto Be (e = 1, 2) such that

g2g¡" ' : 5j —► 52 reverses the orientations induced from B2, and define Ge =

Se x ^"-z ■ B2 x T"-2 —*Be x T"-2. For each component/? of Mj we have

homeomorphisms hRGehRx oîR onto components of M2; thus, there exists an

integer/(R) > 1 such that for each component X of R O JV^j

diam hRGehRx(X) < 1/3      (e = 1, 2).

We define M3 to be the union of the sets hRGehRx(R n N^R^). Note that the

components Ce = hR(Be x Tn~2) of M2 satisfy

hRG2Gl~xhRx(Cl n M3) = C2 n M3.

Now M4 is defined by choosing, for each component R' of M3, two disjoint

parallel copies of R' in its interior. Specifically, for each component Rx of Mx

and each component R3 ofRx n JV.,Ä v, there exists a homeomorphism A^ 3 of

B2 x 7"1-2 onto R3. Define M4 as the union of all such sets

*a,G«A*ÍA*3«5i U B2) x J""2)      (e = 1, 2).

Note again that the components Ce = hR (Be x r"-2) of M2 satisfy

AÄiG2Gf1A^;(C1 fUlf4) = c2 ni4.

Given a component Rx oiNl = Mx and a component Ä3 of/?j n^v/(ß,)>

we have homeomorphisms hR^Ge^h^JAfi3Ge3A^3  (t?j = 1, 2; e3 = 1, 2) of/?3

onto components of M4. Thus, there exists an integer j(R3) >j(R1) such that

for each component X oíR3 n N.-,R »

diam hRGehRxhRGehR\(X) < 1/5      (^ = 1, 2; e3 = 1, 2),

and we define M5 to be the union of such sets, emphasizing that this be done for

each possible Rx and R3.

We continue this process, making certain that each component of M2i+l

has diameter less than 1/(2/ + 1). Implicit in our procedure is the requirement

that for each component R oíM¡, R <~l Mj+l =£ 0, which implies that f\M¡ is

a Cantor set. Furthermore, for each odd integer i > 0, a set P is a component of

M¡ iff (1) there exist setsRx, R3, • • • ,R¡ such that Rï is a component of N¡
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and Rk+2 is a component of Rk C\ Nj,R >  (fc = 1, 3, •••,/- 2) and (2) there

exist homeomorphisms hRk oí B2 x T"~2 onto /?fc  (k = 1, 3, • • • , i - 2) such

that /> = HXH3 • • • ^(R,), where Hk = hRk • Ge¡c • A¿¿  (efc = 1, 2). In

case i* is odd each component of M¡ contains exactly two components of Mi+t,

which are obtained by a rule analogous to that given in defining M2 and M4. It

follows that the resulting sequence {M¿} is a doubly regular defining sequence for

D M¡; condition (5) is verifiable in straightforward fashion in terms of the specific

homeomorphisms concocted to determine components of the M('s; condition (4)

is obvious in case / is odd, and in case i is even it is a consequence of properties

of {Nj}, since to each component Y¡ of M¡ - Int Mi+l there correspond integers

/ and k such that Y¡ is homeomorphic to a component of N- - Int A^fc.

The following lemma, which is used in proving Corollary 9, is not essential

for the main results of the paper.

Lemma 2. For n>3 there exists a Cantor set C* in Sn such that C* has

a doubly regular defining sequence and S" - C* is simply connected.

Proof.  DeGryse and Osborne [9] have discovered a wild Cantor set A in

S"  (n > 3) having simply connected complement and having a defining sequence

{N¡} that satisfies conditions (3) and (4) in the definition of "doubly regular de-

fining sequence."  Relying largely on their techniques we shall suggest briefly how

to establish that a Cantor set C* constructed from {N¡} according to the rules

formulated in Lemma 1 also has simply connected complement. In [9] a defin-

ing sequence [A"} is prescribed for A, and we have set NX = Aq and N¡ = A\¡_3

(j > 2) because this affords easy application of [9, Theorem 4.13].  Furthermore,

following [9], throughout this proof T" denotes an n-tube, which is a space homeo-

morphic to B2 x T"~2. The algebraic manipulations of [9] focus on the follow-

ing definition.

Let [T", i = 1, 2, • • • , k} be a collection of pairwise disjoint n-tubes in

Int T%. Let P be a tree in 7^ - (J,*=i Int 7? such that P n 977" is a single point

for / = 0, 1, • • • , k.   Let K¡ = ker^^??) —► ti^Tf)) and let G¡ be a subgroup

of 7rj(977) such that K¡ ® G, = tt^T?). Denote by H0 the smallest normal sub-

group of jr,(7j - Uf=i Int T?) containing im(G0 -> rr^ - (Jf=i Int Tf )).

The n-tubes {T", i = 1, 2, • • • , k} are h-unlinkable in Tq if for every i = 1,2,

, k

G, C ker L(9Î?) — ir, ir0" - IJ Int T¡\Ih]
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*i (p u û ^r) — »i f ?o - û int mJH0

is an epimorphism.

Using the notation T¡¡ = B2 x T"~2 and T? = B2 x T"~2   (e = 1, 2), we

claim that [T", 7"} are A-unlinkable in Tq. To prove it we can define an appro-

priate tree P in B2 x t (i 6 f""2) as the union of two arcs ae x t, each joining

a point of öTq to a point of dT™. Note that G0 is generated by loops in p0 x

Tn~2, where p0 G 952, and that Ge similarly is generated by loops in pe x T"~2,

where pe G dBe. It follows, by deforming loops in pe x t"~2 across ae x Tn~2

into p0 x T"~2, that each loop representing an element of Ge is homotopic in

Tq - Int (7" U 72) to a loop representing an element of G0. Furthermore, we

see that

jr^rç - inter? u r2«)) - ^(i?2 - intcs, u b2)) x ffl(r-2)

and //0 corresponds to the nl(Tn~2) factor. Since B2 - lnt(B1 U B2) collapses

to (<*! U a2) U (95j U W2), it follows that

ir,(P U (37« U 972")) -> 7rt(7^ - Int(7" U 72"))/tf0

is an epimorphism. This establishes the claim.

We can assume that A% = NX consists of a single component such that

G0 C kerfr^",) -> ir^S" - Int A%))

and that {M¡} is the doubly regular defining sequence determined from {N¡} by

applying Lemma 1. It follows from the claim and repeated applications of [9,

Lemma 4.9] that the components of each M¡ are A-unlinkable in the n-tube Aq.

Theorem 4.13 of [9] then implies that the inclusion induced homomorphism

7T1 (S" - Mk) —* 7T1 (S" ~Mk+1) is trivial for even indices k.  This proves that

Sn - c* = S" - CiM¡ is simply connected.

Theorem 3. // the Cantor set C in S"  (n > 3) has a doubly regular de-

fining sequence {M¡}, then there exists a wild embedding f: S" —> En+X such

that fis locally flat at each point of S" - C and f(C) is tame relative to E"+x.

Proof.  Construction off.  We shall obtain / as the limit of a sequence of

embeddings of S" in En+X. Throughout the proof all embeddings, excepting/,

of manifolds and of manifolds with boundary will be locally flat.

Let /j denote an embedding of S" onto the boundary of a round (« + 1)-

ball D in En+l. Appealing to the definition of "doubly regular defining sequence,"
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we can easily obtain an embeddinggx: I x Mx —► En+X such that

(6) gx(I xMx)nD = gx(bl xMx) = fx(M2).

To do this, for each component R of Mx, we use the collar structure on S in

En+X - Int D to "extend" fxhR : B2 x T"~2 -* fx(R) to an embedding FR of

I xB2 x T"~2 into En + 1 -IntD such that

FR(I x B2 x T"-2) HS = FR({0} xB2 x Tn~2)=fx(R)

where FR((0, b, t)) = fxhR((b, t)) for (b, t)eB2 x 7"~2. We require, in addition,

that the images of the various FR be pairwise disjoint. The orientation reversing

homeomorphism g: Bx —► B2 (the subdisks of Int B2) prescribed in the definition

of "doubly regular" can be realized in terms of a locally flat embedding \¡/ of

I x B2 in I x B2 such that

4/(1 x B2) n 9(7 x B2) = 0(3/ x B2),

4>({0} xB2)= {0} xBx,

HÜ) x52)= {0} xB2,

where ip is related to g in the following sense: for each b G B2, 4>((0, b)) =

(0,bx) and i//((l, ¿0) = (0,g(bx)). Define gx: I x Mx ^-En+X on each com-

ponent R of Mx asg-j = FR(4> x 1 „_2)(1/ x A^1).   Now condition (5) in the

pertinent definition permits us to assert that there is a subset Lx of M2, namely

that "half of M2 corresponding to the images ofBx x T"~2 under certain homeo-

morphisms of B2 x T"~2 onto components of Mx, such that for k > 2,

(7) gl(dIx(L1nMk))=fl(Mfc).

Let A j = gx (I x Mx ). Without loss of generality we may assume

(8) diam^! < 1.

There exists an odd positive integer ;'(2) such that for each component

x2,e  (e= 1, *•• ,«2)ofM/(2)

(9) diam gx(t x X2e) < Vi for each / G I.

There exists a homeomorphism H2e of I x B2 x Tn~2 onto gx(I x X2 e) such

that

(10) H2 e(t x B2 x T"-2) = gx(t x X2e) for each t G I.

Represent I x B2 as a solid cylinder as shown in the figure, and let Rx and R2

denote the cubes-with-one-handle as indicated. Note that the handles in Re can

be made arbitrarily thin, and consequently the solid cylinder R* can be constructed

with arbitrarily small preassigned diameter (S = 1, 2).  In particular, using (9) and

(10) we require that

(U) diam H2e(R* x 7""2)<^ (5 = 1, 2;e = 1, • • • , n2).
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Define

B2 x {1}

B2 x {0}

Figure

¿i= U H2ie((R* U R*) x T"-2),
e-l

Q = [(Int / x B2)] n [9 C1(RX -R*) U 9 Cl(/?2 -/?£)],

i2*= [/?? n ci(Rx -R*)] u [/?* n a(R2 -R$\.

Here Q is the union of the interiors of two disks while Q* is the union of four

disks. We see that there exists a homeomorphism /, of S" onto

fx(Sn - IntM/(2)) U      (J H2e(Q x Tn~2)
e=l

such that

(12) f2\Sn - Int Mm = fx 15" - Int Mj{2),

(13) f2(MK2)+x)= \JneLH2,e(Q* x 7""2).

It follows from (8) that p(f2, /,)<!.
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To continue, note that by (13) and by the definitions of A2, Q* and the

/?*'s we can define a homeomorphism^ of / x M¡^ ontOv42 such that

(14) f2(MH2)+x)=g2(MxMi(2)).

Specifically, using condition (5) in the definition of "doubly regular defining

sequence" we find a subset />,(2) °f M/m+i > the union of half of the components

of Aiy-(2)+i> chosen as before, such that for k >/(2) + 1

(15) g2(dl x (Li(2)nMk))=f2(Mk).

There exists an odd integer ;'(3) > /(2) such that for each component X3 e  (e =

l,---,n3)ofMy.(3)

(16) diam g3(t x X3e) < 1/3 for each t G /.

There also exists a homeomorphism H3 e of I x B2 x jn~2 onto g2(I x X3 e)

such that

(17) H3e(t x B2 x T"'2) = g2(t x X3e) for each t G /.

In particular, we can suppose now that R* and R* are so constructed that

(18) diam #3 e(R$ x T"~2) < 1/3  (5 = 1, 2; e = 1, • • • , n3).

It follows that there exists a homeomorphism f3 of 5" onto

f2(Sn - Int MR3)) U I J H3e(Q x 7""2)J

such that

(19) f3|5" - Int MK3) = f215" - Int Mj{3),

(20) /3(M/(3)+1)= \JnelxH3te(Q* x Mm\

It follows from (11) that p(f3, f2) < 54.

By repeating this process we can establish the existence of an increasing

sequence   {f(i)}'^=2 of odd positive integers, a sequence {fi}^=1 of locally flat

imbeddings of 5" into En+1, and a decreasing sequence {A¡}"_x of compact sub-

sets of E" + x such that, for i = 1, 2, • • • ,

(21) p(fi+1,fi)<l/i,

(22) /;.+1|5" -Int/lí/(/+1) =/;.|5" -IntM/(i+1),

(23) fi+1(MKi+x))CAi+x,
(24) diam (largest component of A¡) —* 0 as i —► °°,

(25) if x and >> belong to distinct components of M¡,¡+Xy then fi+x(x) and

/¿+1(j) belong to distinct components ofylI+1,

(26) Ai+X is homeomorphic to / x Mj,i+Xy

One can show in routine fashion that / = lim f¡ is an embedding, and (22) implies

that / is locally flat at each point of 5" - C.

Proof that f(C) is tame.   By (23) f(C) C C\A¡. It follows from (26) that

f(C) has a defining sequence in E"+ x such that each component at each stage
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has an (n - 2)-spine.  Because these spines have codimension 3 relative to En+Ï,

f(C) is defined by cells and must be tame (see the proof of [16, Corollary 1]).

Proof that fis a wild embedding.   Let h(B2 x jn~2) denote one of the

components of Af2, and let U denote the bounded component of £"" + 1 -f(Sn).

Define a homeomorphism m of B2 onto fh(B2 x p) C Ax, for some p G Tn~2.

If/were locally flat at each point, locally m(B2) could be pushed slightly into

E"+x - Cl U.  Consequently we shall have proved that/is wild once we establish

the following:  ifm': B2 —* Ax is a map such that m'\bB2 = m\dB2, then

m'(Int B2) n f(S") ¥= 0. An equivalent statement, based on the construction of

/, is the following:  ifm': B2 —> A x is a map such that m'\dB2 = m\dB2 and if

k>2is an integer, then m'(Int B2) n (fk(Sn) U Ak) # 0.

To prove the latter of these two statements, we decompose a set slightly

larger than the "best" component of A x - (fk(Sn) U Ak). For I = 1, • • •, k - 1

define Ui+X as the bounded component of E"+x -fi+x(S") and

Z,. = A, - (Ai+X U Ui+X U (fi+x(S") n Int A¡».

Retracing our earlier constructions, we find that

Zt = gfi x [Mj(i) - (Lm n Int %+1)+1)])

u ( \JHi+x>e([Qrt IxB2)- (*! U R2)] x 7"-2)j,

where we have set ;(1) = 1. Recall that M¡^ - Int Ltm is homeomorphic to

/ x 9Afy(/) because L¡^ was defined so as to contain exactly one component of

Af/m-H in each component of Af-,(-. and because condition (5) in the definition

of "doubly regular defining sequence" implies that L¡n\ is situated nicely in

M ¡¡¡y Consequently M^¡) ~ (£//n n Int •W/(/+i)) is homeomorphic to L^¡) ~

Int Mjn+xy It follows from several applications of condition (4) in the definition

of "doubly regular ..." that the inclusion of each //,.+le(Int I x dB2 x Tn~2)

into its intersection with

*i« * Wjd) - (Lj(i) n Int%+1)+1)])

induces an injection of fundamental groups. It follows from Theorem 9 of [3]

that the inclusion of each Hi+1 e(Int / x dB2 x f"-2) into

#/+i,e([(Int/ x B2) - (Rx U/?2)]  x 7""2)

also induces a fundamental group injection.  For similar reasons the inclusions of

each component 5 of ZI+1 n Cl Zi into Z/+1 and 5 U Z,-, respectively (5 is
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homeomorphic to Int / x 51 x T"~2 and corresponds to the product of Int I

with the boundary of a component of Mj(i+Xy+X or to the image under some

Hie of the product of an open annulus in bR* with 7"-2), induce injections.

In short, ■nx(\JZi) is a generalized free product with amalgamation. According

to the definition of m, m(dB2) = fh(dB2 x p)CbAx, which means that m(dB2)

is not contractible in fh(dB2 x x"~2) nor in gx(I x dMx). From the above re-

marks we find first that m | dB2 is not null homotopic in

gx(Ix [Mx - (Lxn Int Mj(2))])

and second that m\bB2 is not null homotopic in \JZ¡. Since the unique com-

ponent of Ax - (fk(S") U Ak) whose closure contains m(dB2) is a subset of

U Z¡, the statement at the end of the preceding paragraph holds, and the proof

is complete.

Addendum. The closure B of the bounded component of E"+l -f(S")

is an (n + l)-cell. This can be established in elementary fashion by carefully

extending the locally flat embeddings/• to embeddings F¡ of B"+x in such a way

that the Ffs obviously converge to an embedding. Alternatively, for n + 1 > 5

this follows from Theorem 6 of [15], because / can be approximated arbitrarily

closely by locally flat embeddings in (B ~/(5")).

Corollary 4. There exists a wild n-cell B in En  (n > 4) such that 95

is locally flat modulo a Cantor set that is tame relative to En.

2. Generalizations of certain 3-space theorems in higher dimensions. The

embeddings described in § 1 signify that in dimensions greater than three (n - 1)-

spheres and «-cells in E" can have properties contradictory to results concerning

the comparable properties in 3-space. This section is devoted to contrasting some

prominent 3-dimensional tameness theorems with higher dimensional versions.

Corollary 5.  For 1 < k < n and n>4 there exists a wild (n - l)-sphere

2 in E" that is locally flat modulo a flat (relative to E") k-cell.

Proof.   Let /: 5n_1 —► E" be a wild embedding promised by Theorem 3

such that, for some Cantor set C in 5"_1, / is locally flat modulo C and f(C)

is tame. In 5"_1 there exists an (n - l)-cell B such that dB contains C, dB is

locally flat in 5" ~~ ' modulo C, and C is a tame subset of SB (the technique for

forming B is due to Alexander [1], was generalized by Blankenship [4, Theorem

3F], and has been formalized by Osborne [13, Theorem 3]). Obviously f(S"~l)

is locally flat modulo f(B), and it follows from [11] that f(B) is flat relative to

E". Now for 1 < k < n - 1 it is a simple matter to identify a /t-cell K in f(B)

that is flat relative to E" and that contains f(C), completing the proof.
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Compare Corollary 5 with Theorem 2 of [10].

Corollary 6. There exist two n-cells D and D' in En (n > 4) such that

3D is wildly embedded at each point of a Cantor set C, 3D' is locally flat at each

point, and CCD' CD.

Proof.   Using the proof and terminology of Corollary 5, we let D denote

the closure of the bounded component of/(5"_1), and we thicken the (flat)

(« - l)-cell f(B) to form a flat «-cell D' in D.

Corollary 6, which should be compared with Theorem 5 of [5], reveals that

the theory of *-taming sets developed in [8] does not expand to rich generaliza-

tions in high dimensions, because, as Cannon points out in [8], Burgess" work in

[5] can be regarded as an initial result about *-taming sets. Should one attempt

to extend the definition of *-taming set (see [8]) without additional restrictions,

Corollary 7 indicates how limited a theory would result.

A crumpled n-cube is a space homeomorphic to the closure of a component

of 5" - 2, where 2 denotes an (n - l)-sphere topologically embedded in 5".

Corollary 7. Suppose X is a compact proper subset of 5"  (n > 4)

having the following property: if K is a crumpled n-cube in S" such that K n

X C Bd AT and Bd K is locally flat at each point ofBdK- X, then K is an n-cell.

Then X is a countable set.

Proof.  Suppose to the contrary that X is uncountable. Starting with a

flat n-cell B in 5" - X, we can pull out arms from B towards X, as was done in

Theorem 3 of [13], to obtain an embedding^ of B into 5" such thatg~x(g(B) r\X)

is a Cantor set C' that is tame relative to dB and g\dB is locally flat modulo C'.

Using the notation of Corollary 6, we then can define an embedding / of E" -

Int D' into g(B) such that /(3D') = g(bB) and f(C) = g(C'). Define K to be the

closure of the component of 5" - f(bD) contained in B.  Since K satisfies the

property in the hypothesis, it must be an «-cell. This leads to a contradiction,

however, because K - {p} (for p &K - /(9D)) is homeomorphic to E" - Int D.

A similar argument may be given for one implication in the following corol-

lary, which provides a characterization of taming sets for (n - l)-spheres in E"

(n > 4) that should be compared with the more positive results collected in [7].

The other implication can be derived from [11].

Corollary 8. Let X be a compact, proper subset of an (n - l)-sphere in

En (n > 4). TAen X is countable if and only if, for each (n - l)-sphere 2 in En

that contains X and that is locally flat modulo X, 2 is locally flat.
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Corollary 9.   There exists a wild n-cell B in E"  (n > 5) such that B is

cellular and the set of points at which dB is wildly embedded is a Cantor set.

Proof.   By Lemma 2 and Theorem 3 there exists an n-cell B in En such

that (i) dB is wildly embedded, (ii) dB is locally flat modulo a Cantor set C, (iii)

dB - C is simply connected, and (iv) C is tame relative to E". To show that B

is cellular we sketch a proof that B satisfies McMillan's cellularity criterion [12,

Theorem 1 ]. Given a neighborhood U of B we choose a neighborhood V of B

such that any loop in F is contractible in U.  Any map f:B2 —► U for which

f(dB2) C V can be approximated, since C is tame relative to E", by a map g:

B2 —* U-Csuch that g\bB2 = f\bB2.  Furthermore, since 35 is locally flat at

each point of dB - C, g can be obtained so that g~x (dB) consists of a finite num-

ber of simple closed curves. The outermost such curves bound pairwise disjoint

disks Fx, • ' • , Fk in B2. Now g\dF¡ can be extended to a map of F¡ into dB-C,

from which we can piece together a map h: B2 —► U - (C U Int B) such that

A|352 = f\dB2. Finally, h(B2) can be pushed off B to obtain the desired map.

It follows from [11] that the set of points at which 35 is wild contains no

isolated point and hence must be a Cantor set.

Compare Corollary 9 with Corollary 1 of [6].
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