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ABSTRACT.  We prove two theorems about the inertia groups of closed,

smooth, simply-connected n-manifolds.   Theorem A shows that, in certain di-

mensions, the special inertia group, unlike the full inertia group, can never be equal

to 0  ; Theorem B shows, in dimensions = 3 mod 4, how to construct explicit

closed n-manifolds Mn such that 0(3ir) is contained in the inertia group of Mn.

Introduction.  As is well known, in 1956 Milnor exhibited orientation pre-

serving self-diffeomorphisms of certain (« - l)-spheres, h: S"~l —► 5"_1, which

could not be extended to self-diffeomorphisms H: D" —► D" of the «-disk ET,

and it was natural to ask: given an orientation preserving self-diffeomorphism

h: Sn~l —*■ S"~l, does there at least exist a smooth manifold Af¿, with boundary

9M0 = S" ~1, and a self-diffeomorphism H: M0 —► M0 such that H \ dM0 = hi

In [10] we answered this question in the affirmative; more explicitly, as

an easy corollary of our Equator Theorem [10], now superseded by our Open

Book Theorem [11], we proved:

Theorem [10, Theorem 2.10]. In each dimension n, there exists a smooth,

simply-connected n-manifold M", with bMQ = S"'1 such that any self-diffeomor-

phism h: Sn~l —*• Sn~1 extends to a self-diffeomorphism H: M0—*M0; or,

which is the same (see Proposition 1.1 below): for every n, there exists a smooth,

closed, simply-connected n-manifold M" such that the inertia group, I(M), of M

is equal to &".

Remark.   Recall that the set of A-cobordism classes of oriented homotopy

«-spheres is a finite abelian group under the operation # of connected sum, which

is denoted by 0"; furthermore ®"(dn) denotes the subgroup of 0" consisting of

homotopy spheres which bound parallelizable manifolds and one knows [5] :

0"(97t) = 0, if n is even and 0"(9?r) is cyclic for n = 1 mod 4 and n = 3 mod 4

and the generators are called, respectively, the Kervaire sphere and the Milnor

sphere.  The inertia group I(M") (see, for example, [1]) of an orientable, smooth,

closed n-manifold M" is the subgroup of 0", consisting of homotopy «-spheres
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2" which "act trivially" on M", i.e. the set of 2" G 0" such that the connected

sum M # 2 is diffeomorphic to M by an orientation preserving diffeomorphism;

if, furthermore, this diffeomorphism can be chosen to be homotopic to the

"identity": M —*■ M # 2, we say 2 lies in the special inertia group, I0(M), of M.

The object of this note is to answer the two additional natural questions:

(A) Is the above theorem still true if we require that H be homotopic to

the identity; i.e. in each dimension n, does there exist a simply-connected, closed,

smooth n-manifold with a maximal special inertia group, I0(M) = 0"?

(B) Given h: S"-1 —► S"~i, as above, can we find an explicit (well-

known, familiar) manifold M0, such that dM0 = S"~x and h extends to H: M0

—*M01 For example, in [2] Brown and Steer prove that if A: S""1 —> S"'1

represents the Kervaire sphere 2", then we can choose M0 to be the familiar

Stiefel manifold V2m + l 2» with an open «-disk removed. (Here n = Am + 1.)

We prove:

Theorem A Ifp>2is prime, then in each dimension « = 2p(p - 1) - 2

there exists a self-diffeomorphism h: Sn~l —► S"~l such that, if h extends to a

self-diffeomorphism H: MQ —► M0, where dM0 = S"~l and M0 is simply-connec-

ted, then H is not homotopic to the identity. In other words (see Proposition

1.1 below), in these dimensions I0(Mn) ¥= 0" for any simply-connected, closed

manifold.

This theorem is a relatively easy consequence of rather strong theorems of

Sullivan [7] and Girier and Stasheff [3].

Theorem B. Let B1 be any smooth, closed, simply-connected 1-manifold

on which the Milnor 7-sphere 2j acts trivially i.e. 2^ G ¡(B1) (for example, let

B1 = B20, the "explicit" 1-manifold of Tamura [9] ) and let Nn (n = 4(m - 1))

be any smooth, closed, simply-connected n-manifold with signature t(N) = ± 1

(Nn = CP2(m~^, for example), then the Milnor sphere 2¿m + 3 lies in the in-

ertia group of B1 x Nn.

Together with the result of Brown-Steer, Theorem B answers question (B)

in the affirmative for all 2 G 0(9tt).

We wish to thank Professor W. Browder for, among many other things,

providing the basic idea for proving Theorem B.

1. Proof of Theorem A.  Let h: S""1 —*• 5"_1 represent the homotopy

sphere 2", i.e. 2" is diffeomorphic to D" Uft D", two disjoint copies of D"

pasted together along S"~l by h; let M" be a smooth closed manifold and let

M0 denote M with an open n-disk removed so that dM0 = S"~l. The following
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simple proposition allows us to state and prove our theorems in the more conven-

ient language of inertia groups:

Proposition 1.1.   h: S"~i —* Sn~l can be extended to a self-diffeomor-

phism H: M0 —► M0 if and only if 2 G I(M); H can be chosen to be homotopic

to the identity if and only if 2 G IQ(M).

Proof.  (1) If H exists then the map H': M —► M # 2 defined as in Figure

1.2 is easily seen to induce a diffeomorphism M —► M # 2.

CD
¡y     s"'

a-a
D"        S"

Figure 1.2

(2) Suppose H' : M —* M # 2 is a diffeomorphism.

Figure 1.3

We apply the well-known Cerf-Palais lemma to the embeddings i: Dn —►

D" C M # 2 and /: H' \D" : D" -* M # 2, obtaining a diffeomorphism G: M #

2 —► M # 2, homotopic to the identity, and such that Gj = /; this implies that

GH'\M0 is a diffeomorphism of M0 onto itself; since GH'\D = identity:
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D" -* Dn, GH'\Sn~ l:S"-1-*Sn-lis equal to A and GH'\M0 is our H.

Remark.   Thus, to say A: S"~l —*■ Sn~1 can be extended to H: M0 —

M0 is equivalent (by the A-cobordism theorem) to the existence of an "almost

differentiable" A-cobordism.

<o:
w

+ M -M

Figure 1.4

i.e. a differentiable cobordism W between M, -M and 2 such that W U (cone on

2) is a A-cobordism.

Proof of Theorem A Recall that there exist classifying spaces BO, BPL

and BF respectively for stable vector bundles, stable piecewise linear microbundles

and stable spherical fibrations modulo fibre homotopy equivalences.  Define PL/O,

F/PL and F/O to be the fibres of the natural maps BO —* BPL, BPL —> BF and

BO —► BF.   There is a commutative diagram

F/PL

*BPL

where the rows and columns are fibrations. We also recall that it follows from

theorems of Hirsch-Mazur and Smale that 0" = nn(PL/0).

We can now state

Lemma.  Let n = 2p(p - 1) - 2 (p odd and prime), then there exists an

element [a] G nn(PL/0) such that hj#[a] * 0 where j#: nn(PL/0) —> nn(F/0)

is induced by the j of the diagram and A: nn(F/0) —► Hn(F/0) is the Hurewicz

homomorphism.

We prove Theorem A follows from the lemma.

In effect, we apply

Theorem (Sullivan [7]).   Consider the diagram

Mn -£-»■ SH-2-+ PL/O

F/O
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where f is a map of degree l, M is a smooth, closed, simply-connected manifold,

j is the map of the diagram above and a represents the homotopy sphere 2" ; then

there exist a 2^ G 0"(9tt) and an orientation preserving diffeomorphism M—►

M # 2 # 20, homotopic to the "identity", if and only if/of: M —► F/O is homo-

topic to a constant.

We apply this theorem:  If we had a diffeomorphism H: M —► M # 2,

where 2 is represented by the a of the lemma and H ss "identity" then

0«)*f*([M]) = 0a)*[5"] = O

and a would not satisfy the hypothesis of the lemma.

Proof of the Lemma. We use

Theorem (Gitler-Stasheff [3, p. 258]). Let n be as before; then there

exist an element eGHn + l (BF, Zp) and a map ß: Sn + l —* BF such that ß*(e) G

Hn+l(Sn + l,Z) is i=Q(e is called the first exotic class of BF).

Consider the commutative (up to sign at Hn(F/0, Zp)), diagram:

q# _        9

>Hn(F/0,Zp)

where A, / and k are Hurewicz maps composed with the coefficient homomorphism

H*( , Z) —* #*( , Zp), q# and q% are induced by the fiber map q: (BO, F/O) —►

(BF, pt.) and the others belong to the homotopy and homology sequences of

the pair (BO, F/O).  Since q is a fiber map, q# is an isomorphism.  Let [ß] G

irn+l(BF) be the element defined by ß, we claim 7 = 9<?#1([0]) G nn(F/O) is such

that h(y) =£ 0.

In effect, k(ß) ± 0 because, by Gitler and Stasheff, <0*(e), [S"]> = <<?, fc[0]>

# 0 and so, by commutativity, lq#x[ß] ¥= 0.  Since Hn+i(BO, Zp) = 0, because

n + 1 £ 0 mod 4, 5 is a monomorphism and so 6lq#l(ß) = ±A(7) =t= 0.  In order

to obtain our a consider the map /#: nn(PL/0) —+ -nn(F/0); we claim it is a

monomorphism with cokernel 0 or Z2 :  Consider the homotopy sequence of the

fibering
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PL/O-^-^ F/0

ï
F/PL

- \+1OT-► rtJpL/O) -!*-* nn(F/0)-► *B(F/PL)-►

Sullivan [8] has computed tt„(F/PL) = 0,Z2, 0, Z, for n = 1, 2, 3, 4 mod 4 (we

have n = 2p(p -l)-2 = 2andn + l=3 mod 4) and so

0-> nn(PL/0) -^U 7T„(F/0)-► Z2

is exact.  Therefore there exists an a G nn(FL/0) such that }#(a) = 7 or 27; be-

cause p is an odd prime and A(7) =£ 0, we also have A(27) = 2A(7) ¥= 0 ("any non-

zero element of //*( , Zp) has order at least p") and so a satisfies the requirements

of the lemma and Theorem A is proven.

2. Proof of Theorem B. We need a

Lemma. Let 2^ and 2¿m + 3 be Milnor spheres, let N = JV4(m ~l > be as

above; then (2„ x N) # 2Qm + 3 is diffeomorphic to S1 x N by an orientation

preserving diffeomorphism.

Proof of the Lemma.  Recall a famous theorem of Novikov (see [4] ):

Theorem (Novikov).   Let Wn+1 be a simply-connected manifold with

simply-connected boundaries M" and - M2.  Suppose there exists a map 7: W —►

Aij such that

(a) 7lMj = identity: Mt —»■ M2,

(b) y\M2: M2 —>Mx is a homotopy equivalence,

(c) 7*(XM1 )) = v(W) where v denotes the stable normal bundle.

Then by doing surgery on W we can make it take the form W' = V Us H

M, H

Figure 2.1

where H is an almost differentiable h-cobordism and V is a parallelizable manifold

with 9 V = a homotopy n-sphere 2".

We also know (see [5]) that 2" G 0" is a Milnor sphere if and only if it is
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cobordant to zero by a parallelizable manifold V of index ±8.  Let Vs be such a

(simply-connected) manifold for the Milnor 7-sphere 20. If W8 = Vs - open

disk, i.e. dWs = 27 U (- S7),there exists a map q: Ws —► S7 x / (/ = [0, 1])

such that <7lS7 = id: S7 —> S7 x {0} and ç|27 is a homeomorphism 27 —»

S7 x {1} (this is true, since for any closed n-manifold Mn there exists a map

/: M" -* S" of degree 1).

Since v(W&) is trivial, the map 7: WB —* S1 x {0} defined by pq, where

p: S7 x /—>57 x {0} is the projection, satisfies Novikov's theorem and there-

fore so does 7 x id: W6 x N —*■ S7 x {0} x N. Hence, by surgery, we obtain
j^' _ r/4(m + l) y^im + l).

SjxAT #4<m+i) -S7x{0}xJV

Figure 2.2

The index of V is ±8 because the index of Ws x N is ±8 and is invariant under

surgery, and the index of H is zero.  Therefore 24m + 3 is a Milnor sphere and the

lemma is proven.

Proof of Theorem B. By hypothesis and by the lemma there exist almost

differentiable A-cobordisms H8, //4(m + 1);

2o d^r"

//* -B1 ElxH fl«0» + D (-S7)xAT

Figure 23 Figure 2.4

Now, it is easy to see that

HsxN    U    //4<m + 1)    u    DsxN

sZxw s'xjv

is an almost differentiable A-cobordism
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+ B1 x N -B1 xN

Figure 2.5

because pasting on D8 x TV has the same effect, piecewise linearly, as if we ignored

2q in H8, i.e., it is easy to see that our almost differentiable A-cobordism is just

H8 x N piecewise linearly, if we ignore the "holes" bounded by 2^ and 24,m + 3.

Therefore, 24,m + 3 acts trivially on B1 x TV and Theorem B is proven.

Remark.   Rohlin [6] found a smooth, closed, almost-parallelizable, simply-

connected 4-manifold of signature = 16.  Using this manifold as we used W8

above, one proves that 224,"1 + 3 G I(S3 x JV4m) in the same manner. We con-

jecture that in fact 24,"1 + 3 G I(S3 x N4m), since otherwise, by the above method,

we would obtain a somewhat curious proof of a fundamental theorem of Rohlin.

references

1. W. Browder, On the action of ö"(3ir), Differential and Combinatorial Topology

(Sympos. in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 23—

26.    MR 31 #4041.

2. E. H. Brown and B. Steer, A note on Stiefel manifolds, Amer. J. Math. 87 (196S),

215-217.    MR 30 #5322; erratum, 31 p. 1336.

3. S. Gitler and J. D. Stasheff, The first exotic class of BF, Topology 4 (1965), 257-
266.    MR 31 #5215.

4. R. Lashof, Theorems of Browder and Novikov, mimeographed notes, Univ. of

Chicago, 1965.

5. J. W. Milnor and M. A. Kervaire, Groups of homotopy spheres. I, Ann. of Math.

(2) 77 (1963), 504-537.    MR 26 #5584.

6. V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad.

Nauk  SSSR (N. S.) 84 (1952), 221-224.   (Russian)     MR 14, 573.

7. D. Sullivan, Smoothing homotopy equivalences, mimeographed notes, Univ. of

Warwick, 1966.

8.  -, Triangulating homotopy equivalences, Thesis, Princeton University, 1965.

9. I. Tamura, Sur les sommes connexes de certaines variétés differentiates, C. R.

Acad. Sei. Paris 255 (1962), 3104-3106.    MR 26 #781.

10. H. E. Winkelnkemper, Equators of manifolds and the action of@n, Thesis, Prince-

ton University, 1970.

11.  -, Manifolds as open books, Bull. Amer. Math. Soc. 79 (1973), 45-51.

MR 46 #10010.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE

PARK, MARYLAND 20742


