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THE GENERALIZED MARTIN'S MINIMUM PROBLEM

AND ITS APPLICATIONS IN SEVERAL COMPLEX VARIABLES

BY

SHOZO MATSUURA

ABSTRACT.  The objectives of this paper are to generalize the Mar-

tin's £ -minimum problem under more general additional conditions given

by bounded linear functionals in a bounded domain D in C" and to apply

this problem to various directions.

We firstly define the new z'th biholomorphically invariant Kahler metric

and the z'th representative domain (i =0, 1, 2, ...), and secondly give es-

timates on curvatures with respect to the Bergman metric and investigate

the asymptotic behaviors via an A -approach on the curvatures about a

boundary point having a sort of pseudoconvexity.

Further, we study (i) the extensions of some results recently ob-

tained by K. Kikuchi on the Ricci scalar curvature, (ii) a minimum prop-

erty on the reproducing subspace-kernel in

of the fundamental theorem of K. H. Look.

2
erty on the reproducing subspace-kernel in S.   ,(D), and (iii) an extension

1.   Introduction.   The Bergman's minimum problem [3] with respect to

X2(D) under some additional conditions has been extended by W. T. Martin

[15] as the following (originally posed by W. Wirtinger [21]): Find the func-

tion /(z) (belonging to £ (D) or £x t(D)) which minimizes the Lebesgue

square integral lQ - f, Q - f) D for a given function Qiz, z) e L (D).  Here

L2(D) and £2(0) denote the classes of square integrable and of square inte-

grable holomorphic functions in a bounded domain D, respectively. X-x   (D)

denotes the class \f(z) e £2(D)|/(r) = X, t e D\.

In §3, under more general additional conditions using bounded linear

functionals we shall get the generalized Martin's theorem, which includes

the cases of Bergman L3], Martin [15] and others [17], [19], [20].

As an application of the minimum problem, in §4 we shall define the
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interesting quantities Q[,z)(z) and ü{¿\z) (i = 0, 1, 2, ...) which have a

sort of positivity and play important roles throughout this paper.  Using

these, we shall define the new z'th biholomorphically invariant Kahler metric

(ds^)2 = dzdz log det KD'\z, z) and the z'th representative domain (z =

0, 1, 2, ...), where the biholomorphically relative invariants  KJi' (z, z)

(z = 0, 1, 2, ...) are constructed by the Bergman kernel function of a bounded

domain D and its derivatives.  In particular, (¿si?')    and idsL')2 coincide

with the Bergman metric [3] and the Fuks metric [8], respectively, and the

0th representative domain coincides with the Bergman representative domain.

In §§5, 6 and 7, using the results of §§3 and 4, we shall give various

estimations (Theorems 5.1 and 5.2) on the holomorphic "bisectional" curva-

ture Rpiz; ti, v), the Ricci curvature Cpiz; u) and the Ricci scalar curva-

ture SAz) of a bounded domain D with respect to the Bergman metric and

generalize the results obtained by S. Bergman [l], [2], [3], B. A. Fuks [6],

[7], [8] and others. For our purpose, the quantity Çl*-2Xz) and "the method

of minimum integral" [3], [7]  are used effectively.

In the case of C , the asymptotic behaviors of the Bergman kernel func-

tion kAz, z) and related biholomorphic invariants about a boundary point  ¡3

of a domain D such that the Levi determinant  Licp) is positive at  Q have

been studied minutely by S. Bergman [l] and B. A. Fuks [6], [7], [8].  But

in the case of C" in > 3), few results are known (see Chalmers [4], iiör-

mander [9]).  On the asymptotic behaviors of the curvatures of a bounded do-

main D in C" about a boundary point Q at which D is strictly pseudoconvex

globally representable  [4] and has the normal analytic hypersurface h

(through Q) lying entirely outside itself, in §7 we shall prove that, using

a sort of domains of comparison due to B. Chalmers [4], Rpiz; u) i=RDiz; u, v)),

CAz; u) and S Az) tend to - 2/in + 1), -1 and -tz via an z4-approach:

z —, Q, respectively.

In §8, some results recently obtained by K. Kikuchi [12] with respect

to the Ricci scalar curvature as an application of the theorem of E. Hopf

are extended.

In §9, using the minimum problem with the condition that  Q(z, z) =

Qiz) a kDiz, 7) e S.2(D), where kn(z, 7) denotes the Bergman kernel func-

tion of D, we shall show that the reproducing kernel function of a subspace

£.2  AD) of £2(D) (see [5], Ll8]) has a sort of minimum property and give
(m )

another expression of this kernel given in L5L

Finally, in §10 a neat proof and an extension of the fundamental theo-

rem (I) of K. H. Look [14] are given.
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2.   Preliminaries.   Throughout this paper we shall use, as far as pos-

sible, matrix representations, which give us available perspectives. For a

matrix A, A, A    and A* denote the conjugate, the transposed and the con-

jugate transposed matrices of A, respectively. The symbol x shows the

Kronecker product and [A]    denotes A x • • • x A (A-times).

Let D be a bounded schlicht domain in C" and z = (z., ..., z )    be

a complex nxi vector variable in D.  For the differential operator D   =

d/dz a (d/dzy ..., d/dzn) (D* a d/dz* = (d/dz)T), we shall define two

sorts of the &th order differential operators with respect to z as follows:

LDz]k ä [d/dz]k a (d/dz) x • • • x (d/dz)       (1 x n* vector)

and its contraction

Dk = dk/dzk
z

a idk/dz\, ...,(*!/* j! ... knÙdk/dz\l . • • <9z*«, ..., dk/dzk)

(l x   H,  vector), where £?_. k . = k and the arrangement of \k.,..., k  \
Tl       K* J — L        J 1'*

is lexicographical.  Using these operators, the /kh order derivatives of a

matrix function F(z, z) = ifpAz> z)) with respect to z are defined by

[D2]kFiz, z) a [DJ* x f(z, z) m ([Dz]k x fpq(z, 5))

and

DkzF(z, z) = Dkzx F(z, z) = (Dz x fpq(z, z)).

if we define the contracted £th power of an n x 1 vector zz = (zz., ..., u )

as

it holds that, for a scalar function fiz, z),

inzfiz, z))uk a i[Dz]kfiz, z))[u]k.

The total differential of a matrix function Fiz, z) (r x s type) is de-

fined by

dFiz, z) = dzF + d*Fä lDzF)idz x E¿ + idz* x Er)iD*F),

where dz = idz,, ..., dz )T and E    denotes the k x k unit matrix.
In ft
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In the following, we shall use some available formulas with respect to

matrices, derivatives and differentials without proof [12], [16], [17]:

(2.1) DziAB) = (DzA)iEn x B) + AiDzB)

(A, B are k x Z, / x ttz matrices, respectively),

(2.2) D (AxB) = iD A)xB + (AxD B)(e,   x E )
Z z z In q

(At B are kx /, p x q matrices respectively and

K-tf:7\
\*ta"*  eln)

where e.. (z = 1, ...,/;;'= 1, ..., 72) is an / x 72 matrix which has  1 as

(z, ;')-element and O's elsewhere),

dziA~l) = -A~KdzA)A-1 = -A~l(DzA)(dz x A~l),

(2.3)
Dz(A -l) = - A - liDzA)(En xA-1)

(A is a kx k regular matrix) and

(2.4) dz log det A = SpU-ldgA) = Sp[A~\üzA)(dz x E¡)\

(A is a k x k regular matrix and Sp denotes the trace symbol).  By (2.3)

and (2.4) we have the following lemma.

Lemma 2.1.   For a kx k regular matrix ¡unction A(z, z) we have

(2.5) d*dz logdet A = Sp{(az* x Ek)(An- AlQA-1AQA(dz x E^A'1],

where A,,  denotes  D   D A, etc.
II z    z

Let H(D) be the class of holomorphic matrix functions of all types in

D and BH(D) be the subclass of H(D) defined by

BH(D) = \f(z) a (f^z).fn(z))T e H(D)\]f(z) ¡¿OinDC Cn\,

where J.(z) denotes the Jacobian determinant det(df(z)/dz)  (=det(Dj(z))).

We call each-element belonging to BH(D) a biholomorphic mapping, which

is locally one-to-one in D.  The subclass £ (D) of ¡{(D), which denotes

the class of square Lebesgue integrable holomorphic functions in a bounded
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domain D, makes a complete Hilbert space with the Bergman reproducing

kernel function kD(z, 7).

3.   General minimum problem.   In this section, we shall generalize the

results of S. Bergman [3], W. Wirtinger [21], W. T. Martin [15] and others

for a given complex-valued r x 1 vector function Q(z, z) e L (D) and a

general class (with more general additional conditions)

£¿(D) = \fiz)irx 1 type) e £2(D)|£/= K, £ e BLÍD)\,

where BLiti) denotes the class of all types of bounded linear functional

matrices (see [5]) and  K denotes a given constant matrix of the same type

as £/.

Theorem 3.1.   For a given rx 1 vector function Qiz, z) e L2iD) in a

bounded domain D, the minimizing function My. 0iz) e X.J.ÍD), which mini-

mizes the Lebesgue square integral

(3.1) HQ,f)aiQ-f, Q-f)D = SpfDiQi& 0-fiO)(&CO-ttO)*<or,

under an additional condition

(3.2) £/= K (K: a given constant matrix, £ £ BL(D))

with the condition det($*<I>) ¿ 0 for $ = §tcpD (cf>Diz) m icp^z), cp2iz),.. ,)T:

an orthonormal system in £ (£>)), is given by

(3-3) M£0(*) = \B + (K - BW$*$)-lQ*\<pD{z) e £2(D)

and also the minimum value of I(Q, f) is given by

(3.4) a* Q = Sp{BB* - B$(a>*$)-1$*B*+ Kt***)-1**!,

where a>, denotes the Euclidean volume element Un_,d£. A d£./(2\fA\)n

and

(3.5) B = (*,.) = JD fi<£ Otoiouç

Proof.   Given a sufficiently large real number M, we consider a class

G= {/(z) e X2(D)|/p |/(z)| a)   < M <•+«>}. G becomes a compact family, and

it is known that there exists a minimizing function MDiz) m MD q=0Íz) e
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S.JÁD) which minimizes the integral /(0, /) = fD |/(z)|  coz, where Mp(z) is

given by K(<D*Í>)~ lQ*<f>D(z) and det ($*<í>) ¿ 0 (see [3]).

Now, we will follow the procedure of the proof essentially due to Mar-

tin [15]. Let Mp qÍz) be the minimizing function belonging to £^(0), then,

using an orthonormal system <pD(z) in D, we can set MD Az) = Acpp(z),

where A = (a.) = fD M^ q(£)0d(£)cu£ denotes the Fourier coefficient rx«

matrix to be determined. Noting that £m£ q = ASÍcpp = A$, if we set

1(A) m (ß - Mj 0, Q - M^Q)p - Sp{(A$ - K)\ + T*(0*A* - K*)l

where A = (\.) and T= (y.) (i = 1, ..., p; j = 1, . .., r and p denotes the

number of the columns of K) are the Lagrangian multipliers, as necessary

conditions we must have the Euler's conditions

and

dl(A)/da.. = ~a.. - b.. - (<&A)¿. = 0,    i.e., A* - B* + «A

dliAVda.. = ati - b{j - (r***),.. = 0,    i.e., A = B + F*®*,

where i = 1, ..., r; /' = 1, 2, ... and (Í>A).. denotes the (i, /)-element of

Í>A. Hence we have $A = <W. But since det ($*<!>) /= 0 holds in a bounded

domain, we obtain A = V.  On the other hand, as we have  K = AO =

(B + A***)* = B$ + A*(«**), we get

/4 = B +A*3>* = B + (K-B$)(í)*0)-1(í>*.

Therefore, we must have (3.3) belonging to S.A.D).

In order to prove that  MS q(z) is the minimizing function required, let

us consider the class £2(£>) m \g(z) e £2(D)|g(z) = Ccf>p(z), C$ = 0|.  If we

set F(z) = My. q(z) + g(z) fot each g(z) e £.(D), then it is easily shown

that F(z) is an arbitrary function belonging to £^(0).  It follows from term-

by-term integrability (see Ll53) that

fp\Q(CO-MlQ(0\g*iOcor

= ¡D Q(C CKiO^c* - a ¡D <pniO<pZiOo>r,C*

= BC* - AC* = BC* -ÍB + A***)C* = -A*(Ct)* = 0,

where fD cppiQcpiQco* = EM.  Hence we obtain
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(Q-F.Q- F)D = (Q- MKDQ, Q - m£q)d + ig. g)D

-2ReSPfD(Q-M^Q)g\

- (Q - <Q. Q - Al£Q)D + (g. g)p > (Q - MKDQ, Q - MKpQ)p

for any g(z) ¿ 0. This completes the proof.

Remark 3.1.   In Theorem 3.1 it is easily verified that the minimizing

function without an additional condition (3.2) is given by

pQiz) a Bcp'piz) a  fD   fj(£   C)kp(z,   1)C0V kD(Z,   O = cPpAOcbpiz),M

where kpiz, ÇA denotes the Bergman kernel function [15].

In the case that Qiz, z) = 0 in D, the minimizing function Mp(z) =

zW_ o=0iz) and the minimum value \p = Xp n_Q ate expressed in terms of

the kernel function of D and its derivatives [3], [20].

Let £zm\ ■ (£j, •••» £m) be an element of BL(D) and £,   >     and

£fc    be the bounded linear functionals £/m\ and £,  evaluated at a point

t e D. £2     AD) and £2 ,   , ,(D) denote the subclasses of £2(Z>) such that

\f(z) e £2(D)|£(m/= KU) = (Av ..., AJ\ and {/(z) e £2(D)|£(rn)/= Kim)\,

respectively. Here £,  J denotes, say, anyone of fit), D^f(t), (Dzfit))uk,

fçf(z)dz and fDfiz)coz and so on.

Theorem 3.1 gives the generalizations of (i) [15], (ii) [15, (5.5)],

(iii) [3], [20] and (iv) [19] under the additional conditions

(i)' Qiz, z) e L2(D), £(m) tf='K(m), t e D,

(ii)' Qiz, z)e L2(D),Z(mj=(£ltti,...,£mtm)f=(f(tl),...,f(tm))

= K(m), tke D (k=\, ...,m),

(iii)' Qiz,z)aOtl{m)J^(tlt, ...,£/n#/)/= K(t7z), where tkJ =

(Dkf(t))u,  (u    denotes a constant    H   x »,  matrix ik = 1, ... , m) and i,

denotes an arbitrary integer belonging to il, 2.nIIk\ inHk'- repeated

combination), and

(iv)' Q(z, z) a 0, £(2)i//= (£,,,, £2ií)/= (/to, y(Ocor) = K(2), re-

spectively.    D

In the following we shall use the abbreviated notations f..(z, x) and

/r_.yj(z, x) instead of (D*y(DzYf(z, x) and [D*YlDzVf(z, x), respectively.

In particular, f0Q(z, x) denotes f(z, x) and /..(a, ¿) means f.iz, x)\z=ax=b.

In a bounded domain D, the Bergman kernel function kpiz, z) is posi-

tive and relatively invariant under BH(D) and log kD(z, z) defines a strongly
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plurisubharmonic function. Therefore, an absolutely invariant Kahler metric

under BHiD), which is called the Bergman metric, is defined as

(3.6) ds2D = dz*Tpiz,z')dz,

where the fundamental tensor

TDiz, t) = D*Dz log kDiz, T)

(3.7)
= izKz, /) x klliz, t) - k1Qiz, t) x kQ1iz,tt)\/k2iz, t)

belongs to HÍD x D  ) when kiz, T) = kpiz, T) ¿ 0 and has the relative in-

variancy under BHiD), where k.{z, T) denotes kß .{z, T), etc.

The following lemma is known [2], [3], [7].

Lemma 3.1.   We consider the case that Qiz, z) = 0 in D.

(i)   Under £(2)>/ = if it), Dj(t)) = K(2) = (A y A2) we have

(k        k0A-Uk(z,7)   \
(3.8) M^2\z,t)a(AyA2)[ )     (^ur)),

where

(3.9)

'10   "11/     \  10

<k       ¿„A"1     /l/k + k01(kT)-1k10/k2,   -k0l(kT)-1/lÀ

v*io    *n/ \       -(kT)~lkJk, (kT)-1

kij~ kD.if1' t) and T= Tp(t, t).

In particular, under K(2) a (0, E ) we have

(3.10) A°E"(i) = Sp(^T)-1.

(ii) Under £(2)/= if it), DJ(t)u) = K(2) = (0, 1) we have

(3.11) A°Hi) = tfXu) = l/ku*Tu.

(iii) Under £(1) ¿m (/(*)) = K(l) = (1) we have

(3.12) \p(t) =  Xp" a   l/k.

(iv) Under £(3)>/ = (/to, DJit), [Dz]2/to(zz x v)) = K(3) = (0, .... 0, l)

we have
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(3.13) A°°Kt) a \«Xu, v) = Xp2Xu)\p2Xv)/XDlXu x v)*Q.D2\t)(u x v),

where Q,p2\t) is defined in (4.5).

Remark 3.2.   For a regular matrix A = (* j^j), if K and Z = N - MK~ lL

ate regular, then we have

(3.14) A->JK-1 + XZ-lY>    -XZ~\

\      -Z-lY, Z-1   /

where X= K~lL and  Y= MX-1.

4.   New invariant Kahler metrics.

Definition 4.1.   We define the two sorts of matrices:

A, _,   X.k"   "\ /j«-»k* ?<•-»

z - 0, 1, 2,..., and

K«-lX?.z),       P«-l)     \ ({ko,i-i\x

D

U»u-">*.    (*i-x.f-1>ii/ V*i-i..-i)oi>

where (*i4)01 denotes Z^KD^D^z, z)\, etc., and Kg* and K«> ate

s(i) x s(i) and is(z - l) + nt(i^- l)\ x \s(i - l) + nt(i - l)i matrices, respec-

tively. Here t(i) and s(i) denote    H. and "SA,ñt(k) (= (" t ')), respectively.

Lemma 4.1.   In a bounded domain D, we have

(4.3) det K%\z, z) > 0,       det K{¿Xz, z) = 0      (z > 2 z'tz the latter),

(4.4) ü{¿Xz) = \k.. - (P(¿- ")*(*«- »)-»p«-»V* > 0

and

Og^)-«*,.!,,.!)!!-^'-15)*^'-^-1?0-"^»,
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for i > 0, where t(i - l) =   H.   ,.
' —    ' n    t-1

Proof,   det KpKz, z) = kp(z, z) > 0 in D is clear. Since k~r exists,

then we have det K^ m kp+1(z, z)det Tp(z, z) > 0 in D.

Now, let us suppose that det Kp1Xz, z) > 0 in D.  Under the condi-

tion (/(i), Dj(t), .... (Dzf(t))v) a (0.0, 1) = K(z + 1), where v de-

notes any nonzero    H. x 1 vector, we obtain, from (3.4),

/    £(i-l> £»-1 ),

AnK('+1)(/) = detK«-1Vdet *
(4.6) ° D \v*(P«-lY,    v*k..v

=    l/kv^Xtiv  >   0

and hence OiJ'(z) is positive definite and also det öi, (z) > 0 follows.

Therefore, we have, from (4.1) and (4.4),

r\t,..

det Kp'Xz, z) = k det Kl¿~ n(z, z) det ii^(z) > 0.

Under the condition (/(/), D f(t), .... Di_1/to, £> £>'''" 7(*)|   _,(" x v))
2> Z Z    Z Z — t

= (0, ..., 0, l) ■ K(i + l), where u and f are 72 x 1 and    H._ j x 1 con-

stant vector respectively, we have, by the same procedure as above,

(u x v)*^¿Xt)(U xv)aV*(u*x E^^Qp'XAiu x Et(i_ ,Av > 0,

which shows (4.5).

Lemma 4.2.   In a bounded domain D, we have

d*dz log det Kp'Xz, z)

(4.7)
= SpKO^-Kzfe* x Et{i))ilpinXz)idz x Et(i))\ > 0.

Proof.   Noting that Ql¿\z) and (zz* x ß|{t))Qg+ n(z)(zz x E/(¿)) are

positive definite from i4.4), we have by Lemma 2.1

d*dz log det Kf

•S?iaiY\dz**Eaiififtll-KfAfif)^

'dz* 0 \/0 0       \fdz

ikñ^)-lj\0        dz*xEtU)\0    kü<¿n)l\p      dzxEai)
= Sp

= spi('n^)-Kdz* x Et{i}Q%HXét x EtU))\ > o,
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where s(i) = 1 + ¿ix + ... + ^7. = (n * ') and t(i) = nH., since Sp(HyH2) > 0

follows when H ̂  and H2 are positive definite Hermitian matrices.

Definition 4.2.   Such an    H.x    H. matrix oiA) that
n   i     n   j

i[vY)TAlu]> = (vYoiAW

holds for arbitrary nonzero vectors u = (u., ..., u )'   and v m (v,, .-,., v )

is called the a-contraction of an tz! x 721 matrix A.

Further, for a linear transformation v = Au we define another contrac-

tion 8[A]k of [A]k as follows: vk = (8[Á]k)uk, where u, v and A denote

n x 1, 772 x 1 vectors and an m x 72 matrix, respectively.

Lemma 4.3.   Let g(z, z) a72a' w(z) be a scalar function and a biholo-

morphic mapping in D, then we have

(4.8) S[AB]k = iS[A]k)iS[B]k),

in particular,  8[u]k = uk and 8[Au]k = i8[A]k)uk, and further we have

a(S[z/]) - «.V

(4'9) o-\i[DwY) *gLijpzwV\ = 8i[DzwV) *8ij8[DzwV.

For an n x n matrix C and a natural number k we have

(4.10) det 8[C]k = (det C)s(-k~ l\       sik - l) =

Proof.   (4.8) and (4.9) are evident from Definition 4.2.

By the triangulation of C we have C = PSP~ l, where  P and S denote

72 x n regular and 72 x 72 triangular matrices, respectively. Since [C]k =

lP]klS]k[P~l]k and 8[P-l]k = 5ŒP]*1)-1 = («[P]*)"1 hold, then we obtain

det(z5[C]fe - ÀE^) = det(ô[S]fe - AEn), which derives (4.10). sik - l) is ob-

tained from t(k) x k/n = nHkk/n = n+iHk_1 = (" I * Ï 1)-

Lemma 4.4.   Under w(z) e BH(D) we have the relative invariances:

(4.11) det K<-¿ Xz, z) = det K^ Km, w) \ jjz) \2N (¿ \       i > 0,

and have the absolute invariants:

(4.12) ¡'¿Xz) a det K$Xz, zVikpiz, z))N«\      i > 0,

where A = mil» and A/to ■ (" + |' + l\

(n + k - l\
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/t2 particular, for z = 1 we have a known absolute invariant:

(4.13) !<¿Xz) a det Tn(z, z)/kn(z, z)      [3].

Proof. ( The Bergman kernel function kpiz, z) has the relative invariancy:

(4.14) kD(z, z) a ~jk¿w, w)j    for w(z) e BH(D),

where ] = J   (z) = det (D w).  Let us set k Az, z) s k     and k^,w, w) = k^;

then we have

\j>y\pj>K = i[Dw]pn[py[Dj«k.)iDwY.
zJ  ~A w        w

Since

ÍD^LD^kp = ÍD*nDz]*(]k¿)

P     1

(4.15)
y=o z=o

using the elementary theorems with respect to the determinant and the con-

traction

a([D*HDz]*¿A) = Si[Dzw]*)*kà ¡pq8ÍDwY,(4.16)

we have, by (4.10),

detK^U z)adett...Cjkj)pq

= |/|2^=°/(fe)det(...S([D w]f)*kx „ßlDwY
A,£>3       z

(4.17)

i22Uo'«>l
Il det S[D2t*]«
« = i

det K^tzz, w)

,   ,2(2Í=nz(¿)+2^ns(zi))        ~..v
= |/|      *  ° k  ° det K^U, Ü»,

where i(*) = nHk and s(¿) = (n + k). Since

í z-1

£ ¿a) + 2 s
ze=0 k=0

»-M-C-O-C*^Mi),

we have (4.11) and thus (4.12).
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Theorem 4.1.   In a bounded domain D

(4.18) (ds^)2 = dzdz log det K(¿Xz, z),       i = 0, 1, 2, • • •,

define the new invariant Kahler metrics under BH(D) (see (4.7)).

Proof.   The positivity of each (dsyA)    is given by Lemma 4.2.

From Lemma 4.4 we can obtain the invariancy of (dsß')2 under BH(D),

since we have

log det K^Xz, z) = log det Kl¿\m, 1Ü) + if/iz) + <ÂÛ),

where ifi(z) denotes the scalar analytic function N(i) log }wiz), and dj(z)

= (D f (z(w))(Dzw))dz = (D   F(w))dw holds for a holomorphic function f(z) =

f(z(w)) = F(w) under w(z) e BH(D).

Remark 4.1.  ids'p 0    and (dsp1')2 coincide with the Bergman metric

[3] and the Fuks metric [8], respectively.

Corollary 4.1.   In a bounded domain D, we have

(4.19) ~(R-ß) + 0» + l)rD = DzDz loS det kd }      (c/' [l3i>

and for any nonzero vector u

(4.20) u*(D*Dz log det Kpiy)u = SpiT^Kzz* x En)SÎ^2)(z)(zz x E„)} > 0,

where, for the Hermitian curvature tensor (- R_„_ .),
1 a/3 y 8

(4.21) (V = (Z tJ^%J^J « "»X I«« det *>      ̂  = ̂

[13] denotes the Ricci tensor with respect to the Bergman metric.

Proof.   By Lemma 4.2 we have

r9*r?z log det K^ = d*dg logUn+1 det 7) = dz*(-(R    ) + (n + l)T)

= SpKQ^Xz^-Hdz* x En)Qp2Xz)idz x En)\

= SpiT- Kdz* x En)Qp2Xz)(dz x En)! > 0

since K<,1)= kdU holds, where k = kpiz, z) and T = TD(z, z).

Corollary 4.2.   In a bounded domain D, let us set
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(4.22) h,(p,q{z' z) " deAkp(z, z) x Tn(z, z)),

which is relatively invariant under BH(D) for arbitrary real number p and

integer q; then

(4-23)       *©.(*«)■<*. lo* /pXMlf* 5)    (" **TD.(»^Í* ^

defines an invariant Kahler metric under BH(D) for each (p, a) szzc/7 //W

72p — (72 + l)a > 0 (72 = dim D).  Here kp(z, z) takes values of the real posi-

tive branch.

Proof.   Since ]D (     Xz, z) = kpDn(z, 5)(det Tpiz, z))q, then

d2 log ]D{pq)/dz*dz = pnTp - q(R.ß) > pnTD - q(n + l)Tp > 0

follows from (4.18) and (4.19). The invariancy of ds2  .     . follows from

the relative invariancies of k~ and T_. We can obtain the relative invari-

anee JpAPiJz, z) = JaÁp¡q)iw, S)|/w«|«»"*«> for tzz(z)  e BH(D) and

A = w(D), where  \]   (z)\   ^n+9' takes values of the real positive branch.

Remark 4.2.   The particular case of (p, q) = ((72 + 1)/t2, l) (72 = dim D)

was treated by Fuks [8] and ds2   ..   ....    .. coincides with ids'2') .  For

ip, a) = (2, 1), ds2  (2 ,. coincides with the Kato metric [ll], which is valid

for arbitrary n (n = dim D) and for (p, a) = (l, O), as2 (1 .. denotes the

Berg'man metric.

Under the restriction a = 1 and p > (n +■ l)/n, (i) the possible minimum

value of p for each 72 (72 = dim D) equals (72 + 1)/t2, which is the case of

Fuks, and (ii) the possible maximum value of p for all n (n = dim D > l)

equals 2, which is the case of Kato.

If D is a bounded homogeneous domain, ds2   .      . is essentially equiv-

alent to the Bergman metric for pn + q > 0.

Corollary 4.3.   In a bounded domain D, we have

(4.24) 0/j2)U) . K[22>oo] _ Ki2iMT-lK{2lM,

(4.25) (a* x £n)n/)2\2)(M x En) > 0    (positive definite) in D

and further

(4.26) ßrj2)U)=K22>00-K2100T-1K2*1>00>0    in D.
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Here'   KLii,st] » <*[,"/] X k[st] - kiit] X W^'

K.. a(k..xk    , -A., X  A     )/k2,
IJ.St l] St It SJ ' '

T = TD(z, z) and k m kpiz, z), and u and v denote nonzero n x 1 vectors.

Proof.   From (4.5) we have

üD2Xz) = \kÍ22] - (P^rÍKp'i-'P^l/k2.   a

Noting (3.9), we have (4.24) by straight calculations.

It is known [3] that the Ilermitian curvature tensor (-R_„) of the
aß y S

first kind with respect to the Bergman metric ds'   = dz   T'(z, z)dz of D is

given by

(4-27) = -(Tn - T10T-iT01) = -iEn x T)D*ziT-lDzT),

where T = TAz, z) and T~lD T denotes the matrix of the Christoffel
te ' / z

symbols.

Theorem 4.2.   The Hermitian curvature tensor with respect to the

Bergman metric has the following expression:

(4.28)    -T2D(z, z) = (TD(z, z) x Tp(z. z))(En xEn+ Ej - ilgXz)

(cf. [13]).

íl'Xz) is a relative invariant under BH(D).

Proof.   Noting that *£,] = Ar^j, kyo] x A[oy] = A[oy] x *r_i0], T^aT^

and D*H a(D //)* for an Hermite matrix H(z, z), we have, by differentiating

both sides of k2 x T = k x A-, - A,, x kQ. with respect to z and z  ,

A2 x (D*D Ik2 x T)) - (D*(k2 x T))T~l(D (A2 x D) = A4 x (T2 D + 2T x T)
Z       Z Z X Z tL.'

= A2x(AxA[22]-A[20]xA[02])

- (A x A[-2l] - Ar_20-| x A01)T-HA x A[12j - *10x Ar_02])

+ A2x A,, x A,.(E   x E  - E   )
11 11     n n zjw

-(AjoxAjj-Aj^Aj^T-HAojxAjj-AjjxAoj),

since AQ   x Ajj - A   j x AQ1 = A x (Aqj x T - T x A01). Noting that
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(A10xT)xA01 = }Tx(A10xA01)lEw

(A10 x A01) x (A10 x A01) = KA10 x A01) x (A1Q x kQl)\Enn

and

An/A = T + A10xA01/A2,

we obtain

(A11xA11)(E„xEn-Enn)/A2

-(A10xA11-AuxA10)T-1(A01xA11-A11xA01)/A4

a(TxT)(EnxEn-E-J.

Thus we get (4.28).

Since TxT and T 2 ß are relatively invariant under BH(D) [10], [13],

[14] and  lDzw]2E„n = ^nJ-Dzw^2 holds, then it follows from (4.28) that

^lp Xz) is relatively invariant under BHiD).

Theorem 4.3.   For each z (z = 0, 1, 2, ...) the mapping

(4.29) wS¿Xz) = T<¿Xt, T) f* T^Xz. T)dz + t,      te D,

defines the ith representative function, i.e., any domain A in the equiva-

lent class F = \f(D)\f(z) e BH(D), f(t) = t,  Dj(t) = Ej is mapped onto

the iunique)- ith representative domain with center at t by the function

w = w^(z), where TJP(z, z) denotes the fundamental tensor D*Dz log det Kp\z, z)

for the ith metric (4.18).

A bounded domain D is an ith representative domain with center at t

if and only if

(4.30) TpiXz, T) = TpiXt, T)    in D

holds   (see [17]).

Proof. Since T-y.Xz, t) is relatively invariant under BH(D), then we

have w = w'pXz) = w'^XO under any £= £(z) e. F. The latter half of the

theorem is easily obtained by wj*Xz) = z in D.

5.   Curvatures and estimations.   For the general sectional curvature
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Rp(z; u, v, u, v) (which is the expression in differential geometry) and a

complex structure /, the holomorphic bisectional curvature with respect to

the Bergman metric is defined as  Rp(z; a, Ju, v, Jv) (S. Kobayashi). After

some direct calculations we can show that Rpiz; u, Ju, v, Jv) coincides

with the unitary curvature Rpiz; u, v) due to Hua [lO] (see (4.27)). Now,

we shall give the matrix expressions of the holomorphic bisectional curva-

ture Rpiz; u, v) (of course,  Rp(z; u, u) coincides with the holomorphic

sectional curvature  Rpiz; u)), the Ricci curvature

Cp(z'> a) = u   iR')u/u*TpU

and the Ricci scalar curvature

Spiz) = Sp\TpliR_)\=    £   r^T^s(-/?        )
i> r     »     aß _ aß y S

aß y S

in terms of T = T Az, z) (Bergman metric tensor) and T2 p m T2 D(z, z)

(see (4.27) and (4.28)).

Lemma 5.1.   For a bounded domain D in C" and contravariant section

vectors u and v, we have

(5.1) R n(z; u, v) = - (u x v)   T2D(uxv)/u  Tuv  Tv,

(5.2) CD(z; u) = -SPiT-l(u* x En)T2p(u x En)\/u*Tu

and

(5.3) 50(z) = -Spi(T-1xT-1)T2Di,

which are absolute invariants under BH(D).

Proof.   Using the formula (2.5) and (4.19), we obtain

Cn(z; u) a -u*(D*D   log det T)u/u*Tu
U     ' Z     z

= -Sp{r-Hzz* x En)T2piuxEn)\/u*Tu.

SD(z) a 2 T^T^-J? ) = -SpHT-1 x T-1)T2DI is evident.

The biholomorphic invariancies of (5.1), (5.2) and (5.3) are easily ob-

tained by the relative invariancies of T and T2 n under BH(D) [14].    a

ors

M.ä (0, ..., 0, 1, 0, .... 0)T,

For an n x 72 matrix B = (b.) and 72 x 1 vectors
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where  1 occurs in the z'th position (z = 1,_, n), we have

n

(5.4) MTBM. = b..,       T MTBM.aSp(B).
1 i 71:' ¿-      z t r

i=l

Lemma 5.2.   Let v. be the mutually orthogonal sections  T~       /VL

(t - 1. .... ») such that v*Tv. = MT M. = S..; then we have

n

(5.5) Cp(z; u) = X V2; * v?
i = l

and

n n

(5.6) SD(z) = 23 Cpiz; v) =   23   RD(z; v., v).

7 = 1 1.7 = 1

Proof.   From (5.1) for v = v., noting vi Tv¡ = 1, we have

Rniz; u, v) = -MÏT-1/2iu* x E )7, n(zzx E )T~ l/2M-/u*Tu.

By summation with respect to i we obtain, from (5.2),

n

23 Rpiz; u, v¡) a -SpiT-Hzz x En)T2tDiu x En)}/u*Tu = Cpiz; u).

z' = l

By the same procedure, we have

23 23 V2; vf v? - 23 c¿z>v?
7=i f-i y=i

= -spi(r-1/2 x r-1/2)r2iD(r-1/2 x r~1/2)!

= -Sp!(T-1xT-1)T2rj! = 5D(z).

Theorem 5.1.   Let A^   , A^2\zz) and X'^Xu, v) be the minimum values

in (3.12), (3.11) a72a" (3.13) at z in a bounded domain D, respectively, and

e = (p(z; u, v) be \u   Tv\ 2/u*Tuv*Tv (0 < e < 1 for n > 2 and e = 1 for

72 = 1 aTza" £piz; u, u) = l); then we have, for any sections u and v,

Rpiz; u,v) = 1 + e - (a x v)  Í2(zz x f)/zz   Tuv  Tv

(5-7) = t + t _ x'2Xu)\'2Xv)/X'lWXu, v) < 2   (cf. [2], [6], [19]),
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Cpiz; zz) = 72 + 1 - SpiT'Hzz* x En)fl(zz x En)!/zz*Tzz

(5.8)

= 72 + 1 - A<2\zz) 23 (A(3)(«. v))-1 < 72 + 1    (cf. [4])

and

(5.9)

z = l

sDiz) = 72(72 + 1) - sp {(r~l x t~ lMîl

= 72(72 + 1) - A(1) ¿  U(3)k,, Z7y))-! < 72(72 + 1),

*Tu

z'.7' = l

tzz/;ere f2 = Q,p2Xz) and v.= T~l/2M. (i = 1, ... , n) are given in (4.4) and

Lemma 5.2, respectively.

Proof.   By (5.1), (4.28) and Lemma 3.1 we have (5.7).

Since it follows from (3.11) that A(2'(f.) = A(1), then we have

Cp(z; u)a^RD(z; u, 77¿)

= 72 +[23I"*T1/2M.|2 - SpiT-Hzz* x EnMu x E„)í] Á

= 72+ 1 -SpiT-1(a* x E XXzz x E )!/zz*Tzz
t n n

for any section vector u = 1"_1b .v. C£"=1 \b.\2 = l).  (5.9) follows from

(5.8) and (5.6).

Remark 5.1.   Rpiz; u) = Rpiz; u, u) = 2 - (A(2)(zz))2/A(1)A(3)(zz, u) < 2

[2] and RDiz; u, v) < 2 [lO] are known.

Let zzQ and vQ be any orthogonal vectors such as zznTiz0 = 0; then we

have, for 72 > 2,

(5.10) RD(z; «o- vc) < L

In a bounded homogeneous domain D, the absolute invariant ly. Xz, z)

under BHiD) (see (4.13)) equals a positive constant in D.  Therefore, a

domain D with ly. ' m constant or a homogeneous domain D satisfies, for

any section vector zz,

(5.11) CD(z;zz) = -l    and    Sniz) = -72       in D.

Let G be a bounded domain in C , then we easily have  RÁZ; u, v) =

R   (z; zz) = CAz; u) a SAz).   If   G  is also homogeneous, we have

R_(z; u, v) = -1 in G since G is symmetric by Cartan's theorem and

hence is simply connected.
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Theorem 5.2.   Let D be a bounded domain in C" (n > 2); then we

have, for any section vectors u and v,

(5.12) -72 + í + CD(z; u) < Rpiz; u, v) < 1 + €    in D.

In particular, if D is homogeneous, then we have, for any section vec-

tors u and v,

(5.13) -(72+ 1) + e <Rpiz; u, v) < 1 + e    in D,

(5.14) -72 < Rn(z; u)<2    in D (cf.  [lO])

aTza" there exist some vectors u   and v   such that

(5.15) RD(z; u', v')<0    in D.

Proof.   Let A be a positive definite Hermitian 7? x 72 matrix and

v'= T~ '   P be a vector with P   P = 1 i.e., v denotes a vector S? , p.v.,
.       ' z = lrz   z>

where P = (py..., pn)T and v. = T~ 1/2M{ (see (5.4)), then we have

v  Av < Sp(T~ lA) (inequality for 72 > 2 and equality for tí = l).  For any

vector v with v*Tv = 1, we have (5.12) from (5.7) and (5.8), since we have

(zz x v)*Q(u x v)/u*Tuv*Tv<Sp{T-Hu* x EjMu x.En)}/u*Tu

from (4.25).

If D is homogeneous, we have (5.13) from (5.12) and (5.11). (5.14) is

easily obtained by eD(z; u, u) = 1 in D.  From (5.5) and (5.11) we have

TzJinf Rpiz; u, v)K <-l < 72 ) sup Rpiz; u, v)\

(u.v | (u.v )

and hence (5.15).

Theorem 5.3.   Let   D  be a bounded homogeneous domain and

(zz    x E )T2 Au x E ) be nonnegative definite (resp. positive definite);

then we have, for n > 2,

(5.16) - 1 < RD(z; zz, zz) < 0       iresp.  -1 < Rpiz; u, v) < 0).

Proof.   For any section vector v = T~   '   P with P   P = 1, we have

Rpiz; u, v)a-P*QP/u*Tu, where Q= T~l/2(u* x Ej)T2p(u x En)T~1/2

= U (A, + • • • + A )U (U: unitary tz x 72 matrix and A, > • • • > A   > 0), since

T = Tn(z, z) and (zz    x £ )T7 Au x E ) ate positive and nonnegative
it n      ¿,L' n

(resp. positive) definite, respectively. Set UP m S m (s,, ... . sj   , then

we have S  S = 1. Let D be a homogeneous domain with Q > 0, then it fol-
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lows that -1 < SD(z; u) = -Sp(Q)/u*Tu = -2»^ X./u*Tu and thus 2?=1 A.

= u   Tu> 0, i.e., Aj > 0. Hence we get

I   z = l

=-z\Kiyz\<-vz\.<o.
« = 1 /    « = 1 /    7 = 1

Example 5.1.   Any classical Cartan domain   D   satisfies that

v  (u    x E )T2 p(u x E )v > 0 for any section vector v.  Therefore, (5.16)

holds in D.  Let R(i) (i = I, II, III, IV) be the classical Cartan domains

(four main types of irreducible bounded symmetric domains). They are homo-

geneous, and the following hold [14]:

- 2/(?72 + n) <Rr (I)(z; u) < - 2/772(772 + 72)       (772 > 72 > 1),

-2/(72 + 1) < RR(u)(z; u) < -2/72(72 + 1),

-1/(/2 - 1) < RR (HI)(z; u)<- l/[n/2](n - l)      (72 > 2),

- 2/tj < RR av)iz; u) < - I/72.

For the 72-polydisc P and the unit hypersphere E

(5.17)     -1 < Rp(z; u) <-I/72    and    RE(z; u) = -2/(n + l)       in D

hold, but in general Rpiz; u, v) is "not constant" for arbitrary vectors u

and v.

6.   Domains of comparison.   The basic tool used here and in the next

section is the so-called method of minimum integral [3] or the principle of

minimum problems [7].

Principle.   Let A^(m)(z) and Ag(m)(i) be the minimum values defined

in §3 for two domains A and B with A Q B under the same additional con-

dition K(t?2) at t e A; then we have

(6.1) \l'mXt) <xfmXt).

Theorem 6.1.   Let A and B be domains of comparison of a bounded

domain D (ACDCB)  and tD(u, v) = eD(z; zz, v); then we have, for z e A,
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(1 + eB(zz, tz) - RBiz; u, v))/AAQiu, v) < 1 + eD(zz, v) - Rpiz; u, v)

<6-2> < (1 + eAiu. v) - RA(z; u, v))AA g(zz. 77),

(72 + 1 - CBiz; u))/\A/2iu, u) < 72 + 1 - Cpiz; u)

(6-3)
< (72 + 1 - CAiz; u))\Y2(u, u)

and

(6.4)    (72(72 + 1) - S3(z))AVA3 < 72(72 + 1) - SD(z) < (72(72 + 1) - SA(zmAB,

where

\A3iu, v) = \B2Xu)X32Xv)/X%Xu)\%Xv)

= A2zz*TAzztz*TAi7/A2zz*TBzztz*r8t7

and

Proof.   By Theorem 5.1 and Principle we have

1 + tp(u, v) - RD(z; u, v) = A|)2)(zz)A|)2)(tz)/A()1)A|)3)(zz, v)

< (l + tA(u, v) - RAiz; u, v))AAQiu, v),

etc. Thus we have (6.2), (6.3) and (6.4) by the same procedure,    o

By Theorem 6.1 and the biholomorphic invariancies of curvatures, we

have the following:

Corollary 6.1.   (i)   // A and B are image domains of the unit hyper-

sphere and A C D C B holds, then we have, for z e A,

(6.5) 2(1 - v\ABiu, zz)) < Rn(z; u) < 2(1 - v/kAQ(u, u)).

(ii)   // A and B are homogeneous domains of comparison of a bounded

domain D, then we have, for z e A,

(6.6) (72 + 1)(1 - ^z\ys2(zz, u)) < CD(z; u)<(n+ 1)(1 - v/AA/2(u, u))

and

(6.1) 72(72 + lXl - *¥A „) < SD(z) < n(n + l)(l - V/VA 8).

Here and in the following,  v denotes (n + 2)/(« + 1).
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Corollary 6.2.   // A and B are hyperspheres of radii r and R (r < R)

with the same center at the origin, respectively, and D (A CD C B) is a

homogeneous domain, then we have, for any section vector u and x e D,

(6.8) 2(1 - viR/r)4n+4) < RD(x; u) < 2(1 - vir/R)4n+4).

Proof.   For such a homogeneous mapping h(z) of D that h(t) = 0 holds

for any fixed point t e D, we have  Rpit; u) = RpiO; v), where v = D hit)u.

On the other hand, from (6.5) we have

2(1 - vAAB(v, v)) < RniO; v) < 2(1 - v/\A 3iv, v)).

The Bergman kernel function A^(z, z) and the Bergman metric tensor

TAz, z) of a hypersphere A = {z\\z\ < r, z = (zy ..., zn)   i are given by

(6'9> kA(z,lE)anlr2Un(r2-z*zr*1

and

(6.10) TA(z, z) = (n + l)r2(r2 x E„ - zz*)~l/(r2 - z*z)

as is well known (see [14], [l6]). Therefore, we have

A^(0; v) a l/kA{0, 0)v*TA(0, Oh = nnr2n+2/n\v*v

and hence AABiu. u) = ((R/r)2n + 2)2. Thus we obtain (6.5).

Remark 6.1.   The holomorphic sectional curvatures of the classical

Cartan domains are always negative as was stated before. All bounded sym-

metric domains are homogeneous but the converse is not true for 72 > 4

(E. Cattan). K. H. Look gave an example of a homogeneous but nonsymmetric

domain D having a section u such that Rpiz; u) has a positive value,

which is the negative solution on the Hua's conjecture. For any homogene-

ous domain D, which satisfies A C D C B and (R/r)4n + 4 < v in Corollary 6.2,

we have Rpiz; zz) < 0 for any u in D.

7.   Asymptotic boundary behaviors of curvatures.   Now, we shall study

the behaviors of curvatures about a boundary point of a bounded domain D

with a sort of convexity in  C" using the domains of comparison of D.

Definition 7.1.   Let D be a domain in Cn. Suppose that there exists an

analytic change of coordinates, one-to-one in a neighborhood Y (T 3 D) of

a boundary point P e dD, so that, with respect to this change of coordinates,

D -> A,  P -» Ö = iOi (2 e r?A) and
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(7.1) A = iz|z1 + i1>z*z+o(z*z)!

in the neighborhood of Q = iOJ. Then A and also the original domain D ate

said to be strictly pseudoconvex globally representable (simply SPCGR) at

Q and also at P, respectively. We call the new coordinates "normal" co-

ordinates and the analytic hypersurface z, = 0 (with respect to the normal

coordinates) is called the normal analytic hypersurface (simply NAH) [4],

[9].

If D = {z|<£(z, z) < 0, d) e C2-class in a neighborhood of D, gtad(cpA

¿ 0 on dD\ in C" is a strictly pseudoconvex domain in the sense of Levi

at a point Q = {0} e dD, i.e., cp satisfies L(cf>(Q)) = z*(d2cp(Q)/dz*dz)z > 0

when (dcp(Q)/dz)z = 0 and z ¡¿ 0, then by the Taylor's expansion of cp"  at

Q a \0\ and by suitable changes of coordinates (properly affine in Cn and

biholomorphic in a neighborhood of D), we have the image domain of the

type of (7.1) (see [9, Theorem 3.5.1 and its proof]).  Therefore, any strictly

pseudoconvex domain (in the sense of Levi) with one-to-one "normal" ana-

lytic change of coordinates is a SPCGR domain. If D is a SPCGR domain,

for the sake of estimates on curvatures, we can use A in (7.1) instead of

D from the beginning, since curvatures are biholomorphically invariant.

The hypersphere

(7.2) Rs a {£\£i + ^ > ¿*£+ 8CC 8i-l<8< 1): real constant number!

is biholomorphically equivalent to the unit hypersphere E a iz||z| < 1} under

the transformation

(7.3) T8:z = (l + S)£-(1, 0, ... , 0)r.

B. L. Chalmers [4] has given the domains of comparison Ra'~ and

Rf  P    if. > 0) for a strictly (p, a) pseudoconvex globally representable do-

main D with the normal analytic hypersurface h = i£|£j = Oj lying entirely

outside D.  In the following, we shall treat a strictly (l, n) pseudoconvex

(usual pseudoconvex) globally representable domain (7.1) with the normal

analytic hypersurface h lying entirely outside itself, which is called a

SPCGR-NAH domain at Q.

R°ft and Rfa''5' are equivalent to the hypersphere R_£ and R£ (see

(7.2)) under biholomorphic mappings

W: zx = ¿/(I - aQ, zk =£k\l + iß - oACyVil - a.Q,

(7.4)
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and

W: zt - ¿/(I + a'^), zk a Cfe(l + a'Q/\l + (a' + ß')C,\,

<7-5> A = 2,...,72,

respectively. In particular, for sufficiently large numbers a, ß, a   and ß ,

we have

(7.6) R^'cACR%

where A denotes a SPCGR-NAH domain at Q = }0! [4],

Definition 7.2.   We shall write lim»   0, or sometimes simply lim   , to

indicate a limit is being taken as £ —» 0 in the set 0 < a < Re (z^VICI  (a:

positive constant number) and say C ~* 0 via an A-approach after Chalmers

[4].

Lemma 7.1.   For a hypersphere Rg (0 < 5 < l) we have

(7.7) W*(£. + QnnkRA£ I) = «!(1 + 8)"- V»t"

and for any constant nonzero vector zz = (zz , ..., zz )

a.»   ^(lAQVT,!ii-o..\i"+0H'    2'°r^°-
5-0 '8 ((72+l)(l + S)|zz|2    /or«1 = 0.

Proof.   Let E be a unit disc in C*. Since Afi(z, z) = 72!/tt"(1 - z*z)n + 1

(6.9) and kRs(C 1) = AE(z. z)\jzi£)\ 2 = *B(*' z)(l + 8)2n for (7.3); then we

have

ARs(CÔ = 72!(l + 5)"-1/7r"Af1,

where 1 - z*z = (l + S)Ag  and Ag = ^ + ^ - (l + S)|£|2. Noting that

lim^0A_f/A£ = 1, we obtain (7.7).

Let us set z = U(z) (p, 0, ..., 0)T, where  fJ(z) = U(z(£)) denotes a

unitary matrix and p (p > 0) —» 1 (for z —» (- 1, 0, ..., 0)   ) is equivalent

to C -»0 under (7.3). If we set U*(z)u = U*(z(0)u = v = ivy ... , v^T

and lim  v = vQ = iv.,..., v )', then we have \v\ = \vQ\ = \u\ and v   = -Uy

because z   zz = (p, 0, ..., 0)U  (z)u = pv ^—* v ^ and

z*u = {(1 + 8)C - (1, 0.0)!zz = (1 + S)£*a -«j — -a
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for an A-approach.  Further, we have, from (6.10) and TR (£, £,) =

ÍDíz)*TE(z, z)D^z,

TRAC 0 = in+ l)U(z)\l I (1 + 5)Asi ••• I (1 + S)AsifJ*(z)/A2

and thus

u*TRi.& z:)zz = (72+l)P/A2,       Ps=k1|2 + (l+5)As¿|tz.

z = 2

Since we easily have limigPg = |zz,|2 and thus (7.8) for zZj ̂  0.

If u   a 0, we have

lim^P5/(C1 + Q = (1 + S) Z KT = (1 + S)\u\2,
z = 2

because we have z  zz = pv ^ = (l + 8)£*u — a, = (l + 8)1A=2CU- fot u^ = 0,

and hence

(i + 8) 23 Wp
i=2

+ (i+5xc1+^-(i+5)|z:i2)2:i^!:
z=2

= (i + 5XC1 + í1)Zl^l2 + °^1 + íi)
z=2

follows from

(1 + 5) £ ¿>/p
z = 2

(£, + Cx) < d + 8Y\u\\C\ Vp% + ¿\) - o

and (1 + 8)2\C\2lA=2\v.\2/iCx + £,) -» 0 for an A-approach. Now, noting

(7.7), limAA_£/Ai = 1 and limA\s/(Cl + (A = 1, we obtain (7.8) for zZj = 0.

Lemma 7.2.   Setting R*'P' = A and R°fe = B, we have

(7.9)      UmAVABiC O =   limAkAiC 0/*B(£ O = Kl + í)/(l - ï)}B_ *

a7za" /or a?zy constant nonzero vector u=iuy .... zz^)
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limAAlA/2iC O-  }imAkAiC Ou*TAit, CWkBiC, ¿)«*Tß(6 O«
£-0 £-0

(7.10) (lil + c)/il-c)\n-1    foru^O,

(1(1 + e)/(l - e)\n        forul-0,

where e denotes an arbitrary constant number in the interval (0, 1).

Proof.   By the relative invariancies of kp and  Tn under BH(D), it

suffices to prove that (7.9) and (7.10) for R. and R_    in place of A and

B are shown, respectively, since we have d£/dz —» E    and  |/r(z)| —► 1

for each mapping (7.4) or (7.5) via an A-approach. Therefore, (7.9) and

(7.10) are obtained by Lemma 7.1.

Theorem 7.1.   Let D be a bounded SPCGR-NAH domain at Q; then we

have, for any constant nonzero vector u = (u , .. ., u )   ,

(7.11) limARDiz;u)a-2/in+l)
z-.Q

(cf. Bergman [3] for n = 1, FzzAs [7] for n = 2),

(7.12) limACD(z;zz) = -l
z-Q

(cf. Fuks [8] ¡or 72 = 2) and

(7.13) lim   SDiz) = -72.
z~Q

Proof.   Using Corollary 6.1, Lemma 7.2, (5.11) and (5.17), we conclude

(7.11), (7.12) and (7.13), since R°ff, R*'ß', R_( and R{ are biholomorph-

ically equivalent to the unit hypersphere and e can be taken as small as we

need by taking sufficiently large numbers a, ß, a   and ß .    D

Now, we turn to compose another sort of domains of comparison, which

is an immediate extension of domains of comparison due to 3ergman for

n a 1 [3, p. 38].

The set U(r) m \z\\z   - r\2 + 2?_2 \z.\ 2 < r2, r: positive constant! and

B(r) m \z\ \z   + r\ 2 > r2 + 2"_2 |z.|2, r: positive constant! are biholomorphic-

ally equivalent to the unit hypersphere E under the mappings

(7.14) z=C/r-(1,0, ...,0)T

and

(7.15) za£/(Çl + r)-(l,0,...,0)T,
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whose Jacobian determinants tend to r~n and —r~n for £ —»0, respec-

tively. B(r) is similar to a Siegel domain of the second kind. If we con-

sider the sections U(r; t) and B(R; t) restricted by the counter surface

2Í=2 K-l2 = ^2- (0 < r < 1), we have

Uir; t) a i^H^ - r\ < rsfT^ll c 3(R; t) = [Ç^ + R\ > sJr2 + r2i !

and thus Uir) C B(R) and <9t/(r) D r?B(P.) = {0} for R > r.

By the same procedure in the proof of Lemmas 7.1 and 7.2, we have the

following Lemma 7.3 and Theorem 7.2.

Lemma 7.3.   // R > r, we have, for n>l,

(7.16) U^^\W^¿r Ita^/Aj»,- (R/r)«-1

and for any constant nonzero vector u == (z/ 1f ..., u )
In

T

lim*Ag>R/*>/*$, =   lim*A«,» /zzVA^/zz)
£—0 £—0

(7.17) ÍÍR/r)"-1    /or a^O,

(R/r)n        for Ul = 0.

Theorem 7.2.   Let D be a bounded domain which has domains U(r) and

Eh) (U(r) CDC B(r)) of comparison, then we have the same results as in

Theorem 7.1.

Example 7.1.   (i)  Let H be a Hartogs domain (complete multicircular

domain with center at (i/r(0), 0)T) \z\\zl - ifA0)\ < if/i\z2\), \z2\ < r, r>0,

ifAp)  e  C2-class and  i/-(0) > 0, iA'(0) = 0, i>"(0) < 0i.   Set »P(z, z) =

\z   - if/(6)\2 - ifj2(\zA) (H = [z\^ < 0{).  Then we have the Levi determinant

LOP) = -.>2(0)A'(0), where A(p2) = ifj2(p) and A'(0) denotes dX(x)/dx\x=Q.

Since A'(0) = if/i0)if/"i0) < 0, then H is strictly pseudoconvex at 0. As H is

expressed as

{z|z1 + 5t > (|Zl|2 - A'(0)|z2|2)/<£(0) + o|z|2!

(about the origin), H is a SPCGR-NAH domain at 0. Therefore, Theorem 7.1

holds in this case, i.e., limAR¡{iz; zz) = -2/3, lim* CH(z; zz) = -1 and

lim   S#(z) = — 2.
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(ii)  Let us set H' m {z\\Zl - z>(0)| < ifj(\z2\), \z2\ < r, r > 0, if/ip)

(0 < p-< r) is a decreasing real valued continuous function which satisfies

ifriO) -a + sja2 - p2 < if/(p) < i/r(0) + a - yja2 + p2 and xfr(0) > a>r\. Then

H' has the domains of comparison: U(a) = iz]|zj - a|2 + |z2|2 < a2\ and

B(a)a }z||Zl + a|2 >a2+ |z2|2}, since i/-(0) - a + y/a2 - p2 < if/(p)  and

\¡a2 + p2 + xff(p) < tf/(0) + a imply U(a) C H' and H' C B(a), respectively,

and dU(a) n dB(a) n dH' = [0\ is evident. Hence from Theorem 7.2 we have

the same results as in (i).

Theorem 7.3.   // A = Uir) and B = U(R) (or B = B(R)) are domains of

comparison such that A CD CB and dA C\ dB D dD = i0{ for r < R, then

we have, for any nonzero vector u a (u.,..., U )   ,

(7.18) 2il - ^R/r)2^"15! <  lim*R   i£; u) < 2{l - vir/R)2n\,
£-0

(7.19) (tz + l)il - viR/r)n~ H < limACp(C; u)<(n+ l)il - vir/R)n\
£-0

and

(7.20) 72(72+ Dil-^R/r)"-1!^ lim*5D(z)< 72(72+l)il-l,(r/R)"-1!.

£-0

Proof.   From Lemma 7.3 and Corollary 6.1, we have the results.

8.   On the Ricci scalar curvature.

Theorem 8.1.   In a bounded domain D we consider the quantity

Jppiz, z) m JDtiPtl)iz, z) = det(kPD(z, 5) x T D(z, z))    (see (4.22)).

(i)   For p > (72 + 1)/t2, which is the case that the metric ds2     = dsp .   ,.

ca?2 be defined  (see Corollary 4.2), it holds that  A log JD   (z, z) > 0

for z e D  and there is no fixed point  z    e D  such that   J n   (z, z) <

JP   (z , z ) for z e D, where A denotes the Laplace-Beltrami operator:

SpT-1D*D .
"     D      z    z

(ii)  // zAere exists a maximal point z    e D such that J R   (z, z) <

/P Az , z ) for z e D, then p must be smaller than (n + l)/n.

Proof.   Since S„(z) < 72(72 + l) holds for a bounded domain D,

A log Jpp = SpiTpKpnTp - (R     )! = pn2 - Sp(z) > pn2 - 72(72 + l) > 0
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for p>(n+ l)/n.  If there exists a point z° e D such that JD Az, z) <

JD   (z°, z°) for z e D, then by the theorem of E. Hopf (see [22]) we obtain

Jp p = constant. Hence pnTp - iR-A = 0 for z e D follows and thus

Spiz) a pn2 > n(n + l) for p > (n + l)/n, which is contradictory to (5.9).

The proof of (ii) is clear.

Remark 8.1.   [12, Theorem 3.10] says that in a bounded domain D,if

there exists z° £ D such that /n(z, z) < Jn(z°, z°) fot z e D, where JD m

A"+1 det Tp (= /p ,     ,. , ), then we have /R(z, z) = constant and Sß(z) =

72(72 + l).  But this conclusion contradicts (5.9).   Therefore, it seems to

be faulty. This is also an impossible case of Theorem 8.1 (i) for p = (n+- l)/n.

For pa- l/n, we have  J D _, ,   = det Tp/kD = ip(z, z) which is a

biholomorphically absolute invariant (see (4.13)). Thus the following theo-

rem is an extension of [12, Theorem 3.9], which is obtained immediately by

setting pa- l/n in Theorem 8.1.

Theorem 8.2.   /t2 a bounded domain D, let S Az) > s. (resp.   S Az) < s A

for z e D, where sQ is such a constant number that sQ < n(n + l).  If for a

real number p < sQ/n2 (resp.  p > s ^/n2) Jp   iz, z) > JD    (z°, z°) iresp.

JD   (z, z) < JD    (z°, z0))   in   D   holds for a fixed point z° e D, then we

have Sp(z) = s.  z'72 D.

Proof.   If Sp(z) > sQ for z e D and p < sQ/n2, we have A log JD Az, z)

= pn2 - SDiz) < pn2 - s0 < 0 for z e D.  Therefore, if  Jn piz,  z) >

Jp   (z°, -z°) holds for z e D, then from the theorem of E. Hopf we obtain

/D   iz, z) = constant in D and thus Splz) = pn2 < sQ.   On the other hand,

Spiz) >s. holds from the hypothesis.  Then we have  Spiz) = sQ in D.

Theorem 8.3.   z'72 a bounded homogeneous domain D, if Jn    iz, z) >

Jp piz°, z°) iresp.  JD piz, z) < J Dpiz°, z°)) holds in D, then we have

Jp   iz, z) = constant in D when and only when p = - l/n, i.e., JD    (z, z) =

¡'¿Xz, z) (see (4.13)).

Proof.   From (5.11) we have  Sp(z) = -n. Therefore, if JD p(z, z) =

constant, we have  A log Jn   iz, z) = pn2 + n = 0 and thus p = - 1/rz.  On

the other hand, if p = -l/n, we have A log JDpiz. z) = 0 in D.  Using the

hypothesis and the theorem of Hopf, we obtain JD    iz, z) = constant.

Example 8.1.   In the case of the first type R(I) of the classical Cartan

domains, which are homogeneous domains, we have

JRil)Jz, z) = A^det TR(l) =im + n)mn/V det(Em - **,)<«+«>(*»««+D
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(dim R(I) = 77272), where V denotes the Euclidean volume of R(I). Therefore,

Jn/,% Az, z) = constant = (772 + n)mn/V holds when and only when p = - I/77272

(see '[16]).

Theorem 8.4.   Let D be a bounded domain in C , whose Levi-expres-

sion L(cp) icp e C -class) is positive at every point on D and let

Ip iz, z) = det Tpiz, z)/kAz, z) be nonconstant.  If there exists a point

z° e D such that I^Xz0, z°) > 9tt2/2 iresp. I^Xz0, z°) < 9zr2/2), then

Spiz) cannot be bounded by -2 from above (resp. below).

Proof.   In a bounded homogeneous domain G, l} iz, z) = constant in

G. Therefore, the domain D mentioned here is a nonhomogeneous domain.

By the result of Bergman [3],  ¡D iz, z) must assume its maximum (or min-

imum) in D with Ließ) > 0. If there exists a point z    e D  such that

¡P Xz , z ) > 9n /2, I piz, z) must have its maximum in D.  In this case, if

A log IpXz, z) = -2- Sniz) > 0 in D, we have, by the theorem of Hopf,

Ipiz, z) = constant in D.  This is a contradiction. Therefore, SAz) can-

not be bounded by - 2 from above.

9.   Reproducing kernel functions of subspaces. Recently, B. L. Chal-

mers [5] has shown that the Riesz representation of any bounded linear

functional in a Hubert space with kernel function is obtained by operating

with the linear functional on the kernel function itself and that, using this

representation, one can display, in terms of the kernel function of the orig-

inal space, the kernel function of any closed subspace defined as the inter-

section of the null spaces of at most countably many bounded linear func-

tional. In [5] he gives the following

Proposition 9.1.   Let A0(z, w) be the reproducing kernel function of a

bounded domain D and £,   ( a (£.,..., X   ) be any bounded linear func-
(m) 1' '      m J '

tionals with respect to z in D which are linearly independent.   Then the

kernel function of a subspace t2m)(D) = {/ e £2(D)|£(m)/= Kim) = (O, ..., 0)¡

z's given by

(9.1)

fkpiz, w), £(m)AD(z, tzz)

"*«• £ij£o.M- « = *o.Ä.A><* ̂ )n*t5]'[18]-
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The kernel function AD(z, w) has interesting minimalities as is well

known (see (3.12)). We shall give another expression of kp    iz, w) s

A   (z, w) as a minimizing function and show a sort of minimality of it by

making use of the general minimum problem for Q(z, z) = Q(z) - kAz, w).

Theorem 9.1.   For any fixed point w e D, under the additional condi-

tion Q(z, z) = Q(z) = AD(z, w) and £.   d = K(ttz) m (0, ..., 0), we have the

minimizing function

(9.2)     «£>(*. w) = AD(z, w) - *>)*M(*X)_1*,:*l>W £ £¡JD)>

where $    = £,   ,<pn arzz/ Ai^Kz, «/) = MK(m)     _ (z, w) (3.3).

The function Mp'Az, w) coincides with the reproducing kernel function

A  (z, w) e £?  .(D) and equals the minimum value XK(jn'      —iw) at (3.4)
m ("*> o,kp(z, w)

with Kim) = (0, ... , 0).  Further M^jlw, w) = A^dzz, w) < A0(zzz, Ii) holds.

Proof.   In Theorem 3.1 if we set Qiz, z) m kp(z, w) e £2(D) (tz<: fixed)

and £(m/= K(m) = (O), we have, from (3.3),

M<«>(*. w)a\B- B*(*> J" VteDU) e £.2 ,(D),

where B = fpkp(& ü/V*(£)<u¡; = /p^M^O^C)«^ ^d^' Noting

cf>piw)cf)piz) s AD(z, üz), we have (9.2).

Since, for any /(z) e £(2m)(D),

/o /io«t^. so>*n = x, f{a*:*DM\-*«./-0

follows from the Riesz's theorem, then we have

L f^D.k^ W)ú)z =  ío fi^kT>iw' 5K + ° = ft***

which shows that M^"¿(z. w) has the reproducing property in £,   .(D). And

further, M^Hz, tzz) coincides with A  (z, w) by means of (9.1), since, in

general, det(i  pXdet D)~l = a - BD~ 'C holds for a scalar a and a non-

singular matrix D.  Last parts of the theorem are easily obtained by (3.3)

and (3.4).

Remark 9.1.   If we set

£(m)-(£r(l),Zl' "'*°rtm),tj'
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where

and

if {k)/dz7'k)a   ff»)/d^ih,l)   ...   5j^(*.»)

with X?    r(A, z) = r(A) > 0, we have another expression of Example 1.5 [5].

10. Fundamental theorem (I) of K. H. Look.   In this section we shall

give a neat but essentially equivalent proof of the fundamental theorem (I)

given by K. H. Look [14] and an extension of this theorem using the mini-

mum problem.

Proposition 10.1 (Fundamental theorem of Look). Let D be a bounded

schlicht domain and /(z) = if Az), ..., f (z)) be any holomorphic mapping

with the condition  |/(z)| < M in D, then we have

(10.1) (df(z)/dz)*(df(z)/dz) < M2Tp(z, z),       z e D,

and

(10.2) \jf(z)\2 < M2n det TD(z, z),      z e D.

Proof.   Let Myy   (z, t) be the minimizing function with the condition

Q(z, z) = 0 and  K(2) = (A., A A, and F(z) be a holomorphic mapping

AD(z, T)f(z) e £2(D), then by (3.8), (3.9) and the Riesz's theorem for

bounded linear functionals, we have

(10.3) fo F(z) x m£<2>*(z, t)czaf(t)Aï-fl(t)T-\kl0A*k-l-A*),

where f\(t) = DJ it) and T = T Dit, T). Setting (A j, A2) = (0, T pit, t))

(this is possible since /(z) = TAt, T)z belongs to £,Q TAD)), we have

/*/j = T* U   MpEniz, t) x F*iz)a>z fD Fiz) x MpR"%, t)<ojT.

For an arbitrary 72 x 1 vector u, we have, by the Schwarz inequality,

<kM2u*TikT)~1 Tu = M 2u * Tu.
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This shows (10.1) and therefore (10.2).

Theorem 10.1.   Under the same hypothesis as in Proposition 10.1, we have

(10.4) /(z)/*(z) + f^Tp\z, z)f¡(z) <M2xEn,      z e D,

and

(10.5) \Jf(z)\2< M2n det Tp(z, z)(l - |/(z)| 2/M2),      z e D.

If f(z) belongs to BH(D), we have

(10.6) f¡(z)\En + f(z)f*(z)/(M2 - l/U)!2)!/^) < M2Tpiz, z),      z e D.

Proof.   In (10.3), setting F(z) = kD(z, T)f(z), which belongs to £2(D),

and (Ay A2) = (F(t), dF(t)/dz), we have

¡D F(z) x MAplA2*(z, t)coz = *(//* + fj-1!,),

where A = kn(t, T).  By a way similar to that of the proof'of Proposition 10.1,

we obtain

kHfr+fj-'f^s^kHfr+fj-'f*).

By the diagonalization of Hermitian matrices, we have (10.4) and thus (10.5)

(cf. (10.1) and (10.2)).

Let us assume that f(z) belongs to BH(D) in (10.4). Since f.T~lf* <

M2 x (En - ff*/M2) follows from (10.4), we obtain f*(En - ff*/M2)~1f1 <

M T by taking the inverse on both sides of the above.  If A and B are pos-

itive definite Hermitian matrices and satisfy A < B, we have A      > B~ ,

because, from a known theorem of matrices, A and B are simultaneously

brought to diagonal matrices with positive diagonal elements by operating

suitable regular matrices P     and P on each of A  and B as  P  AP and

P*BP. Noting that (En - ff*/M2)~ l = E^ + ff*/(M2 - \f\ 2), we get (10.6),

which is an extension of (10.1) for f(z) e BH(D).
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