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CONICAL VECTORS IN INDUCED MODULES
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ABSTRACT. Let g be areal semisimple Lie algebra with Iwasawa de-
composition g=t@®a®n, and let m be the centralizer of a in t. A conical
vector in ag-module is défined to be a nonzero m@n-invariant vector. The
g-modules which are algebraically induced from one-dimensional (m ®a ®n)-

“‘canonical generators”’

modules on which the action of m is trivial have
which are conical vectors. In this paper, all the conical vectors in these
g-mc;dules are found, in the special case dim a= 1. The conical vectors
have interesting expressions as polynomials in two variables which factor
into linear or quadratic factors. Because it is too difficult to determine the
conical vectors by direct computation, metamathematical *‘transfer prfnci-
ples’’ are proved, to transfer theorems about conical vectors from one Lie
algebra to another; this reduces the problem to a special case which can be
solved. The whole study is carried out for semisimple symmetric Lie alge-
bras with splitting Cartan subspaces, over arbitrary fields of characteristic
zero. An exposition of the Kostant-Mostow double transitivity theorem is
included.

1. Introduction. The theory of Verma modules, as developed by D.-N.
Verma [10(a), (b)) and by I. N. Bern3tein, I. M. Gel'fand and S. I. Gel'fand
[1(a), (b)], is becoming increasingly important. Let g be a complex semisim-
ple Lie algebra and b a Borel subalgebra of g. The associated Verma mod-
ules are the g-modules induced, in the algebraic sense, by the one-dimension-
al b-modules (see [2, Chapter 7]). As we shall see in this introduction, a cor-
responding theory of g-modules induced from more general parabolic subalge-
bras of g should also be developed, and the purpose of this paper is to begin
such a study.

Here is our main reason for interest in this problem: Let G = KAN be an
Iwasawa decomposition of a real semisimple Lie group with finite center, and
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g=t ® a® n the corresponding decomposition of the complexified Lie alge-
bra of G. Let M be the centralizer of A in K, and m its complexified Lie
algebra. The infinitesimal nonunitary principal series of G is the family of
g-modules obtained by taking the K-finite subspaces of the nonunitary prin-
cipal series representations—those Hilbert space representations of G in-
duced from the finite-dimensional irreducible representations of MAN (see for
example [7(a)l). This family of g-modules is of great importance because
every irreducible g-module which splits into a direct sum of finite-dimension-
al irreducible £-modules exponentiating to K-modules is a subquotient of an
infinitesimal nonunitary principal series module (see [4], [7(a)], [9] and [2,
Chapter 9]). Bue roughly speaking, the infinitesimal nonunitary principal ser-
ies modules may be identified with certain ‘‘large’ subspaces of the contra-
gredient g-modules to g-modules algebraically induced by finite-dimensional
irreducible ‘modules of the parabolic subalgebra m @ a ® 1 of g (cf.[2, §§9.3.1,
9.7.10]). Other important families of induced representations of G are simi-
larly related to g-modules algebraically induced from parabolic subalgebras
of g.

In a sense, the algebraically induced modules may be thought of as mod-
ules of distributions supported at the identity element of G, and their duals—
algebraically “‘produced’’ modules—as modules of formal power series at the
identity element of G. The K-finite elements of the produced modules (the K-
finite formal power series) then correspond to analytic functions on G which
are also the K-finite elements of the Hilbert space induced representations.

The Verma modules that can be embedded in a given Verma module are
completely known ([10] and [1(a)]; see also [2, Théoréme 7.6.23]). Suppose
one could correspondingly determine the g-module maps between pairs of g-
modules algebraically induced from m @ a @ n. Looking at the dual maps be-
tween the K-finite subspaces of the contragredient modules, one would have
intertwining operators between nonunitary principal series G-modules, and
these intertwining operators, which might be Xunze-Stein integral operators,
would now be given by differential formulas. Furthermore, since an algebrai-
cally induced module is generated by a ‘‘highest weight vector’’ (n-invariant
vector), the g-maps from one of the algebraically induced modules to another
are closely related to the highest weight vectors in the target module. These
give rise to highest weight vectors in the dual of the K-finite subspace of the
Hilbert space induced G-module, and therefore are intimately connected with
S. Helgason’s conical distributions [5(a), (b)].( 2) The submodule structure of

(2) See also M. Hu’s thesis [12], whose results on conical distributions are re-
lated to our results on conical vectors.
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the algebraically induced g-modules must also shed light on the subquotient
structure of the nonunitary principal series modules (see M. Duflo [3] and [2,
§9.6] for the case of complex G, using Verma modules), but examples show
that the relation will be subtle. For instance, irreducibility of the algebrai-
cally induced module is not equivalent to irreducibility of the related contra-
gredient nonunitary principal series module. On the other hand, the subquo-
tient structure of the nonunitary principal series is notoriously complicated,
but the structure of the algebraically induced modules already appears to be
more regular and perhaps more fundamental. For example, the inclusion rela-
tions among the Verma submodules of certain Verma modules recover the in-
clusion relations among the closures of the Bruhat cells for complex semisim-
ple Lie groups (see [10]), and it is likely that this situation will generalize
to real semisimple Lie groups, using the modules algebraically induced from
moadn.

Now that we want to find the highest weight vectors in a given g-module
X algebraically induced from a finite-dimensional irreducible (m @ a @ n)-
module, how do we do it? The following seemed at first like a good starting
point: Let L be a Cartan subalgebra of m, so that §= [ @a is a Cartan
subalgebra of g. Let b be a Borel subalgebra of g containing § and m.
Then it is easy to see that X is a g-module quotient of a certain Verma mod-
ule V induced from b (cf. [2, Lemma 9.3.2]). Hence one can try to use the
well-developed theory of highest weight vectors in Verma modules to study
highest weight vectors in X. Unfortunately, however, highest weight vectors
in V can vanish when one passes to the quotient X, even in simple exam-
ples. Moreover, it turns out that there are, in general, highest weight vectors
in X which do not come from highest weight vectors in V. This subtlety,
which made the problem much more difficult than we expected it to be, forced
us to work in a relatively special case and to develop new tools to handle
even this case.

Now we shall describe our main results, and then we shall say what is
interesting about our methods.

By analogy with Helgason’s conical distributions, we call a nonzero vec-
tor in a g-module (or more generally, in an m @ n-module) conical if it is
m @ n-invariant. The space of conical vectors, together with 0, is called the
conical space of the module. Let § be the universal enveloping algebra of g
and # C§ the universal enveloping algebra of m @ a @ n. Define p € a*
(* denotes dual) by the condition p(a) = Ytr(ad a|n) for all a€ a, sothat p is
half the sum of the positive restricted roots with multiplicities counted. For
all ve a.*, the linear functional on m @ a @ n which is zero on m @ 1 and
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v —p on & defines a one-dimensional representation of m @ a@® n. Regard-
ing C as theassociated one-dimensional $-module, and § as a right $-mod-
ule by right multiplication, we can form the §-module X” =8 ®, C. This is

a “‘twisted induced module’’ in the sense of [2, §5.2]. The vector xo=1@®
1€ X" is a conical vector which generates X", and is called the canonical
generator of X”, Let n~ C g be the sum of the negative restricted root spaces
of g with respect to a, and J1- C G its universal enveloping algebra. Then
XV =T - x,.

We are aiming for a description of the conical vectors in X" in case G
has real rank 1, i.e., dim a = 1. Assume this, and let a € a* be the unique
simple restricted root. Then n~ is the direct sum of the restricted root spaces
g~% and g~ 2% here g~2* may be zero. There are natural M-invariant non-
singular symmetric bilinear forms on g~% and g~2%, Let q_gq e~ and 9_ 14
€J1~ be the sums of the squares of orthonormal bases of g~% and g~ 2%, re-
spectively, so that q_, and q_,, are quadratic M-invariant elements of -,
and q_, =0 if g72*=0. Let JI")" be the algebra of all M-invariants in
J=. Then (JT-)™ is a polynomial algebra on either one or two generators, de-
pending on whether g~2%=0 or g~2%# 0 (see $5), and in the difficult case
when dim 9'2“ > 1, the two generators are q_, and q_,,; this follows from
the Kostant-Mostow double transitivity theorem (see §4) on M-orbits in n™~
(or more precisely, M-orbits in the intersection of n~ with the real Lie alge-
bra of G). With this as background, we now state our main results (see $10):

Theorem 1.1. Assume dim a =1 and let ve a*. Then the conical space
of XV is either one- or two-dimensional, according to whether v is a positive
integral multiple of a (of Y4a if dim g* = 1) or not. If v is not of this form,
then the conical space of X is spanned by the canonical generator x of
XY, Suppose v = la, | a positive integer. (If dim ¢%= 1, take instead v =
%ila.) Then q_, and q_,  can be suitably renormalized (independently of D
so that the following is true: Suppose dim g* > 1. Dgfine Cle T by the
formula

-

(qfa + izq-Za), I even,
j=1;7 odd
41'-' )
-1
9. I (22,+i%4 ), 1odd
j=2;] even

If dim %=1, define CI=/I€T(“, where [ is a nonzero element of g~%
Then the conical space of X has basis {x, Cl - x5} Moreover, the g-sub-
module of X" generated by {, + x, is isomorphic to X7,
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Theorem 1.2. Let p, v e a* Then dim Homg(X¥, X¥) < 1. Moreover,
dim Homg(X¥, X¥) = 1 if and only if either p=v, or else p=—-v and v is a
nonnegative integral multiple of a (of Y4a if dim g%=1). This is exactly
the case in which X" is isomorphic to a g-submodule of X*.

(The annoying exceptional case dim g*=1 in these two theorems is es-
sentially the case G = SL(2, R), and is trivial.)

Considering how rare it is for a polynomial in two variables to factor
into linear or quadratic factors, the factored form of the 4 1 in Theorem 1.1
seems remarkable. We shall say more about this below.

It turns out that Theorem 1.2 follows easily from Theorem 1.1, so we
shall explain what is involved in proving Theorem 1.1. First, it is easy to
see that the space of m-invariants in X” is the space (J17)"+ x (here 1)
is the space of m-invariants in JI~ and equals (1~)M). From the above,
()" is a polynomial algebra in one or two generators. If g% =0, we have
one generator, and Theorem 1.1 is not terribly hard in this case (see $6).
Suppose now that dim g%% > 1, so that ()" is the polynomial algebra
C[q_a, 9_,o). The whole problem is to determine those polynomials p in
two variables such that p(q_a, q_za) * %, is m-invariant. Clearly, this in-
volves computing commutators of elements of 1 with ¢_g, and ¢_,,, and
also commutators of these commutators with ¢_, and q_,,. We were able
to compute the necessary commutators (see §§6, 7), but the resulting condi-
tion on the polynomial p is immensely complicated, and it is not feasible to
analyze it directly (see the last remark in $8).

However, when attempting to unravel this condition on p for some spe-
cial G’s, we noticed that the computations, even though we could not do them
for any one G, did not seem to depend on G. The key was then to prove a
priori that the conical vectors would look the same for any one G (for which
dim g%* > 1) as for any other such G, and then to use possibly special meth-
ods to solve the problem for one *“‘small’’ G. Specifically, we first proved
what we call the “‘fundamental commutation relation in JU=*’: There is a non-
zero constant ¢ € C such that [[f, ¢9_,), 9_,1=cfq_,, forall f € g=% (see
Theorem 7.4). This is called ‘‘fundamental’’ because of the next result: If f
is chosen more carefully, then this relation and a trivial one ([f, ¢_ 2l =0)
generate all relations which are linear in [ in the associative subalgebra of
Jl- generated by f, q_, and g_,  (see Theorem 8.1). This in turn implies
the following metamathematical *‘transfer principle for JI="’: If Ay, 0ee, 4,
by, ..., b, are complex polynomials in two variables, then the truth of any
assertion of the form “S7_, af{q_ , 9_,)/b{q_,, 9_,,) =0 in =" is in-
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dependent of G (see Theorem 8.4). But the condition that p(q__a, 9_,4) * Xo
be conical in X” can be expressed in this form (see Lemma 8.5), where the
a; and b; depend only on p and the complex number ¢ such that v = ca.
Thus we could prove the *‘transfer principle for conical vectors’’, another
metatheorem which says that if p(q_,, 4_,4) * %, is conical in X% for
some G with dim g?*> 1, then the same is true for any such G (see Theo-
rem 8.6). Furthermore, the above metatheorems have analogues for the case
dim g?* =1, enabling us even to transfer theorems about conical vectors
from any one G with dim g?% =1 to any G with either dim g**=1 or

dim 920. > 1 (see Theorems 8.4 and 8.6).

The conical vectors still had to be computed for some special G with
dim g®* > 1. The only cases which we were able to do directly, aided by a
crucial observation of L. Corwin, were the cases G = SU(n, 1)-—essentially
all the G’s such that dim g2% = 1. In these cases, (JI")" is the polynomial
algebra in ¢__ and r_, , where r_, is a nonzero element of the one-dimen-
sional space g~2%. We reformulated the condition that plg_ ar To 2a) .« x, be
conical in X” (where p is a complex polynomial in two variables) in terms
of a complicated system of linear equations whose unknowns were essentially
the coefficients of p. These equations implied uniqueness of the conical vec-
tors, but it was not clear that the equations had a consistent solution (and
hence it was not clear that the conical vectors in Theorem 1.1 existed) until
Corwin noticed that a solution vector could be constructed from the coeffi~
cients of a certain polynomial which factored into certain linear factors. This
meant that if p were this polynomial, then p(q_,, 7_, ). x, would be coni-
cal. This was enough to prove Theorem 1.1 for these G’s. To place the case
dim g* =1 in perspective, we further note the following: In this case, r_z_.m
=4q_,,in JU=, and therefore the factors qia+ qu_2a in Theorem 1.1 them-
selves factor into linear factors: (q__ + (-1)1/2jr_2a)(q__a- (1) l/2]'r__2a).
It was this which made it feasible to carry out the necessary computations
(see the Remark following Lemma 9.1).

Actually, in writing up the special case in §9, we dealt only with G =
SU(2, 1), and following a suggestion of N. Wallach, we used the theory of
Verma modules to prove the uniqueness of the conical vectors. (For G =
SU(2, 1), the g-module induced from m ® a @1 is actually a Verma module,
not just a quotient.) Thus the original approach, using the complicated sys=
tem of linear equations, is not carried out in this paper.

The above results are stated for G of real rank 1, but they imply a result
for arbitrary real rank, included in Theorems 10.1 and 10.2.
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There is another direction in which Theorems 1.1 and 1.2 are extended in
this paper—to arbitrary fields of characteristic zero. In fact, throughout this
paper, we work with semisimple symmetric Lie algebras with splitting Cartan
subspaces, over fields of characteristic zero (see [2] and [7(b)] for back-
ground on these). This accounts for most of the length of $$2-4, in which
we wanted to give a self-contained elementary treatment of the Kostant-Mos-
tow double transitivity theorem and its consequences for algebras of polyno-
mial invariants, valid over general fields of characteristic zero, without using any
theory of Lie or algebraic groups. Instead of group orbits, we use “‘infinitesi-
mal transitivity and double transitivity’’ conditions. We essentially give Wal-
lach’s modified version of Kostant’s proof of the double transitivity theorem.
See $$3 and 4 for a more detailed discussion of this theorem and its conse-
quences.

Incidentally, it is not surprising that theorems about real semisimple Lie
algebras, Cartan decompositions and Iwasawa decompositions should also
hold for more general semisimple symmetric Lie algebras, since joint work
with G. McCollum has shown that assertions about such structures whose
truth is preserved under field extension and restriction are true for any one
field of characteristic zero if and only if they are true for any other; see [8(e)l.
This gives a generalization of H. Weyl’s “‘unitary trick’’, which enables one
to transfer theorems from compact semisimple Lie algebras to semisimple Lie
algebras over arbitrary fields of characteristic zero.

After the work for this paper was completed, we found a simpler proof of
the uniqueness of the conical vectors, avoiding the use of the double transi-
tivity theorem; see [8(d)]. (But the existence and explicit form of the conical
vectors still require the fundamental commutation relation and transfer prin-
ciples.) This proof uses an observation of Kostant on the limitations imposed
on conical vectors by the action of the center of G. The proof also uses an
a priori argument that the first assertion of Theorem 1.2 holds—that
dim Homg(X¥, X¥) < 1. In fact, we have generalized this last inequality toall
parabolic subalgebras (see [8(c)]) by extending the method that Verma origi-
nally used (see [2, Théoréme 7.6.6]) to prove the corresponding fact about
Verma modules.

We remarked above that a g-module X induced from a finite-dimensional
irreducible (m @ a ® n)-module is a quotient of a certain Verma module V,
but that one cannot very well use V to determine the highest weight vectors
in X. On the other hand, since Theorems 1.1 and 1.2 are true, we can use
them as a tool in investigating the composition series of the Verma module V.
Interesting things happen: First, recall that in [1(a)], Bern3tein, Gel'fand and
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Gel'fand found an example of a Verma module for 8((4, C) having two strange
properties: It contains a proper submodule not generated by Verma submod-
ules, and its composition series contains a certain irreducible subquotient
with multiplicity two. But it now turns out that if one regards £l(4, C) as the
complexification of $u(3, 1), then one can explain all of this pathology by
means of the existence of a certain conical vector in X which does not come
from a highest weight vector in V. In effect, Bern¥teln, Gel'fand and Gel'fand
were actually dealing with the case /=1, {I =4g_, in Theorem 1.1. Moreover,
using Theorem 1.1, we can generate whole families of examples of the same
two “‘strange’’ phenomena for many Lie algebras. Thus a “*bad’’ phenomenon

“good’’ when one interprets the situation using a

for Verma modules becomes
larger parabolic subalgebra than a Borel subalgebra. This further emphasizes
the importance of studying modules induced from general parabolic subalge-
bras.

Along the same lines, we comment that the results of [1] and [10] do not,
in general, give explicit expressions for the highest weight vectors in a Verma
module, or equivalently, explicit formulas for the embedding of one Verma mod-
ule into another; they usually give only the existence of the vectors or the em-
beddings. But we can use the polynomials C, in Theorem 1.1 to give explicit
expressions for certain of these highest weight vectors or embeddings which
have not yet been described explicitly.

We would like to thank G. D. Mostow for informing us about his approach
to the double transitivity theorem.

Notations. We shall write Z for the set of nonnegative integers and Q
for the field of rational numbers. Throughout this paper, % is a field of char-
acteristic zero. The dual of a vector space V over k is denoted V*. The
symmetric algebra of V is written S(V), and for all r € Z, the rth symmetric
power is denoted S7(V), so that

svy= II s .
rE€EZ,

S(V*) is naturally isomorphic to the algebra of polynomial functions on V
(i.e., the algebra of sums of products of linear functions on V), and we shall
often identify these two algebras. Let g be a Lie algebra over &, and let V
be a g-module. Then g may be canonically embedded in the universal envel-
oping algebra G of g, and V may be regarded naturally as a G-module. The
action of § on V will be denoted x - v(x€§, ve V). If 8and T are sub-
sets of g and V, respectively, let T® be the set of %-invariants in T, i.e.,
{teT|s.t=0 forall s€ g. Regard G and S(g) as g-modules by the nat-

ural extensions by derivations of the adjoint action of g on itself. Then for
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xeg and ye§, x+y=1[x, y], where we use [+, -] to denote the commu-

tator in associative algebras, as well as the bracket in Lie algebras. In par-
ticular, if 8C g and T C G, then T® is the ordinary centralizer of 8 in T.
Note that for all x€g,y€G and veV, wehave x-(y- ) =[x, yl cv+y-
(x + ). Regard V* as the g-module contragredient to the g-module V.

2. The setting. Here we shall summarize the necessary preliminaries
and fix notation to be used throughout most of this paper.

Let (g, ) be a semisimple symmetric Lie algebra over %, i.e., g isa
semisimple Lie algebra over k& and 6 is an automorphism of g such that
6% = 1. (See [2] and [7(b)] for background information on semisimple symmet-
ric Lie algebras.) Denote by £ and P the +1 and -1 eigenspaces for 0,
sothat g= £ ® b is the symmetric decomposition of (g, 6), orthogonal with
respect to the Killing form of g. Assume that there is a splitting Cartan sub-
space a of . That is, @ is a maximal abelian subspace of } whose ad-
joint action on § can be simultaneously diagonalized.

Let m be the centralizer of a in t, and for all k-linear functionals
¢: a—k, define

¢ ={x € g|la, x] = pla)x forall a€ al
Then ¢® =m @ a. Let
s ={¢ea*|p#0 and g% 4 0},

the set of restricted roots of § with respect to a. Then

s=e I ¢*=-neoae ]I ¢
deZ Pez

Moreover, [845, 8¢] C ¢®®Y and 6¢% = g=® forall ¢, Y€ a*.

Let B be the Killing form of g. Then B is nonsingular on a (see [7(b)]),
so that B induces naturally a nonsingular symmetric k-bilinear form (-,
on a*, as well as a natural isometry between a and a*. Let at) denote the
rational span of £ in a*. Then a* is naturally isomorphic to a"& ®Q k, and
the form (+,+) is rational-valued and positive definite on the rational space
az (see [7(b)]). In particular, (¢, ¢) # O for all ¢ € =,

Forall ¢p€Z, let s 4 denote the orthogonal reflection of a* through the
hyperplane perpendicular to ¢, and let W be the group of isometries of a*
generated by the s, (¢ €2). W is called the restricted Weyl group of g with
respect to 0. = spans a* and forms a (not necessarily reduced) system of
roots in a* with Weyl group W (see [7(b), §2)).

Let 2, be a positive system in 2, and define
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n= H gd’ and n” = U g"¢’.
pez, ¢ez,

Then n and 1~ are nilpotent subalgebras of ¢, and we have the decomposi-
tion g=n"@®@mdadn.

Define the bilinear form By on g by the condition By(x, y) = =B(x, 6y)
(x, y € ). Then By is a nonsingular symmetric form, and the decomposition
g=m@adIl, g® is a By-orthogonal decomposition (see [7(b), Lemma
3.2]). Hence By is nonsingular on each g% (¢ €3) on m and on a. More-
over, By isclearly a "t-invariant and O-invariant form on g.

For all ¢ €3, let %4 € & denote the image of ¢ under the canonical
isometry from o to a, so that B(xd,, a) = pla) for all a€ a, and B(x¢, x¢,)
= (¢, ¢) for all ¢, Y € 3. Then for all e € ¢?, [e, Bel € a, and in fact

[e, Oe] = Ble, 0e)x¢ =-Byle, e)x¢

[7(b), Lemma 3.3]. Since (¢, ¢) # 0, we can define b¢ = qu5 /(é, &) € a.
Then ¢(h¢) =2,
Suppose now that k is algebraically closed, so that every element in &

has a square root. Since By is a symmetric nonsingular form on gd’, g¢

con-
tains a nonisotropic vector e, with respect to the form By (i.e., Bg(ey, eo)

£ 0). Set
ey =(2/(g, #)By(e, eo))l/zeo

and [y = —0e¢. Then Be(e¢, ed,) =2/(p, ¢), and so [qu, e¢] =2ey, [b¢, /¢]
=-2fy4 and ley, f4) = by Hence thy, ey, f4} spans a three-dimensionalsim-
ple subalgebra uy of g.

Now drop the algebraic closure assumption on k. Let § be the universal
enveloping algebra of g, and let M, @, 71 and JU~ denote the universal en-
veloping algebras of m, a, n and n~, respectively, regarded as canonically
embedded in g. Then the multiplication map in § induces a linear isomor-
phism

GeN-9MeA®N.

Let v € a*. Then the linear form on the subalgebra m @ a@n of g
which is ¥ on a and zero on m @ 1 vanishes on the commutator subalgebra
of m @ a @ n, and thus corresponds to a one-dimensional representation 7
of m@®a ®n and hence of its universal enveloping algebra (N, Let V*
be the g-module induced by the (m@a®n)-module defined by 7 (see [2,
§5.1)). That is,
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v —
V¥=G @yant,

where § is regarded as a right M1 @N-module by right multiplication, and &
is regarded as the 1 @N1-module defined by 7. The vector vo=1@®1leV”
generates V¥ as a Q-module, and is called the canonical generator of V7.

It is clear that the map w: N-—-vv given by xx - v, is a linear isomor-
phism.

Let V be a g-module, v € V a nonzero vector and A€ a*. Then v is
called a restricted weight vector and A a restricted weight for V if x « v =
Mx)v for all x € a. For all A€ a*, the subspace of V consisting of 0 and
the restricted weight vectors for A is called the restricted weight space for
A; it is nonzero if and only if A is a restricted weight for V.

The following definitions are central to this paper: Let V be a g-mod-
ule, and let v € V be nonzero. Then v is a conical vector for V if ve V™",
i.e., if (m@®n) .« v=0. The subspace yror consisting of 0 and the conical
vectors is called the conical space of V.

Now let v € a* and let v, be the canonical generator of the induced
module V”. Then v is clearly a conical restricted weight vector in V¥ with
restricted weight v. It is also clear that the conical space of V is a-invari-
ant and hence is the direct sum of its intersections with the restricted weight
spaces of V.

The standard universal property of the induced module V” (see [2, $5.10)
say that if U is a g-module and z € U is a conical restricted weight vector
with restricted weight v, then there is a unique g-module homomorphism
f: V¥ = U such that [(v)) = u. If u generates U, then [ is surjective. If
U= V" for some pe€ a*, then f is injective; this follows from the fact that
J1- has no zero divisors. Let Z C V¥ be the intersection of the conical
space and the restricted weight space for v. Then we have a natural linear
isomorphism

Homg(Vv, V)Y =z, [ ().
Let v and vy be as above. Since vy € (VY)™ the linear isomorphism
w:JI=— V" (see above) is also an m-module isomorphism, where J1~ is

regarded as an m-submodule of G under the adjoint action. In particular,

(v = ()" v, and in fact @ restricts to a linear isomorphism
w: ()Y - (v¥)m, X xev,.
Define p € ¢* by the formula
, P(@) =Ytr(ad a|n)
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forall a€ a, i.e.,
[ =Zi Y dim g9
dez +

For all v € a*, define the g-module X" to be the induced module V¥~7, As
above, let 7 be the one-dimensional representation of m @ a @ n defined by
v. Then X” can be interpreted as the twisted induced module induced by the
one-dimensional (m @ a @ n)-module corresponding to 7, in the sense of [2,
§5.2]. That is, forall mem, a€ a and n€ n, the trace of the action of
m+a+non g/(m@adn) is -tr(ad a|n) = -2p(a). But we shall not need
this fact.

The canonical linear isomorphism A: S(g) — G is defined by the formula

1
Mgy g =— 2 8o(1)"** 8o (m)
n o

forall n€Z, and g, € g; here the product on the left is taken in S(g), the
products on the right are taken in G, and o ranges through the group of per-
mutations of {1, ..., n} (see [2, $2.4]). Forall g€ gand neZ,, Mg" =
7, Also, A is a g-module isomorphism (see [2, §2 4.10)).

Let % be a field extension of #,§ =g ®k ,E=¢ ®, k, etc., and let
0 be the.%-linear extension of 6 to G. Then (g, 9) is a semxsmple symmet-
ric Lie algebra over % with symmetric decomposition § = to }:), Qisa
splitting Cartan subspace of D, etc. We shall often use the technique of ex-
tension to a “‘sufficiently large’ field %, which can always be taken to be
an algebraic closure of k. For example, the construction of the subalgebra
uy above might have to be carried out over an extension field k of k, but
results about (3, 6) proved using Uy can often be transferred to (g, 0).

3. General results on polynomial invariants. Let U be a finite-dimen-
sional real Euclidean space and SO(U) the rotation group of U. There is a
natural SO(U)-invariant quadratic element ¢ of the second symmetric power
S2(U") given by the sum of the squares of the members of the dual basis of
any orthonormal basis of U (¢ is the '*squate of the radius’’). Let I be the
algebra of SO(U)-invariant polynomial functions on U, or equivalently, the
algebra of SO(U)-invariants in the symmetric algebra S(U*). A standard re-
sult of classical invariant theory states that I is exactly the set of polyno-
mials in ¢ if dim U> 1, (If dim U =1, then SO(U) acts trivially on U, and
so I=S(U%).)

Clearly, I is exactly the set of polynomial functions on U constant on
the SO(U)-orbits in U, i.e., the spheres centered at the origin if dim U> 1,
and the points if dim U =1, If M is any Lie group which acts as isometries
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on U in such a way that M acts transitively on the SO(U)-orbits in U (i.e.,
the M-orbits in U are the same as the SO(U)-orbits), then the set of M-invari-
ant polynomial functions on U must coincide with the set I of SO(U)-invari-
ants.

Now suppose that M also acts as isometries on a second finite-dimen-
sional Euclidean space V so that M acts transitively on the SO(V)-orbits in
V. Then the set of M-invariant polynomial functions on V is the set | cs(v®)
of SO(V)-invariants, and ] is a polynomial algebra as above.

Now M and SO(U) x SO(V) both act naturally on U@ V. Let L be the
set of M-invariants in S((U ® V)*) = S(U*) ® S(V¥). It is easy to see that the
set of SO(U) x SO(V)-invariants in S(U ® V)*) is exactly I ® ], and that
I1® ] CL. It is important to know that I ® | = L in certain situations. In this
case, for example, L will be a polynomial algebra on two generators. In order
to insure this, it is natural to assume that the M-orbits in U ® V are the same
as the SO(U) x SO(V)-orbits, i.e., the products of the SO(U)-orbits in U with
the SO(V)-orbits in V. This assumption is equivalent to the ‘‘double-transi-
tivity”” hypothesis—that if A is an SO(U)-orbit in U and B is an SO(V)-orbit
in V, then the isotropy group of M at any point of A acts transitively on B.
If dim U> 1 and dim V > 1, this is equivalent to saying that M acts transi-
tively on the product of the unit sphere in U with the unit sphere in V. Under
the double transitivity hypothesis, L=1® J.

The present section is devoted to algebraic analogues of these facts,
valid over the field & of characteristic zero, assumed for convenience to be
algebraically closed throughout this section. Here we are concerned with a
Lie algebra m; (over k) which acts on modules U and V with nonsingular
symmetric Mj-invariant bilinear forms. Replacing the orbit hypotheses for M
by corresponding ‘‘infinitesimal transitivity and double-transitivity’’ assump-
tions, we show that the m-invariant polynomial functions on U, V and U®V
are exact analogues of the spaces of M-invariants above. We also transfer
these results to the symmetric algebras S(U), S(V) and S(U ® V) = S(U) ® S(V);
the invariants here are essentially the same as for the spaces of polynomial
functions. We do not need any theory of algebraic groups. The setup in this
section is entirely independent of $2; the results here will be applied to the
setting of §2 in the next section.

Let m be a Lie algebra over %, U a nonzero finite-dimensional my-mod-
ule, and B, a nonsingular symmetric m-invariant bilinear form on U. The
homogeneous quadratic polynomial funcuon x b B((x, x) on U defines a
canonical nonzero element ¢, € SXU¥) "0 under the natural identification be-
tween the algebra of polynomlal functions on U and S(U¥). B, also induces
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a canonical m -module isomorphism fo : U* — U which extends to an my-
module and algebra isomorphism &;: S(U*) — S(U). Let p, = £(t), so that
po€SHU)O.

For every element e € U, denote by e* the B -orthogonal complement of
e in U. Recall that e is called isotropic (resp., nonisotropic) with respect
to B if By(e, €) = 0 (resp., B(e, €) # 0). Note that e is B -nonisotropic
if and only if U= ke ® et

Lemma 3.1. Forall ecU, m;+.eC et

Proof. Let x € m;. Then B(x- e, €) =-Byle, x+ &) =-B(x + ¢, ¢)
since B, is m-invariant and symmetric, and so By(x + e, ) =0. Q.E.D.
We now make the key assumption that for every B j-nonisotropic vector

“‘infinitesimal

e€ U, we have my - e= el. This can be thought of as an
transitivity’’ hypothesis. Our goal now is to compute S(U) °, and in fact to

prove:

Theorem 3.2. If dim U = 1, then S(U)'0 = s(u). If dim U > 2, then s(v)"©
m
is the polynomial algebra generated by p. In particular, S(U) % is a polyno-
mial algebra on one generator.

The proof will be carried out in a series of lemmas. First we settle the
easy one-dimensional case:

Lemma 3.3. Suppose dim U= 1. Then m acts trivially on U. In parti-
cular, S( U0 = S(U).

Proof. Any nonzero element e of U is B -nonisotropic, and so et = 0.
Thus m;.e=0 (Lemma 3.1). Q.E.D.
It is also convenient to handle the two-dimensional case separately:

Lemma 3.4. Suppose dim U = 2. Then S(U) © is the polynomial algebra
generated by p.

Proof. Since k is algebraically closed, we may choose a B ,-orthonormal
basis {e}, e,} of U. Then p,= eliele S2(U). By hypothesis, there exists
XEM, such that x - e, =e,. Since B0 is mo-invariant, we have Bo(el,xo ez)
=-Bo(x . 'el, ez) = "Bo(ez’ e2) =-~1, But x . e, is a multiple of e, and so
x.e,=-e,.

Again since k is algebraically closed, k& contains a square root i of
-1. Let v,=e, + ie, and v, = e, —ie,, so that iul, vz} is a basis of U.
Then x - v, = ezm-ze1 =-iv; and x - v, =€, + ie; = iv,.

Let / € S(U)™. Then [ is a polynomial of the form
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B
f = Z U
a,BeZy CeB V1Y

in v; and v, (Ca,B € k). Since x + =0, we have

. BE€2+ icaﬁ(ﬁ - a)v‘;vf= 0,
so that €qg =0 unless o = B. Thus = Eaez aa(vlvz) . But vluz—e§
+ e =py andso [ isa polynomml in p,. Conversely, it is clear that any
polynomal in p, is in S(U) . The lemma now follows from the fact that the
subalgebra of S(U) generated by po is isomorphic to the polynomial algebra
generated by p,. Q.E.D.
In order to compute S(U) 0 in general, we shall use the following result:

Lemma 3.5. Let e € U be B y-nonisotropic, and let r € L,. Then e gen-
erates S7(U) as an m-module. In particular,

§7(U) = ke” + my - S7(U).

Proof. The second statement clearly follows from the first, and so it is
sufficient to prove by induction on j=0, ..., r that the smallest m -invari-
ant subspace T of S"(U) containing e” also contains e"~7§i(el). This is
clearly true for j=0, so assume it is true for 0, ..., j (j<7). Let xem,
and s € S7(e*). Then

xeeIs=(r- ]')e"(j"'l)(x ce)s+ et i(x.s).
The left-hand side and the second term on the right are in T by the induction
hypothesis, and so et (x . £)s € T since r- j> 0. The lemma now fol-

lows from the assumption that m; « e = et Q.E.D.
The point is the following:

Lemma 3.6. Let e€ U be B -nonisotropic, r€ L, and f € ST(U*)'0. Re-
gard { as a polynomial function on U. Then f is determined by its value at
e. Equivalently, if {(e) =0, then f=0.

Proof. There is a natural pairing {+,+} between S"(U*) and $7(U) given
as follows:

Uyeoofpuyeenn}= Za: I__Il (Fa #otin) s

where %, ..., 2 € Uy fio0005 /re U*, (-, +) is the natural pairing between
U* and U and 0 ranges through the group of permutations of {1, ..., r}
Then {f, «"} = r1/(4) for all { € S"(U*) and u€ U, where [ is regarded as a
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polynomial function on U on the right-hand side. It follows that {.,.} is
nonsingular. Also, the natural actions of m, on $7(U*) and S"(U) are con-
tragredient with respect to {+,+} (see for example the proof of [ 7(b), Lemma
3.6)).

Now let / and e be as in the statement of the lemma. If f(e) = 0, then
{f, "} = 0. Since [ is my-invariant, {f, x « s}= ~{x+f,s}=0 forall xe€ m,
and s € S7(U). Thus {f, S"(U)} = 0 by Lemma 3.5, and so {= 0 by the non-
singularity of {.,-}. Q.E.D.

Theorem 3.2 now follows by applying the canonical isomorphism &;: SW™)
— S(U) to the following result:

Lemma 3.7. Let dim U > 3. Then S(U*)"lo is the polynomzal algebra gen-
erated by t. Equzvalently, if reZ, is odd, then ST (UM =0, and if 7=
2m, meL,, then ST(U*'O is spanned by 7.

Proof. Since S(U* ©° is the direct sum of its homogeneous components,
it is sufficient to compute ST(U*)'0 for r€ Z,. Let VCU be the algebraic
set defined by the equation £y(v) =0 (v e U) Then V is exactly the set of
B -isotropic vectors in U. Let / € ST(U™) 0. If / has a zero outside V, then
/=0 by Lemma 3.6. Hence we may assume that all the zeros of [ lie in V.
But then by the Hilbert Nullstellensatz, { divides some power of t,. Choose
a B-orthonormal basis of U, and let X,, ..., X € U* be the corresponding
dual basis. Then S(U*) can be identified with the polynomial algebra
k[Xl, e Xn],. and ¢, = le’ +oeeedt Xfl. Since dim U > 3, ¢, is an irreduci-
ble polynomial. The fact that { divides a power of ¢, thus implies that [ is
itself a power of ¢, up to a scalar multiple. Q.E.D.

Theorem 3.2 is now proved.

Remark. The last assertion of Lemma 3.7 (the case r=2m) can also be
proved more directly (even when dim U< 2) as follows: Let [ € S'(U*)mo,
let e € U be a B-nonisotropic vector, and set ¢ =(¢7)(e) = t,(e)™ € k. Since

0(e) B (e, e) # 0, we have c # 0. But /(e)t and c¢f are two elements of
S7(U*)"° which take the same value cf(e) at e. Hence f=c 1/(e)to, by
Lemma 3.6, proving the assertion.

The following consequence is interesting, but it will not be needed:

Corollary 3.8 (to Theorem 3.2). Every m-invariant symmetric bilinear

form on U is a scalar multiple of B,.

Proof. From Theorem 3.2, SAUY0 = kp,, and so S U*)m0 = kt,. The
corollary now follows by polarization. Q.E.D.
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Remark. Corollary 3.8 has a direct proof which does not use either Lem-
ma 3.4 or Lemma 3.6: Let C be an my-invariant symmetric bilinear form on
U. Then the unique linear operator A: U — U defined by C(z, v) = B (Ax, v)
for all , ve U is an my-module map which is symmetric with respect to B,.
Let e € U be a Bj-nonisotropic vector, and let e'cet By hypothesis, there
exists x € m; suchthat x+ e = e'. Then

B(Ae, e') = By(Ae, x + €) = ~B(x + Ae, e) = -BO(A(x .e),e)
= -Bo(Ae', e) =-B (e, Ae') = -B (4e, e'),

and so B (Ae, e') = 0. Thus every B -nonisotropic vector of U is an eigen-
vector for A. Since every two B -orthogonal B -nonisotropic vectors have a

B -nonisotropic linear combination not proportional to either of them, we see
that they must have the same eigenvalue for A. Applying this to a B j-orthog-
onal basis of U consisting of B,-nonisotropic vectors shows that A is a sca=-
lar, and this completes the proof.

Another general result is required for the next section. Let V be a non-
zero finite-dimensional mo-module with a nonsingular symmetric m -invariant
bilinear form B,. Let p, €S 2(V) % be the corresponding canonical invariant.
The symmetric algebra of the direct sum my-module U ® V is naturally iso-
morphic to S(U) ® S(V), and m; acts on S(U ® V) accordmg to the tensor
product of its actions on S(U) and S(V). In particular, S(U)"° ® S(V)"°
CS(U @ V)'°. The next theorem gives an important case in which this inclu-
sion becomes an equality.

Theorem 3.9. In the context of Theorem 3.2, suppose in addition that for
every B -nonisotropic vector e, € U and every B -nonisotropic vector e, €V,

we have m;) ce;= e‘{' in V, where m:) is the centralizer of e, in m,. Then

sV =S ®s(n)°,

S()'© is given by Theorem 3.2, and SN is either S(V) or the polynomial

algebra generated by p,, depending on whether dimV =1 or dim V> 2. In
m

particular, S(U® V) ° is a polynomial algebra on two generators.

Proof. Let e, € U be B,-nonisotropic, and let my be the centralizer of
e, in my. For every B -nonisotropic vector e, € V, we have e‘i‘ = m':) ce, C
my.e, C eJ' by Lemma 3.1, so that m « e, = e'i‘. Thus Theorem 3.2 applies
to mg, V B and p,, and so to prove the theorem all we must show is that
S(u @V C S ® (™.

We shall now apply a technique used in [7(b), §51. It is clear that
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stueo V)mo is the direct sum of its homogeneous components of the form
(57(U) ® S(V)'°, where r€Z,, and so it is sufficient to show that
(57(U) ® S(V)) 0 C §7(UY™® ® s(V)"°.

Recall the nonsingular m-invariant pairing f+,+} between S7(U*) and
S7(U) (see the proof of Lemma 3.6). Also recall the canonical mj-module and
algebra isomorphism £;: S(U*) = S(U). Then &, restricts to an my-module
isomorphism &: $"(U*) = S7(U). Define a bilinear map

w: ST(U) ®S(V) x ST(U) — S(V)

by the condition s @ w, t {f;l(s), tlw for all s, t€ S7(U) and we S(V).
Then for all x € my, y € S"(U) ® S(V) and ¢ € $7(U), we have

olx « y, ) + oly, x+ 8) =x + wly, ).

Moreover, let X be any subspace of S(V). We claim that for all y € S7(U) ®
S(V), w(y, $7(U)) C X implies y € S"(U) ® X. In fact, choose abasis {w} for
a complement of X in S7(V) and write y = 21. s, @uw,+z (siF_S’(U), Z €
S7(U) ® X). Then for all t € S"(U), we have

Z co(si®wi, ) +olz, ) X,
13

and so X, { "l(s) thw, € X. Hence {fa'l(si), S™(U)} =0 for all 7, so that
each s, =0, proving the claim.

Let y e(s7(U) ® S(V))'°, and let e, and My be as in the statement of
the theorem. Then for all x € mo,

x - wly, e 0) o(x » y, o) + oy, r(x» eo)e' ) )

since x+y =0 and x - e; =0. Hence w(y, e}) € S(V)mo. But by hypothesis,
m:). e, = e{ in V, for every B -nonisotropic vector e, € V. Thus Theorem
3.2 applies to mo, V, B, and p,, as well as to m,, V B, and p,. In partic-
ular, S(V) o S(v) 0, and so wly, ef) € S(V) . But the set Z of B -noniso-
tropic vectors in U is Zariski dense since it is the set on which the polyno-
mial function 2, €S 2(U*) does not vanish. Hence the'powers ey (eg€2)
span S'(U) (see for example [7(b), Lemma 3.5(ii)]). It follows that co(y, ()]
C s(»)'°, But now the above claim applied to X = S(V) "0 implies that y €
ST(U) ® S(V)'°.

The rest is easy: Let {¢] be a basis of S(V)'°, and write y=2,5,®
a; (b;e57(U)). Since my+y=0, we must have 3, x + b, @ a,=0 for all
x emo, so that my « b, = 0 for each i. Hence y eS’(U) "0 ®S(V) o, and the
theorem is proved. Q E.D.
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4. The Kostant-Mostow double transitivity theorem. In this section, we
return to the setting of $§2. For every ¢ €3, m acts naturally on the subal-
gebra my = g¢ @ QMS of g. (Here 92¢' might be zero.) Our main goal at this
point is to determine the algebra S(n¢)"‘ of m-invariants in the symmetric al-
gebra S(n¢). It will turn out to be a polynomial algebra on one or two gener-
ators (Theorem 4.6). The method will be to verify the hypotheses of $3 and
then to apply the results of §3.

Suppose that dim a =1, ¢ is the unique simple restricted root, dim 92‘6
> 1, k=R, 0 is a Cartan involution of g in the sense that the Killing form
of g is negative definite on f and positive definite on §, G is a connected
Lie group corresponding to g, K is the connected Lie subgroup of G corre-
sponding to ¥, and M is the centralizer of a in K. Then S(ny)" is the space
S(n¢)M of M-invariants in S(ny), and determining S(n¢)M amounts to proving
a double transitivity theorem for the action of M on g¢ @ 92¢’. Specifically,
let S, be the unit sphere in g¢, and §, the unit sphere in gzqs, with respect
to the bilinear form By, which is positive definite on g. The issue is to
prove that M acts transitively on §; x §,. This theorem was proved by B.
Kostant [6, $2.1] (in a somewhat different formulation) and independently by
G. D. Mostow (oral communication; related ideas are discussed in [8, §19).
Kostant’s proof, as modified slightly by N. Wallach [11, Theorem 8.11.3], is
purely algebraic. In order to show that this proof applies in our general set-
ting, and for our later reference, we shall give an exposition of Kostant’s
proof below. (Mostow’s proof is based on explicit case-by-case checking;
only the case of the exceptional group F, is difficult.) We have been discus-
sing the rather subtle situation in which dim 32¢ > 1; if dim gw <1, the ap-
priate results are very easy.

Return now to the general setting of $2.

Fix ¢ € 3. We shall describe a canonical element by €S Y gqs)m. The
symmetric bilinear form By is nonsingular on g¢ (see §2). Since Be is E-in-
variant and hence m-invariant, and since g¢’ is m-stable, the restriction of By
to g¢ is m-invariant. As in $3, we get a nonzero homogeneous quadratic poly-
nomial function x > By(x, %) on gqb, and this defines a nonzero element ¢4 €
S2(g®yM)™ By induces a canonical m-module isomorphism §¢: (¢ - g?
which extends to an m-module and algebra isomorphism {"¢: S(( g¢)*) — & 94’).
Let py = £4lt,), sothat py €SP

Now we shall verify that the key assumption of the beginning of §3 holds
in the present context, with m;=m acting on U= g” by the adjoint action,
and B, = Byl g¢ X gd’. The word *‘nonisotropic”’ and the symbol e’ have the
meanings of $3.
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Lemma 4.1 (cf. [6, Theorem 2.1.7]). Let e, € gd> be a By-nonisotropic
vector. Then [m, eo] = eé’. In particular, g¢ = ke, ®[m, eO].

Proof. It is clearly sufficient to assume that k is algebraically closed.
As in §2, we may choose a multiple ey of ey such that B@(e¢, e¢)=2/(¢, P
Setting hy = 2x 4/(¢, #) € a and 4 ==0e 4, we have the bracket relations
[hg egl = 2e4, [hy, f4l =214 and ley, f4) = by (see §2), so that {hy,
FY) /¢,¥ spans a three-dimensional simple Lie subalgebra uy of g. Let g,
be the uy-submodule I_I2 -2 gid of g. Since the eigenspaces of ad by in
84 With eigenvalues 0 and 2 are g =m@a and g¢, respectively, the repre-
sentation theory of a three-dimensional simple Lie algebra implies that
[e¢, m®al = gqb. But [eqs, m] C e;'{, by Lemma 3.1, and since [ey, o] = ke g,
we must have [etb’ m] = ei. The lemma is now clear. Q.E.D.

Before applying Theorem 3.2, we shall derive two more results:

Lemma 4.2, We have [ g%, g1 = g?%.

Proof. We may assume that & is algebraically closed. As in $2 (or the
last proof), we have the three-dimensional simple Lie subalgebra uy of g
spanned by hy, ey and fy. Let 94 be the ug-submodule I_lz__ -2 g’¢’ of g.
The eigenspaces of bq_«, in g4 with eigenvalues 2 and 4 are g¢’ and 9
respectively, and so the representation theory of uy implies that [e¢, g ] =
92¢’ Q.E.D.

The following consequence will be useful later:

Corollary 4.3. Let X be a g-module and x € X an m-invariant vector an-
nihilated by some By-nonisotropic vector e € gé. Then (g‘f> o 92¢) +x=0,
In particular, if dim a =1 and ¢ is the unique simple restricted root, then x
is a conical vector in X.

Proof. Forall yem, [y, ef] e x=y-(ej+x)-e,+(y+2) =0, and so
gqs +x=0 by Lemma 4.1. Lemma 4.2 now implies that 32¢ + x =0, The last
assertion is clear. Q.E.D.

Theorem 3.2, Lemma 4.1 and the field extension technique imply:

Theorem 4.4. If dim g% = 1, then S(g®)" = S(g®). If dim g% > 2, then
S( gqs)"' is the polynomial algebra generated by py. In particular, S(gqs)“ is a
polynomial algebra on one generator.

Corollary 4.5. Every meinvariant symmetric bilinear form on g¢ isa
scalar multiple of By.

The corollary follows from either Theorem 4.4 or Corollary 3.8; see the
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remark following Corollary 3.8 for a simple proof. We shall not have to use
Corollary 4.5.

Our next goal is to verify the hypothesis of Theorem 3.9 for U = g¢ and
V= g2? incase 2¢ €3 (see Lemma 4.7). This amounts to proving the Kos-
tant-Mostow double transitivity theorem. For reasons mentioned above, we
shall essentially repeat Kostant’s proof [6, §2.1], with a couple of modifica-
tions (the proofs of Lemmas 4.18 and 4.20) taken from Wallach’s exposition
[11, Theorem 8.11.3]. The result is:

Theorem 4.6. Suppose ¢ € Z, and let Ny be the subalgebra g"S ® g‘MS
of g. Then S(n¢)“ = S(g®)" ® S(g2®)", and this is a polynomial algebra.
Moreover, let Py €S e gd’)"l be the canonical quadratic m-invariant defined by
By, and if 2¢ €3, let p, 4 € 52 g2H)™ be the same for 2¢. Then there are
four possibilities:

Case 1. dim g =1 and g?® = 0. Let x€ g%, x4 0. Then S(n,)"=
S(g?) = Kx], and Hx) is the polynomial algebra generated by x.

Case 2. dim 8% > 1 and g2% = 0. Then S(ny* = Kpy), and Hp,) is
the polynomial algebra generated by p .

Case 3. dim g® > dim g*® = 1. Then S(g%)"= Kp,) and S(g?#)" =
S( 32¢>) = kyl, where ye€ 92¢" y # 0. Both algebras are polynomial algebras
in the indicated generators, so that S(n,)" is the polynomial algebra K py, ]
in the two generators p, and y.

Case 4. dim g% > dim %> 1. Then S(g®)* and S(g2®) are the poly-
nomial algebras k[p¢] and k[p2¢], respectively, so that S(n¢)m is the poly-
nomial algebra Kpy, p, ).

Proof. We may, and do, assume that k is algebraically closed. The fact
that dim g¢ > dim 92“7S will be proved in Lemma 4.8. Also, Cases 1 and 2
are covered in Theorem 4.4. The rest of Theorem 4.6 follows immediately
from Theorem 3.9, Lemma 4.1 and:

Lemma 4.7. Suppose ¢, 2¢ € 2. Let ey € g¢ and e € gqu be Bg-non-
isotropic, and let m be the centralizer of ey in m. Then [m,, e1] = eJI' in

9205.

This result will follow from the next series of lemmas. Note that only
Case 4 of Theorem 4.6 remains to be proved, since Lemma 4.7 is trivial if
dim 32¢ =1, But it will not be necessary in the following proof to impose
any restriction on dim 92¢, and in fact the proof holds even if gw =0.

We shall use the notation of the proof of Lemma 4.1, so that ey is a
certain multiple of e,, and {bqs, €4 /¢} spans a three-dimensional simple
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subalgebra uy, of g. Also as in the proof of Lemma 4.1, let g, be the Uy
submodule I.l]?=_2 g’® of g. The natural representation of Uy on gy decom-
poses gy into a direct sum of irreducible uy-submodules. Since the eigen-
values of ad b¢ on g, are among 0, 2 and 4 (with corresponding eigen-
spaces g =m @ a, g*® and g*2%), the dimensions of the irreducible com-
ponents can only be 1, 3 and 5. A five-dimensional irreducible module occurs
if and only if 92"S # 0, and a three-dimensional irreducible module always
occurs—uy itself. Let g;C gy be the sum of all the (2i + 1)-dimensional
irreducible uy-submodules of gy (i=0,1,2), sothat g, =9y ®9; ®g,.
Also, let gl=g, N 9’¢ (0<i<2,-2<j<2); then g,= II} g/ for each

j==i

i=0,1,2. Also, g¥2® = g2, g*® = g¥1 @ g*! and ¢ = gJ @ Q0 @ ;-
Lemma 4.8. We have dim g¢ > dim 9205.

Proof. This is clear since gd’ = gi ® gg, gz‘b = gg, dim g% = dim g% and
dim g} > 1 (since ey € g}). Q.E.D.

Lemma 4.9. The decomposition gy = g, ® 8, @ g, is both Bg-orthogonal
and B-orthogonal.

Proof. First we shall show that Be(gi, g;) =0, Let x€ g%, y€E gll,. Then

2¢

y= [/¢, z] for some z € g°% = gg, and so

Be(x, }’) = -'B(X, 9)') = -B(xy [‘e¢9 oz]) = -B([e¢, x], 02) =0

since [e¢, x] = 0. Hence Be(gﬁ, gé) = 0, and similar arguments show that
Bolar ", 877 = B(gg, 87) = By(gg, 9) =0
and
B(gl, g7" = B(g7", gD = B(g), gg) = B(gl, g)) = 0.

Since Be(gqu, g"d’) =0 unless j=k, and B(gqu, g*%) = 0 unless j=-k,
all that remains is to show that Be(g?, gg) = B( g?, gg) =0. Let u€ g(l’, v egg.
Then v = [f¢, w] for some w € g;, so that

Bg(u, v) = -B(u, 6v) = ~B(u, [~e o 6wl)
= -B([e¢, ul, Ow) = Ba([e¢, ul, w)=0

by the above, since [ey, ul € g{ and we g;. Thus Be(g?, gg) = 0. Similarly,
B(g), ¢9) =0. Q.E.D.

Lemma 4.10. Let e€ g® and [ ¢ g"¢, and suppose Ble, f) =0, or
equivalently, By(f, 6e) =0 or By(e, 6f) =0. Then [e, flem.
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Proof. Since [e, /1€ g°=m @ a and since m is the B-orthogonal com-
plement of o in g°, it is sufficient to show that B([e, f], a) = 0. But if
b€ a, then

B(le, {1, ) = -Ble, [5, {1) = ¢(h)Ble, f) =0,

and so the lemma is proved. Q.E.D.
Lemma 4.11. We have gg Cm,

Proof. Every element in gg is of the form [e¢, /1, where f € g;l. Since
ey €9y, Lemma 4.9 implies that B(e¢, f) = 0. But then [e¢, flem by Lem-
ma 4.10. Q.E.D.

Lemma 4.12, We have 92 =khy ® (g? nm).

Proof. It is sufficient to show that g? Ckhy +m. But 9(1) = [,e¢,, 9'1'1]
and g'l'l C g"’S = kf Py © /é, where /; is the Bgrorthogonal complement of f¢
in g~%. In fact, Bo(f4s f4) = Boley, ey) # 0. Hence g? Ckhy +ley, /qls],'
and [eg, /;] Cm by Lemma 4.10. Q.E.D.

Lemma 4.13. We have gg =Ker¢ & (gg nm).

Proof. Since gg = @, is the centralizer of Uy in gy, 98 is stable under
6, and so 98 = (98 Nna) @ (gg N m). But the centralizer of uy 'n a is clear-
ly Ker ¢, and so gg Na=XKer¢. Q.E.D.

Let m;=g Nm= g? Nnm (i=1, 2, 3), and note that m, is the central-
izer of ey in m and hence coincides with the subalgebra m, in the state-
ment of Lemma 4.7. The next lemma summarizes the last three:

Lemma 4.14. We have gg =m,, 9(1) = khqs ®m, and gg =Kerp @my. In
particular, m=m, ®m, & m,.

For all x € g, define x* = leg, x]. Write x** instead of (x™)*. Also,
define x, =[f4, %], and write x,, for (x4

Recall the following standard fact about the representation theory of the
three-dimensional simple Lie algebra u;: Let 7 be a finite-dimensional irre-
ducible representation of Uy on the space V and let v € V be a nonzero
eigenvector for m(hy). Let p be the smallest nonnegative integer j such
that 7 (f ?)" *1(1) = 0 and g the smallest nonnegative integer j such that
(ey) 7*1(y) = 0. Then 7(fg)m(eg)v) = (p + 1)gv and (e (fx)v) =
(g + )pv. This implies:

Lemma 4.15. For all x€m,, (x*%), = 42, (x™), = 6x, (x,,)* = 4x, and

(x*)* = 6x.
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Lemma 4.16. Let x, y € m,. Then [x, y** = [x™*, y] = (2/3)[y*, «*].
Proof. By Lemma 4.15,
[x, y*1 = (1/6[(x"),, y**1 = (1/6M(y*),, #*1 = (2/3)y*, ="1.

Hence also
[x**, y1 = Iy, £™*] = =(2/3)[x*, y*1 = (2/3)y*, x*]. Q.E.D.

Lemma 4.17. For all X,y € mz, [x, y o (2/3)["*’ }’*].-
Proof. We have
Lo, 1™ =12 1+ 20", 5]+ [, y1 = 273", 5]

by Lemma 4.16, Q.E.D.
For all x€ gy, let x; (i=0, 1, 2) be the component of x in g, with
respect to the decomposition g4 = g, ® 9; & ;-

Lemma 4.18. Forall x, yem,, [x, y1, =0.
Proof. By Lemma 4.17, [x, y]** = (2/3)[x*, y*], so that
([x, y1*%), = @/3)(x"),, y*1+ (2/3)[x%, (¥),]
= 4[x, y*1 + 4[x*, y] = 4lx, y1%,

using Lemma 4.15. But [x, y]** = ([x, y] 2)**, and (([x, y] 2)**)* = 4([x, y] 2)*
by Lemma 4.15. Hence [x, y1* = ([x, y] 2)*- But since [x, yJ* = ([x, y] 1)*+
([x y1,)%, we get ([x, y1))* =0, and so [x, y}; =0. Q.E.D.

Lemma 4.19. For all x, y € m,, [[x, y], y**1 = =2lx, yl,, y**1.
Proof. By Lemma 4.16, we have
[Lx, 51, y**1 =[x, y]z)**, y1 =[x, y1**, y] = dlx, y**1, 5]
(Lemmas 4.16 and 4.17)
=[x, y, y**1 =[x, [y**, yll = llx, 5], y**1
(Lemma 4.16)
=[x, ylg y**1=1lx, y1,, ¥,

by Lemma 4.18. The lemma now follows. Q.E.D.
If x€m, note that x, = -0x* and x,, =0x"%,

Lemma 4.20. Let x, y € m_, and suppose By(x**, y**) = 0. Then
y 2 bp (7]
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[ yuud € my [, ) = dy™, x,.), and [<*¥, Yaxl g = 0.

Proof. By Lemma 4.10 applied to gz¢ in place of gd’, e=x" and =
Yix = 0y**, we have [x**, y, 1€ m. Thus

[, y**] = 6["**’ Yiend = [9"**’ 0)'**] = (%0 y**] = "[)'**' LR

proving the second assertion.
To prove the last, first note that (y,,)* = 4y,, by Lemma 4.15. Hence

X, 3l = 16, (7,071 = 4l2*%, y,]

= 4[x**, y1, - 4l(x*),, y] = 41, ), -160x*, 5]
(again by Lemma 4.15)
= 4([x, yI**), - 1d+%, y],
by Lemmas 4.16 and 4.17. Thus
([**, 3] % =—-1613% 51,

Hence by the second assertion, we also have

([, yeed )F = A[y**, x,,1 )% = 16y%, 1, = -16[x, y*1,.
Thus
([x**, y,d 0¥ = =8(0x*, 31 + [x, y*D | = =8([x, y1"), = -8(x, y1)* =0,
by Lemma 4.18. It is finally clear that [x**, y,,], =0. Q.E.D.

Lemma 4.21, Let x, y e m_, and suppose Be(x**, y**) = 0. Then

[X*’ y**] = -0[x, y]*-

Proof. We have [x,, y**] = (1/4)[x,,, y**1* by Lemma 4.15, and this is
(1/4)[x**, y**]* ‘by Lemma 4.20. But [x**, y,) € m (Lemma 4.20). Thus
the last assertion of Lemma 4.20 shows that [x,, y**] € g;. Now

[x*’ y**]* = [(X*)*, y**] = G[X, y**]

2?

(by Lemma 4.15)
= __ax, y k%

by Lemmas 4.16 and 4.17. But both [x,, y**]1 and [x, yI* are in g% by the
above and Lemma 4.18. Hence [x,, y**] = =[x, y]*, and the lemma follows
by applying 6. Q.E.D.

Lemma 4.22. Let x, y € m,, and suppose Ba(x**, y**) =0 and

BG()’**’ )’**) =1/2(¢, ¢). Then
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[, ylg y**1= -x**/18,

Proof. By Lemma 4.19, [[x, y]o, y**] =-2[[x, y]z, y**].' But [x, y]z =
(1/6)(Ix, y1,)*, by Lemmas 4.15 and 4.18, and so

[ g ¥ = 41/3)({x, 1%, y**1

= =(1/3)[x, y),, y**T* = (1/18)[x*, y,,), y**T5
by Lemma 4.21. Also,

By(y*™, y**) = 1/2(¢, ¢) = 2/(2¢, 29),

and so as in §2 we must have the bracket relations for a three-dimensional
simple Lie algebra, say W spanned by },2¢’ y** and —Oy**:

[b2¢, ¥y = 2y*%, [b2¢, —0y**1=20y** and [y**, —0y**] = hyg
But —0y** = ~y,, and h,p="shy. Thus x* is an eigenvector for ad h,e
with eigenvalue 1, and must lie in a two-dimensional irreducible u, 4-submod-
ule of g. Hence applying the discussion preceding Lemma 4.15 to 4,4, we
get
[y*™, [=Yir £ = o,

Thus [[x, y15, y**1 = =x**/18, and the lemma is proved. Q.E.D.

In the notation of Lemma 4.7, a multiple e’ of the nonisotropic vector
e € g2¢ may be chosen so that Bye’, e') = 1/2(¢, ¢). Then e’ is of the
form y** for some y € m,. Let e e e'i'. Then e" = x** for some x € m,,
and so by Lemma 4.22, [-18[x, y]o, e'] = e". Thus there exists z € m, such
that [z, e ] = e". Lemma 4.7 is finally proved, and hence so is Theorem 4.6.
Q.E.D.

5. The structure of )'(2. Continuing to work in the setting of §2, we shall
transfer Theorem 4.6 to its ‘‘noncommutative analogue’, i.e., to the structure
theorem for ?'(; (see below).

Retain the notation of 4. In particular, ¢ €2 is fixed. Recall the ca-
nonical linear isomorphism A: S(g) — §. Let N ¢ be the universal envelop-
ing algebra of the Lie subalgebra ny = gd’ @ g2¢ of g defined in Theorem
4.6, so that A: S(ny) — T(d, is an m-module isomorphism which restricts to a
linear isomorphism from S(n¢)m to T(;. We shall now use Theorem 4.6 to give
an explicit description of the algebra )'(2. Recall the canonical quadratic
m-invariants py €S 2 g®)" and (if 26 €3) Pyg € SAg2®)". Define

9¢ = 2)\(?¢)/(¢’ ¢) € T(m ,
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and similarly, if 2¢ €%, define

926 = 2Mp,9)/(2,26) = Np, )/ b, &) €T,

Theorem 5.1. T(; is commutative and in fact is a polynomial algebra.
More precisely, in the four cases of Theorem 4.6, we have:

Case 1. 3'(2 = )‘(qs = K x], the polynomial algebra generated by an arbi-
trary nonzero x € §*.

Case 2, T(; = k[q¢], the polynomial algebra generated by q.

Case 3. 7'(2 = k[q¢, yl, where y is an arbitrary nonzero element of 32¢;
this is the polynomial algebra in the indicated generators.

Case 4. T('; = k[q¢, q2¢], the polynomial algebra generated by 9¢ and
12¢

Proof. Cases 1 and 2 follow immediately from the corresponding cases
of Theorem 4.6, together with the fact that A: S(n¢,) — T(qs is an algebra iso-
morphism since 1y is abelian.

Since A(S(n¢)m) = f)l';,, Theorem 4.6 shows that the elements g s and y
in Case 3 and 94 and ¢,4 in Case 4 lie in T(;;. Also, since gqu is central
in Ny, we see that g4 commutes with y in Case 3 and ¢, é in Case 4,

Denote the usual filtration of the enveloping algebra )'(d, by T(o C T(l C f)'(z Ceee,
so that T(o=k +1 and T(la-k- 1®ny, and for each r € Z, let 7 : T(r—'f)'(,/ﬁ'_l
be the canonical map. (Here we take T(_l = 0.) We also have the usual grad-
ing S(ny) = U, §7(ny) of S(ny). For each r € Z,, let 0,: §"(ny) —

7'(7 /7'(7__1 be the canonical map, so that o, is a linear isomorphism by the
Poincaré-Birkhoff-Witt theorem (see [2, Proposition 2.3.6]).

Now suppose that we are in Case 3. We claim that g4 and y are alge-
braically independent. In fact, if not, then for some r € Z,, there is an equa-
tion

’z []/22] i, 7=2i
a..q y - = 0
j=0 i=0 i) ¢ ’

where the . €k, and some a,#0(i=0,..., [7/2]); [ .1 denotes the
‘‘greatest integer’’ function. Thus 2[__{02] airqéy’-Zi el

[r/Z] . .
n, 2 2 q:ﬁyr-zl =0.
0

1=

p-1» So that

Consider the element

[r/2] 2 ir—Zi §s7(n)
S = lgo air WP¢ y € n¢.
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Then

% ] i

(/2] . .
= ﬂ' Z air qéyr-ZI = 0,
i=0

and so s = 0. But this is a contradiction, since py and y are algebraically
independent in S(nd,) and the claim is established. A similar argument shows
that in Case 4, 94 and gq,4 are algebraically independent.

All that remains is to show that ¢4 and y generate T(¢ 1n Case 3 and
that ¢4 and ¢,4 generate T(qs in Case 4. We shall carry out the argument
only for Case 3; Case 4 is similar. Assume inductively that ¢4 and y gen-
erate T(¢ NN ,» where 7 € Z . (This is trivially true for 7= 0.) Now

t .
i=0
forall t €Z,. Let

r+l
z eﬁ; AT, =2 (S(nq,,)"l n iI;IO Si(n¢)).

Then z is of the form

) r+1 [/2] 2 i .
& & \G ¢>”¢) y )

(aij € k) by Theorem 4.6. But

r+1 [j/2] gy
z - i,j=2i
and so the induction hypothesis implies that z can be expressed as a poly-
nomial in 94 and y. This completes the proof of Theorem 5.1. Q.E.D.

6. The case 2a £ 3. In this section, we compute certain commutators
in the universal enveloping algebra § of g, and then we use these to deter-
mine certain conical vectors in the twisted induced g-modules X", where
v € a* (see $2). Specifically, we prove our main results (Theorems 10.1 and
10.2) in the special case in which twice the relevant restricted root is not a
restricted root (see Theorems 6.17 and 6.18). But the first part of the sec-
tion, through Lemma 6.4, is valid in general, and this will be important in §8.
Maintain the hypotheses and notation of the last section. For conven-
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ience assume for awhile (through Corollary 6.10) that k is algebraically
closed.

Continue to fix ¢ €2, and choose hy, €4, f¢» and Uy as in S2. Apply-
ing the constructions of the beginnings of $$4 and 5 to ~ in place of ¢, we
have canonical elements p_g € $Ag=?)" and q_p=2Mp_u)/($, ¢) €N 4.
Our goal now is to compute the commutator [e & q_¢] in Q

Since Be(ed,, e¢) =2/(¢p, ¢), it is clear that Be(/¢, /¢) = 2(¢, ¢) also.
Using the notation of the proof of Lemma 4.7, we recall from Lemma 4.9 that
the decomposition gy = g, @ 8; @ g, is By-orthogonal, and hence so is the
decomposition g=% = gl'l ® g'z'l. Set f, = /¢. Since By is nonsingular on
g“’S and k is algebraically closed, we may complete f, to a Bg-orthogonal
basis {f}, ..., f,} of g~ such that By(/,, f,) = 2/(¢, ) forall i=1,...,
n. But since f, € g;l, we may also assume that f,, ..., f, € g;l and that
frsrr v a1, €850 Here n=dim ¢® =dim g=% and = dim g7 Note that
dim ¢2® = dim g;l =n -7, and hence that 924’ # 0 if and only if 7 <.

The canonical element p_ s €S ' g’d’) is equal to the sum of the squares

¢

of the elements of any Bg-orthonormal basis of g~%, and so

_ @8 &

p-¢ 2 1=Zl /lz'

Thus

2 n
= —\ = 2eN L.
= &P (p_g) EI f; €N_g

To compute [e, q_,], we first note that
¢ 1-¢

leg a_g1=

1

Uyl

leys A= gl([eqs, [+ fleg, 1D

M=

(Meg, /1 11+ 2f Tegs £.D
1

i

™M=

= 3 W, egll+2f le g, 1.D.
i=1

Lemma 6.1. [fl, [/1, e¢]] ==2f,.

Proof. This follows immediately from the bracket relations for A & €o
and f; =f4. Q.E.D.

Lemma 6.2. Forall i=2,...,n, [e¢, f;] em.
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Proof. Apply Lemma 4.10. Q.E.D.

Lemma 6.3. Forall i=2,...,1[f;[f;, el =2f,, and forall i=r+
Leoyn [/p [fis e¢]] = 6/1'

Proof. Let i=2, ..., n. Then

[e¢9 [/i’ [fi’ e¢]]] = —[e¢’ [/i, [e¢, fi]]] = -{/i’ [e¢, [e¢, /i]]]o
But [ey, f;] em (Lemma 6.2), so that

6[e¢’ [e¢, /I]] =[0e¢, [€¢a f,]] ="[/1, [ed” Ii]]"

Now we can apply the standard representation theory of the three-dimensional
simple Lie algebra . If 2<i <7, then f; €g7l, and so [f}, legs f,11=21,
and if r+1<i<m, then f; € 65!, and so [f,, legs 7,11 =6f;. Hence

[eqs, [e¢, /i]] =-20f; or ~60f,, respectively, and so

legs 1 [f;r e =201, 61,1 o df,, 6f,],

respectively. But [f;, 0f,1==Bg(f,, [)x_, (see §2), and this is just b
Thus
[eqS’ [/i’ [fi’ e¢]]] = 2b¢ or 6h¢,

respectively. But [fi’ [fi’ ed,]] € g’¢, and so has eigenvalue -2 for ad b,
Since [e¢,, [fi’ [,i’ e¢]]] is a multiple of hy, the representation theory of
Uy implies that U ;s e¢]] must be a multiple of f,. Since [e¢, fl= hg,
the multiple is determined and the lemma follows. Q.E.D.

In view of these lemmas, we have

legs a_gl ==2/, +2[ hy +2(r=Df +6(n=2f +2 r__zn; fleg 1,1

=2 ((.’m -2r- 2)/1 + [1b¢ + i [i[e¢, [1]) .
i=2

Let
" Pg = %((dim g®)¢ + (dim g2%) (2¢)) € a*.

Then py =% (n+ 2(n = N)¢ = 5(3n - 21)¢, and so py(hy) = 3n — 2r. The
conclusion is:

Lemma 6.4. Define Py as in (1). Then

~[e¢, q_¢] =2 ((p¢ - ¢) (b¢)f¢, + f¢b¢ + 1=i2 fi[eqS’ /,:D .
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We could now use the derivation law to write down an expression for
[e & q'_i_ ¢,], for all d € Z,. In order to simplify matters, however, we shall
assume at this point that 924’ =0, which implies that 9"¢' is an abelian Lie
subalgebra of g. The much subtler general situation is deferred to subse-
quent sections.

Lemma 6.5. Suppose 2¢ ¢ 2. Forall del,,
legs 9% 4] = 2dg9} (/¢(h¢ +op=dp) b)) + 3 fley /,.1) .
i=2

¢

Proof. From Lemmas 6.4 and 6.2 and the commutativity of g~%, we get

d . .
legy a4 = 3 aZglews a_gliTs
= 2dg%7} ((pf,S —H s+ S fileys /i])
i=2
d d-i ‘1
+2fy 3 aZhet,
ji=

But q_g4 is clearly a restricted weight vector for the action of & on G with
restricted weight —2¢, and so

b¢q_j:¢l = [b¢’ qf_-él + q]_.gh¢
=2 - Db qig +qighy = gi 4G - D + by).

Hence
d .. & aa . »
and so
n
leg, 92 4] = 24523 (¢d)- A by + Zz filegs /i])
l=
+2dq? Y f4hy - 4dg23 4(d = 1)

- 24 (f¢<P¢("¢) ~2-2=D e+ T ilew )y )

= qui;}(/qb(”qs + (P¢ - d¢) (b¢)) + i /i[ed” /l]) oQ.E.D.
i=2



250 J. LEPOWSKY
The following result is now immediate:

Corollary 6.6. Suppose €2, and 2¢ ¢ 3. Let X be a g-module and
x € X a conical restricted weight vector with restricted weight p € a*, Then
forall de 'l ,

ey (g% 40 =24+ py—dp)(b)fpq?Y « x.

If dim gd’ =1 (in which case g*2¢' = 0 automatically), we also have the
following lemma and corollary:

Lemma 6.7. Suppose dim gd’ =1. Then forall deZ,,

Legs 1G] = g~ hy + (p g = dp/2) (b))
Proof. Since ey, /4] = by, we have
d .
leg 181 = El 18=7hg i
But
bl it = by (57 + [57 by = 157121 = 1) + by),
so that
leg, 181 =187 by - dd=1)) = df by + (py —dp/2) (b)),

since pylhy) =Ydlhy) =1. Q.E.D.

Corollary 6.8. Suppose ¢ €2, and dim gd’ =1, Let X be a g-module
and x € X an vinvariant restricted weight vector with restricted weight p € d
Then forall del,,

eg g D =dp+py-dd/ B NG - x.

Corollaries 6.6 and 6.8 imply the following two results. These have the
benefit of being true even if %k is not algebraically closed, as the field exten-
sion technique shows; we also use the fact that the Bg-nonisotropic vectors
in g"S span g¢.

Corollary 6.9. Suppose ¢p€2, and 2¢ ¢ %,. Let X be a g-module and
x € X a conical restricted weight vector with restricted weight p€ a*. Then
forall e, € g® and de Z,,
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e+ (g4 %) ==2d((u+ py - dp) (b)) (Be)g?3 - x.

Corollary 6.10. Suppose ¢ €3, and dim g®=1. Let X be a g-module
and x € X an neinvariant restricted weight vector with restricted weight p € o’
Then for all ey € ¢° and deZ,,

eq+ (Be)? - %) ==Y Byleq, e0) (9, D)+ py = dp/2) (5 ) (Be)?~! - .

Assume for the rest of this section that & is an arbitrary field of charac-
teristic zero—not necessarily algebraically closed. We are now ready to prove
the following basic result:

Lemma 6.11. Suppose ¢p €3, and 2¢p ¢ 3. Let v € a*, and let x, be
the canonical generator of the twisted induced g-module X¥ = V¥~P (see $2).
Set Y=(1_ b ° xo)me"*i> (see $5 for the definitions of J_ $ and n¢), and de-
fine by € a tobe hy if dim g% >1 and 2hy if dim g% = 1. If (v=p+pg)hy)
is not a positive even integer, then Y is the span of x,. Suppose
w-p+ Py (1’;5) =21, 1 a positive integer. Then Y is two-dimensional, with
basis {xo, /l . xo}, where [ = 9_¢ if dim gd’ > 1 and [ is a nonzero element
of g“qS if dim 94’ = 1. In this case, f!. %, is a restricted weight vector in
X” with restricted weight sy(v ~p + py) = py (recall from §2 that sy is the
Weyl reflection with respect to ¢).

Proof. Since the map @: J1~ — X¥ which takes y el toy- x, is an
m-module isomorphism (see §2), we see that

(n-qb . xo)m = (0)()'(_45))” = T(':_¢ * Xge

But by Theorem 5.1 (Cases 1 and 2), T(zqs is the polynomial algebra k[f],
where [ is as in the statement of the lemma. Hence

(n—d’ . xo)m = k[/] * X0

Let u€ K[f], sothat u=3%_, ad/d (a, €k, and only finitely many a,# 0),

and let e, be a Bgnonisotropic vector in g%; if dim 9‘7S =1, take e, =0f.
Suppose dim gd’ > 1. Then by Corollary 6.9,

eg - (uexp) ==2 di::o ad(v - p + py - dp) (hy)) (Geo)qd_‘q§ - %,

and this expression is zero if and only if @, d((v —p +p 4 — dp)(hy)) =0 for
all d. But this is the case if and only if @, =0 for all d> 0 such that
(v=p+py(hy) # 2d. The lemma for dim 6® > 1 now follows from Corollary
4.3; the last assertion of the lemma is clear since ql_¢ + x, has restricted
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weight v - p - 2I¢, and

5¢(V -P+P¢)=(V—p+p¢)-—(v-p+p¢)(b¢,)¢=v—p+p¢—21¢.

The case dim g® =1 is similar, using Corollary 6.10. Q.E.D.

Remark. Note that Lemma 6.11 holds when ¢ is not necessarily a sim-
ple restricted root, and even when % ¢ is a restricted root.

The situation in Lemma 6.11 simplifies nicely when dim a=1; the next
result is an immediate consequence of the lemma:

Theorem 6.12. Suppose dim a=1 and ¢ €2, is the only positive root.
Let vea*. Then'the conical space Y of the twisted induced g-module X"
is either one- or two-dimensional. Define b;c, €a tobe hy if dim g¢ > 1 and
2hy if dim g"5 =1, and let x, be the canonical generator of X". If V(b;s) is
not a positive even integer, then Y is the span of x, Suppose v(b:#) =2l,
I a positive integer. Then dim Y =2, and Y has basis {x L. x,}, where
[=4_g if dim g¢ >1 and { is a nonzero element of g"’¢ if dim g¢’ =1
In this case, f'. % is a restricted weight vector in XY with restricted
weight SgV = pe

Lemma 6.11 also gives some interesting information about the conical
space of X” even when dim a is arbitrary. To see this, we need some gen-
eral facts.

Lemma 6.13. Let IIC 2, be the set of simple restricted roots. Then the
subalgebra m of § is generated by the subspaces §* as a ranges through

n‘

Proof. We may, and do, assume that & is algebraically closed. For all
Y €3, define the order o(yy) of ¥ to be the integer 2 n, (a €II), where the
integers n are defined by the condition ¢ =2 n,a(aell). Then Y€, if
and only if o) >0, and ¥ €Il if and only if o(¢) = 1. We shall show by
induction on oY) (Y €Z,) that g"” lies in the space generated by the g*
(a eIl). This is clearly true if o(y)) = 1, so assume it is true for o(y) = m
(m>1), and let ¥’ €2, have order m + 1. Then the standard theory of root
systems shows that there exists a €Il such that the scalar product (¢, )
>0, and hence ¥ =Y’ — a is a positive restricted root of order m. Define
the subspace V of g by V= ]_I‘;.‘;_m g?*1% and construct as in $2 (taking
a for ¢) a subalgebra u, of § spanned by h,, e, and f,. Then V is a u,-
submodule of g, and ad b, has eigenvalue Y(h,) + 27 on the subspace
9¢+na of V; in particular, 9"“’"“ is exactly the (Y(h,) + 2n)-eigenspace for
ad by in V. But
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Wby +2=(+a)(hy) =¢'(h,) >0,

and so the integer Y(h,) > ~1. Hence ad b, has eigenvalue > -1 on g‘l’, and
so by the representation theory of the three-dimensional simple Lie algebra
u,, we see that [eg, g‘l’] = g"““ = QW, and so [g%, g‘/’] = g“". In view of
the induction hypothesis, we are finished. Q.E.D.

Remark. The above proof is of course similar to the proof of Lemma 4.2,

Lemma 6.14, Let a €1l (see Lemma 6.13). Then s p~p=s,ps = Pqo»
and p(hy)=p,(h,).

Proof. The first assertion is proved in [7(b), Lemma 4.16]. It follows that

P=Pa=5a{p=pa)=(p=po)=(p-p,)(ho)a
and so (p-p,)(h,)=0. Q.E.D.

Lemma 6.15. 1= is a direct sum of restricted weight spaces (with re«
spect to the natural action of a on ©) with restricted weights consisting of
those elements of a* of the form -2 n BB’ where B ranges through 11 and
ng€l,. Let acll, and suppose y€ U= is a restricted weight vector with
restricted weight of the form ca (c € k). Then y€N_, and ce-L,.

Proof. Let 2} ={yy €3, |%y ¢ Z,} Then n~=1In_, as ¢ ranges
through 21, Let ¢, ¥y .0vs ¢, be the elements of =1, Then the multi-
plication map in G induces a linear isomorphism

T(" =~ )I_¢l® n_¢2 @+ ® T('_\pp‘

The lemma now follows easily. Q.E.D.

Lemma 6.16. Let a€ll, ve a* and xq the canonical generator of the
twisted induced module X¥. The sum of the restricted weight spaces of X
with restricted weights of the form v —p + ca (c € k) is exactly T(_a < X

Proof. This is clear from Lemma 6.15 and the fact that the linear isomor-
phism w: J1= — X¥ which takes y to y - %, raises restricted weights by
v—p; le., if y€ Jl= is a restricted weight vector with restricted weight
p€ o, then w(y) is a restricted weight vector with restricted weight v - p
+p. Q.E.D.

We now have the following generalization of Theorem 6.12:

Theorem 6.17. Let o be a simple restricted root, and suppose 2a ¢ Z.
Let v € a*, and let Y be the subspace of the twisted induced g-module X"
spanned by the conical restricted weight vectors with restricted weights of
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the form v —p + ca (c € k). Then Y is either one- or two-dimensional. Define
ho€ a tobe hy if dim g* > 1 and 2h, if dim ¢* =1, and let x be the ca-
nonical generator of X”. If h,) is not a positive even integer, then Y is
the span of x. Suppose v(h,) =21, | a positive integer. Then dim Y =2,
and Y has basis {x, f'+ x,}, where {=q_g if dim ¢* > 1 and [ is a non-
zero element of g~ if dim g% = 1. In this case, [} x is a restricted weight
vector in X¥ with restricted weight s v — p.

Proof. Since the conical space of X” is clearly o-stable and hence the
direct sum of its intersections with the restricted weight spaces of X%, Y =
TM_q - =, e by Lemma 6.16, Let ye(M _ - xo)men"', sothat y =u -+ x;,
where u € T(_a_. Let B be a simple restricted root not equal to a. Then
B - a is not a restricted root and is not zero, so that [QB, n_,l= [gB, g~
= 0. Hence [g'B, ) =0 in G, and so

gP - (u-x)=u-(g% - xp)=0.

Lemma 6.13 now shows that y € Y. Thus Y =0T_, - xo)'@"a.

rem now follows from Lemmas 6.11 and 6.14. Q.E.D.
Remark. In the notation of Theorem 6.17, the assertion that v(hy) be a

, and the theo-

nonnegative even integer (possibly zero) is equivalent to the existence in X"
of an m-invariant restricted weight vector with restricted weight s, v —~p =
v-p-v(h)a (use Lemma 6.16). In this case, the m-invariant restricted
weight vectors with restricted weight s, v ~p span a one-dimensional space
and are conical vectors. Note also that if v € a® is arbitrary and if / and
x, are defined as in Theorem 6.17, then ™ - x, (m a positive integer) is n-
invariant if and only if its restricted weight is s v - p.

We can reformulate our conclusions as follows:

Theorem 6.18. Let a be a simple restricted root such that 2a.¢ Z. Let
1 v € a¥, and suppose that p—v is of the form ca (c€ k). (If dim a =1,
then this is automatic.) Then Homg(X“, XY) is at most one-dimensional,
and dim Homg(X¥, X¥) =1 if and only if either p=v, orelse p=s,v and
v(hy) is a nonnegative even integer, where hy=h, if dim g* > 1 and K =
2b, if dim g* = 1. Also, dim Homg(x", X¥) =1 if and only if X" is isomor-
phic to a g-submodule of XV,

Proof. Recall from$2 that Homg(X*, X¥) is isomorphic to the intersec-
tion Z of the conical space of X” with the restricted weight space for p—p.
If =v, then clearly dim Z = 1. Suppose p =s,v and v(h},) is a nonnega-
tive even integer. Then the above remark implies that dim Z = 1. Converse-
ly, suppose Z # 0, so that X" contains a conical restricted weight vector x
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with restricted weight g~ p. Since p=v +ca, p=p=v-p +ca, and so

x €Y, inthe notation of Theorem 6.17. If p# v, then x is not a multiple of
x, (again in the notation of Theorem 6.17), so that v(h},) is a positive even
integer and p~p =s, v ~p, i.e., p=5,v, by Theorem 6.17. The last asser-
tion of the theorem follows from the fact that any nonzero g-module map from
X* into X" is injective (see §2). Q.E.D.

7. The fundamental commutation relation in JU_ ¢+ Ve shall continue to
use the notation of §6, with & algebraically closed. But in this section, we
explicitly assume that g“5 # 0, i.e., that 2¢p € Z. We have the canonical
elements p_,4 € s g"w)"l and ¢_,4 = A(p_2¢)/2(¢, ?) e)'(':d, (see $5).

It is clearly important to compute the commutator [e YN ¢] in §. This
will easily turn out to be essentially [/¢, q_ ¢], and we have to know to what
extent this element commutes with ¢_. In particular, we want to compute
[[/4 g_4), 9_4]- Lemma 6.4 also points out the importance of this commu-
tator, since we need it in principle to simplify the commutator [e¢,, q‘_i_ ¢]. It
will turn out that [[/4, g_4l, 9_4] is essentially /4q_,4, and this is what
we call the fundamental commutation relation in JU_ ¢» the main result of this
section. Because of this, we know how to compute the further commutators
[-. -[[/¢,, q“¢], q_¢] cee 'q-qb]' The abstract algebraic setting in the next
section will reveal a more precise reason for calling our relation *‘fundamen-
tal’’. The point will be that the fundamental relation and the trivial relation
f¢q-2¢ = q_2¢/¢ are in a sense all the relations involving f4, q_4 and

9.2¢"

Lemma 7.1. The map ad fg: 9-2-1 - 9;2 is an isometry from tiB@lg.‘,'l x
! 1o Bylgy? x g3°.

92
Proof. Let x, y € g;l. Then
Bg([/¢, x], [f¢, y]) = -B([/d,, x], 9[/4,, y]) = B([f¢, X], [e¢, 9}'])

=-—B([e¢, [/¢’ x]]’ oy) =-4 B(x’ 6)’)

(by Lemma 4.15)
=4B4x, y). Q.E.D.

Recall from $6 the Bgorthogonal basis {f, ..., [} of g"'¢'.
Lemma 7.2, We have
13 2_1 ¢ [ 12
q-2¢°16 ,Zl[/¢’li] 16-2 1f¢’/i

i= i=r+

Proof. By Lemma 7.1, {[/¢, /r“],- ceny [/¢, /n]} is a Bg-orthogonal
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basis of g5 = 3~2% such that each Bo([fgs 1,3 [/ s 1,1 = 8/(¢p, #). Since
9_,¢ is 1/2(¢, ¢) times the sum of the squares of the elements of any By~
orthonormal basis of g-zqs, we must have ¢_, 4 =(1/16) 37__,[f4, filz. But
[/4» /=0 if j=1,..., r and so the lemma follows. Q.E.D.

Lemma 7.3, We have

leg 4_s41 = =l 9_g) = 3 z=;l AT

)

1
N =

n
JAVF AR
i=zr+l o 1
Proof. By Lemma 7.2,

l n
[€¢,, q_2¢] = R Z l[e¢,, [/¢, fi]2]

i=r+

1 n
=16, 2, Tew g 117 1]

+ [/¢, /1] [e¢, [/¢, /1]])
3 Glig 1)+ g 1,17

i=rtl

o=

(by Lemma 4.15)
l n
== Lf s |
2 i=§-l fillg: £:]
(since [/¢, fle g"z¢', which is central in ﬂ_qs)
1 n
On the other hand, q_g4 = 2, /1? , so that
[quy q_¢] = -;l[ld,’ /12]

= il([qu’ /i]/i+/i[/¢’ /1])

n
=2 «Zl/l[f¢’ /1]. Q-E.D.
i=
Theorem 7.4. (The fundamental commutation relation in T(_ ¢.) We have

[[/qb’ q_¢]9 q_¢] = -64/¢q-'2¢'
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More generally, suppose the field k is arbitrary of characteristic zero, and
let [ € g'¢. Then

([fs-a_gls a_gl =-64fa_, 4.

Proof. It is clearly sufficient to prove the first assertion. But by Lem-
ma 7.3,

[[f¢, q_¢], q_d>] = 4[[e¢s q_zd)]’ q_¢]

= 4[[e¢, q_qs], q_2¢,] = 8/¢,[h¢a Q_2¢]:
by Lemma 6.4, and this is just -64/,9_,4. Q.E.D.

8. The transfer principles. Here we assume that 32¢ # 0, as in §7.
But we take k to be an arbitrary field of characteristic zero.

If we attempt to compute directly the conical vectors in the twisted in-
duced modules X” (v € o*), we are confronted with monumental difficulties
(cf. the remark at the end of this section). Trying to avoid these problems,
we discovered a metamathematical *‘transfer principle’’ (Theorem 8.6) which
enables us essentially to transfer certain theorems about conical vectors in
modules over one semisimple symmetric Lie algebra to theorems about coni-
cal vectors in modules over any other semisimple symmetric Lie algebra.
This reduces the problem of computing certain conical vectors to any one
special case of semisimple symmetric Lie algebra (in which twice the rele-
vant simple restricted root is a restricted root). The proof of this “‘transfer
principle for conical vectors’’ is based on another metamathematical result
(Theorem 8.4) which states that certain kinds of algebraic identities in JU_ é
can be transferred from one semisimple symmetric Lie algebra to another.
The starting point for the proof of this theorem is the *‘fundamental commu-
tation relation’’ of the last section.

Let P = Huw, %, y, z], the polynomial algebra in four indeterminates,
and define a P-module structure on T(_d, by the correspondences

w > left multiplication by g_4,
% b left multiplication by 4_,4,
y +» right multiplication by q_g4,
z > right multiplication by q_,4.
This P-module structure is well defined because [q_¢, q_2¢,] =0 in N_ e

¢

Theorem 8.1. Let { be an arbitrary By-nonisotropic element of g~7,
and let P! denote the annibilator of { in P under the above module action.
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Then the ideal P! is generated by x - z and w? - 2wy + y? + G4x, that is,
P/ = P(x - 2) + P(w? - 2wy + y? + 64x).

Proof. Since q9_,4 is central in ?I~¢, it is clear that x — z € P/, and
so P(x — z) C P/, The fundamental commutation relation, Theorem 7.4, im-
plies immediately that w? = 2wy + y? + 64x € P/ and hence the ideal gener-
ated by this element is contained in P/, What we must show now is that these
two ideals generate P/,

Let a€ P/, a# 0, and regard P as Hx, y, z][w]. Since the leading co-
efficient 1 of w? - 2wy + y2 + 64x is a unit in k[x, y, z], the Euclidean al-
gorithm implies the existence of s, t € klx, y, z][w], where ¢ is a polynomial
of degree at most 1 in w, such that

a=s(w? = 2wy + y? + 64x) + t.
Here ¢ is of the form u + wv, where u, v € klx, ¥s z]. Since a € P/, t € Pl
Also, there exist polynomials u', v' € Ky, z] such that
u=u" (mod P(x-2)) and v=1v" (mod P(x - 2)).
Hence
t=u' +wv' (mod P(x - 2)),
and so
a=u' +w' (mod Plx = 2) + P(w? = 2wy + y? + G4x)).
In particular, #' + wv' € P/, Write 4’ = 4'(y, z) and v’ = v'(y, z). Then by
the definition of the medule action of P on f)'(_ #» We have
[0 (q_gy a_y9) +d_gfv'(d_gy 4_,4) =0,

and so

/(u'(q-¢, q_2¢) + q_¢v'(q_¢,, q_2¢» - [fa 4_¢]vl(Q-¢, q-qu) = 0.

Set aly, 2) = #'(y, 2) + yv'(y, 2) and Bly, 2) = -v'(y, 2) (a, B € iy, 2.
Then

/a(q_¢’ q_2¢) + [/’ q_¢]B(q_¢, q_2¢) =0,

It is sufficient to show that 0 =8 =0, since then we will have W =v"'=0,
and so @ € P(x = 2) + P(w? - 2wy + y? + 64x).

As in the proof of Theorem 5.1, let 7'(0 C T(l C )'(2 C «++ be the usual fil-
tration of 7'(_¢, and for each r €Z,, let m, :T(’ - T(’/T('_l be the canonical
map. (Here JI_, = 0.) Also, let 0,: §7(n_y) '-'T('/T('_l be the natural map,
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so that 0, is a linear isomorphism by the Poincaré-Birkhoff-Witt theorem.
Write

aly, z) = ai].yizj"i

]

C
=01

i

o
o

and
d j .o
B()” 2) = Z z bijyzzy-z
j=0 =0
with ¢, deZ, and ;i bij €k If a# 0, we may assume that some a,_# 0
(i=0,...,0), and if B # 0, we may also assume that some b, # 0
(i=0,...,d). Also, if a =0, take c =0 and if B =0, take d=0,

Now we claim that [f, g_g)l€J(, and [f, 9_g4] ¢ 1. In fact, it is suffi-
cient to prove this when k is algebraically closed. But then a suitable mul-
tiple of f may be taken as the [, of §7, and the claim follows from Lemma
7.3. In particular, falg_g, 9_,4) efnzcﬂ and [f, q_¢]B(q_¢, 9_,9) €
n2d+2; recall that the sum of these two terms is zero. Either 2¢ +1>2d +2
or 2c + 1 <2d + 2, Suppose the first inequality holds. Then

Tyl g 9_54) = 0,

so that
= i c—-1
”zc+1(/ i§0 2,.9-4923) = O
Let
! = ——2-- and p' = _..l__ b
be=T5 9 i-9 26~ g, ) [-2#
and set
c ., .
s={ ig() “ic(f’:.¢)l(1’..z¢>)c ie Szc+1(n_¢).
Then

02c+1(s) = "2c+1()‘(5)) =Tac+1 (A(/) lgo aic)\(?'.¢)i)‘(?'.z¢)c-i)

c . .

=Macs41 </ 'zo %ic q:-qch-zla =0.
=

Hence s =0, and so each @, =0 (i=0, ..., c) This is only possible if

a=0, But then ¢ =0, and the inequality 2c + 1> 2d +2 cannot hold. Hence

we may assume that 2c + 1 <2d + 2. In this case,
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7ras2Uhs a_g1Blg_g, 9_,4) =0,

and so
< i gd-i
Tyd+2 U, q_¢,] igo bidq-qbq_zqs =0.

Since [f, q._ ¢] 4 T(I (see above), there exists a nonzero element geSz('n_d,)
such that A(g) =[f, q_¢] (mod N - Set

d . .
h=¢g i};b bia(bl @) (bl )7 €529 %n_ ).

Then

d . )
“zd+2(”) = ”2d+z()‘(”» =Td+2 ()‘(8) iz_-:o bid)‘(l‘"-¢)')‘(?‘-2¢)dq)

d . .
=Td+2 ([/’ q_g ig) bidq.t..qui 2‘¢) =0.

Hence h=0. But g # 0, so that each b,;,=0 (i=0, ..., d). This proves that
B=0, and so d=0. Since 2c + 1 <2d + 2, we also have ¢ =0. Thus a is
a scalar, and the equation fa =0 shows that a =0, We have proved that
a=f =0, and hence the theorem. Q.E.D.

Suppose now that dim gqu =1, and suppose there exists an element
T_2¢ € g..qu such that 7_2_2¢, =q_,¢ in T(_¢. (Such an element exists if k
is algebraically closed, but otherwise, it might not exist.) Define a new P-
module structure on ?1_¢ by the correspondences

w > left multiplication by ¢_g,
% > left multiplication by r_,4,
y b right multiplication by q_g4,
z b right multiplication by r_, .
This P-module structure is well defined since [q_¢, r_ 2¢] =0 in T(_ &
Theorem 8.2. Under the above hypotheses, let f € g‘d’ be Bg-noniso-

tropic, and let P ; be the annibilator of f in P under the new module action.
Then

Py=Plx-2)+ P(w? - 2wy + y2 + 64x?).

Proof. The first part of the proof of Theorem 8.1 carries over to the pre-
sent situation and shows that is sufficient to prove the following: Let
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aly, z), Bly, 2) € kly, zl, and suppose
/a(q_¢, r_2¢) + [/, q_¢]/3(q_¢, r_2¢,) =0,
Then a =8=0.

It is clearly sufficient to assume that k is algebraically closed and that
{ is the element fy of $§6 and 7. But then by Lemma 7.3, [/¢, q_¢] =
2/n[/¢,, {,) (where f, is as in that lemma; see §6), since dim g?® = 1. By
Lemma 7.2, [/¢, /n]2 =169_,4 in T(_qs, and since [/¢>’ /n] € 9“2¢, we must
have 4r_, 4 = i[fcb’ {,). Changing the sign of f_ if necessary, we may as-
sume that 4r_,, =[fy4, f,]. Setting a'(y, 2) = a(y, 2) and B'(y, 2) =
8zB(y, 2) in kly, z], we have

@ 169 g 7_29) +[,Ba_gs 7_y4) = 0,

and it is sufficient to show that a'=8'=0.
Now [e¢, /n] em (where ey is as in $6), by Lemma 6.2, and so

legs 1,3+ a'(g_gs 7_5¢) =leg, 11 Bla_go 7_5¢) =0

in )‘(_¢, since q_g4,7_54 6"(2¢. Also, [[eqS, fn], /¢] =-6f, by Lemma
4.15 and [ley, f 1, {1 = 6f4 by Lemma 6.3. Hence the application of [e, £ ]
to () gives

3) /na'(q_qs, r_2¢) - /¢B'(q_¢, r_2¢) =0,

Abbreviate a'(q_¢, r__2¢) by a, and B'(q_¢, r_2¢) by Bgy- Multiply-
ing (2) on the right by a,, multiplying (3) on the right by -8, and adding
the two results, we get /¢(a(2) + B(z,) = 0. Since Q has no zero divisors,

(aO + (-l)l/zﬁo)(ao - (—1)1/230) = ag + Bg = 0’

and so ay= #-1) v 2B+ Thus (#) implies that a, =B, = 0. The fact that
a'(y, 2) = B'(y, z) = 0 now follows from Theorem 5.1, Case 3. Q.E.D.

Now assume the original hypotheses of this section, so that 32¢ #£ 0.,
The following consequence of the last two theorems is immediate:

Corollary 8.3. Let Q be the polynomial algebra in two variables over k,
and let a,, b.€Q (i=1,...,7r,7€Z,). Let { be a By-nonisotropic element
of g"d’. Then

(4) il ai(q_¢’ Q_2¢)fbi(q_¢,, q_2¢) =0

in T(_ ¢ if and only if
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r
2 4,89b,ePlx-2)+ P(w? - 2wy + y? + 64x),
i=1
where we identify P with Q ® Q in the natural way. Suppose in addition
that dim 9245 =1 and that there exists an element r_, 4 € 9'2‘75 such that
r32¢ = q_2¢. Then

G i ai(q—qS’ r—2¢)/bi(q_¢1 '_2¢) =0

i=1

in T(..qs if and only if

r
> a,®b,€Plx - 2) + P(w? - 2wy + y? + 64x2),

i=1

where we again identify P with Q ® Q.
This corollary proves:

Theorem 8.4. (The transfer principle for T(_cb.) Let Q be the polynomial
algebra in two variables over k, and let a, b,€Q (i=1,...,r,r€Z,). Let
(g 0) be a semisimple symmetric Lie algebra over k with symmeiric decom-
position g= €@ Y, a a splitting Cartan subspace of §, 2 C a* the corre-
sponding system of restricted roots, ¢ €2 such that 2¢p€ %, N_ , the univer-
sal enveloping algebra of the Lie subalgebra n_g= g“¢' @9 %% of g, A:
S(n_¢) - f)'(_qs the canonical linear isomorphism, B the Killing form of g,
By the symmetric bilinear form on § defined by the condition By(x, y) =
-B(x, 0y) forall x, y € g, [ a By-nonisotropic vector in g"d’, b_g € S¥ g"d’)
and p_,q €S 9-2¢) the canonical elements defined by Bg, and q_4 =
2Mp_g)/(py ) and q_, 4 =Mp_,)/2b, ¢) €N_y. Then the truth or fal-
sity of equation (4) in )I_qb depends only on a, and b, (i=1,...,71) and
noton g, 6, a, ¢ or f. Moreover, suppose in addition that dim 92‘7S =1 and
that there exists an element r_, 4 € g‘2¢ such that 'izda =q_y4- Then the
truth or falsity of equation (5) in T(_d) depends only on a, and b, (i=1,
ees, 1), and not on 9,0, a, &, f or PPY

In order to apply this theorem to conical vectors, we need:

Lemma 8.5. Suppose ¢ and 2¢p €2, and let V be a g-module, v €
V™% 4 restricted weight vector with restricted weight p € a*, e, € g¢ and
i,j€Z,. Then

€0 (q,_2¢>ql_¢ * U) = )',-,- * U

where Yij 67'(_4, is given by the formula
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Yij =--1{‘9€o"1 sl 54954
- Z 2 +py)(hy) +2 —4m)g’ ;40" (Be)q™ 5 s
m=1

where py, is as in Lemma 6.4, Moreover, suppose in addition tbat dim g
=1 and that there exists an element T_2p €97 2% such that r 206 = 9_2¢
Then

r_2¢e0 . (ri2¢qi¢ . v):yi'jo v

where y:.]. € f)'(_d, is given by the formula
o __ L, i=1 i
¥ij=—gllew 4_glrIo4a
i
- 2((y+p¢)(b¢) +2 - 4m)ri? qu P 7 (0eg)g™ ¢
m=1

Proof. We may assume that k is algebraically closed and that e = e,
so that e, = ~f,. To prove the first assertion, note that

j
o . 0
eg(al 09 ¢ V) = lgl q’_zlqs[%’ ‘I_2¢]ql_2¢q'_¢ ‘v

1 -
PR 9,40 ey a_glaT3 - v

By Lemna 7.3, the first term on the right is % j[f¢, q_ ¢]qf_ ‘21¢qi PR To
handle the second term, use Lemma 6.4, Since v € V", Lemma 6.2 shows that

the second term is
2 2¢" 2¢q‘ 5oy - ) (b¢)/¢, + [ph T ¢, .
m=1

But it was shown in the proof of Lemma 6.5 that b¢q’fgl = qf'_'gl(b¢ —4(m - 1)).
Thus the term becomes

and this proves the first assemon of the Iemma.
Now suppose that dim 62% =1 and that r2 2i6=9_2¢ (T34 €9 2¢),
Then
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T_20€¢° (’iz¢Qi¢ cv) = lil ri;(l;l[eqb, r_2¢]r_{;£#qi¢ e v

i
- et leg a_glag! - v

The second term is treated exactly as in the first part of the proof, and all

that remains is to show that the first term is (1/8)jl/y, q_g4lri7)4q’ 4 - v.

But [/QS, q_¢] = Zf,,[/qs’ /n] and [/¢, fn] = 14r_, 4 as in the proof of Theo-
rem 8.2, and so

[/¢s q_qs] = isf,, r..zqg,
and

lego 1_2g) = £5 Lo U 111 = 21,

by Lemma 4.15. Thus the two indicated terms are equal, and the lemma is
proved. Q.E.D.
We can now prove:

Theorem 8.6. (The transfer principle for conical vectors.) Let Q be the
polynomial algebra in two variables over k, and let ay€ Q. Also, let c € k.
In continuation of the notation of Theorem 8.4, let 3, be a positive system
in 2, a €2, a simple restricted root such that 2a. € X, b, € o as defined in
§2, v € a* such that v(ba) =cgp XY the twisted induced g-module (see §2)
and x,€X YV the canonical generator. Then the truth or {alsity of the asser-
tion “ay(q_,, 9_,,) * %, is a conical vector in X¥"* depends only on a,
and c, and noton g, 0, a, 2, a or v (except that v(h,) = cy). Moreover,
suppose in addition that dim ¢2% = 1 and that there exists an element T_,

a
€ g~2% such that ri.m = q_,q Then the truth or falsity of the assertion

“ay(qg_ s T_,g) * % is @ conical vector in XY* depends only on a; and c,
and noton g, 6, a, 2., a, T_2q OTV (where v(h,) = cy).

Proof. Write Q = k[x, y] and 4, =2 =0
and assume 4, # 0. In view of Theorem 5.1.(Cases 3 and 4), aylq_, 9.,

bijxiyi (teZ, and b €k)
a.) *
%, is a nonzero M-invariant vector in X"Y. Let e, be a By-nonisotropic vec-
tor in g*. Then by Corollary 4.3 and Lemma 6.13 (see the proof of Theorem
6.17), eq« (ay(q_,s 9_,,) » ¥o) =0 if and only if ay(qg_,, 9_,,) - %¢ is con-

ical. But by Lemma 8.5, this is the case if and only if

i,j=

t
©6) 20 b;y;=0 in N_,,
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where y . ET(_a is as in Lemma 8.5, with ¢ replaced by @ and p by v-p
(p = %2 (dim ¢¥)y, ¢ €2,). But w=p+p,)(h,)=v(h,) =c, by Lemma
6.14, so that

1. i-1 i+1 , 1. 1
Yii= —Z](Geo)qimql_a *3 i9_o(0egdg 5 gt

i . .
- Y 2Acy+2 —4m)q_’_2aq'_'a’"(0e0)q7_'_';l.
m=1

Since e is a By-nonisotropic vector in g~%, (6) is an equation of the form
treated in Theorem 8.4, with ¢ replaced by a, and with the a; and b, in
Theorem 8.4 dependent only on a; and c,. That theorem now implies the
first assertion of the present one.

Now assume that dim ¢°*=1 and that rim =4q_5, (r_za € g72%), and
let ay# 0 and e, be as above. By Case 3 of Theorem 5.1, aglq__, r_,,)

. - . - v - -
%o is a nonzero m-invariant vector in X" . Also, since 7 is a nonzero ele-

~2a
ment of J1=, r_, eo+(a(q_,,7_,.) + %o) =0 if and only if

eo (aglq g 7_35) + %9) =0,
and this is true if and only if ao(q_ @ T2 a) * %, is conical, as above. Com-
bining the last parts of Lemma 8.5 and Theorem 8.4 as above, we get the last
assertion of the theorem. Q.E.D.
Remark. Of course, the above proof in principle provides an explicit re-

formulation of the assertion **

ay(q_,, 9_,4) * %, is a conical vector in xv»
in terms of @, and ¢, alone, and similarly for ao(q_a, ’-20.) * x4, under the
extra hypotheses. But these reformulations are much too complicated to be
useful in determining directly the conical vectors in the induced modules X
Instead, we shall compute the conical vectors for a special g (see $9), and
then use Theorem 8.6 to obtain them for general g. The determination of the

conical vectors in the special case is not trivial, but at least it can be done.

9. A special case. Following the plan indicated by Theorem 8.6, we
shall determine all the conical vectors in all the twisted induced modules X”
(v € a®) for a special semisimple symmetric Lie algebra (g, 6). Here (g, 6)
will have essentially the same structure as the real semisimple Lie algebra
8u(2, 1). Our methods will be special; in fact, one of our main points is that
it is too difficult to compute directly the conical vectors in general (cf. $8).
We are grateful to L. Corwin and N. Wallach for their help in carrying out this
special case (see the introduction).

Assume k is algebraically closed. Let g= &(3, k), the simple Lie al-
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gebra of all traceless 3 x 3 matrices over k. Let i= (D2, and let EC g
and p C g be the spaces of matrices

411 %12 %53 byy by by
a,, a,, iay, and b,, O -ib,, s
13~y 4p by by, by

respectively, where a., b;; €k and 2a;, + a,,=0. Then g= taoh [t ]
CE[E pJChand [ HlC £, so that the linear automorphism 6 of g
whichis 1 on T and -1 on b is a Lie algebra automorphism. Thus (g, 6)
is a semisimple symmetric Lie algebra with symmetric decomposition g=
& b

Forall I, m=1, 2,3, let E; denote the 3 x3 matrix which is 1 in the
(I, m)-entry and 0 in all other entries. Let a be the one-dimensional sub-
space of P spanned by the matrix b = 2(E11 - E33). Then a is a splitting
Cartan subspace of . Let a be the linear functional on a which is 2 on 5.
Then the set 3 of restricted roots of g with respect to a is {ta, #2a}, g°
is the set of traceless diagonal matrices, g% is the span of E,, and E 3,

g™% is the span of E,, and E;,, g*

is the span of E;, and g~22 is the
span of E;,. Also, let b’ be the matrix E,)~2E,, + E;;. Then the cen-
tralizer m of & in ¥ is the span of ', and ¢’ =m @ a.
Let 2, be the positive system in 2 consisting of & and 2a. Then a
is the unique simple restricted root. Since a(h) =2, h = b, as defined in 2.
The Killing form B of g is given by the formula B(x, y) = Gtr xy. Thus

on g~%, the form By(x, y) = -B(x, 0y) is given by the formula
Bg(aE, | + bE ;4 cE, | + dE;,) = —6i(ad + be)

(@, b, c, de k), and on g~2%, By is given by

By(aE, , bE, ) = Gab

3r

(a, b € k). Hence {(12)'1/2(E21 +iE,,), (12)"1/2(1'E21 + En)i is a By-ortho-
normal basis of g~%, and {6~ 1/2E 31} is a Bg-orthonormal basis of g~ 2e,
Since the canonical elements p_, € S%(g~*)" and g €SHG™2%)" (see $4)
are the sums of the squares of the members of By-orthonormal bases of g~%

and g~ 2%, respectively, we have

b_o=Gi/3E, Es, and p_, =(1/QE,.

The element x, € a (see §2) is (1/12)(E,; - E;;), so that (a, o) =



CONICAL VECTORS IN INDUCED MODULES 267

B(xg, xg) = 1/12. Hence

. . . m
q_,=24Mp_,) =4i(E, E,, + E; E, ) =8iE, E,, + 4iE;, eJU"

and
9_yq =OMp_,) = E§1 enu.'.a'

in the notation of §5. We may choose 7_, = E31 €9~ 22 (see Theorem 8.6),
since dim g**=1 and Egl =q_,,+ By Theorem 5.1 (Case 3), nta is the
polynomial alg*ebra klg_g, 7_5,)

Let v € a”. We want to determine the conical vectors in the twisted in-
duced g-module X” = V¥~ induced from the subalgebra m @ a®n of g,
where p=2a€ a* and n=g*@® g2@ (see §2). Let %, be the canonical gen-
erator of X”. Then

(Xv)m= nta . xo = k[q_a, 1'._2

a.] * Xor

Thus we must determine the polynomials @, in two variables over & such
that n .« (ay(q__, 7_, )+ xo) = 0.

It is hard to guess what conical vectors should look like, but once we
know, it is relatively easy to prove that they are in fact conical (in the pre-
sent special case):

Lemma 9.1. Suppose v(h,) =21, I a positive integer, and let

x=(q_,-4i(l- Dr_,)q_, - 4i(1- 3r_5q) vee

(q_g+4i(1-3)r_, ) (q_, +4ilI- Dr_,.) - xg

in XY, Then x is a conical vector.

Proof. Since E ;= [EIZ’ 523], g* generates m, and so it is sufficient
to show that E, « x=E,; « x = 0. By straightforward computation, using the
matrix product relation E gE 5= Egs if B=y and =0 if B# y (a, B, y,
8=1,2,3), we have the following commutation relations in the universal
enveloping algebra of g:

. . N ’
[Elz’ q__a] = 41532 + 21E32ba + 41E32b , [Elz’ '-Za.] =-E32,

[E,y q_o 1 =4iE, | + 2iE, b, —4iE, b, [Epr_ , 1=E,,.

Let @ be any one of the factors g_, + 4ijr_z, (j=~(1-1), {I-3), «se,
1-1) appearing in the expression for x in the statement of the lemma. Then
[hy al = —4a and [b', al = 0. Also by« xy=(v=p)(h)x,=(2] - 4)x, and
b . %4 = 0. The above commutation relations thus give
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)

a

E y+x=[E (q_,~4i(1-Dr_, NMg_, - 4i(1=3)r_,
eeilg_, +4i(I-Dr_, ) « x4
+(g_, =4il=-Dr_, )E , (q_, - 4i(1=3)r_, )]

e g g +4ill=Dr_, ) e xg+eee

a

)

a

= (4iE;, + 2iE b, +4iE b + 4i(1-1E ;) (q_, - 4i(I=-3)r_,

oo (q-a. +4i(l- 1)'-2a.) . %,

+(g_, - 4i(1-Dr_, Y&iE, + 2iE ; )b, + 4iE 3 b" + 4i(1=3)E,)

coe (g g +4i(I=Dr_50) o xg + 000

)

a

= (4iE;, + 2iE ;,(-4(1 = 1) + 21~ 4) + 4i(I - DE,; ) (g_, - 4i(-3)r_,

eeelg_p +4i1=Dr_, ) « x4

a

+(q_, - 4i(1=Dr_, Y4iE,, + 2iE , (~4(1-2)+21-4) +4i(I-3)E ;)

cenlg_g +4i(I=Dr_, ) s xg+oes
=0+0+.Qo=0.

A similar computation shows that E, 3 * %o =0. However, x must be written
in the “‘opposite order,’’ as

(q_, + 4i(l -'l)r_n)(q_a_ +4i(l~ 3)’-20,)

e lg_ = 4ill=3)r_, ) g_, = 4i(I=1)r_,)  x,,

to make the computation exactly parallel to the above one. Q.E.D.
Remark. Because of the flexibility allowed in writing the expression for

x in either order in the above proof, we could prove easily that x is conical

without appealing to the difficult commutation relations in Jl=. This flexi-

bility is lost for Lie algebras g in which the double root space gza is more

than one-dimensional, since the ‘‘square root’’ 7_, of g_,, does not exist.
Now we turn to the uniqueness of the conical vectors.

Lemma 9.2. Let a,(y, 2) be a polynomial in two variables over k. Then
a(q_g» 7_y,) * % is a conical restricted weight vector in X” if and only if
either a, is a nonzero scalar or else v(h,) =21, where 1 is a positive inte-

ger, and a, is a nonzero multiple of
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a;=(y-4i(l1- 1D2)(y = 4i(1 = 3)2) -+« (y + 4i(1 - 3)2) (y + 4i(l - 1)z).

If 1 is even, then

1-1
g= JI G?+16/229,
j=1;j odd
and if 1 is odd,
l-1
=y JI (?+16/%z3).
i=2;j even

Proof. Let §= g° =m @ a. Then § is a Cartan subalgebra of g, and
the elements y of b canbe written y=y,E,; +y,E,, + ¥3E 33, where
y; €k and y, +y, +y; =0, Define A, A, A; € H* by the formulas

A=y, =5 AN =y,-y; and A() =y, -3

Then the set R of roots of g with respect to § 1s {i)\l, A, A } Denot-
mg the root sgaces for g v;uh respect to}\ § by g™, we h)flve g N =kE,,,
gz—kE23,g =kE; g 1=kE,; g —k532 and g 3—kE3l. Let
Ry={A, A, )\3}, so that R, is a positive system in R. Then the previous-
ly defined subalgebra m @ a @ n of g is the same as the Borel subalgebra
=600 g* A eR,), and n= M g* A eR,). Let p' € h* be the linear
functional which is the previously defined p on @ and 0 on m. Then p'
YO +A,+1,), ie., p' 1s half the sum of the positive roots of g with re-
spect to 5 Also, define v' €5* by v'=v on a and ' =0 on m. Then
the previously defined twisted induced g-module XV is the same as the Verma
module associated with v', in the sense of [2, §7.1.4]. That is, X" is the
g-module induced by the character of b which is v' —=p’ on b and 0 on m.

In order to describe the Weyl group Wy of g with respect to b, let §;
be the space of all (not necessarily traceless) 3 x 3 diagonal matrices and
let py, prys py € E)"; be the basis of E)"; dual to the basis E,, E,,, E;; of
5. Now 5" may be identified with the space of k-linear combinations of (138
I, and p;, modulo the subspace k(ul + i, + }13). Then Wy is the group of
automorphisms of i)* induced by the six permutations of {;, pt, and pj.

Let v, € a*, and define V'IEE)* tobe v, on a and O on m. Then x,
€ X" is a conical vector with restricted weight v, if and only if x, is a
(nonzero) n-invariant vector with weight V'l for the action of § on X”. But
there exists a nonzero n-invariant vector in X” with weight v, € E)* only if
there exists w € W such that v, + p'=wv' and v' - (v2 +p") is a nonnega-
tive integral linear combination of the elements of R, by [2, Proposition
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7.6.2]. Moreover, the n-invariant vectors in X” with weight v, form at most
a one-dimensional space, by a theorem of Verma [2, Théoréme 7.6.6]. Let Z
be the intersection of the conical space of X” with the restricted weight
space corresponding to v,. It follows that if Z # 0, then dim Z =1, and in
this case, either v, =v -p, orelse v, =—v ~p and v=Ia (i.e., v(p) =
21), where I is a nonnegative integer. Now apply Lemma 9.1. (If =0, then
v=0,v,=-p and Z is the span of x,.) Q.E.D.

10. Conclusions. We are now ready to combine the results of §§5, 6,8
and 9 to remove the hypothesis ‘2a ¢ X'’ from Theorems 6.17 and 6.18.

Let (g, 6) be a semisimple symmetric Lie algebra over the field & of
characteristic zero, g= £ @ p the symmetric decomposition of (g, 6), a a
splitting Cartan subspace of §, = C a* the corresponding restricted root sys-
tem, 3, CZ a positive system, and p € a* as defined in $2. For every
¢ €3, define bly € a tobe hy if dim g®> 1 (see $2) and 2hy if dim g°
= 1. Let sy be the Weyl reflection with respect to & (see §2). Also, let 94
and q,4 be the elements of the universal enveloping algebra of g defined
in §5; if 26 ¢ 5, take g,4=0.

Here are our main results, which generalize Theorems 6.17 and 6.18:

Theorem 10.1. Let a €3, be a simple restricted root and v € a*. Let
Y be the subspace of the twisted induced g-module XV spanned by the coni-
cal restricted weight vectors with restricted weights of the form v —p + ca
(cek); if dim a =1, then Y is the conical space of X¥. Then dim Y is
either T or 2. If v(b}) is not a positive even integer, then Y is the span of
x,, the canonical generator of X”. Suppose v(hy) =21, | a positive integer.
Then dim Y = 2. Define the element CI in the universal enveloping algebra
of g as follows: If dim ¢*> 1 and | is even,

1-

Z.:I'-‘ . IH (q_z_a + 16j2q_2a);
i=1ij

if dim g*> 1 and I is odd,
-1 2 2
{=a, II (a2, +16f 9_50)5
j=2;j even
and if dim ¢*=1, ¢, = !, where [ is a nonzero element of §~%. Then Y
has basis {x, él - %o}, and él - x, is a conical restricted weight vector in

X" with restricted weight s v - p.

Theorem 10.2. Let a be a simple restricted root, let p, v € a*, and sup-
pose that p—v is of the form ca (c€k). (If dim a =1, then this is automa-
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tic.) Then Homg(X¥, X¥) is at most one-dimensional, and dimHom o(XH, X¥)
=1 if and only if either p=v, or else p=s,v and v(hy) is a nonnegative
even integer. Moreover, dim Homg(X¥, X¥) = 1 if and only if X" is isomor-
phic to a g-submodule of X".

Proof. Theorem 10.2 follows from Theorem 10.1, just as in the proof of
Theorem 6.18. To prove Theorem 10.1, note first that the case 2a ¢ X is
covered in Theorem 6.17. Suppose that 2a € 2. It is clearly sufficient to as-
sume now that k is algebraically closed. By Lemma 6.16, Y =(JU" 2" xo)n.
Moreover, 1" o is the polynomial algebra k[g__, q_,,] if dim g?* > 1 and

__2a] if dim g%>* =1, by Theorem
and r_z_2 @ = 924 (such an element exists since & is

" o is the polynomial algebra klg_,, 7
5.1;here r_, € g=2e
algebraically closed). Hence Y is the set of m @ n-invariants in X” of the
form a(q_g, 7_,,) * % if dim g?% =1 and of the form a(q_os 9_54) * %o
if dim g%*> 1, where a, ranges through the polynomials in two variables
over k. The stage is set for the application of the transfer principle for coni-

)

a
- %, is a conical vector. If v(h,) is not a positive even integer, then a is

a nonzero scalar, by the last part of Theorem 8.6, combined with Lemma 9.2.
Suppose now that v(h,) = 2/, where [ is a positive integer. Then the same
two results show that a(g__, r_,,) + % is a (nonzero) linear combination

of xy and {;« x,, in the notation of the theorem. Conversely, {I . x4 is, in

cal vectors (Theorem 8.6). Suppose that dim g°* =1, and that ay(q__,7_,

fact, a conical vector, again by Theorem 8.6 and Lemma 9.2 (or Lemma 9.1).
This proves the present theorem in case dim g°% = 1. If dim g2* > 1, the
theorem follows from the same argument, this time using the first part of Theo-
rem 8.6, Note that since the polynomials a; in Lemma 9.2 are polynomials in
y and z2, the space Y has the same description whether dim g%%=1 or
dim g2* >1. Q.E.D.

Remark. (Cf. the Remark following Theorem 6.17.) In the notation of
Theorem 10.1, v(h}) is a nonnegative even integer if and only if X” con-
tains an m-invariant restricted weight vector with restricted weight s - p,
or equivalently, a conical restricted weight vector with restricted weight
s,V — p. But in general not every m-invariant restricted weight vector with
restricted weight s v — p is conical.

Remark. If dim ¢ =1 and dim g*> 1, then v(h) = v(h,) is a nonnega-
tive even integer if and only if v is a nonnegative integral multiple of the
unique simple restricted root Q.
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