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CONICAL VECTORS IN INDUCED MODULES

BY

J. LEPOWSKYÍ1)

ABSTRACT.   Let 9 be a real semisimple Lie algebra with Iwasawa de-

composition 9 = t©o©n,  and let m be the centtalizer of o in    t.   A conical

vector in ag-module is defined to be a nonzero rri©n-invariant vector.  The

g-modules which are algebraically induced from one-dimensional (m ©a ©n)-

modules on which the action of  m is trivial have "canonical generators"

which are conical vectors.  In this paper, all the conical vectors in these

9-modules are found, in the special case dim a= 1. The conical vectors

have interesting expressions as polynomials in two variables which factor

into linear or quadratic factors.  Because it is too difficult to deteimine the

conical vectors by direct computation, metamathematical "transfer princi-

ples" are proved, to transfer theorems about conical vectors from one Lie

algebra to another; this reduces the problem to a special case which can be

solved.  The whole study is carried out for semisimple symmetric Lie alge-

bras with splitting Cartan subspaces, over arbitrary fields of characteristic

zero.  An exposition of the Kostant-Mostow double transitivity theorem is

included.

1. Introduction.  The theory of Verma modules, as developed by D.-N.

Verma [10(a), (b)] and by I. N. Bernstein, I. M. Gel fand and S. I. Gel fand

[1(a), (b)], is becoming increasingly important. Let  9 be a complex semisim-

ple Lie algebra and  6 a Borel subalgebra of  g. The associated Verma mod-

ules are the g-modules induced, in the algebraic sense, by the one-dimension-

al b-modules (see [2, Chapter 7]). As we shall see in this introduction, a cor-

responding theory of g-modules induced from more general parabolic subalge-

bras of  g  should also be developed, and the purpose of this paper is to begin

such a study.

Here is our main reason for interest in this problem:   Let G = KAN be an

Iwasawa decomposition of a real semisimple Lie group with finite center, and
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g= f © a© n the corresponding decomposition of the complexified Lie alge-

bra of G.  Let M be the centralizer of A in K, and m  its complexified Lie

algebra. The infinitesimal nonunitary principal series of G is the family of

g-modules obtained by taking the K-finite subspaces of the nonunitary prin-

cipal series representations—those Hilbert space representations of G in-

duced from the finite-dimensional irreducible representations of MAN (see fot

example [7(a)l). This family of g-modules is of great importance because

every irreducible g-module which splits into a direct sum of finite-dimension-

al irreducible t-modules exponentiating to K-modules is a subquotient of an

infinitesimal nonunitary principal series module (see [4], [7(a)], [9l and [2,

Chapter 9l).  But roughly speaking, the infinitesimal nonunitary principal ser-

ies modules may be identified with certain "large" subspaces of the contra-

gredient g-modules to g-modules algebraically induced by finite-dimensional

irreducible modules of the parabolic subalgebra m © a © n of g (cf.[2, §§9.3.1,

9.7.10]). Other important families of induced representations of G are simi-

larly related to g-modules algebraically induced from parabolic subalgebras

of g.

In a sense, the algebraically induced modules may be thought of as mod-

ules of distributions supported at the identity element of G, and their duals—

algebraically "produced" modules—as modules of formal power series at the

identity element of G. The K-finite elements of the produced modules (the in-

finite formal power series) then correspond to analytic functions on G which

are also the K-finite elements of the Hilbert space induced representations.

The Verma modules that can be embedded in a given Verma module are

completely known ([lOl and [l(a)l; see also [2, Théorème 7.6.23]). Suppose

one could correspondingly determine the g-module maps between pairs of g-

modules algebraically induced from m © a © rt. Looking at the dual maps be-

tween the K-finite subspaces of the contragredient modules, one would have

intertwining operators between nonunitary principal series G-modules, and

these intertwining operators, which might be Kunze-Stein integral operators,

would now be given by differential formulas. Furthermore, since an algebrai-

cally induced module is generated by a "highest weight vector" (rt-invariant

vector), the g-maps from one of the algebraically induced modules to another

are closely related to the highest weight vectors in the target module. These

give rise to highest weight vectors in the dual of the K-finite subspace of the

Hilbert space induced G-module, and therefore are intimately connected with

S. Helgason's conical distributions [5(a), (b)].(2) The submodule structure of

(2) See also M. Hu's thesis [12], whose results on conical distributions are re-

lated to our results on conical vectors.
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the algebraically induced g-modules must also shed light on the subquotient

structure of the nonunitary principal series modules (see M. Duflo [3] and [2,

§9.6] for the case of complex G, using Verma modules), but examples show

that the relation will be subtle. For instance, irreducibility of the algebrai-

cally induced module is not equivalent to irreducibility of the related contra-

gredient nonunitary principal series module.  On the other hand, the subquo-

tient structure of the nonunitary principal series is notoriously complicated,

but the structure of the algebraically induced modules already appears to be

more regular and perhaps more fundamental. For example, the inclusion rela-

tions among the Verma submodules of certain Verma modules recover the in-

clusion relations among the closures of the Bruhat cells for complex semisim-

ple Lie groups (see [10]), and it is likely that this situation will generalize

to real semisimple Lie groups, using the modules algebraically induced from

m © a©n.

Now that we want to find the highest weight vectors in a given g-module

X algebraically induced from a finite-dimensional irreducible (m © a© rt)-

module, how do we do it? The following seemed at first like a good starting

point:   Let   I be a Cartan subalgebra of m, so that b, = I © a is a Cartan

subalgebra of  g. Let  b be a Borel subalgebra of  g containing h, and rt.

Then it is easy to see that X is a g-module quotient of a certain Verma mod-

ule V induced from  b (cf. [2, Lemma 9.3.2]). Hence one can try to use the

well-developed theory of highest weight vectors in Verma modules to study

highest weight vectors in X. Unfortunately, however, highest weight vectors

in V can vanish when one passes to the quotient X, even in simple exam-

ples. Moreover, it turns out that there are, in general, highest weight vectors

in X which do not come from highest weight vectors in  V.  This subtlety,

which made the problem much more difficult than we expected it to be, forced

us to work in a relatively special case and to develop new tools to handle

even this case.

Now we shall describe our main results, and then we shall say what is

interesting about our methods.

By analogy with Helgason's conical distributions, we call a nonzero vec-

tor in a g-module (or more generally, in an m © rt-module) conical if it is

in © n-invariant. The space of conical vectors, together with 0, is called the

conical space of the module. Let § be the universal enveloping algebra of g

and ?C§ the universal enveloping algebra of m © a © n. Define pea

(* denotes dual) by the condition p(a) = %tr(ad a|n) for all a e a, so that p is

half the sum of the positive restricted roots with multiplicities counted. For

all v e a*, the linear functional on m © a © n which is zero on m © rt and
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v - p on  a defines a one-"dimensional representation of m©a©n. Regard-

ing C as the associated one-dimensional /-module, and § as a right J-mod-

ule by right multiplication, we can form the §-module Xv = § ®y C. This is

a "twisted induced module" in the sense of [2, §5.2]. The vector xQ = 1 0

I eXv  is a conical vector which generates Xv, and is called the canonical

generator of X . Let n~ C g be the sum of the negative restricted root spaces

of g with respect to  a, and Jl~ C § its universal enveloping algebra. Then

Xv = îi--x0.

We are aiming for a description of the conical vectors in Xv in case G

has real rank 1, i.e., dim a = 1. Assume this, and let  a. e a   be the unique

simple restricted root. Then  tt~ is the direct sum of the restricted root spaces

of0- and  g~    ; here   g-2a may be zero. There are natural M-invariant non-

singular symmetric bilinear forms on  g~a and  g~    . Let q_a£Ji~ and q_2a

£li~ be the sums of the squares of orthonormal bases of  g_a and  g-2<z, re-

spectively, so that <7_a and q_2a ate quadratic M-invariant elements of Jl~,

and q_2   =0 if  of     = 0. Let (¡/I-)     be the algebra of all Al-invariants in

Jl~. Then (7l~)     is a polynomial algebra on either one or two generators, de-

pending on whether  g~2a = 0 or ÇA~2a 4 0 (see §5), and in the difficult case

when dim Of     > 1, the two generators are q_a and q_2a; this follows from

the Kostant-Mostow double transitivity theorem (see §4) on M-orbits in Tt~

(or more precisely, Al-orbits in the intersection of n~ with the real Lie alge-

bra of G). With this as background, we now state our main results (see §10):

Theorem 1.1. Assume dim a = 1 and let vea.  Then the conical space

of Xv is either one- or two-dimensional, according to whether v is a positive

integral multiple of a (of xAa if dim ga = 1) or not.  If v is not of this form,

then the conical space of Xv is spanned by the canonical generator xQ of

Xv.  Suppose v = la, I a positive integer, (if dim g   = 1,  take instead v =

Vila.) Then q_a and q   ,    can be suitably renormalized (independently of I)

so that the following is true:   Suppose dim ga > 1. Define ¿~, £ Jl~  by the

formula

ff       (?la + /2fl-2a), leven>
\   ; = 1 ; 7 odd

I«.. n   <-*i„+i2i.7a>. ¡odd.
I j = 2 ; ;' even

If dim ga= 1, define £. = /'eîï-,  where f  is a nonzero element of 0fa.

Then the conical space of Xv has basis \xQ, £, • xQ}.  Moreover, the 0,-sub-

module of Xv generated by ¿". • xQ  is isomorphic to X~v.
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Theorem 1.2. Let p, v e a .  Then dim HomgtX^, Xv) < 1. Moreover,

dim HomgiX^, Xv) = 1  if and only if either p = v, or else p = —v and v is a

nonnegative integral multiple of a (of ]4a  if dim g   = l).  This is exactly

the case in which X^ is isomorphic to a Q-submodule of Xv.

(The annoying exceptional case dim g   = 1  in these two theorems is es-

sentially the case G = 5L(2, R), and is trivial.)

Considering how rare it is for a polynomial in two variables to factor

into linear or quadratic factors, the factored form of the (. in Theorem 1.1

seems remarkable. We shall say more about this below.

It turns out that Theorem 1.2 follows easily from Theorem 1.1, so we

shall explain what is involved in proving Theorem 1.1. First, it is easy to

see that the space of m-invariants in Xv is the space (Jl~)m • xQ (here (Tl~)

is the space of m-invariants in 7i~ and equals 01")™). From the above,

Ql~)m  is a polynomial algebra in one or two generators. If g2a = 0, we have

one generator, and Theorem 1.1 is not terribly hard in this case (see §6).

Suppose now that dim g     > 1, so that 0l~)m  is the polynomial algebra

C[<7_a, ?_2<d' The whole problem is to determine those polynomials p in

two variables such that fAl^a* 1-ïa) ' x0 IS n"invariant. Clearly, this in-

volves computing commutators of elements of rt with q_a and q_2a, and

also commutators of these commutators with q_a and q_2a. We were able

to compute the necessary commutators (see §§6, 7), but the resulting condi-

tion on the polynomial p is immensely complicated, and it is not feasible to

analyze it directly (see the last remark in §8).

However, when attempting to unravel this condition on p for some spe-

cial G's, we noticed that the computations, even though we could not do them

for any one G, did not seem to depend on G. The key was then to prove a

priori that the conical vectors would look the same for any one G (for which

dim g     > 1) as for any other such G, and then to use possibly special meth-

ods to solve the problem for one "small" G. Specifically, we first proved

what we call the "fundamental commutation relation in 7l~":   There is a non-

zero constant c e C such that [[/, q_a], a_a] = cjq_2a fot. all / e ofa (see

Theorem 7.4). This is called "fundamental" because of the next result:   If /

is chosen more carefully, then this relation and a trivial one ([/, q_2a) = 0)

generate all relations which are linear in / in the associative subalgebra of

31" generated by /, q_a and q_2a (see Theorem 8.1). This in turn implies

the following metamathematical "transfer principle for 3"l~":   If a^, ... , ar,

by ... ,bf are complex polynomials in two variables, then the truth of any

assertion of the form "£'_j aiq_a, 1_2a)fb iq_a, q_2a) = 0 in jl~" is in-
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dependent of G (see Theorem 8.4). But the condition that piq_a, q_2 ) • XQ

be conical in X    can be expressed in this form (see Lemma 8.5), where the

a. and b- depend only on p and the complex number c such that v = ca.

Thus we could prove the "transfer principle for conical vectors", another

metatheorem which says that if piq_a, q_2a) ' xo 1S conical in Xca for

some G with dim g     > 1, then the same is true for any such G (see Theo-

rem 8.6). Furthermore, the above metatheorems have analogues for the case

dim g     = 1, enabling us even to transfer theorems about conical vectors

from any one G with dim g2a = 1 to any G with either dim g2a = 1 or

dim g2a > 1 (see Theorems 8.4 and 8.6).

The conical vectors still had to be computed for some special G with

dim g a > 1. The only cases which we were able to do directly, aided by a

crucial observation of L. Corwin, were the cases G = SUin, 1)—essentially

all the G's such that dim g2a = 1. In these cases, (7l"")m is the polynomial

algebra in   a      and r_2a, where r_2a is a nonzero element of the one-dimen-

sional space   of2a. We reformulated the condition that piq_   , r_2A > xQ be

conical in X    (where p  is a complex polynomial in two variables) in terms

of a complicated system of linear equations whose unknowns were essentially

the coefficients of p. These equations implied uniqueness of the conical vec-

tors, but it was not clear that the equations had a consistent solution (and

hence it was not clear that the conical vectors in Theorem 1.1 existed) until

Corwin noticed that a solution vector could be constructed from the coeffi-

cients of a certain polynomial which factored into certain linear factors. This

meant that if p were this polynomial, then piq_a, r_2a) . xQ would be coni-

cal. This was enough to prove Theorem 1.1 for these G's. To place the case

dim g      = 1  in perspective, we further note the following:   In this case, r2

= q_2a in Ji~, and therefore the factors  q_a+ j 1_2a in Theorem 1.1 them-

selves factor into linear factors: (a      + (-l)1'2jr   .   )(a     -(-1)1'27>   , ).
—a '  —¿a.     ■'—a J  —¿a

It was this which made it feasible to carry out the necessary computations

(see the Remark following Lemma 9.1).

Actually, in writing up the special case in §9, we dealt only with G =

SUÍ2, 1),  and following a suggestion of N. Wallach, we used the theory of

Verma modules to prove the uniqueness of the conical vectors.  (For G =

5(7(2, 1), the g-module induced from m © a ©n is actually a Verma module,

not just a quotient.) Thus the original approach, using the complicated sys-

tem of linear equations, is not carried out in this paper.

The above results are stated for G of real rank 1, but they imply a result

for arbitrary real rank, included in Theorems 10.1 and 10.2.
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There is another direction in which Theorems 1.1 and 1.2 are extended in

this paper—to arbitrary fields of characteristic zero. In fact, throughout this

paper, we work with semisimple symmetric Lie algebras with splitting Cartan

subspaces, over fields of characteristic zero (see [2] and [7(b)] for back-

ground on these). This accounts for most of the length of §§2—4, in which

we wanted to give a self-contained elementary treatment of the Kostant-Mos-

tow double transitivity theorem and its consequences for algebras of polyno-

mial invariants, valid over general fields of characteristic zero, without using any

theory of Lie or algebraic groups. Instead of group orbits, we use "infinitesi-

mal transitivity and double transitivity" conditions. We essentially give Wal-

lach's modified version of Kostant's proof of the double transitivity theorem.

See §§3 and 4 for a more detailed discussion of this theorem and its conse-

quences.

Incidentally, it is not surprising that theorems about real semisimple Lie

algebras, Cartan decompositions and Iwasawa decompositions should also

hold for more general semisimple symmetric Lie algebras, since joint work

with G. McColIum has shown that assertions about such structures whose

truth is preserved under field extension and restriction are true for any one

field of characteristic zero if and only if they are true for any other; see [8(e)].

This gives a generalization of H. Weyl's "unitary trick", which enables one

to transfer theorems from compact semisimple Lie algebras to semisimple Lie

algebras over arbitrary fields of characteristic zero.

After the work for this paper was completed, we found a simpler proof of

the uniqueness of the conical vectors, avoiding the use of the double transi-

tivity  theorem; see [8(d)]. (But the existence and explicit form of the conical

vectors still require the fundamental commutation relation and transfer prin-

ciples.) This proof uses an observation of Kostant on the limitations imposed

on conical vectors by the action of the center of §. The proof also uses an

a priori argument that the first assertion of Theorem 1.2 holds—that

dim HomgiX^, X*0 < 1. In fact, we have generalized this last inequality to all

parabolic subalgebras (see [8(c)]) by extending the method that Verma origi-

nally used (see [2, Theoreme 7.6.6]) to prove the corresponding fact about

Verma modules.

We remarked above that a g-module X induced from a finite-dimensional

irreducible (m © a©n)-module is a quotient of a certain Verma module V,

but that one cannot very well use V to determine the highest weight vectors

in X.  On the other hand, since Theorems 1.1 and 1.2 are true, we can use

them as a tool in investigating the composition series of the Verma module V.

Interesting things happen:   First, recall that in [1(a)], Bernstein, Gel fand and
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Gel fand found an example of a Verma module for  £1(4, C) having two strange

properties:   It contains a proper submodule not generated by Verma submod-

ules, and its composition series contains a certain irreducible subquotient

with multiplicity two. But it now turns out that if one regards   &(4, C) as the

complexification of   3u(3, 1), then one can explain all of this pathology by

means of the existence of a certain conical vector in X which does not come

from a highest weight vector in V.  In effect, BernStein, Gel fand and Gel fand

were actually dealing with the case  / = 1, C¡ = ?_a in Theorem 1.1. Moreover,

using Theorem 1.1, we can generate whole families of examples of the same

two "strange" phenomena for many Lie algebras. Thus a "bad" phenomenon

for Verma modules becomes "good" when one interprets the situation using a

larger parabolic subalgebra than a Borel subalgebra. This further emphasizes

the importance of studying modules induced from general parabolic subalge-

bra s.

Along the same lines, we comment that the results of [l] and [10] do not,

in general, give explicit expressions for the highest weight vectors in a Verma

module, or equivalently, explicit formulas for the embedding of one Verma mod-

ule into another; they usually give only the existence of the vectors or the em-

beddings. But we can use the polynomials Ç, in Theorem 1.1 to give explicit

expressions for certain of these highest weight vectors or embeddings which

have not yet been described explicitly.

We would like to thank G. D. Mostow for informing us about his approach

to the double transitivity theorem.

Notations. We shall write  Z+ for the set of nonnegative integers and Q

for the field of rational numbers. Throughout this paper,  k is a field of char-

acteristic zero. The dual of a vector space  V over k is denoted V .  The

symmetric algebra of V is written 5(V),  and for all r £ Z+, the rth symmetric

power is denoted STiV), so that

5(V)=   U   S7iV).
r eZ +

5(V*) is naturally isomorphic to the algebra of polynomial functions on V

(i.e., the algebra of sums of products of linear functions on V), and we shall

often identify these two algebras. Let   g be a Lie algebra over k, and let  V

be a g-module. Then  g may be canonically embedded in the universal envel-

oping algebra § of   g, and V may be regarded naturally as a ^-module. The

action of § on V will be denoted X • p ix £ §, v € V).  If   8 and T are sub-

sets of  g and V, respectively, let T8 be the set of S-invariants in T, i.e.,

\t £ T | s • t = 0 for all s £ &}. Regard § and 5(g) as g-modules by the nat-

ural extensions by derivations of the adjoint action of  g  on itself. Then for
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x £ g and y £ §, x • y = [x, y], where we use [ • , « ] to denote the commu-

tator in associative algebras, as well as the bracket in Lie algebras. In par-

ticular, if 8 C g  and T C §, then T    is the ordinary centralizer of   á in T.

Note that for all x £ g, y £ § and v £ V, we have x • (y • v) = [x, y] • v + y •

ix - v).  Regard V   as the g-module contragredient to the g-module  V.

2. The setting.  Here we shall summarize the necessary preliminaries

and fix notation to be used throughout most of this paper.

Let (g, 9) be a semisimple symmetric Lie algebra over k,  i.e.,   g is a

semisimple Lie algebra over k and 9 is an automorphism of  g  such that

9   = 1. (See [2] and [7(b)] for background information on semisimple symmet-

ric Lie algebras.) Denote by   t and   J3 the +1 and —1 eigenspaces for 9,

so that  g = t © ^ is the symmetric decomposition of (g, 9), orthogonal with

respect to the Killing form of  g. Assume that there is a splitting Cartan sub-

space   a of  jo. That is,   a is a maximal abelian subspace of  $ whose ad-

joint action on   g  can be simultaneously diagonalized.

Let m  be the centralizer of  a in  t, and for all k -linear functionals

cp: a —» k, define

of = ix £ g|[a, x] = cS(fl)x for all a e a!.

Then  g° = m © a. Let

S = H e o.*\cp 4 0 and  of 4 Oi,

the set of restricted roots of  g with respect to   a. Then

3=9°©  II   g<i=m©a© II  of.
<zSe2 4>e2

Moreover, [9*, g*] C g*®* and 9of = g~* for all cf>, if/ e a*.

Let B be the Killing form of  g. Then B is nonsingular on   a (see [7(b)]),

so that B  induces naturally a nonsingular symmetric ¿-bilinear form (•, • )

on  a , as well as a natural isometry between  a and  a .  Let  a_ denote the

rational span of S in   a .  Then   a    is naturally isomorphic to   aQ ®_ k, and

the form ( •, • ) is rational-valued and positive definite on the rational space

a     (see [7(b)]).  In particular, icp, <p) 4 0 tot all t£ e 2.

For all çS e S, let Sj, denote the orthogonal reflection of  a   through the

hyperplane perpendicular to cp, and let W be the group of isometries of  a

generated by the s ± icp £ 2).  W is called the restricted Weyl group of g with

respect to  a. S spans   a    and forms a (not necessarily reduced) system of

roots in   a    with Weyl group W (see [7(b), §2]).

Let S+ be a positive system in S, and define
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tl-    II    of    and    n-=    II   of*.

Then rt and rt~ are nilpotent subalgebras of  g, and we have the decomposi-

tion g=rt"©m©a©rt.

Define the bilinear form Bg on  g by the condition BqÍx, y) = —B(x, 9y)

(x, y £ g). Then Bq is a nonsingular symmetric form, and the decomposition

g= m © a©TJ^e2 of is a Bq -orthogonal decomposition (see [7(b), Lemma

3.2]). Hence Bq is nonsingular on each  g   icp £ 2) on m   andón   a. More-

over, Bq  is clearly a t-invariant and 0-invariant form on   g.

For all çS e 2, let x^e a denote the image of cp under the canonical

isometry from  a    to  a, so that ß(x., a) = cp(d) fot all a £ a, and B(x ., x ,)

= (cp, if/) fot all cp, if/ £ 2. Then for all e e of, [e, 9e] e a, and in fact

[e, 9e] = Bie, 9e)x(j) = -B6(e, e)x¿

[7(b), Lemma 3.3].  Since icp, cp) 4 0, we can define h, = 2x,/(cf>, cp) e a.

Then 0(A¿)=2.

Suppose now that k is algebraically closed, so that every element in k

has a square root. Since Bq  is a symmetric nonsingular form on  of, Of   con-

tains a nonisotropic vector eQ with respect to the form Bq (i.e., Bß(e0, eQ)

4 0). Set

e,pa(2/(cp,<p)BQ(e0,e0))1/2eQ

and /0 = -dep Then Bg(e^ e^) = 2/(0, cp), and so [h^, e^[ = 2e¿, [A¿,/¿]

= -2/^ and [e^, /^] = h^. Hence \h^, e^, f^\ spans a three-dimensional sim-

ple subalgebra  u^ of g.

Now drop the algebraic closure assumption on k. Let § be the universal

enveloping algebra of  g, and let M, 0, Tl and 7L~ denote the universal en-

veloping algebras of m, a, n and rt-, respectively, regarded as canonically

embedded in  g. Then the multiplication map in ij induces a linear isomor-

phism

§ ^:n-® su® a® ft.

Let v e a*. Then the linear form on the subalgebra m © a © n of   g

which is v on  a and zero on m © n vanishes on the commutator subalgebra

of m ffi a © rt, and thus corresponds to a one-dimensional representation ?r

of m © a © n and hence of its universal enveloping algebra \0%. Let Vv

be the g-module induced by the   (m©a©n)-module defined by rr (see [2,

§5.1]). That is,
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where § is regarded as a right 3TI uTl-module by right multiplication, and k

is regarded as the Jjîuft-module defined by rr. The vector vQ= 1 ®1 £ Vv

generates Vu as a §-module, and is called the canonical generator of Vv.

It is clear that the map to : 7l ~ —» Vv given by x t-»x « v0 is a linear isomor-

phism.

Let V be a g-module, v e V a nonzero vector and Ae a . Then v is

called a restricted weight vector and A. a restricted weight for V if x • v =

A(x)t> for all x e a. For all A £ a , the subspace of V consisting of 0 and

the restricted weight vectors for A is called the restricted weight space tot

A; it is nonzero if and only if À is a restricted weight for V.

The following definitions are central to this paper:   Let V be a g-mod-

ule, and let v e V be nonzero. Then v is a conical vector for V if v e ymtön}

i.e., if (m © n) • f = 0. The subspace Vm   n consisting of 0 and the conical

vectors is called the conical space of V.

Now let veo.    and let vQ be the canonical generator of the induced

module  Vv. Then vQ is clearly a conical restricted weight vector in V   with

restricted weight v. It is also clear that the conical space of V    is a-invari-

ant and hence is the direct sum of its intersections with the restricted weight

spaces of Vv.

The standard universal property of the induced module Vv (see [2, §5.1])

say that if U is a g-module and ue U is a conical restricted weight vector

with restricted weight v,  then there is a unique g-module homomorphism

f:Vv—,U such that fivQ) = u. If u generates U, then /  is surjective. If

U = V^ for some pea, then / is injective; this follows from the fact that

7l~ has no zero divisors. Let Z C V^ be the intersection of the conical

space and the restricted weight space for v. Then we have a natural linear

isomorphism

Hom9(Vv, VM) — Z,       fh+fivQ).

Let v and vQ be as above. Since vQ £ (Vv)m, the linear isomorphism

to: Jl-—» Vv (see above) is also an m-module isomorphism, where 71"" is

regarded as an m-submodule of § under the adjoint action. In particular,

(Vv)m = (jl~)   • Vq, and in fact co restricts to a linear isomorphism

a>:iJl-T->iVv)m,        x^x.v0.

Define pea    by the formula

, pia) = }4tt(ad a|rt)
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for all a e a, i.e.,

p = I    S   (dim af)<p.

For all v e a , define the g-module Xv to be the induced module Vv~p. As

above, let 77 be the one-dimensional representation of m © a © rt defined by

v. Then X can be interpreted as the twisted induced module induced by the

one-dimensional (m ffi a © n)-module corresponding to rr, in the sense of [2,

§5.2]. That is, for all m £ m, a £ a. and 72 e n, the trace of the action of

?7z + a + 72 on g/(mffiaffin) is -tr(ad a|n) = -2p(a). But we shall not need

this fact.

The canonical linear isomorphism A : 5(g) —» § is defined by the formula

Hgi '••g„) = - £ So-(i)*"*o-(B)
72!        cr

for all 72 e Z+ and gi e g; here the product on the left is taken in 5(g), the

products on the right are taken in )j, and o ranges through the group of per-

mutations of {l, ... , 72! (see [2, §2.4]). For all g £ g and 72 e Z + , A(g") =

g". Also, A is a g-module isomorphism (see [2, §2.4.10]).

Let k  be a field extension of k, g = g ®fe k, t = t  ®, k, etc., and let

d be the.k-linear extension of d to  Q. Then (g, d)  is a semisimple symmet-

ric Lie algebra over k  with symmetric decomposition  çj = t ffi ip, ä is a

splitting Cartan subspace of  jo, etc. We shall often use the technique of ex-

tension to a "sufficiently large" field k, which can always be taken to be

an algebraic closure of k. For example, the construction of the subalgebra

U^ above might have to be carried out over an extension field k   of k, but

results about ("§, d) proved using U¿ can often be transferred to (g, d).

3. General results on polynomial invariants. Let  U be a finite-dimen-

sional real Euclidean space and SOiU) the rotation group of U. There is a

natural 50( (i)-invariant quadratic element t of the second symmetric power

S (1/ ) given by the sum of the squares of the members of the dual basis of

any orthonormal basis of U (t is the "square of the radius"). Let /  be the

algebra of SO( lO-invariant polynomial functions on  U, or equivalently, the

algebra of SO(i/)-invariants in the symmetric algebra S(U ). A standard re-

sult of classical invariant theory states that / is exactly the set of polyno-

mials in t if dim U > 1. (if dim U = 1, then 50(f) acts trivially on U, and

so 7 = 5((/*).)

Clearly, / is exactly the set of polynomial functions on U constant on

the 50((/)-orbits in U, i.e., the spheres centered at the origin if dim U> 1,

and the points if dim U = 1. If M is any Lie group which acts as isometries
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on U in such a way that M acts transitively on the 50((/)-orbits in  U (i.e.,

the M-orbits in U ate the same as the S0(U)-otbits), then the set of M-invari-

ant polynomial functions on U must coincide with the set / of 50(lO-invari-

ants.

Now suppose that M also acts as isometries on a second finite-dimen-

sional Euclidean space  V so that M acts transitively on the S0(V)-orbits in

V.  Then the set of M-invariant polynomial functions on V is the set /C5(V )

of 50( V)-invariants, and / is a polynomial algebra as above.

Now M and SO(U) x SO(V) both act naturally on U ffi V. Let L be the

set of M-invariants in S((U ffi V)*) = S(U*) ® S(V*). It is easy to see that the

set of 50(1/) x 50(V)-invariants in 5((i7 ffi V)*) is exactly / ®/, and that

/ ® / C L. It is important to know that / ® / = L in certain situations. In this

case, for example,  L will be a polynomial algebra on two generators. In order

to insure this, it is natural to assume that the M-orbits in U ffi V are the same

as the SO(U) x 50(V)-orbits, i.e., the products of the 50(l/)-orbits in U with

the 50(V)-orbits in V.  This assumption is equivalent to the "double-transi-

tivity" hypothesis—that if A is an   50( t/)-orbit in  U and B is an 50(V)-orbit

in V, then the isotropy group of M at any point of A acts transitively on B.

If dim U > 1  and dim V > 1, this is equivalent to saying that M acts transi-

tively on the product of the unit sphere in  U with the unit sphere in  V. Under

the double transitivity hypothesis,  L = / ®/.

The present section is devoted to algebraic analogues of these facts,

valid over the field k of characteristic zero, assumed for convenience to be

algebraically closed throughout this section. Here we are concerned with a

Lie algebra mn (over k) which acts on modules  U and V with nonsingular

symmetric mn-invariant bilinear forms. Replacing the orbit hypotheses for M

by corresponding "infinitesimal transitivity and double-transitivity" assump-

tions, we show that the mn-invariant polynomial functions on  U, V and  U ffi V

are exact analogues of the spaces of M-invariants above. We also transfer

these results to the symmetric algebras S(U), S(V) and S(U ffi V) = 5((7)®5(V);

the invariants here are essentially the same as for the spaces of polynomial

functions. We do not need any theory of algebraic groups. The setup in this

section is entirely independent of §2; the results   here will be applied to the

setting of §2 in the next section.

Let mQ be a Lie algebra over k,  U a nonzero finite-dimensional m0-mod-

ule, and BQ a nonsingular symmetric mn-invariant bilinear form on  U.  The

homogeneous quadratic polynomial function x (-» BAx, x) on U defines a
ry J,   lift

canonical nonzero element z"0 e 5(1/ )     under the natural identification be-

tween the algebra of polynomial functions on  U and SiU ). BQ also induces
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a canonical m0-module isomorphism <f0 : U   —* U which extends to an mQ-

module and algebra isomorphism £Q : SiU*) —* S(U). Let p0 = £0(tQ), so that
p0£S2iU)m°.

For every element e £ U, denote by e^ the BQ-orthogonal complement of

e in U. Recall that e is called isotropic (resp., nonisotropic) with respect

to B0 if BQie, e) = 0 (resp., BQ(e, e) 4 0). Note that e is B0-nonisotropic

if and only if U = ke ffi e1.

Lemma 3.1. For all e £ U, mn • e C cx.

Proof. Let x e mn. Then B0(x • e, e) = -BQ(e, x • e) = -BQ(x • «, c)

since B0 is m0-invariant and symmetric, and so BQix • e, e) = 0.    Q.E.D.

We now make the key assumption that for every BQ-nonisotropic vector

eel], we have m. • e = e . This can be thought of as an "infinitesimal

transitivity" hypothesis. Our goal now is to compute SiU)    , and in fact to

prove:

Theorem 3.2. // dim U « 1, then S(uf° = S(U). If dim U > 2, zÄezz 5(í/)m°

zs ZÂe polynomial algebra generated by pQ. /tí particular, 5(1/) ¿s a polyno-

mial algebra on one generator.

The proof Will be carried out in a series of lemmas. First we settle the

easy one-dimensional case:

Lemma 3.3. Suppose dim U = 1. Then mQ acts trivially on U.  In parti-

cular, s(u)m° = s(u).

Proof. Any nonzero element e of U is B0-nonisotropic, and so e   =0.

Thus m0 . e = 0 (Lemma 3.1).    Q.E.D.

It is also convenient to handle the two-dimensional case separately:

Lemma 3.4. Suppose dim U = 2. Then S(U)     is the polynomial algebra

generated by pQ.

Proof. Since k is algebraically closed, we may choose a B0-orthonormal

basis \ey e^ of U. Then p0 = e2 + e2 £ S2(U). By hypothesis, there exists

x e m0 such that x « e^ = e2. Since BQ is m0-invariant, we have BQ(eyX-e2)

= -B0(x • «j, e2) = -B0(e2, e2) =-1. But x . e2 is a multiple of e^, and so

x • e~ = —e..

Again since k is algebraically closed, k contains a square root i of

—1. Let fj = e1 + ie2 and f 2 = ej — ze2, so that {vy v2\ is a basis of (A

Then x > v^ = e2—ie^= -zVj and x • v2 = e2 + ¿ej = z'i>2.

Let / £ S(U)    . Then / is a polynomial of the form
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in

, V a   ß
/=       f   caßvlVP

a.,ßeZ+

v1 and v2 icao £ k). Since x • / = 0, we have

Z    icaßiß-a)vy2aQ,

so that caß = 0 unless  a = ß. Thus / = 2a€„   caa(t>jf 2)a.  But VyV2 = e2

+ e2 = p0, and so /  is a polynomial in pQ. Conversely, it is clear that any

polynomial in pQ is in S(U)   . The lemma now follows from the fact that the

subalgebra of S(U) generated by p0 is isomorphic to the polynomial algebra

generated by p0.    Q.E.D.

In order to compute 5(17)     in general, we shall use the following result:

Lemma 3.5. Let e £ U be BQ-nonisotropic, and let r £ Z + .  Then e7 gen-

erates S7(U) as an raQ-module. In particular,

S7(U) = ke7+m0- S7(U).

Proof. The second statement clearly follows from the first, and so it is

sufficient to prove by induction on / = 0, ... , r that the smallest m0-invari-

ant subspace  T of S7(U) containing e7 also contains er-,57(e ).  This is

clearly true for / = 0, so assume it is true for 0, ..., j (j < r). Let x £ m.

and seS'(eL). Then

x . .e7~>s = (r- j)e7-(-> + 1)(x . e)s + e7~'(x • s).

The left-hand side and the second term on the right are in T by the induction

hypothesis, and so er~l,+1\x • e)s e T since r— j> 0. The lemma now fol-

lows from the assumption that m0 . e = c .    Q.E.D.

The point is the following:

. 4-ypl  ft

Lemma 3.6. Let e £ U be BQ-nonisolropic, reZ+  and f £ S7(U )    . Re-

gard f as a polynomial function on U.  Then f  is determined by its value at

e.  Equivalently, if /(e) = 0, then / = 0.

Proof. There is a natural pairing }•,•! between S7(U ) and ST(Ü) given

as follows:
r

i/, •••/,,«!•• • «ri = z n </> uoxi)).
o-     ¿ = l

where Uy...,u 6 U, f., ... , f € (J*, (•»•)  is the natural pairing between

U    and U and a ranges through the group of permutations of il, ... , rj.

Then \f, u7\ = r!/(zz) for all / eS7(U*) and u e U, where / is regarded as a
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polynomial function on  U on the right-hand side. It follows that i «, • } is

nonsingular. Also, the natural actions of mQ on S7(U ) and S7(U) are con-

tragredient with respect to i •, • j (see for example the proof of [ 7(b), Lemma

3.6]).

Now let / and e be as in the statement of the lemma. If /(e) = 0, then

\f, e7\ a 0. Since / is mn-invariant, i/, x • s\ = -ix • /, s\ = 0 for all x e mn

and s e S7(U). Thus (/, S7(U)} = 0 by Lemma 3.5, and so /= 0 by the non-

singularity of {•»•!•    Q.E.D.

Theorem 3.2 now follows by applying the canonical isomorphism fQ : S(u )

—+ S(U) to the following result:

Lemma 3.7. Let dim U> 3.  Then S(ll )      is the polynomial algebra gen-

erated by tQ.  Equivalently, if reZ+ is odd, then S7(ll )     =0,  and if ra

2m, m eZ + , then 5r((7*)'"0  is spanned by t™.

Proof. Since S(U )      is the direct sum of its homogeneous components,

it is sufficient to compute ST(U )      for r e Z + . Let V C U be the algebraic

set defined by the equation tAv) = 0 (v £ Ll).  Then  V is exactly the set of

Bn-isotropic vectors in  U.  Let / £ S7(U )    . If / has a zero outside  V, then

/= 0 by Lemma 3.6. Hence we may assume that all the zeros of /  lie in V.

But then by the Hilbert Nullstellensatz, / divides some power of zn. Choose

a B0-orthonormal basis of U, and let Xy ... , Xn £ U    be the corresponding

dual basis. Then S(U ) can be identified with the polynomial algebra

&[Xj, ... , X ], and tQ = X j + « • « + X . Since dim U > 3, t0 is an irreduci-

ble polynomial. The fact that / divides a power of tQ thus implies that / is

itself a power of tQ up to a scalar multiple.    Q. E.D.

Theorem 3.2 is now proved.

Remark.  The last assertion of Lemma 3.7 (the case r= 2zzz) can also be
.    *.mn

proved more directly (even when dim U < 2) as follows:   Let / e S7(U )    ,

let e e U be a B0-nonisotropic vector, and set c = it™)ie) = tQie)m £ k. Since

z0(e) = BQ(e, e) 4 0, we have c 4 0. But fie)t™ and cf  ate two elements of

S7iU*) ° which take the same value c/(e) at e.  Hence /= c~lfie)t™, by

Lemma 3-6, proving the assertion.

The following consequence is interesting, but it will not be needed:

Corollary 3.8 (to Theorem 3.2).  Every mQ-invariant symmetric bilinear

form on  ¡J is a scalar multiple of BQ.

Proof. From Theorem 3.2, S2iuf° = kp0, and so 52(ii*)m° = ktQ. The

corollary now follows by polarization.    Q.E.D.
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Remark. Corollary 3.8 has a direct proof which does not use either Lem-

ma 3.4 or Lemma 3.6:   Let C be an m0-invariant symmetric bilinear form on

U. Then the unique linear operator A : U —» U defined by Ciu, v) = BQ(Au, v)

for all u, v £ U is an m0-module map which is symmetric with respect to BQ.

Let e £ U be a BQ-nonisotropic vector, and let e  e e .  By hypothesis, there

exists x e mQ such that x • e = e'. Then

BQiAe, e) = BQ(Ae, x • e) = -Bn(x • Ae, e) = -BQ(A(x . e), e)

a-BQ(Ae', e)=-B0(e, Ae')=-B0(Ae, e'),

and so BQ(Ae, e ) = 0. Thus every Bn-nonisotropic vector of U is an eigen-

vector for A. Since every two BQ-orthogonal B0-nonisotropic vectors have a

BQ-nonisotropic linear combination not proportional to either of them, we see

that they must have the same eigenvalue for A.  Applying this to a BQ-orthog-

onal basis of U consisting of BQ-nonisotropic vectors shows that A is a sca-

lar, and this completes the proof.

Another general result is required for the next section. Let V be a non-

zero finite-dimensional m0-module with a nonsingular symmetric m0-invariant

bilinear form By Let p¡eS (V)     be the corresponding canonical invariant.

The symmetric algebra of the direct sum flip-module U ffi V is naturally iso-

morphic to S(U) ® 5(V), and mQ acts on S(U ffi V) according to the tensor

product of its actions on S(U) and S(V). In particular, S(U) ° ® 5(V) °

CS(U © V)   . The next theorem gives an important case in which this inclu-

sion becomes an equality.

Theorem 3.9. /t2 the context of Theorem 3.2, suppose in addition that for

every BQ-nonisotropic vector eQ e U and every B,-nonisotropic vector e.eV,

we have mQ • e, = e-~    in V,  where m0  is the centralizer of eQ ztz m0. Then

5(f7©V)m° = 5(ii)mo®5(V)mo,

S(U)     is given by Theorem 3.2, aTZ^ 5(v)      is either S(V) or the polynomial

algebra generated by p., depending on whether dim V = 1  or dim V > 2. In

particular,  S(U © V)      is a polynomial algebra on two generators.

Proof. Let eQ e U be B0-nonisotropic, and let mQ be the centralizer of

eQ in nip. For every B j-nonisotropic vector e^eV, we have e^ =irt0« «j C

mQ • «j C ej by Lemma 3.1, so that mQ • e^ = e}. Thus Theorem 3.2 applies

to m0, V, B j and p., and so to prove the theorem all we must show is that
5(í/©V)m°C5(í7)mo®5(V)m°.

We shall now apply a technique used in [7(b), §5]. It is clear that



236 J. LEPOWSKY

5( U © V)     is the d irect sum of its homogeneous components of the form

(S7(U) ® 5(V))    , where r£ Z + , and so it is sufficient to show that

(5'(l>) ® 5(V)f° C S7(uf° ® 5(vf°.
Recall the nonsingular mQ-invariant pairing i •, • j between S7(U ) and

S7iU) (see the proof of Lemma 3.6). Also recall the canonical m0-module and

algebra isomorphism £0 : S(U )—*S(LÍ). Then çQ restricts to an m0-module

isomorphism £Q : S7(U )—>S7(U). Define a bilinear map

co: S7(U) ®5(V) x S7(U) — 5(V)

by the condition s ® w, t r-> if'Hs), t\w for all s, teS7(U) and zz> e 5(V).

Then for all x e m0, y e S7(U) ® 5(V) and / e 57((/), we have

<u(x • y, t) + co(y, x • i) = x • <ü(y, í).

Moreover, let X be any subspace of 5(V). We claim that for all y e S7(U) ®

SiV), coiy, S7(U)) C X implies y e S7(U) ® X.  In fact, choose a basis \w.\ fot

a complement of X in S7(V) and write y = 2¿ s; ® w>i + z (s¡ e S7(ll), z e

S7(U) ®X). Then for all re5r(i;), we have

]T cois. ® tzz^ r) + cùiz, i) e X,

i

and so ll.\c;~1(s'), t\w.eX. Hence i^Hs.), 5r((/)} = 0 for all z, so that

each s; = 0, proving the claim.

Let y e(S7(U) ® 5(V)) °, and let eQ and m^ be as in the statement of

the theorem. Then for all x e m0,

x • co(y, e7Q) = cú(x • y, e7Q) + co(y, r(x • c0)eQ~1) = 0

i
m

since x • y = 0 and x • eQ = 0. Hence co(y, e70) e S(V)   . But by hypothesis,

ttIq. ej = ex in V, for every B j-nonisotropic vector ej £ V. Thus Theorem

3.2 applies,to mQ, V, B j and pj, as well as to m0, V, Bj and pj. In partic-

ular, 5(V) ° = 5(V)m°, and so co(y, e7Q) e 5(V)m°. But the set Z of B0-noniso-

tropic vectors in U is Zariski dense since it is the set on which the polyno-

mial function r0 £ S2(U*) does not vanish. Hence the'powers e7Q (eQ e Z)

span S7(U) (see for example [7(b), Lemma 3.5(ii)]). It follows that cj(y, S7(U))

C 5(v)   . But now the above claim applied to X = 5(V)      implies that y £

s7iu)®sivf°.
The rest is easy:   Let [a.] be a basis of 5(V)   , and write y = 2 . b.®

ai (bj e S7(U)). Since mn • y = 0, we must have 2¿ x • b{ ® a¿ = 0 for all

x e m0, so that mn • b. = 0 for each i. Hence y e 5r(í/)n'0 ® 5(V)m°, and the

theorem is proved.    Q.E.D.
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4. The Kostant-Mostow double transitivity theorem. In this section, we

return to the setting of §2. For every ^ eS, I  acts naturally on the subal-

gebra TU = of © g2*" of  g. (Here  g2*" might be zero.) Our main goal at this

point is to determine the algebra 5(rt(¿)ra of m-invariants in the symmetric al-

gebra   5(1^). It will turn out to be a polynomial algebra on one or two gener-

ators (Theorem 4.6). The method will be to verify the hypotheses of §3 and

then to apply the results of §3.

Suppose that dim a= 1, <p is the unique simple restricted root, dim g2*>

> 1, k = R, d is a Cartan involution of  g in the sense that the Killing form

of g is negative definite on  t and positive definite on   J3, G is a connected

Lie group corresponding to  g, K is the connected Lie subgroup of G corre-

sponding to  t, and M is the centralizer of  a in K. Then 5(ru,)m is the space

S(rxA)     of M-invariants in 5(ru), and determining S(nA     amounts to proving

a double transitivity theorem for the action of M on oÇt> © g2^. Specifically,

let 5j be the unit sphere in   g  , and 52 the unit sphere in  g    , with respect

to the bilinear form Bq , which is positive definite on  g. The issue is to

prove that M acts transitively on 5j x 52> This theorem was proved by B.

Kostant [6, §2.1] (in a somewhat different formulation) and independently by

G. D. Mostow (oral communication; related ideas are discussed in [8, §19]).

Kostant's proof, as modified slightly by N. Wallach [11, Theorem 8.11.3], is

purely algebraic. In order to show that this proof applies in our general set-

ting, and for our later reference, we shall give an exposition of Kostant's

proof below. (Mostow's proof is based on explicit case-by-case checking;

only the case of the exceptional group F. is difficult.) We have been discus-

sing the rather subtle situation in which dim g2^ > 1; if dim g      < 1, the ap-

priate results are very easy.

Return now to the general setting of §2.

Fix <pe2. We shall describe a canonical element p<¿ e52(g*)m. The

symmetric bilinear form Bq is nonsingular on of (see §2). Since Bq is t-in-

variant and hence m-invariant, and since of is m-stable, the restriction of Bq

to g is m-invariant. As in §3, we get a nonzero homogeneous quadratic poly

nomial function x (-► Bq(x, x) on of, and this defines a nonzero element t^ e

5 ((of) ) . Bq induces a canonical m-module isomorphism £j : (of) —» of

which extends to an m-module and algebra isomorphism ¿¡^ : S(( of) ) —* S( of).

L« P^a^UJ, so that P<f) £ S2(ofT.
Now we shall verify that the key assumption of the beginning of §3 holds

in the present context, with mQ = m  acting on U = of by the adjoint action,

and B0 = Bg\of x of. The word "nonisotropic" and the symbol e    have the

meanings of §3.



238 J.LEPOWSKY

Lemma 4.1   (cf. [6, Theorem 2.1.7]). Lei eQ eg* be a BQ-nonisotropic

vector.  Then [m, eQ] = eQ. /t2 particular,   of = keQ © [m, eQ],

Proof. It is clearly sufficient to assume that k is algebraically closed.

As in §2, we may choose a multiple  e^ of eQ such that   Bgie^ e^)=2/(cp, cp).

Setting h^ = 2x^/(<p, cp) e a and f^ = -de^, we have the bracket relations

t V «^ = 2e<¿, [ V /</>] = -2/<¿ and [e¿, /^l = h^ (see §2), so that \h^,

ea>' /</J spans a three-dimensional simple Lie subalgebra  Uj, of  g. Let  Q,

be the u^-submodule   II -__2 9,<?!> or" 9> Since the eigenspaces of ad h¿ in

g j,  with eigenvalues 0 and 2 are g   = m © a and  of, respectively, the repre-

sentation theory of a three-dimensional simple Lie algebra implies that

[e^, m © a] = of. But [e^, m] C e^   by Lemma 3.1, and since [e^, a] ake^,

we must have [e^, m] = e ,.    The lemma is now clear.    Q.E.D.

Before applying Theorem 3.2, we shall derive two more results:

Lemma 4.2.  We have [of, of] = g2<*\

Proof. We may assume that k is algebraically closed. As in §2 (or the

last proof), we have the three-dimensional simple Lie subalgebra vu of g

spanned by h^, e j  and f^. Let  g^ be the u^-submodule   II2__2 9'^ of  9-

The eigenspaces of Aj, in  g^, with eigenvalues 2 and 4 are of and  g2   ,

respectively, and so the representation theory of tu implies that [e±, g*] =

g2*.    Q.E.D.
The following consequence will be useful later:

Corollary 4.3. Let X be a Q-module and x e X an m-invariant vector an-

nihilated by some BQ-nonisotropic vector eQ 6 of.   Then (of © Of) . x = 0.

/t2 particular, if dim a = 1  a72a" cp is the unique simple restricted root, then x

is a conical vector in X.

Proof. For all y £ m, [y, eQ] • x = y • (eQ • x) - eQ • (y • x) = 0, and so

g* • x = 0 by Lemma 4.1. Lemma 4.2 now implies that  g * « x = 0. The last

assertion is clear.    Q.E.D.

Theorem 3.2, Lemma 4.1 and the field extension technique imply:

Theorem 4.4.  // dim g* = 1, then S(off = 5(g*).  // dim of > 2, then

S(of)m is the polynomial algebra generated by p±. In particular, SiofT is a

polynomial algebra on one generator.

Corollary 4.5. Every rti-invariant symmetric bilinear form on  Of  is a

scalar multiple of Bq.

The corollary follows from either Theorem 4.4 or Corollary 3.8; see the
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remark following Corollary 3.8 for a simple proof. We shall not have to use

Corollary 4.5.

Our next goal is to verify the hypothesis of Theorem 3.9 for  U = of and

V = g ' in case 2cS £ 2 (see Lemma 4.7). This amounts to proving the Kos-

tant-Mostow double transitivity theorem. For reasons mentioned above, we

shall essentially repeat Kostant's proof [6, §2.1], with a couple of modifica-

tions (the proofs of Lemmas 4.18 and 4.20) taken from Wallach's exposition

[11, Theorem 8.11.3].  The result is:

Theorem 4.6. Suppose cp e2, a72a" let ru be the subalgebra  of © g2*

of g. Then 5(ru)m = SiafT ® 5(g2*)m, and this is a polynomial algebra.

Moreover, let p± £ S (of)"1 be the canonical quadratic m-invariant defined by

Bq, and if 2cp e 2,  let p2± £ 52(g2*,)m be the same for 2cp.   Then there are

four possibilities:

Case 1. dim of = 1  and g2* = 0. Let x £ of, x 4 0. Then 5(ru,)m =

Si of) = k[x],  and k[x]  is the polynomial algebra generated by x.

Case 2. dim of > 1 and g2* = 0. Then Sin^f = k[p^, and &pj is

the polynomial algebra generated by p±.

Case 3. dim of > dim g2* = 1. Then 5(g*)m= k[p^] and 5(g2*)m =

Si Of) = k[y], where y £ g2*, y 4 0. Both algebras are polynomial algebras

in the indicated generators, so that S(nAp is the polynomial algebra k[p±, y]

in the two generators p,   and y.

Case 4. dim of > dim g2* > 1. Then S(of)m and 5(g2*)m are the poly-

nomial algebras k[pA and k[p2(A,  respectively, so that S(r\A)m is the poly-

nomial algebra k[p±, p2(A.

Proof. We may, and do, assume that k is algebraically closed. The fact

that dim of > dim g2* will be proved in Lemma 4.8. Also, Cases 1 and 2

are covered in Theorem 4.4. The rest of Theorem 4.6 follows immediately

from Theorem 3.9, Lemma 4.1 and:

Lemma 4.7.  Suppose cp, 2<p £ 2.  Let eQ £ of and ex £ g       be BQ-non-

isotropic, and let mQ be the centralizer of eQ in m.  Then [mQ, eA = e^ in

This result will follow from the next series of lemmas. Note that only

Case 4 of Theorem 4.6 remains to be proved, since Lemma 4.7 is trivial if

dim g = 1. But it will not be necessary in the following proof to impose

any restriction on dim g     , and in fact the proof holds even if  g      =0.

We shall use the notation of the proof of Lemma 4.1, so that e ,   is a

certain multiple of eQ, and \h^, e^, /^i spans a three-dimensional simple
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subalgebra u^, of  g. Also as in the proof of Lemma 4.1, let  a,± be the u^-

submodule II2__2 9      of  g. The natural representation of u.  on  %,  decom-

poses  g ± into a direct sum of irreducible u^-submodules. Since the eigen-

values of ad h,   on  Q,  ate among 0, +2 and ±4 (with corresponding eigen-

spaces  g   = m © a, g** and  g    **), the dimensions of the irreducible com-

ponents can only be 1, 3 and 5. A five-dimensional irreducible module occurs

if and only if g      4 0, and a three-dimensional irreducible module always

occurs—lu itself. Let  g.C 0,,  be the sum of all the (2z + l)-dimensional

irreducible tt¿-submodules of  g¿, (z = 0, 1, 2), so that  g<¿ = 9g © 9¡ © g2-

Also, let  gj = g; n g7'^ (0 < i < 2, -2 < j < 2); then  g¿ = lT=_z. g/ for each

i = 0, 1, 2. Also,   g±2* = g2±2, of* a g« © gil and g° = g0° © gó © g°.

Lemma 4.8. We have dim of > dim g2   .

Proof.  This is clear since   g   = g} © g2, g      = g2, dim g2 = dim g2 and

dim g} > 1 (since e^ £ g j).    Q. E. D.

Lemma 4.9. The decomposition g^ = g0 © gt ffi g2 is both BQ-orthogonal

and B-orthogonal.

Proof. First we shall show that Bq(q1, g2) = 0. Let x e gj, y e g2. Then

y - [fd» z^ 'f°r some z e o2* = g2, and so

Bq(x, y) = -B(x, dy) = -B(x, [-e0, dz])- = -B([e0, x], dz) = 0

since [ei, x] = 0. Hence  Bg(gt, g2) = 0, and similar arguments show that

Be^\\ 9I1) = Bô(g°, 9°) = %(9°o, 9°) = °

and

ß(9}> 3J1) = Bio,?, $ = Bis?. 9¿) = B(9°0, 9?) = 0-

Since BeÍQí4>, Of*) = 0 unless j = k, and B(g7'*, gfe<i) = 0 unless /—k,

all that remains is to show that Bg(Qy g2) = B(g15 g2) = 0. Let u £ gj.iz eg2>

Then v = [/j, tzz] for some w £ g2, so that

Be(u, v)=-B(u, dv) = -B(u, [-e¿, dw])

= -B([e^,, u], dw) a BqÍU^, u], w) = 0

by the above, since [e ±, u] £ gt and w £ g2. Thus B^g^ g2) = 0. Similarly,

Biß, g°) = 0.    Q.E.D.

Lemma 4.10.  Let e £ of and f £ of   , and suppose Bie, f) = 0, or

equivalently, Bq(¡, de) = 0 or Be(e, df) = 0. Then [e, /] £ m.
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Proof. Since [e, /] e g   = m © a and since m  is the B-orthogonal com-

plement of a in g , it is sufficient to show that ß([e, /], a) = 0. But if

h e a, then

Bile, /], b) = -B(e, [h, /]) = cf>(h)B(e, f) = 0,

and so the lemma is proved.    Q.E.D.

Lemma 4.11. We have  g2 C m.

Proof.  Every element in  g2 is of the form [e ., /], where / £ g2   . Since

e^ £ gj, Lemma 4.9 implies that B(e^, f) = 0. But then [e^, /] £ m by Lem-

ma 4.10.    Q.E.D.

Lemma 4.12. We have g° = kh^ © (g° n m).

Proof. It is sufficient to show that  gj C kh j, + m. But gt = [ßj,, 0f7 ]

and  %~   C g-* = kf^ © /^, where /¿, is the B^-orthogonal complement of f^

in  of*. In fact, Beif ̂  fj = Beie ¿, e^) 4 0. Hence   g° C *A¿ + [e¿, /£],.

and [e ,, /.,] C m  by Lemma 4.10.    Q.E.D.

Lemma 4.13. We have  g° = Ker cp ®(g° n m).

Proof. Since   gQ = gQ is the centralizer of  % in  gj,, g0 is stable under

d, and so  g0 = (g0 n a) © (gQ n m).  But the centralizer of u,   'n  a is clear-

ly Ker çS, and so g0 n a = Ker cp.    Q. E.D.

Let m.= g. n m = g? n m  (z = 1, 2, 3), and note that mQ is the central-

izer of e j  in m  and hence coincides with the subalgebra mQ in the state-

ment of Lemma 4.7. The next lemma summarizes the last three:

Lemma 4.14. We have  g2 = m2, g° = kh. © m1 and g° = Ker <p © mQ. In

particular, m=m0©m1©m2.

For all x £ g, define x* = [e^, x]. Write x      instead of (x ) . Also,

define x^ = [f±, x], and write x^ for (x*)*.

Recall the following standard fact about the representation theory of the

three-dimensional simple Lie algebra Ui :   Let it be a finite-dimensional irre-

ducible representation of  u,   on the space  V and let v £ V be a nonzero

eigenvector for rrihA). Let p be the smallest nonnegative integer ;  such

that nif A ,+1(tz) = 0 and a the smallest nonnegative integer /' such that

nie^) **\v) = 0. Then n(f^)n(e^)(v) = (p + Dqv and rt(e^)n(f^)(v) =

(a + l)pv. This implies:

Lemma 4.15.  For all x £ m2, (x**)^ = 4x*, (x*)^ = 6x, (x^)   = 4x+ and

(x„.)   = 6x.
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Lemma 4.16. Let x, y £ mr Then [x, y**] = [***, y] = (2/3)[y*, x*\.

Proof. By Lemma 4.15,

[x, y**] = (l/6)[(x\, y**] = (l/6)[(y*%, x*] = (2/3)[y*, x%

Hence also

[***, y] = -[y, x**] a -(2/3)[x*, y*] = (2/3)[y*, x*].    Q.E.D.

Lemma 4.17.  For all x, y £ m2, [x, y]     = (2/3)[x , y ].■

Proof. We have

[x, y]** = [***, y] + 2[x*, y*] + [x, y**] = (2/3)U*. y*l

by Lemma 4.16.    Q.E.D.

For all x £ g., let x. (z = 0, 1, 2) be the component of x in  g. with

respect to the decomposition  g¿ = g0 © gj © g2.

Lemma 4.18.  For all x, y £ m , [x, y]j = 0.

Proof.  By Lemma 4.17, [x, y]      ■ (2/3)[x , y ],  so that

([x, y]*\ a (2/3)[(x% y*] + (2/3)[x*, (/) J

= 4[x, y*] + 4[x*, y] = 4[x, y]*,

using Lemma 4.15. But [x, y]** =([x, y] )**,  and (([x, y]2)**)# - 4(tx,y]2)*

by Lemma 4.15. Hence [x, y]   = ([x, y]2) .  But since [x, y]   = ([x, y] A   +

i[x, y]A*, we get i[x, y]A* - 0, and so [x, y]j = 0.    Q.E.D.

Lemma 4.19.  For all x, y £ m2, [[x, y]Q, y**] = -2[[x, y]y y**].

Proof.  By Lemma 4.16, we have

[[x, y]2, y**] = [([x, y]/*, y] = [[x, y]**, y] = -ÍU y**], y]

(Lemmas 4.16 and 4.17)

= -i[x, y], y**] - [x, [y**, y]] = -[[x, y], y**]

(Lemma 4.16)

--[[*, yl0, y**] -[[*i y]2, y   L

by Lemma 4.18. The lemma now follows.    Q.E.D.

If x £ m, note that x+ = -dx   and x^ = dx    .

Lemma 4.20.  Let x, y £ m ,  and suppose Bgix    , y    ) = 0.  Then



CONICAL VECTORS IN INDUCED MODULES 243

[x    , y* J e m, [x   , y* J = -[y**, x* J, and [x**, y+J j = 0.

Proof. By Lemma 4.10 applied to  g2* in place of  of, e = x** and / =

y** = 9y**, we have [***, y^J £ m. Thus

t*    > y*J = Ö[x**, y+J = [0x**, öy* J = [x**, y**] = -[y**, x* J,

proving the second assertion.

To prove the last, first note that (y**)   = 4yif, by Lemma 4.15. Hence

1*    » y**J   = ix    , (y^) J = 4Lx    , y^l

= 4[x   , y]+ -4[(x**)+, y] = 4[x**, y]„. -16[x , y]

(again by Lemma 4.15)

- -4([x, y]**)+ - 16[x*, y],

by Lemmas 4.16 and 4.17. Thus

([***» y*J i)* = - !6[x*, y] j.

Hence by the second assertion, we also have

i[x**, y+*]j)* = -([y**, x^jp* = 16[y*, x]j =-16[x, y*]r

Thus

([***, y*J ,)* = -8([x*, y] + [x, y*]), = -8([x, y]*), = -8([x, y] A* = 0,

by Lemma 4.18. It is finally clear that [x    , y*„.]j = 0.    Q.E.D.

Lemma 4.21. Let x, y £ m2, and suppose B0(x    ,y    ) = 0. T/jerz

E**i y*J =-6[x, y]*.

Proof. We have [x^, y    ] = UAH***, y    ]   by Lemma 4.15, and this is

(l/4)[x**, y+J* by Lemma 4.20. But [***, y**] £ m  (Lemma 4.20). Thus

the last assertion of Lemma 4.20 shows that [x+, y    ] e g2. Now

[x„y*T = [(x,)*,y**l = 6[x,y**]

(by Lemma 4.15)

= -6[x,y]**

by Lemmas 4.16 and 4.17. But both [x^., y**] and [x, y]* are in  g2 by the

above and Lemma 4.18. Hence [x^, y**] = -6[x, y]*, and the lemma follows

by applying 9.    Q.E.D.

Lemma 4.22.  Let x, y e m,, and suppose BqÍx    , y    ) = 0 a72ri

Bgiy**, y**) = 1/2(0, <f>). Then
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[L*,y]0,y**] = -x*7i8.

Proof.  By Lemma 4.19, [[x, y]Q, y**] =-2[[x, y]2, y *].  But [x, y]¿

(l/6)([x, y]^) , by Lemmas 4.15 and 4.18, and so

tt*,y]0,y**l--(l/3)t([*,y]*)*,y**]

by Lemma 4.21. Also,

= -(l/3)[[x, y]*, y*T =(l/18)[[x*, y„], y**]*,

ße(y**, /*) = i/2(<p, cp) = 2/(2<p, 2<p),

and so as in §2 we must have the bracket relations for a three-dimensional

simple Lie algebra, say  u2(±, spanned by ¿2<¿, y      and -dy     :

lh24>,y**]a2y**,    [/72^,-öy**] = 2öy**    and    [y**, -dy**] = h^.

But —dy     a -y^ and h2¿ = Î^Aj,. Thus x   is an eigenvector for ad h^

with eigenvalue 1, and must lie in a two-dimensional irreducible tL i-submod-

ule of g. Hence applying the discussion preceding Lemma 4.15 to  u,(¡>, we

get

[y**, [-y**, x*]] = x*.

Thus [[x, y]Q, y    ] = —x   /18, and the lemma is proved.    Q.E.D.

In the notation of Lemma 4.7, a multiple e   of the nonisotropic vector

el € Of* may be chosen so that Bgie', e') = 1/2(0, cp). Then e' is of the

form y      for some y £ m2. Let e" £e,. Then e" = x      for some x£m2,

and so by Lemma 4.22, [— 18[x, yl0, e'] = e . Thus there exists z e mQ such

that [z, el = e . Lemma 4.7 is finally proved, and hence so is Theorem 4.6.

Q.E.D.

5. The structure of A±. Continuing to work in the setting of §2, we shall

transfer Theorem 4.6 to its "noncommutative analogue", i.e., to the structure

theorem for JI j,   (see below).

Retain the notation of §4. In particular, cp e 2 is fixed. Recall the ca-

nonical linear isomorphism A: 5(g) —* )j. Let /(a, be the universal envelop-

ing algebra of the Lie subalgebra TU = g    © o2<f>  of g defined in Theorem

4.6, so that A: 5(ru)    ' 71^ is an m-module isomorphism which restricts to a

linear isomorphism from 5(ru)   to 71a,. We shall now use Theorem 4.6 to give

an explicit description of the algebra Jl^. Recall the canonical quadratic

m-invariants p^ e S2(of)n and (if 2cSe2) p2(f> e S2(o,2*)m. Define

^ = 2A(p^)/(«p,çi)eîi;,
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and similarly, if 2c/> e2, define

1*f> - 2A(p2^)/(2cS,2cS) = Kp24)/2(<p, cp) e JlJ.

Theorem 5.1. Jl j, is commutative and in fact is a polynomial algebra.

More precisely, in the four cases of Theorem 4.6, we have:

Case 1. Jl± = )\± = k[x], the polynomial algebra generated by an arbi-

trary nonzero x £ of.

Case 2. Jl^ = k[qA,  the polynomial algebra generated by q^.

Case 3. A . = kiq^, y],  where y is an arbitrary nonzero element of g     ;

this is the polynomial algebra in the indicated generators.

Case 4. Jlj, = kAq^, q2&),  the polynomial algebra generated by q^ and

12<p.

Proof. Cases 1 and 2 follow immediately from the corresponding cases

of Theorem 4.6, together with the fact that A : 5(rt.) —* 71 j  is an algebra iso-

morphism since  rtj, is abe lian.

Since A(5(rtji)m) = JL,, Theorem 4.6 shows that the elements q± and y

in Case 3 and a .  and q2l± in Case 4 lie in ¡Hj,. Also, since   g2* is central

in Tt., we see that q± commutes with y in Case 3 and q2± in Case 4.

Denote the usual filtration of the enveloping algebra Jl. by JlQ C îîj C Jl2 C • • •.

so that Ti0 = k • 1 and ÎIj = k • 1 © Tfy, and for each r £ Z+ let nf : Tif~*'K?/7lr_l

be the canonical map. (Here we take K_j == 0.) We also have the usual grad-

ing 5(tl¿) = II~=0 5f(TV¿) of Sitty). For each r £ Z + , let a,: 5r(n0) -»

ÏI /Jt    j be the canonical map, so that a   is a linear isomorphism by the

Poincare-Birkhoff-Witt theorem (see [2, Proposition 2.3.6]).

Now suppose that we are in Case 3. We claim that q¿ and y are alge-

braically independent. In fact, if not, then for some r £ Z + , there is an equa-

tion

r     [,/2]

y=0   i=o       '

where the a..ek, and some a. 4 0 ii = 0, ... , [r/2]); [.] denotes the

"greatest integer" function. Thus ^/Iq   a. q\y7~21 e^L_i, so that

= 0.
/[r/2] . \

H 5 ^*n
Consider the element

[r/2]'/21   '      /     2 Y „
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Then

/[r/2] \

m"\Z0 airûyr-2i)=o>

and so s = 0. But this is a contradiction, since pj, and y are algebraically

independent in SinA), and the claim is established. A similar argument shows

that in Case 4,  a^ and q2<^ ate algebraically independent.

All that remains is to show that q± and y generate Jl.  m Case 3 and

that a^ and q2^ generate H^ in Case 4. We shall carry out the argument

only for Case 3; Case 4 is similar. Assume inductively that q± and y gen-

erate 71^ O Jlf, where r e Z+. (This is trivially true for r= 0.) Now

for all t e Z + . Let

ze

Then z is of the form

•-»AÏ'«fe*)>")
(a., e ¿) by Theorem 4.6. But

¡7

r+1  [//2]

and so the induction hypothesis implies that z can be expressed as a poly-

nomial in q<L and y. This completes the proof of Theorem 5.1.    Q.E.D.

6. The case 2a 4 2. In this section, we compute certain commutators

in the universal enveloping algebra g of g, and then we use these to deter-

mine certain conical vectors in the twisted induced g-modules X , where

vea    (see §2). Specifically, we prove our main results (Theorems 10.1 and

10.2) in the special case in which twice the relevant restricted root is not a

restricted root (see Theorems 6.17 and 6.18). But the first part of the sec-

tion, through Lemma 6.4, is valid in general, and this will be important in §8.

Maintain the hypotheses and notation of the last section. For conven-
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ience assume for awhile (through Corollary 6.10) that k is algebraically

closed.

Continue to fix <p £2, and choose h^, e^, ],, and u^ as in §2. Apply-

ing the constructions of the beginnings of §§4 and 5 to -cp" in place of <p, we

have canonical elements p_i £ S2iof*)m and q_. = 2A(p_ .)/(cp, cp) e 3I"j,.

Our goal now is to compute the commutator [e., a    .] in §.

Since Be(e^, e^) = 2/(cp, cp), it is clear that B#(/<¿, f^) = 2icp, cp) also.

Using the notation of the proof of Lemma 4.7, we recall from Lemma 4.9 that

the decomposition  g^, = g0 ffi gx ffi g2 is B^-orthogonal, and hence so is the

decomposition  9"    = $7J ffi gj1. Set fl = /j,. Since Bq is nonsingular on

g       and k is algebraically closed, we may complete /, to a Bg-orthogonal

basis i/j, ... , fn\ of of* such that BqH{, f A) = 2/(c3, cp) fot all z = 1, ...,

72. But since f^ £ afT , we may also assume that /*,,..,,/  £ g7   and that

fr+\, •••»/„ e 9J1 • Here rz = dim g   = dim Of* and r = dim off1. Note that

dim g     = dim gj1 = 72 - r, and hence that  a,2* 4 0 if and only if r < 72.

The canonical element p_ j, £ 52(g~'>) is equal to the sum of the squares

of the elements of any Bg-orthonormal basis of g     , and so

(<P, <P) ̂    ,2

Thus

p-*-*Y"Zfl
¿        z = l

^-^M^-t/Jet-*.

To compute [e ,, a_ j], we first note that

tv *-¿] = Z t**. /¿1 - Z &u> f¿fi+fle4» f?
i = l z'=l

= Z (tt^, /,.!, /,.] + 2/.[e¿, /.])
i=l

n

-Z^l^fi,e(t>]] + 2f.[e^,fi]).
¿=l

Lemma 6.1. [fv if y e^]] = -2/j.

Proof. This follows immediately from the bracket relations for h ,, e.

and/1 = /^.    Q.E.D.

Lemma 6.2. For all i = 2, ... , n, [e^, f{] e m.
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Proof. Apply Lemma 4.10.    Q.E.D.

Lemma 6.3.  For all i = 2, ..., r, [/., [/., eA] = 2/,,  and for all i = r +

1, ..... n, [f., [f., e4$a6fv

Proof. Let i= 2, ... , n. Then

tv Uv [/,-. ««II] --iv [/,. tv /£ffl --t/,-. [•*. t<> /fill.
But [e¿, /;] £ m   (Lemma 6.2), so that

«V [•*. /,-H -Wv [<> /¿]] «-(/., Ev /Jl-

Now we can apply the standard representation theory of the three-dimensional

simple Lie algebra  u^. If 2 < i < r, then f. €gj', and so [/j, [e^, /f]] =2^.,

and if r + 1 < z < 72, then /¿ £ gj1, and so [fy [e^, /\]] = 6/¿. Hence

[e^, [e^, /¿]] =-2ö/;  or -69f{, respectively, and so

IV t/f. Up e^m = 2[/., Ö/.]    or    6[/., 0/.],

respectively. But [/f, 9f.] =-Be(fi, fi)x_(p (see §2), and this is just h^.

Thus

ÍV [/,-, [/,-, ^]]] = 2A¿    or   6*¿,

respectively. But [/;, [/;, e A] e of*, and so has eigenvalue -2 for ad h^.

Since [e^, [/¿, [/^ e^]]] is a multiple of h^, the representation theory of

u.  implies that [/., [/., eA] must be a multiple of fy Since [e ., /I = h^,

the multiple is determined and the lemma follows.    Q.E.D.

In view of these lemmas, we have

[•#• ?_*! = -2/x + 2/x^ +2(r- 1)/, + 6(72- r)/j + 2 ¿ /.[e^, /.]
7 = 2

= 2 f (3n - 2r-- 2)/j + /^ + ¿ /.[e¿, /¿]J .

Let

(1) P¿ = '¿((dim g<*)cS + (dim of*) (2cp)) e a*.

Then p¿ = *{(» + 2(72 - r))cf> = M(3« - 2r)cp, and so p«^^) = 3« - 2r. The

conclusion is:

Lemma 6.4. Define p j   as z'tz (1). Then

&4» *-*]=2 (w - & (**>(*+uhd>+ z fi[u> /¿y •
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We could now use the derivation law to write down an expression for

[e±, q_A, fot all d e Z + . In order to simplify matters, however, we shall

assume at this point that  g * = 0, which implies that Of     is an abelian Lie

subalgebra of  g. The much subtler general situation is deferred to subse-

quent sections.

Lemma 6.5. Suppose 2cp f. 2.  For all d £ Z+,

t V ¿t) = 2dqÍ-¡ (f^ + iP4> - dtp) (V) + Z  th+ fÀ '

Proof. From Lemmas 6.4 and 6.2 and the commutativity of   g     , we get

[**> it*) = Z idsi^& i.^il
7 = 1

= 2V4 (b* -*>(**>/* + Z /,[•«>. /,l)

2/^ Z *ÍW-"Í-
d

7 = 1

But a_ j  is clearly a restricted weight vector for the action of  a on y with

restricted weight —2<p, and so

= -2ij - Whjqij + a£^ = ?l^(-4(/ - 1) + V-

Hence

¿       . d

Z 9Í? V-1 = Z *íí(-4(;- D ♦ V = áH#* - ï&d- D).
ï' = l 7 = 1

and so

[«> íí^l = 2dqdJ Ud)- Mhjft + ¿  /.[e0, /.]J

+ 2dqdJ$¡¿ht - 4dqdJf¿id- 1)

= 2^1^ f/VrW - 2 - 2U- 1) + A¿) + ¿ /.[ «¿, /. j

- 2dqÍ-¿(f¿h4l + (p¿ - ép)ib¿) + ¿ /.[ V /fn .Q.E.D.
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The following result is now immediate:

Corollary 6.6. Suppose <pe2+ and 2cp ¿ 2.  Let X be a (¿-module and

x £ X a conical restricted weight vector with restricted weight p £ a*.  Then

for all d £ Z+,

•4 ' <fí# ' *) - 2d^ + P<P~ #)(*«PV*ííí • *

If dim of a \  (in which case   g 2* = 0 automatically), we also have the

following lemma and corollary:

Lemma 6.7. Suppose dim of = 1.  T/je72 /or all d£ Z + ,

[«> /Ji = <_I(^ + (p0 - dcp/mhj).

Proof. Since [e^, /^] = h^, we have

7 = 1

But

VI"1 -[ V fl"l] + fl~% = 4"1(-2(/ -1) + V«
so that

t> ffi = /¿_1U^ - rfW- 0) = dfg-Hbt + (p0 -dcp/DihJ),

since p^(Ä^) = H#A¿) = 1.     Q.E.D.

Corollary 6.8. Suppose cp e2+ aTza" dim Of = 1.  Lei X be a ¿-module

and x £ X an rx-invariant restricted weight vector with restricted weight p £ a.

Then for all d£ Z + ,

*4, • U} • *) = ¿«P + P¿ -dt/Mhjyf-1 • x.

Corollaries 6.6 and 6.8 imply the following two results. These have the

benefit of being true even if k is not algebraically closed, as the field exten-

sion technique shows; we also use the fact that the Bg-nonisotropic vectors

in  of span  of.

Corollary 6.9. Suppose cp £ 2+ and 2(pg'2 + . Let" X be a ¿-module and

x £ X a conical restricted weight vector with restricted weight p £ a*. Then

for all eQ £ of and d£Z + ,
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eo ' (íí¿ - x) = "2d((it + p4>- i&W>l9*J*i't ' *•

Corollary 6.10. Suppose cp e2+ a72a" dim g    = 1. Let X be a ¿-module

and x £ X an TX-invariant restricted weight vector with restricted weight pea.

Then for all eQ £ of and d£Ï + ,

e0 . ((9e0)d - x) a-y2B0ieo, eQ)(cp, çSW((p + p¿ - a^»/2)(^))(öe0) d-! . x.

Assume for the rest of this section that & is an arbitrary field of charac-

teristic zero—not necessarily algebraically closed. We are now ready to prove

the following basic result:

Lemma 6.11. Suppose cp £ 2+ aTza" 2cS 4 2 + . Let veo., and let xQ be

the canonical generator of the twisted induced ¿-module Xv = V  ~^ (see §2).

Set  Y = (3l_<¿ « x0)      *   (see §5 for the definitions of Ji_¿ and ru), a72a" de-

fine h'^fi £ a tobe di^ if dim ¿* > 1   and 2h^  if dim ¿* = 1. // iv-p+p^ih'^)

is not a positive even integer, then Y is the span of xQ. Suppose

(v — p + pAlihA) = 21, la positive integer. Then Y is two-dimensional, with

basis ¡Xq, /  « Xq},  where f = q   j,  if dim g   > 1 and /  is a nonzero element

of ¿~*  if dim ¿* = 1. /?2 this case,  /' • xQ  is a restricted weight vector in

Xv with restricted weight s Ay — p + pA) — p¿ (recall from §2  that s±   is the

Weyl reflection with respect to cp).

Proof. Since the map co : Jl~—*XV which takes y £ Jl" to y • xQ is an

m-module isomorphism (see §2), we see that

m^.xor=(iU(3T_0)r=r^.xQ.

But by Theorem 5.1 (Cases 1 and 2), îl™^ is the polynomial algebra k[f],

where / is as in the statement of the lemma. Hence

(*.* « *c/= */l ' V

Let u £ k[f], so that u = 2¿=0 aj (arf £ k, and only finitely many arf 4 0),

and let eQ be a Bg-nonisotropic vector in of; if dim ¿* = 1, take eQ = 9f.

Suppose dim g^ > 1. Then by Corollary 6.9,

eQ . iu . x0) = -2   £ addiiv -p + p^-dcp) ihj) (9e0)qd_-¡ . xQ,
daO

and this expression is zero if and only if a^iiy - p + Pa, — dcp) ihA) = 0 for

all d. But this is the case if and only if a , = 0 for all d > 0 such that

iv - p + pAih^) 4 2d. The lemma for dim g   > 1 now follows from Corollary

4.3; the last assertion of the lemma is clear since q_¿, • xQ has restricted
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weight v - p - 2/<p, and

s^(v -p + p(fi)=(v-p+.p^-(v-p+P(fi)(h^cpaV-p + p4)-2lcp.

The case dim g    = 1 is similar, using Corollary 6.10.    Q.E.D.

Remark. Note that Lemma 6.11 holds when cp is not necessarily a sim-

ple restricted root, and even when Vicp is a restricted root.

The situation in Lemma 6.11 simplifies nicely when dim a= 1; the next

result is an immediate consequence of the lemma:

Theorem 6.12. Suppose dim a= 1 and cp £2+ is the only positive root.

Let vea .  Then the conical space  Y of the twisted induced ¿-module Xv

is either one- or two-dimensional. Define h'±e a to be h¿ if dim g   > 1 and

2h±  if dim g   = 1, and let x.  be the canonical generator of Xv.  If lAh'A) is

not a positive even integer, then Y is the span of xQ. Suppose v(h'A = 21,

I a positive integer.  Then dim Y = 2, and Y has basis }x0, /' • xQ!, where

/= a    .   if dim g   > 1  and f  is a nonzero element of ¿~* if dim ¿    = 1.

7t2 this case, f  • xQ z's a restricted weight vector in Xv with restricted

weight s^v-p.

Lemma 6.11 also gives some interesting information about the conical

space of X    even when dim a is arbitrary. To see this, we need some gen-

eral facts.

Lemma 6.13. Let II C 2+ be the set of simple restricted roots.   Then the

subalgebra rt of ¿  is generated by the subspaces  ¿   as a ranges through

n.

Proof. We may, and do, assume that k is algebraically closed. For all

if/ £ 2, define the order o(if/) of if/ to be the integer 2 72a (a £ II), where the

integers 72a are defined by the condition iff = "% naa(ae II). Then ifj e 2+ if

and only if o(if/) > 0, and if/ £ II if and only if o(ip) = 1. We shall show by

induction on o(i/r) (if/ £ 2+) that  ¿^ lies in the space generated by the  g

(a e II). This is clearly true if o(ip) = 1, so assume it is true for cr(ip) = 772

(772 > 1),  and let if/   e2+ have order 772+1. Then the standard theory of root

systems shows that there exists  a e II such that the scalar product (if/ , a)

> 0, and hence if/ = if/   — a is a positive restricted root of order 772. Define

the subspace V of  g by  V= IJ0O__oo g        , and construct as in §2 (taking

a for <p) a subalgebra Ua of g spanned by ha, ea and fa. Then V is a ua-

submodule of  g, and ad ha has eigenvalue *fAha) + 2n on the subspace

g* "a of V; in particular,   ¿^       is exactly the i^iha) + 272)-eigenspace for

ad h a in V.  But
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ifAha) + 2a(xfj+ a)(ha) = ifj'(ha) > 0,

and so the integer ^(Aa) >—1. Hence ad ha has eigenvalue > —1 on  g  , and

so by the representation theory of the three-dimensional simple Lie algebra

ua, we see that [ea, g^] = of a = af , and so [ga, g^] = of . In view of

the induction hypothesis, we are finished.    Q.E.D.

Remark. The above proof is of course similar to the proof of Lemma 4.2.

Lemma 6.14. Let a e II (see Lemma 6.13). Then sap — p = saPa — Pa,

and Piha) = Pa(ha).

Proof. The first assertion is proved in [7(b), Lemma 4.16].  It follows that

P~Pa = sJp - Pa) = (P - Pa) ~ <P " Po) (¿aK

and so (p-pa)(/7a) = 0.    Q.E.D.

Lemma 6.15. Jl~  is a direct sum of restricted weight spaces (with re-,

sped to the natural action of 0. on y) with restricted weights consisting of

those elements of 0.    of the form —2 72 aß,  where ß ranges through II aTza*

72 o e Z+.  Let a e II,  and suppose y £ Jl~  is a restricted weight vector with

restricted weight of the form ca (c £ k). Then y t'Jl_a and c £-Z+.

Proof. Let 2j = ii/r e2 + |?^'/' i 2+}. Then n~ = Un_^ as ip ranges

through 2+. Let if/y ift2, ... , if/    be the elements of 2J.. Then the multi-

plication map in § induces a linear isomorphism

31-^31 . «31 é ® •«•» 3l_¿.

The lemma now follows easily.    Q.E.D.

Lemma 6.16.  Let a £ II, v £ a    a72a' xQ the canonical generator of the

twisted induced module Xv.  The sum of the restricted weight spaces of Xv

with restricted weights of the form v — p + ca (c £ k)  is exactly Jl_a • Xq.

Proof. This is clear from Lemma 6.15 and the fact that the linear isomor-

phism co : 31"" —♦ Xv which takes y to y • xQ raises restricted weights by

v — p; i.e., if y £31" is a restricted weight vector with restricted weight

p £ a , then &>(y) is a restricted weight vector with restricted weight v — p

+ p.    Q.E.D.

We now have the following generalization of Theorem 6.12:

Theorem 6.17. Let a be a simple restricted root, and suppose 2a 4 2.

Let v e a*, and let Y be the subspace of the twisted induced ¿-module Xv

spanned by the conical restricted weight vectors with restricted weights of
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the form v — p + ca (c £ k).  Then   Y is either one- or two-dimensional.  Define

ha£ a to be ha if dim g   > 1  and 2ha if dim g   = 1, aTza* let xQ be the ca-

nonical generator of Xv.   If v(h'a)  is not a positive even integer, then  Y is

the span of xQ.  Suppose v(h'a) = 21,  la positive integer.   Then dim Y =2,

and Y has basis ixQ, /' • x0i,  where f=q   aif dim ¿a > 1 and f  is a non-

zero element of ¿~a if dim ga = 1. /t2 this case, /' • xQ is a restricted weight

vector in Xv with restricted weight sav — p.

Proof. Since the conical space of Xv is clearly a-stable and hence the

direct sum of its intersections with the restricted weight spaces of Xv, Y =

(3l_a • Xq)        by Lemma 6.16. Let y e (3l _a • xQ)      a, so that y = u • xQ,

where u e3l_a. Let ß be a simple restricted root not equal to a. Then

ß - a is not a restricted root and is not zero, so that [g   , n_al = [g , of°]

= 0. Hence [g^, u] = 0 in §, and so

g^.U.x0) = K.(g^.x0) = 0.

Lemma 6.13 now shows that y £Y.  Thus  Y = 0l_a • xQ)       a, and the theo-

rem now follows from Lemmas 6.11 and 6.14.    Q.E.D.

Remark. In the notation of Theorem 6.17, the assertion that viha) be a

nonnegative even integer (possibly zero) is equivalent to the existence in X

of an m-invariant restricted weight vector with restricted weight sav — p =

v — p — v(hAa (use Lemma 6.16). In this case, the m-invariant restricted

weight vectors with restricted weight sav — p span a one-dimensional space

and are conical vectors. Note also that if v £ a    is arbitrary and if / and

Xq are defined as in Theorem 6.17, then f"1 - xQ (m a positive integer) is rt-

invariant if and only if its restricted weight is sav - p.

We can reformulate our conclusions as follows:

Theorem 6.18. Let a be a simple restricted root such that 2a 4 2. Let

p, v e a ,  and suppose that p — v is of the form ca (c £ k). (if dim a = 1,

then this is automatic.) Then HomgíX^, Xv)  is at most one-dimensional,

and dim WomÀX^, Xv) = 1  if and only if either p. = v, or else p = sav and

vihç)  is a nonnegative even integer, where ha= ha if dim g   > 1 and ha=

2ha if dim ga = 1. Also, dim HomAx*1, Xv) = 1  if and only if X^ is isomor-

phic to a ¿-submodule of Xv.

Proof. Recall from§2 that HomgtX^, Xv) is isomorphic to the intersec-

tion Z of the conical space of Xv with the restricted weight space for p.—p.

If p = v, then clearly dim Z = 1. Suppose p = sav and viha) is a nonnega-

tive even integer. Then the above remark implies that dim Z = 1. Converse-

ly, suppose Z 4 0, so that Xv contains a conical restricted weight vector x
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with restricted weight p. - f>. Since p = v + ca, p-p av-p + ca, and so

x £ Y,  in the notation of Theorem 6.17. If p 4 v, then x is not a multiple of

Xq (again in the notation of Theorem 6.17), so that vihg) is a positive even

integer and p - p = sav — p, i.e., p = sav, by Theorem 6.17. The last asser-

tion of the theorem follows from the fact that any nonzero g-module map from

XM into Xv is injective (see §2).    Q.E.D.

7. The fundamental commutation relation in jl_<¿. We shall continue to

use the notation of §6, with k algebraically closed. But in this section, we

explicitly assume that  g2* 4 0, i.e., that 2cp £2. We have the canonical

elements p_2¿ £52(g-2*)m and ?_2¿ = A(p_2¿)/2(<p, cp) eJC^ (see §5).

It is clearly important to compute the commutator [e^, q_2<A in §. This

will easily turn out to be essentially [f ±, q_A,  and we have to know to what

extent this element commutes with a_ .. In particular, we want to compute

[[/<*> a-cf}> ?_<¿]'  Lemma 6.4 also points out the importance of this commu-

tator, since we need it in principle to simplify the commutator [e ,, q_A.  It

will turn out that [[/^, q_(p], a_^] is essentially f¡fiq_2<fi, and this is what

we call the fundamental commutation relation in jl_j,, the main result of this

section. Because of this, we know how to compute the further commutators

[• • •[[/,£, q_¡fi], <¡_<fi] • ' • 4_,/,]• The abstract algebraic setting in the next

section will reveal a more precise reason for calling our relation "fundamen-

tal". The point will be that the fundamental relation and the trivial relation

i<pa-l4> - a-2<pf<p are *n a sense a^ tne relations involving f^, a_^ and

Lemma 7.1.  The map ad f^: ¿71 —» ¿~2  is an isometry from 4Bq\¿~   x

9J1 to Bq\¿22x ¿f.

Proof.  Let x, y £ g"1. Then

Bfli* 4 [/<*. y\) = -At/* *1, <?[/*, yl) = b([/<6> *l [v öy])

= -B([e¿, [/¿, x]], 0y) = -4B(x, 9y)

(by Lemma 4.15)

= 4Be(x, y).    Q.E.D.

Recall from §6 the B^-orthogonal basis i/j, ... , /nl of  g"**.

Lemma 7.2. We have

«-2^¿Z^/,l2=¿.Z+i^/zl2-
1 " z = 1 xui = r + l

Proof. By Lemma 7.1, {[f^, fr+]], ... , t/^,, /J! is a Bö-orthogonal
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basis of  gj2 = g-2* such that each Bö([/^, f.], [fp fA]) = 8/(0, cp). Since

a_2 ±  is 1/2(0, cp) times the sum of the squares of the elements of any Bq-

orthonormal basis of  g-  *, we must have ?_2<¿ = U/16) 2*_r+1[/<¿,/.]2. But

[/j,, /•] = 0 if ; = 1, ... , r and so the lemma follows.    Q. E. D.

Lemma 7.3. We have

1 1    "
t<> <7_2<z6l = zUfr °-<f) = 2 Z /,[/<*» /flTL'4>' t-V - 2

i = \

¿ z'=r + l

Proof. By Lemma 7.2,

16
tVö-2*l=^     Z    [V[/<z6'/z]2]

z'=r + l

= 77    Z   tfe¿,[/0, /¿l][/¿, /.]
10 z'=r + l

+ U<t>,fine4>,[f(fi,f.]])
1

¿=T+1
4.Z..(/It/^/Il + t/^/ll/,>

(by Lemma 4.15)

-5   Z /,£/*./,]
¿  z=r+l

(since [/^, /J £ g-2*", which is central in 3l_^)

= \ Z /,■!/*. /,!■¿ i=i
On the other hand,  a_^ = 2"=1 /2 , so that

[/*. *_*! = Z [/*. /fl
z = l

= mupfiVi+/,[/«* /fD¿=i

= 2  £ /flWil-    Q-E-D-
i = l

Theorem 7.4. (T/;e fundamental commutation relation in 3l_¿,.) We Aazve

[[/¿i í_¿lt ?_,¿l = -64/,¿"_2<¿-



CONICAL VECTORS IN INDUCED MODULES 257

More generally, suppose the field k is arbitrary of characteristic zero, and

let f eg**.  Then

tt/.-*_¿]. ff_¿] = -64/a_2(¿.

Proof. It is clearly sufficient to prove the first assertion. But by Lem-

ma 7.3,

[[/*. Í-¿1' a-<t>]=4[[e4>' q-2^ q-<¿

= 4[[e^, q_(fi], q_2(fi] = 8/^/7¿, a_2q6],

by Lemma 6.4, and this is just ~64f±q_2(fi.    Q.E.D.

8. The transfer principles. Here we assume that  g      4 0, as in §7.

But we take  k to be an arbitrary field of characteristic zero.

If we attempt to compute directly the conical vectors in the twisted in-

duced modules Xv (veo.),  we are confronted with monumental difficulties

(cf. the remark at the end of this section). Trying to avoid these problems,

we discovered a metamathematical "transfer principle" (Theorem 8.6) which

enables us essentially to transfer certain theorems about conical vectors in

modules over one semisimple symmetric Lie algebra to theorems about coni-

cal vectors in modules over any other semisimple symmetric Lie algebra.

This reduces the problem of computing certain conical vectors to any one

special case of semisimple symmetric Lie algebra (in which twice the rele-

vant simple restricted root is a restricted root). The proof of this "transfer

principle for conical vectors" is based on another metamathematical result

(Theorem 8.4) which states that certain kinds of algebraic identities in 3l_ ^

can be transferred from one semisimple symmetric Lie algebra to another.

The starting point for the proof of this theorem is the "fundamental commu-

tation relation" of the last section.

Let P = k[w, x, y, z], the polynomial algebra in four indeterminates,

and define a P-module structure on Ji^j, by the correspondences

uz I-» left multiplication by a_ 1,

x H» left multiplication by q_2cfi,

y r-> right multiplication by a_^,

z H-» right multiplication by q_2<fi-

This P-module structure is well defined because [a_^, q_2(fi\ = 0 in Jl_^.

Theorem 8.1.  Let f  be an arbitrary BQ-nonisotropic element of ¿~*,

and let P¡ denote the annihilator of f  in P under the above module action.
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Then the ideal P'   is generated by x — z and w2 — 2zzvy + y2 + 64x, that is,

Pi = P(x -z) + P(w2 - 2wy + y2 + 64x).

Proof. Since  a. ±  is central in Ji_¿>, it is clear that x — z£ P>, and

so  P(x - z) C P'. The fundamental commutation relation, Theorem 7.4, im-

plies immediately that w2 — 2wy + y   + 64x £ P', and hence the ideal gener-

ated by this element is contained in P'. What we must show now is that these

two ideals generate  P'.

Let a £ P', a 4 0, and regard  P as k[x, y, z] [w].  Since the leading co-

efficient 1 of w2 — 2wy + y2 + 64x is a unit in k[x, y, z], the Euclidean al-

gorithm implies the existence of s, t £ k[x, y, z][izz],  where t is a polynomial

of degree at most 1 in w, such that

a = s(w2 — 2wy + y   + 64x) + t.

Here t is of the form zz + wv, where  u, v £ k[x, y, z]. Since  a £ pf, t £ PL

Also, there exist polynomials  u , v   £ k[y, z] such that

u= u     (mod P(x - z))    and    v m v     (mod P(x - z)).

Hence

í = u' + tzzf'    (mod P(x - z)),

and so

a = zz' + tzzi/    (mod P(x - z) + Piw2 - 2wy + y2 + 64x)).

In particular,  zz' + wv' £ P'. Write zz  = u (y, z) and v   = v iy, z).  Then by

the definition of thf module action of  P on Jl^, we have

/"'(?_$» <7_2<P + a-<pfv'^a-^ °-2<t) = °»

and so

/("'(?_*. °_2<P + a-4>v'^a-^ a-2^-^U f.a^Mf.^, i»2«) = °-

Set  a(y, z) = z/'(y, z) + yiz'(y, z)  and /3(y, z) = -t/(y, z) (a, /3 6 ¿[y, z]).

Then

Mî.rîS» ?_2<p + [/• Í _*!#*-$. i-2^ " °'

It is sufficient to show that a = /3 = 0, since then we will have  zz = v  =0,

and so a e P(x - z) + P(w2 - 2tzzy + y2 + 64x).

As in the proof of Theorem 5.1, let 3lQ C 3lj C 3l2 C • • • be the usual fil-

tration of 5l_0, and for each r £ Z + , let fff î3lr —» ?Ir//Tlr_1 be the canonical

map. (Here 3l_, = 0.) Also, let a/. 5r(n_^) —»3lr/3lr_j be the natural map,
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so that ffr  is a linear isomorphism by the Poincaré-Birkhoff-Witt theorem.

Write

a(y, z)= ¿   ¿ ««y'*'-'
y=o z=o

and

ß(y,z)= Z Z »«y'**"'
=o

with c, ¿eZt and a.., ¿>.. £ k. If a 4 0, we may assume that some a.   ¡/ 0

(z = 0, ... , c), and if ß 4 0, we may also assume that some b .,4 0

(z = 0, ... , aO.  Also, if a = 0, take c = 0 and if /3 = 0, take d = 0.

Now we claim that [/, a_^] e3l2 and [/, q_A 4 Jiy In fact, it is suffi-

cient to prove this when k is algebraically closed. But then a suitable mul-

tiple of / may be taken as the fA of §7, and the claim follows from Lemma

7.3. In particular, /a(a_^, q_2(f) e3l2c+1 and [/, q^ßiq^, q_24) 6

2d+2' recaH tnat tne sum °^ tnese two terms is zero. Either 2c + I > 2d + 2

or 2c + 1 < 2d + 2. Suppose the first inequality holds. Then

so that

Let

and set

Then

ff2c+1(/a(?_^ <f_2<p) = °.

*2c+//J>zc*U«W

2 1
p:* = (cp70)p-* and p'-2* = 2j^T)p-2*'

*"/  t   aic^)KP'-7^C~ieS2C'Kn-^
z=0

»3.«« = "ic*!^» « *2c+l (A(/}   Z  ^IrfW.a*)*"')

= ff2c+l (/  Z  «zc qÍ-4>qC-ty  - °-

Hence s = 0, and so each a.   = 0 (z = 0, ... , c). This is only possible if

a= 0. But then c = 0, and the inequality 2c + 1 > 2a" + 2   cannot hold. Hence

we may assume that 2c + 1 < 2a*+ 2. In this case,
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7T2d+2(*Í> 1-^1-^ °-2d>)) ■ °»

and so

/ i .     . A
= o.n2d+2\A[f> *-¿]   Z  bidqUqd-2<p\

Since [/, a    .] 4 51 j (see above), there exists a nonzero element g£5 (rt_¿)

such that A(g) = [/, a_^]    (mod 3lj). Set

d

z
i=0

*-« z *«(pu)f<p:.2*>rf-'«i"+2<n_*).

Then

a2zi+2(Ä) = *2d+2(A(*)) = ,2d+2 ^A(g) f »^V'^-a^'J

= °2dn (tA *-*! Z »tf tU«t^ - °-

Hence 77 = 0. But g =/ 0, so that each £>¿¿ = 0 (z = 0, ... , a"). This proves that

ß = 0, and so «? = 0. Since 2c + 1 < 2d + 2, we also have c = 0. Thus  a is

a scalar, and the equation fa = 0 shows that a = 0. We have proved that

a=/S = 0, and hence the theorem.    Q.E.D.

Suppose now that dim ¿     = 1, and suppose there exists an element

T-2<t> e 9 such that r_2<^ = a_2<^ in jl_j). (Such an element exists if k

is algebraically closed, but otherwise, it might not exist.) Define a new P-

module structure on 5I_ j by the correspondences

w H» left multiplication by a_i,

x (-> left multiplication by r_2<¿,

y I-» right multiplication by a    .,

z r-> right multiplication by r_2<¿-

This P-module structure is well defined since [q_(¿, r_2(A = 0 in 51   ¿,.

Theorem 8.2.  Under the above hypotheses, let f £ ¿~*  be BQ-noniso-

tropic, and let P.  be the annihilator of f  in P under the new module action.

Then

Pf = P(x -z)+ P(w2 - 2wzy + y2 + 64x2).

Proof. The first part of the proof of Theorem 8.1 carries over to the pre-

sent situation and shows that is sufficient to prove the following:   Let
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aiy, z), ß(y, z) £ k[y, z],  and suppose

fo.iq_.fi, r_2¿) + [f, q_4>]ß(q_(i>, r_2¿) = 0.

Then a = ß = 0.

It is clearly sufficient to assume that k is algebraically closed and that

/ is the element /^ of §§6 and 7. But then by Lemma 7.3, [/j,, q_A =

2/J/^, /J (where f_ is as in that lemma; see §6), since dim g2* = 1. By

Lemma 7.2, [/^, /J2 = I6q_2<i> in 5l_<¿, and since [f^, f_] £ ¿~2*, we must

have 4r_2(fi = áíf¿, f ]. Changing the sign of /   if necessary, we may as-

sume that 4r_2(fi = [f^, f_]. Setting a (y, z) = a(y, z) and ß'iy, z) =

8zß(y, z) in k[y, z], we have

(2) /*<*'(*_*. r_2(fi) + fnß'iq_$, r_2<¡) = 0,

and it is sufficient to show that a = ß  =0.

Now [e±, f_] € m (where e^ is as in §6), by Lemma 6.2, and so

[V /„I * a'(f_*. r-2¿> = [<> /J ' r3'^-*' r-2<P = °

in 5l_^, since q_¿, r_2<¿ e5l™^. Also, [[e^, f_\ f<fi]=-6f_ by Lemma

4.15 and [[e., / ], / ] = 6/j, by Lemma 6.3. Hence the application of [e±, f^

to (*) gives

(3) La'^-4>> T-*f> - ftß'h-4? r-2<t) = °"

Abbreviate a'iq_$, r_2<p by aQ and ß'iq_^, r_2<í) by /30. Multiply-

ing (2) on the right by aQ, multiplying (3) on the right by —ß0, and adding

the two results, we get f$ian + jSq) = 0. Since § has no zero divisors,

(a0 + i-l)1/2ß0)ia0-(-l)l/2ß0) = a2 + ß2 = 0,

and so a0 = ±(-1) l    ß0. Thus (*) implies that a0 = ß0 = 0. The fact that

a (y, z) = ß (y, z) = 0 now follows from Theorem 5.1, Case 3.    Q. E.D.

Now assume the original hypotheses of this section, so that  ¿     4 0.

The following consequence of the last two theorems is immediate:

Corollary 8.3. Let Q be the polynomial algebra in two variables over k,

and let a., b .€ Q (z = 1, ... , r, r e Z+). Let f be a BQ-nonisotropic element

of of*. Then

(4) Z «,(?_*, i_2*V*.-(î_*. ?_2¿> = °
¿=1

z« 5l_j, if and only if
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r

£ a. ® b{ e P(x - z) + P(w2 - 2wy + y2 + 64x),
i = l

where we identify P with Q ® Q in the natural way. Suppose in addition

that dim ¿2* = 1 and that there exists an element r_2(fi £ g-2* such that

rl2<f> = q-2<i>-  Then

(5) ¿ aM-4>, 7-2¿fbM-4>> r-2<t) - °
i=i

in Ji_A,  if and only if

r

£  a. ® bi £ P(x - z) + P(zzz2 - 2izvy + y2 + 64x2),
z = l

where we again identify P with Q ® Q.

This corollary proves:

Theorem 8.4.  iThe transfer principle for 5l_(¿.) Let Q be the polynomial

algebra in two variables over k,  and let a., beQ (i = 1, ... , r, r£ Z+). Let

(g, 9)  be a semisimple symmetric Lie algebra over k with symmetric decom-

position  g= i © $,   0. a splitting Cartan subspace of Jo, 2 C a    the corre-

sponding system of restricted roots, cp £ 2 such that 2cp e 2, 51 _j, the univer-

sal enveloping algebra of the Lie subalgebra rt__j, = ¿~* © ¿~       of ¿, A:

S(n_d>) —'    -<i tbe canonical linear isomorphism,  B the Killing form of ¿,

Bq   the symmetric bilinear form on ¿  defined by the condition BqÍx, y) =

-Bix, 9y) for all x, y e ¿, f  a BQ-nonisotropic vector in  Of*, p_ .  £ S2i¿~*)

and p   2<fi £ S2i¿~2*) the canonical elements defined by Bq,  and q_j) =

2\ip_(fi)/icp, cp) and q_2(j} = ttp_2¿)/2(cp, cp) e5l_¿.  Then the truth or fal-

sity of equation (4) in Ji_j> depends only on a. and b. (i = 1, ... , r) aTza*

720/ 072  ¿, 9, 0., cp or f.  Moreover, suppose in addition that dim g2* = 1 ar2a'

that there exists an element r_2(,  £ ¿~2* such that r2_2± = a, i.  Then the

truth or falsity of equation (5) in 3l_ .  depends only on a. and b. (i = 1,

... , r),  and not on  ¿,9, a, cp, f  or r _2±.

In order to apply this theorem to conical vectors, we need:

Lemma 8.5. Suppose cp and 2cSe2 + ,  and let V be a ¿-module,  v £

V      *  a restricted weight vector with restricted weight peo.,eQe¿* and

i, j £ Z+.  Then

e0 ' (l-24>ql-<t> ' v^ = yij' °>

where y.. e5l_(¿  is given by the formula
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y,, = -7/[oeo>ff-¿Vi2VU
4'

-   ¿   2Íip + P(fi)ih4) + 2-4m)qÍ2¿qif£i9ea)qm_-¿,
mal

where p±   is as in Lemma 6.4. Moreover, suppose in addition that dim g

= 1  aTza" that there exists an element r   ? ± £ ¿~       such that r. ± = a   - j.

T/7e72

r-24>eo'(TL24>qi-<t>'v) = yi'rv'

where y.. e 5l_ j,  is given by the formula

yijm-QjL9ev q-^TL~2l4>qi~4>

-   Z   2((p + P^(V + 2-477z)ri+2>L7(^o^1-
m = 1

Proof. We may assume that k is algebraically closed and that e   = gj,

so that 0eo = -/¡¿. To prove the first assertion, note that

i .

+ Z î/.2^LTW» i-^O1 • "•
m=i

By Leirana 7.3, the first term on the right is ]ij[f^, q _^q1f2<fiql_(fi • v-  To

handle the second term, use Lemma 6.4. Since v £ Vm, Lemma 6.2 shows that

the second term is

Z 2?i2^i7,((p^-0)(V/0 + /*VÖ •*
m = l

But it was shown in the proof of Lemma 6.5 that h^q™^ = q™$ (h^ - 4(m - 1)).

Thus the term becomes

¿ 2((p + p^)(V + 2-4772)aÍ2^aÍ--/0a^1 • .v,
mal

and this proves the first assertion of the lemma.

Now suppose that dim g2* = 1 and that r2_ 2¿ = q_2$ (r_2r¿ e 9~     )•

Then
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7-24>e4> ' iT'-2<Pqi-4> ' v) - É 7ÍA+l[e4>' 7-2<P]t-2W-4> • v

+ Z 7L+2W-T[e4>' q-^qm-t •*
m = \

The second term is treated exactly as in the first part of the proof, and all

that remains is to show that the first term is (l/8)j[f(i, q_^)Af2±ql_± • v.

B«r Up f_¿3 = 2f„U<p> /J and U<j>> /J = ±4r-24> as in the Proof of The°-
rem 8.2, and so

ÜV q-4>U ±8fnr-24>

and

tV^-2*l=±¡[e*'[/*'/n]]=±/«'

by Lemma 4.15. Thus the two indicated terms are equal, and the lemma is

proved.    Q.E.D.

We can now prove:

Theorem 8.6. (The transfer principle for conical vectors.) Let Q be the

polynomial algebra in two variables over k,  and let aQ £ Q.  Also, let cQ £ k.

In continuation of the notation of Theorem 8.4, let 2+ be a positive system

in 2, ae2+ a simple restricted root such that 2a £2, ha £ a as defined in

§2, v £ a    such that viha) = cQ, Xv the twisted induced ¿-module (see §2)

and Xq £ Xv the canonical generator.  Then the truth or falsity of the asser-

tion "aAq_ , q_7   ) • xQ  is a conical vector in Xv" depends only on aQ

and Cq,  and not on  ¿, 9, a, 2+, a or v (except that vih^,) = cQ).  Moreover,

suppose in addition that dim g     = 1 and that there exists an element r_2

£ ¿~      such that r_2a = q_2a.  Then the truth or falsity of the assertion

"aAq     , r   . ) • Xq is a conical vector in Xv" depends only on aQ a?2a' cQ,

and not on  ¿, 9, a, 2 + , a, r_2    or v (where vih^ = cQ).

Proof. Write Q = k[x, y] and aQ = S|. .^ bijxiyi it £ Z+ and b{. £ k)

and assume aQ 4 0. In view of Theorem 5.1.(Cases 3 and 4), a0(q_a, a_2a) •

Xq is a nonzero m-invariant vector in Xv. Let eQ be a Bg-nonisotropic vec-

tor in  ga. Then by Corollary 4.3 and Lemma 6.13 (see the proof of Theorem

6.17),  eQ . ia0iq_a, a_2a) • xQ) = 0 if and only if aQ(q_a, q_2J • x„ is con-

ical. But by Lemma 8.5, this is the case if and only if

(6) Z    Vz7 = °    in?I-a>
¿.7=0
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where y.. eJl_a   is as in Lemma 8.5, with cp teplaced by a and p by v—p

(p = 54 2 (dim of)*?, if>e1+).  But iv - p +Pa)iha) = viha) = cQ by Lemma

6.14, so that

-   ¿  2(co + 2-47zz)aÍ2aaÍ-a-(0eo)a-a-1.
m = l

Since 0eQ is a Bg-nonisotropic vector in   ¿~a, (6) is an equation of the form

treated in Theorem 8.4, with cp replaced by a, and with the a. and b. in

Theorem 8.4 dependent only on aQ and cQ. That theorem now implies the

first assertion of the present one.

Now assume that dim g2a= 1 and that r22a = a_2    (r_2    £ g~2a), and

let aQ 4 0 and eQ be as above. By Case 3 of Theorem 5.1, flQ(a_   , r-2a) '

Xq is a nonzero m-invariant vector in X . Also, since  r_2    is a nonzero ele-

ment of 5l~, r_2aeQ . iaQiq_a, r_2a) • xQ) = 0 if and only if

e0' K(ff_a' T-2a) -xo) = °»

and this is true if and only if aQiq_^, r_2¡) • xQ is conical, as above. Com-

bining the last parts of Lemma 8.5 and Theorem 8.4 as above, we get the last

assertion of the theorem.    Q. E.D.

Remark. Of course, the above proof in principle provides an explicit re-

formulation of the assertion "«0(a_   , q_2a) • *q is a conical vector in X   "

in terms of aQ and cQ alone, and similarly for aQiq_a, r_2a) • x0, under the

extra hypotheses. But these reformulations are much too complicated to be

useful in determining directly the conical vectors in the induced modules Xv.

Instead, we shall compute the conical vectors for a special   g (see §9), and

then use Theorem 8.6 to obtain them for general  g. The determination of the

conical vectors in the special case is not trivial, but at least it can be done.

9. A special case. Following the plan indicated by Theorem 8.6, we

shall determine all the conical vectors in all the twisted induced modules Xv

(v £ a ) for a special semisimple symmetric Lie algebra (g, 9). Here (¿,9)

will have essentially the same structure as the real semisimple Lie algebra

8u(2, 1).  Our methods will be special; in fact, one of our main points is that

it is too difficult to compute directly the conical vectors in general (cf. §8).

We are grateful to L. Corwin and N. Wallach for their help in carrying out this

special case (see the introduction).

Assume k is algebraically closed. Let  g= 2C(3, k), the simple Lie al-



266 J. LEPOWSKY

gebra of all traceless  3x3 matrices over k. Let i = (-1)       , and let   t C g

and   Jo C g be the spaces of matrices

\
«12

«22

-za12

and

respectively, where  ai-,bi- £k and 2a n + a22 = 0. Then  g = £ © Jo, [Ï,  t]

CÍ, [i,  Jo] C Jo and [ Jo,  Jo] C t,   so that the linear automorphism d of  g

which is 1 on   £  and -1 on   Jo is a Lie algebra automorphism. Thus (g, 9)

is a semisimple symmetric Lie algebra with symmetric decomposition  g= £

©¡5.

For all l, m =1, 2, 3, let E;m denote the 3x3 matrix which is 1 in the

(/, 77z)-entry and 0 in all other entries. Let   a be the one-dimensional sub-

space of  Jo spanned by the matrix h = 2(Ejj — E,A. Then  a is a splitting

Cartan subspace of  Jo.  Let a be the linear functional on  a which is 2 on h.

Then the set 2 of restricted roots of  g with respect to  a is Í ±a, ±2aj, g

is the set of traceless diagonal matrices,   g    is the span of BJ2 and E23,

g~a is the span of B21 and E32,   g a is the span of Bj,, and   g~2a   is the

span of E,y Also, let /j   be the matrix En -2E22 + E    . Then the cen-

tralizer m   of  a in  ï  is the span of h , and  g   = m © a.

Let 2+ be the positive system in 2 consisting of a and 2a. Then  a

is the unique simple restricted root. Since  a(/j) = 2, h = ha as defined in §2.

The Killing form B of  g  is given by the formula B(x, y) = 6tr xy.  Thus

on g~a, the form BqIx, y) = -B(x, 9y)  is given by the formula

BeiaE21 + bEi2, cE2l + dE    ) = -6iiad + be)

(a, b, c, d £ k), and on  ¿~ a, Bq is given by

BgiaE^y bE,A = 6ab

(a, b£k). Hence {(12)~ l/2(E 21+■ iEi2), (12)-1/2(iE 21 + E i2)\ is a Bq -ortho-

normal basis of  g_a, and i6~   '  E,j! is a Bq -orthonormal basis of  g*"2a.

Since the canonical elements p_a e52(g~a)m and p_2a £ 52(g~2a)m (see §4)

are the sums of the squares of the members of Bq -orthonormal bases of  g-a

and  g~     , respectively, we have

p_a=(z/3)E21E32    and    p_2a= (l/6)E2 y

The element xa e a (see §2) is (l/12)(Eu - EJ3), so that (a, a) =
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B(xa, xA a 1/12. Hence

?_a = 24A(p_a) = 4z(E21E32 + E32E21)=8zE2IE32 + 4zE31e3lm_a

and

--2a=^(p_2a) = E21e5i:a,

in the notation of §5. We may choose r_2a = ^3j e 9~2a (see Theorem 8.6),

since dim g2a = 1 and E2j = q_2a. By Theorem 5.1 (Case 3), Jl      is the

polynomial algebra k[q_  , r_2   ].

Let v £ a . We want to determine the conical vectors in the twisted in-

duced g-module Xv = VV~P induced from the subalgebra m © a © rt of g,

where p = 2a e a    and n = ga© g2a (see §2). Let xQ be the canonical gen-

erator of Xv. Then

iXvT = Jl"a • x0 = k[q_a, r_2a] . Xq.

Thus we must determine the polynomials aQ in two variables over k such

that n . ia0iq_a, r_2a) • xQ) = 0.

It is hard to guess what conical vectors should look like, but once we

know, it is relatively easy to prove that they are in fact conical (in the pre-

sent special case):

Lemma 9.1. Suppose viha) = 21, I a positive integer, and let

x = iq_a-4iil-l)r_2a)iq_a-4i(l-3)r_2a)...

(q_a + 4t(l-3)r_2a)(q_a + 4i(l-l)r_2a).x0

in Xv.  Then x is a conical vector.

Proof. Since E., = [E,2, E.A, ¿   generates rt, and so it is sufficient

to show that E12 • x = E2, • x = 0. By straightforward computation, using the

matrix product relation EaßEyS = E aS if ß = y and = 0 if ß 4 y ia, ß, y,

0=1,2, 3), we have the following commutation relations in the universal

enveloping algebra of  g:

[E12> q-a] = 4iE32 + 2iE}2ha + 4¡E i2h'>     [E 12' r-2a) = ~E 32'

[E21> q-aU4iE21 + 2iE21ha  ~ 4iE21h'>     ^E2V r-2¿ = E2V

Let a be any one of the factors  q_a + 4ijr_¿   (j = -il — 1), -il - 3), • ' • ,

/-l) appearing in the expression for x in the statement of the lemma. Then

[ha, a] =-4a and [tV, a] = 0. Also ha- xQ = iv - P)(h^)xQ =(21- 4)xQ and

h   . Xq = 0. The above commutation relations thus give
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E12.x = [E12,(a_a-4z(/-l)r_2a)](a_a.4z(/-3)r.2a)

..•(a_a + 4z(/-l)r_2a) -x0

+ (?_a-4z(/-l)r_2a)[E12,(a_a-4z(/-3)r.2a)]

"• W_a + 4z(/-l)r_2a).x0 + ...

= (4zE32+2zE32r7a +4zE3277' + 4z(/-l)E32)(a_a-4z(/- 3)r_2a)

•'•U.a + 4¿(/-l)r_2a).x0

+ (?_a-4z(/-l)r_2a)(4zE32 + 2zE32r7a+4zE32r7' + 4z(/-3)E32)

* * * (?_a + 4iU * ^r-2a) * *0 + ' ' '

= (4zE32 + 2zE32(-4Q - 1) + 21- 4) + 4i(l- l)E32)(a_a -4z(/-3)r_2o)

•" (?_a +4l'(/-1)r-2a) 'x0

+ (q_aL-4i(l- l)r_2a)(4zE32 + 2zE32(-4(/-2)+2/-4)+4za-3)E32)

...(ij_a + 4z(/-l)r_2a) .x0 + ...

= 0 + o + ... = 0.

A similar computation shows that E2, • xQ = 0. However, x must be written

in the "opposite order," as

(a_a+4z(/-l)r_2a)(a_a+4z(Z-3)r_2a)

..,(a_a-4z(/-3)r_2a)(a-a-4z(Z-l)r_2a).x0,

to make the computation exactly parallel to the above one.    Q.E.D.

Remark. Because of the flexibility allowed in writing the expression for

x in either order in the above proof, we could prove easily that x is conical

without appealing to the difficult commutation relations in 5l~. This flexi-

bility is lost for Lie algebras  g in which the double root space  g a is more

than one-dimensional, since the "square root" f_2a of q_2a does not exist.

Now we turn to the uniqueness of the conical vectors.

Lemma 9.2. Let aAy, z) be a polynomial in two variables over k. Then

aé-q- ' r-2 ) " x0 ÍS a con^ca^ restricted weight vector in Xv if and only if

either aQ is a nonzero scalar or else v(ha) = 21, where I is a positive inte-

ger, and aQ is a nonzero multiple of



CONICAL VECTORS IN INDUCED MODULES 269

at = (y - 4i(l - \)z)(y - 4i(l - 3)z) •. • (y + 4z(/ - 3)z) (y + 4z(/ - l)z).

// / is even, then

and if I is odd.

ar      fl       (y2 + 16;2z2),
7 = 1; j odd

l-\

al = y      IT       h2 + 16;2z2).
7=2 ;/ even

Proof. Let  r) = g   = m © a. Then i) is a Cartan subalgebra of  g, and

the elements y of b, can be written y = yxEn + y2E22+ y,E33, where

y¿ e £ and yj + y2 + y3 = 0. Define Aj, A2, Aj £ (j    by the formulas

A1(y) = y1-y2,    A2(y) = y2 - y3    and   A3(y)=yx-y3.

Then the set R of roots of  g with respect to i) is i±Aj, ±A , i\A. Denot-

ing the root spaces for  g with respect to i) by  g    *', we have  ¿ 1 = kEl2,

g2 =AE23, g 3 = kEiy ¿~ l = t^E21, ¿~ 2 = kEi2 and g" 3 -*E31. Let

P+ = iAj, A2, A..}, so that R + is a positive system in P. Then the previous-

ly defined subalgebra m © a © rt of g is the same as the Borel subalgebra

6= £)©UgX(A£R+), and n = Ugx(A£R+). Let p' £ Ç* be the linear

functional which is the previously defined p on  a and 0 on m. Then p  =

%(Aj + A2 + \A, i.e., p   is half the sum of the positive roots of  g with re-

spect to §. Also, define v   £§    by v = v on  0. and v = 0 on m. Then

the previously defined twisted induced g-module Xv is the same as the Verma

module associated with v , in the sense of [2, §7.1.4]. That is,  X    is the

g-module induced by the character of í> which is v -p'   on |  and 0 on n.

In order to describe the Weyl group WR of g with respect to \), let  b, j

be the space of all (not necessarily traceless) 3x3 diagonal matrices and

let Pj, p2, p3 e h,j   be the basis of §j dual to the basis En, E22, EJ3 of

Í).. Now i)   may be identified with the space of ¿-linear combinations of Pj,

p2 and p3, modulo the subspace &(pj + p2 + pj. Then WR is the group of

automorphisms of b,    induced by the six permutations of Pj, p2 and p3>

Let v^ £ a , and define vx e b,   to be Vj on a and 0 on m. Then Xj

£XV is a conical vector with restricted weight v^ if and only if Xj is a

(nonzero) n-invariant vector with weight v^ for the action of b, on X . But

there exists a nonzero rt-invariant vector in X    with weight v2 e b,    only if

theie exists w e WR such that v2 + p   = wv   and v   — iv2 + p ) is a nonnega-

tive integral linear combination of the elements of R + , by [2, Proposition
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7.6.2]. Moreover, the n-invariant vectors in Xv with weight v2 form at most

a one-dimensional space, by a theorem of Verma [2, Theoreme 7.6.6].  Let Z

be the intersection of the conical space of Xv with the restricted weight

space corresponding to v.. It follows that if Z 4 0, then dim Z = 1, and in

this case, either vl = v — p, or else fj = -v — p and v a la (i.e., ^(/>a) =

2/), where / is a nonnegative integer. Now apply Lemma 9.1. (if / = 0, then

v = 0, vl = -p and Z is the span of xQ.)    Q.E.D.

10. Conclusions. We are now ready to combine the results of §§5, 6, 8

and 9 to remove the hypothesis "2a4 2" from Theorems 6.17 and 6.18.

Let (g, 9) be a semisimple symmetric Lie algebra over the field k of

characteristic zero,   g = £ © Jo the symmetric decomposition of (g, 9), a a

splitting Cartan subspace of  Jo, 2 C a    the corresponding restricted root sys-

tem, 2+ C 2 a positive system, and p £ a    as defined in §2.  For every

cf> el,, define h'± £ a to be h¿ if dim ¿   > 1 (see §2) and 2h(¡> if dim ¿*

a 1. Let 50 be the Weyl reflection with respect to cp (see §2). Also, leta^

and q2(fi be the elements of the universal enveloping algebra of  g  defined

in §5; if 2cf> i 2, take q2(f) = 0.

Here are our main results, which generalize Theorems 6.17 and 6.18:

Theorem 10.1. Let a £2+ be a simple restricted root and v £ 0. .  Let

Y be the subspace of the twisted induced ¿-module Xv spanned by the coni-

cal restricted weight vectors with restricted weights of the form v — p + ca

(c e k);  if dim a= 1,  then Y is the conical space of Xv.  Then dim V is

either I or 2. If vihA is not a positive even integer, then Y is the span of

Xq,  the canonical generator of Xv.  Suppose v(h¿) = 21, I a positive integer.

Then dim 7 = 2. Define the element Ç, in the universal enveloping algebra

of ¿ as follows:   If dim ga> 1 and I  is even,

t¡- n ea+i6/2*_2a);
; = 1;;' odd

if dim g   > 1  aTzzi / is odd,

;'=2 ;;' even

and if dim ga= 1, C¡ = /', where f  is a nonzero element of ¿~a.  Then Y

has basis [x0, Ç, • xQ\, and £¿ • xQ is a conical restricted weight vector in

Xv with restricted weight s¿u — p.

Theorem 10.2. Let a be a simple restricted root, let p, v £ a , and sup-

pose that p-v is of the form ca (c £ k). (if dim a = 1, then this is automa-
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tic.) Then Hom3(X^, Xv) is at most one-dimensional, and dim Horn „(X'1, Xv)

= 1  if and only if either p = v, or else p = sav and v(h'a)  is a nonnegative

even integer. Moreover, dim HomgiX^, Xv) = 1  if and only if X^ is isomor-

phic to a ¿-submodule of Xv.

Proof. Theorem 10.2 follows from Theorem 10.1, just as in the proof of

Theorem 6.18. To prove Theorem 10.1, note first that the case 2a 4 2 is

covered in Theorem 6.17. Suppose that 2a £2. It is clearly sufficient to as-

sume now that k is algebraically closed. By Lemma 6.16,  Y = (jA_a • x0) .

Moreover, Ji_a is the polynomial algebra k[q_a, q_2ai if dim g2a > 1 and

5l_a is the polynomial algebra k[q_a, r_2c¡] it dim g2a= 1, by Theorem

5.1; here r_2a £ g~      and r_2   = q_2a (such an element exists since k is

algebraically closed). Hence  Y is the set of m © rt-invariants in Xv of the

form aQ(q_a, r_2a) • xQ if dim g a = 1 and of the form a0iq_a, ?_2a) " xo

if dim g     > 1, where aQ  ranges through the polynomials in two variables

over k. The stage is set for the application of the transfer principle for coni-

cal vectors (Theorem 8.6). Suppose that dim g a = 1, and that a0(q_a, r_2a)

• Xq is a conical vector. If v(ha) is not a positive even integer, then aQ is

a nonzero scalar, by the last part of Theorem 8.6, combined with Lemma 9.2.

Suppose now that viha) = 21, where / is a positive integer. Then the same

two results show that aQiq_a, r_2a) • xQ is a (nonzero) linear combination

of Xq and £, • Xq, in the notation of the theorem. Conversely, £. • Xq is, in

fact, a conical vector, again by Theorem 8.6 and Lemma 9.2 (or Lemma 9.1).

This proves the present theorem in case dim ¿ a = 1. If dim ¿     > 1, the

theorem follows from the same argument, this time using the first part of Theo-

rem 8.6. Note that since the polynomials a, in Lemma 9.2 are polynomials in

y and z , the space  Y has the same description whether dim ¿     = 1 or

dim g2a >1.    Q.E.D.

Remark. (Cf. the Remark following Theorem 6.17.) In the notation of

Theorem 10.1, vihA is a nonnegative even integer if and only if X    con-

tains an m-invariant restricted weight vector with restricted weight sj/ - p,

or equivalently, a conical restricted weight vector with restricted weight

sav — p.  But in general not every m-invariant restricted weight vector with

restricted weight sav — p is conical.

Remark. If dim a = 1 and dim ga > 1, then v(h'^) = v(h¿) is a nonnega-

tive even integer if and only if v is a nonnegative integral multiple of the

unique simple restricted root a.
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