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ABSTRACT. We introduce a class of Walsh series ﬂ'; for each
0 <a <1 and show that a necessary and sufficient condition that a
closed set E € 2% be a set of uniqueness for J ; is that the a-capac-
ity of E be zero.

1. Introduction. A Walsh series S=27 (a,¥, is said to belong to the
class @ if

(1) lim 2~ "s A% =0 forall xe 2%

n—oo

where
N-1

SN(X)E z ak‘l,k(x)
k=0

for N=0,1,....

Let 0 <a <1 and for each positive integer k& set [k] = 2" where 7 is
the nonnegative integer determined by 2” <k < 27*1 A Walsh series S =
2y _04.Y, is said to belong to the class T, if

oo

¢)) > ai[k]“ ~1< oo,
k=1
The Walsh series S is said to belong to the class 3.: if in addition to (2)

there exist integers 0 <n; <7, <... such that

3 \) 2,,J.(x) >0 a.e.
If 0<a<1 then J S (@, since by Schwarz’s inequality
2"-1
2775 (D)2 < 27" 3 aflR]e- 1.
k=0
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Let B be a certain class of Walsh series. A subset E of the group 2%
is said to be a set of uniqueness for BifSeB and limnmSzn(x) =0 for
x € 2~ E imply that S is the zero series.

For each Borel set E C 2% let JI(E) denote the set of all nonnegative
Borel measures concentrated on E with total variation 1. Let 0 <a <1,
We associate with each measure p € T(E) a potential function

4) 0,0 = [, Kals = y)duty).

where K, is the nonnegative, lower semicontinuous, integrable function {x}~%
introduced in [6]. Let

W,(E) = inf{W(E): peM(E),
where for each p € M(E),
(5) WEE) = U )l e

Then E is said to be of a-capacity zero if W{E) = +oco.

Crittenden and Shapiro [3] have shown that a Borel set E C 2% is a set
of uniqueness for Q@ if and only if E is countable. For each a € 0, 1) we
shall show that a closed set E C 2% is a set of uniqueness for 3; if and
only if the a-capacity of E is gero. For a large class of null Walsh series
which is contained in J : see [8].

This author is indebted to Professor Victor L. Shapiro who first posed
this problem in 1964 with ffa in place of 3';. The analysis presented here
would also solve the original problem if a group 2% analogue of Frostman’s
maximal principle were known. For this connection and a theorem concerning

the trigonometric analogue of this problem see [1].

2. Fundamental lemmas. We begin this section quoting two results which
are straightforward modifications of Theorem 2.9 and Lemma 3.2 in [6].

Lemma 1. Let E, E,,... be a nested sequence of closed subsets of
2% such that E = (\,_|E, is a set of a-capacity zero. Then lim,_ W,(E )

= 409,

Lemma 2. Given a set E C 2% of positive a-capacity there is a meas-
ure p € N(E) such that its potential function is in L™(2%) and satisfies

6) 0, (x) > W,(E)

for almost every x € E.
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The first lemma we prove is

Lemma 3. If S= 2:=0ak¢k € @ and c, d are dyadic rationals in [0, 1],
then there is a Walsh series T € (A and an integer N such that n> N im-

plies
@) Tzn(x) = Szn(x) for x€lc, d)-

and
Tzn(x) =0 for x¢ ¢, d)

To establish this result we define j ok for each pair j, k£ of nonnega-
tive integers by ¥, =¥, Let P(x) = 21::0/3;"/’1‘(") be the Walsh poly-
nomial which is equal to 1 for x € [c, d) and equal to 0 elsewhere. Let
T=32p v,¥, where

M

(8) yk = Z Biakoj. .
j=0

Then by 3neider [11, p. 285],

(©)) Tzn(x) = P(x)S 2n(:o:), x€2%

when 2" > M. In particular, the choice of P forces T to have the desired
properties.

Fine [4] has shown that a Walsh series S which converges to zero on
an interval I with dyadic rational endpoints necessarily converges uniformly
on I. It turns out that the 2"th partial sums of S eventually vanish on I
In fact:

Lemma 4. Let F be a closed subset of [0, 1] and § = 2:=oak¢k e Q.
Suppose further that lim_ _ S,n(x) =0 ae. x €[0, 11~ F and that
2colS 2n(®)| < o0 for all but countably many x €10, 11~ F. Then for
any interval (c, d) C [0, 11 ~ F with dyadic rational endpoints there is an
integer N such that n> N and x € (c, d) imply S,,(x)=0.

lim sup

To prove Lemma 4 let T be the Walsh series corresponding to S and
(c, d) given by Lemma 3. The conclusion of Lemma 3 and the hypotheses
of Lemma 4 show us that T is a Walsh series, belonging to (, whose 2"th
partial sums converge to zero almost everywhere, are pointwise bounded off
a countable set and satisfy (7) for n greater than some integer N. T is
necessarily the zero series by the main theorem in [12]. Hence §,,(x) =0
for x € (c, d) and n> M by (7).
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3. The characterization.

Theorem. Let a €(0, 1) and E be a closed subset of the group 2°.
Then a necessary and sufficient condition that E be a set of uniqueness for

+ .
3'a is that the a-capacity of E be zero.

Necessity. Suppose the a-capacity of E is not zero. Then by definition
there is at least one measure p € J(E) such that WX(E) <. Let d, dy,...
represent the Walsh-Fourier-Stieltjes coefficients of p and set § = E:__Odkl,llk.
§ is not the zero series since d; = ||p]| = 1. Also, lim__S,,(x) =0 for x
€l0, 11~ E since p is supported on E [3, p. 563]. Furthermore §,, >0
since S,, =D,, *p and D,, > 0. Hence it suffices to show

Lemma 5. Let 0 <a <1, E be a closed subset of the group 2% and p
€ M(E). Then there is a positive constant B depending only on a such that

(10) > dike-1<wXE) . B
k=0

where d, dy,... are the Walsh-Fourier-Stieltjes coefficients of .

Let by, by, ... represent the Walsh-Fourier coefficients of K, Harper
[6] has shown that there is a positive constant B depending only on a such
that

(11) Bbk=[k]“"l, k=1,2,....

For convenience let us define [0]°~! so that (11) holds with & = 0.
To prove (10) we may suppose that WL (E) < eo. In this case it is known
that 2% d2b, = [,0U,(x) d,(x). Combining this with (11) we have

o0
-1 2 -1 7
B! X dien!- | ACEACEITAE:
Sufficiency. Suppose E is of a-capacity zero. Let =27 a4, be

a Walsh series belonging to J :

such that lim_ _S,,(x) =0 for x € 2“~ E,
We must show a, =0 for k=0,1,... .

Ve first show that @, =0. Let A: 2“ — [0, 1] be defined by
Mxy, %0000 ) = 27;1’% 2=k Since A is continuous [4] and E is compact,
A(E) is necessarily closed in [0, 1]. Let [0, 1]~ ME) = UZ‘;I I, where
I, 1,,... isa sequence of open intervals with dyadic rational endpoints.
Finally define a sequence’of closed sets E; D E, D... in the group 2“ by
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N
k=1

Now as a Walsh series on [0, 1], limn_msz,,(x) =0 for x ¢ ME). Hence N
applications of Lemma 4 allow us to conclude that for n sufficiently large,
S,2(x) =0 for x € UZ-_-I I,. As a series on the group 2 this means

— @
(12) Szn(x)=0 for x€ 2~ E,.

Let 0 <n; <m,<... satisfy (3). Since q; = fwa (x) dx we conclude
that @, > 0. By (12),

(13) la,| = fEN S nil2)ds

for j sufficiently large. Use Lemma 2 to choose an equilibrium measure p

€ M(E) satisfying (6). Then by (13) and (3)

laol < ” (E )f ",U#(x) dx

for j sufficiently large. Hence by (12) and Parseval we have
nj
2 ’-1
a,b,d
l OI “w ( N) 5 kTR R
for j sufficiently large, where b, by, ... are the Walsh-Fourier coefficients
of K, and d, d,,... are the Walsh-Fourier-Stieltjes coefficients of p. Ap-

plying Schwarz’s inequality we have

Z"j-l 2"f_1
Z<WIHEY X pXANC-Y. X afHe-D,
k=0 k=0

But S ¢ ffa so by (11) and Lemma 5 we conclude that

(14) a(z) < const W I(EN)'

Observe that A~ OA(E) n 1 EN+ Now A—1oME) ~ E is at most count-
able and the a-capacity of E Ls zero, so the a-capacity of nN 1 Ey must
also be zero. Hence by Lemma 1, lim N_“Wa(E n) = +00, which by (14) implies
that a, = 0.

For future reference, let us call what we have just proved a lemma.

Lemma 6. Let S € 3.: and E be a closed set of a-capacity zero. If
limn_msz,,(x) =0 for x € 2°~ E, then the constant term of S is zero.
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Suppose for some m >0 that @, =0 for k=0, 1,..., 2" - 1. We shall
show that

(15) a,=0 for k=2",2"+ 1,..., 2" 1

thereby finishing the proof of the Theorem by induction.
To prove (15) fix an integer I € [27, 2™*!) and set

(16) P(x)=D2 (1. 27+ 1x).

m+l

It is easy to see that P(x) = 2}3“"1 ﬁj(.l) !/I’.(x) where B;I) = t1 and that
the matrix

A=BP:j=2m, ., 2m —1and 1= 27, ..., 272 )

is nonsingular. For a similar result concerning Haar polynomials see [7].
Now set T=327 )y, ¥, where

2m+l_1

1
a7 Vo= 2 Bak
=0

A routine computation shows that T € .‘]'a. As in the proof of Lemma 3,
Tzn(x) = P(x)Szn(x), x € 2%

for n sufficiently large. In particular lim _ Tzn(x) =0 for x € 2°~ E,
and Tz,,j(x) >0 ae.,j=1,2,.... Hence y, =0 +bly Lemma 6. By the in-
ductive hypotheses and (17) we conclude 0 = 2;:2,,, -1 ﬁ;.l) a. This identity
holds for each 1 =2™,2™ +1,..., 2m*1 1 so we finally arrive at the ma-

trix equation
2ym

A. . = 0.

a2m+l_1

Since the matrix A is nonsingular (15) is established as required.
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