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UNIQUENESS AND a-CAPACITY ON THE GROUP 2e\1)
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WILLIAM R. WADE

ABSTRACT.  We introduce a class of Walsh series  3"a for each

0 < a < 1  and show that a necessary and sufficient condition that a

closed set £ £ 2    be a set of uniqueness for ï a  is that the a-capac-

ity of E be zero.

1.   Introduction.   A Walsh series S = 2?°_0a,i¿V,  is said to belong to the

class U if

(1) lim 2~nS    (x) = 0    for all x e 2*;
n-.~ 2»

where
N-l

sNix) = Y. ak^k^
k=0

for N = 0, 1,... .

Let 0 < a < 1 and for each positive integer A set [A] = 2" where 72 is

the nonnegative integer determined by 2n < A < 2"    .A Walsh series 5 =

1.T_0a,^,  is said to belong to the class J a if

(2) ¿a2^-1^.

fe=l

The Walsh series S is said to belong to the class J a if in addition to (2)

there exist integers 0 < 72j < 722 <• • •   such that

(3) S     (x)>0    a.e.
2 '

If 0 < a < 1 then Ja— 3, since by Schwarz's inequality

2"-l

[2~"5    (x)]2<2-"<* Z   «ja-"1.
fe=0
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Let 55 be a certain class of Walsh series.   A subset E of the group 2e0

is said to be a set of uniqueness for s> if S e m and lim ^^S^nix) = 0 for

x e 2   ~ £ imply that 5 is the zero series.

For each Borel set E Ç 2" let 311(E) denote the set of all nonnegative

Borel measures concentrated on E with total variation 1.   Let 0 < a < 1.

We associate with each measure p e 511(E) a potential function

(4) ÍT¿(x) = J2(uKa(x-y)a,íí(y).

where Ka is the nonnegative, lower semicontinuous, integrable function ix!~

introduced in [6],   Let

Wa(E) m inf[W£iE): pe%(E)\,

where for each p. e 311(E),

(5) W£(E) = ||L7JL.

Then E is said to be of a-capacity zero if W£E) = +oo.

Crittenden and Shapiro [3] have shown that a Borel set E C 2m is a set

of uniqueness for U if and only if E is countable.   For each a e (0, 1) we

shall show that a closed set E Ç 2e" is a set of uniqueness for S    if and

only if the a-capacity of E is z.ero.   For a large class of null Walsh series

which is contained in J     see [8].

This author is indebted to Professor Victor L. Shapiro who first posed

this problem in 1964 with Ja in place of J a.   The analysis presented here

would also solve the original problem if a group 2    analogue of Frostman's

maximal principle were known.   For this connection and a theorem concerning

the trigonometric analogue of this problem see [l].

2.   Fundamental lemmas.   We begin this section quoting two results which

are straightforward modifications of Theorem 2.9 and Lemma 3.2 in [6],

Lemma 1.   Let E y E2,...   be a nested sequence of closed subsets of

2    such that E m CY° ,E    is a set of a-capacity zero.   Then lim     „WjE )
■  'nal   n i r j n—.co   a     n

a +00.

Lemma 2.   Given a set E Ç 2    of positive a-capacity there is a meas-

ure  p. e m(E) such that its potential function is in Loc(2CJ) and satisfies

(6) Uß(x)>Wa(E)

for almost every x £ E.
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The first lemma we prove is

Lemma 3.   If S a ^?°_0a,i/',  e U and c, d are dyadic rationals in [0, l],

then there is a Walsh series T e Q and an integer N such that n> N im-

plies

(7) T2n(x) = S2n(x)    forxe[c,dy

and

T2n(x) = 0   for xi [c, d).

To establish this result we define / ° A   for each pair /, A of nonnega-

tive integers by <A0fc - ^"¿V   Let p^ = ^"kaoßk^k^ ^e tne Wa^sn poly-

nomial which is equal to 1 for x e [c, d) and equal to 0 elsewhere.   Let

T = 2r=0yA-here

» y* = I ßfar ■
7=0

Then by Snelder [11, p. 285],

(9) T2n(x) = P(x)S2n(x),       xe2ù),

when 2" > M.   In particular, the choice of P forces T to have the desired

properties.

Fine [4] has shown that a Walsh series S which converges to zero on

an interval / with dyadic rational endpoints necessarily converges uniformly

on /.   It turns out that the 2"th partial sums of S eventually vanish on /.

In fact:

Lemma 4.   Let F be a closed subset of[0, l] and 5= Sj^gfl^^ e U.

Suppose further that lim _^XS 2nix) = 0 a.e. x e [0, l] ~ F and that

lim sup _^oo|5'2„(jf)j < oo for all but countably many x e [0, 1] ~ F.   Then for

any interval (c, d) C. [0, l] ~ F with dyadic rational endpoints there is an

integer N such that n>N and x e (c, d) imply S2„(x) = 0.

To prove Lemma 4 let T be the Walsh series corresponding to S and

(c, d) given by Lemma 3.   The conclusion of Lemma 3 and the hypotheses

of Lemma 4 show us that T is a Walsh series, belonging to U, whose 2"th

partial sums converge to zero almost everywhere, are pointwise bounded off

a countable set and satisfy (7) for 72 greater than some integer zV.   T is

necessarily the zero series by the main theorem in [12].   Hence S2„(x) = 0

for x e (c, d) and 72 > M by (7).
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3.   The characterization.

Theorem*   Let a e (0, 1) aTza" E be a closed subset of the group 2 .

Then a necessary and sufficient condition that E be a set of uniqueness for

J a   is that the a-capacity of E be zero.

Necessity.   Suppose the a-capacity of E is not zero.   Then by definition

there is at least one measure j^ e 311(E) such that W^(E) < oo.   Let dQ, d y ...

represent the Walsh-Fourier-Stieltjes coefficients of p and set S = 1.T0d,tf/,.

S is not the zero series since d0 = ||ím|| = 1.   Also, lim _>oo52„(x) = 0 for x

e [0, l] <v E since p. is supported on E [3, p. 563].   Furthermore S2„ > 0

since S2„ = D2„ *p and D2„ > 0.   Hence it suffices to show

Lemma 5.   Let 0 < a <1, E be a closed subset of the group 2 , and p.

e 3H(E).   Then there is a positive constant B depending only on a such that

oo

(io) Z^U^-^w^.b
fc=0

where dQ, dy ...  are the Walsh-Fourier-Stieltjes coefficients of p.

Let bQ, by... represent the Walsh-Fourier coefficients of Ka. Harper

[6] has shown that there is a positive constant B depending only on a such

that

(11) Bbka[k]a-\      A.l, 2.

For convenience let us define [0]a~    so that (11) holds with A = 0.

To prove (10) we may suppose that W^(E) < oo. In this case it is known

that STL n^ife^fc = $2^ Uj-x) ¿Ax)-   Combining this with (11) we have

B- 1 £ rfJfl- 1 = f    IT» dfr) < W£(E).
k=0 2

Sufficiency.   Suppose E is of a-capacity zero.   Let S = ^.TQa,yj,   be

a Walsh series belonging to j a such that lim _^0S2nix) = 0 for x e 203 ̂  jf#

We must show ak = 0 for A = 0, 1,...   .

We first show that aQ = 0.   Let X: 2U —» [0, l] be defined by

X(xy x2,... ) = Sf]_jX, 2"  .   Since X is continuous [4] and E is compact,

X(E) is necessarily closed in [0, l].   Let [0, l] ~ X(E) = U~=i K where

I y I2,...   is a sequence of open intervals with dyadic rational endpoints.

Finally define a sequence'of closed sets E^7> E27>... in the group 2" by
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E„ = 2e" »\. X'

Now as a Walsh series on [0, l], lim ^^„(x) = 0 for x 4 X(E), Hence N

applications of Lemma 4 allow us to conclude that for 72 sufficiently large,

S2„(x) = 0 for x e Ut=i 't*   As a series on the group 203, this means

(12) S   (x) = 0    fot xe 2C0~EV.
2n ¡V

Let 0 < 72 j < 7z2 <... satisfy (3).   Since a0 = f2UJS     (x) dx we conclude

that a0>0.   By (12), 2"y

(13) l*ol-/Bw^)*

for /' sufficiently large.   Use Lemma 2 to choose an equilibrium measure p

e 311(E) satisfying (6).   Then by (13) and (3)

|an| <-i-   f     5 „.U„(x)dx
1   0l - Wa(EN) JEN   2"J ^

for ; sufficiently large.   Hence by (12) and Parseval we have

Wo\<7fh-,  T>   akhdk
WaiEN>   ¿=0

for / sufficiently large, where bQ, by... ate the Walsh-Fourier coefficients

of Ka and d0, dy ... ate the Walsh-Fourier-Stieltjes coefficients of p. Ap-

plying Schwarz's inequality we have

2">-l 2">'-l

«u<W-2(EN)    Z    b2kd2k[k]«-«K    Z    *&]<*-».
fe=0 k=0

But S e Jaso by (11) and Lemma 5 we conclude that

(14) a2 < const W-Hen).

Observe that X~ 1 oX(E) = f)™= 1 E^.   Now X~ 1 ° ME) ~ E is at most count-

able and the a-capacity of £ is zero, so the a-capacity of Ojy=l EN must

also be zero.   Hence by Lemma 1, lim.,   ^W^E,,) = +00, which by (14) implies

that aQ = 0.

For future reference, let us call what we have just proved a lemma.

Lemma 6.   Let S e J a and E be a closed set of a-capacity zero.   If

lim     „S-,„(x) = 0 for x e 2<y~ E, then the constant term of S is zero.
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Suppose for some m > 0 that a, = 0 for A = 0, 1,..., 2m - 1.   We shall

show that

(15) a, =0    for A= 2m, 2m+ 1,..., 2m + 1 -1

thereby finishing the proof of the Theorem by induction.

To prove (15) fix an integer I e[2m, 2™n) and set

(16) P(x)aD       Al. 2m+1+x)

It is easy to see that P(x) = SS*1-1 ß(-l) 0-(x) where ß(.l) = ±1 and that

the matrix

A = (ß(.l): j=2m, ... , 2m + 1 - 1 and I = 2m, ... , 2m + 1 - 1)

is nonsingular.   For a similar result concerning Haar polynomials see [7],

Now set T = 2 T_0 y, vj    where

2"2 +1—1

(17) y, =      E      ßf'yk
r=0

'fco,"
7=

A routine computation shows that T e j . As in the proof of Lemma 3,

T    (x) = P(x)S    (x),       x e 2e0,
2n 2™

for 72 sufficiently large.   In particular lim  ^^ T2«(x) = 0 for x e 2   ~ E,

and  T _ .(x) > 0 a.e., ; = 1, 2,... .   Hence yQ = 0 by Lemma 6.   By the in-

ductive hypotheses and (17) we conclude 0 = 2 -_2m ~    ß ■    a..   This identity

holds for each / = 2m, 2m + 1,..., 2m     — 1  so we finally arrive at the ma-

trix equation

a
2m

a   0.

2"z + l_ 1

Since the matrix A is nonsingular (15) is established as required.
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